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Abstract. Radar-inference of the bulk properties of glacier beds, most notably identifying basal

melting, is, in general, derived from the basal reflection coefficient. On the scale of an ice-sheet,

unambiguous determination of basal reflection is primarily limited by uncertainty in the englacial

attenuation of the radio wave, which is an exponential function of temperature. Most existing radar

algorithms assume stationarity in the attenuation rate, which is not feasible at an ice-sheet wide5

scale. Here we introduce a new framework for deriving englaical attenuation and basal reflection,

and, to demonstrate its efficacy, we apply it to the Greenland Ice-Sheet. A central feature is the use

of a prior Arrhenius temperature model to estimate the spatial variation in englaical attenuation as

a first guess input for the radar algorithm. We demonstrate regions of solution convergence for two

input temperature fields, and for independently analysed field campaigns. The coverage achieved is10

a trade-off with uncertainty and we propose that the algorithm can be ‘tuned’ for discrimination of

basal melt (attenuation loss uncertainty ∼ 5 dB). This is supported by our physically realistic (∼ 20

dB) range for the basal reflection coefficient. Finally, we show that the attenuation solution can be

used to predict the temperature bias of thermomechanical ice-sheet models.

1 Introduction15

Ice Penetrating Radar (IPR) data provide valuable insights into several physical properties of glaciers

and their beds including: ice thickness (e.g. Fretwell et al. (2013); Bamber et al. (2013)), bed rough-

ness (e.g. Berry (1973); Siegert et al. (2005); Rippin (2013)), basal material properties (e.g. Oswald

and Gogineni (2008); Jacobel et al. (2009); Fujita et al. (2012); Schroeder et al. (2016)), internal

layer structure (e.g. Matsuoka et al. (2010); Macgregor et al. (2015a)), and englacial temperature20
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(Macgregor et al., 2015b). In recent years, there has been a noticeable increase in radar track den-

sity in Greenland and parts of Antarctica, which has lead to the development of new ice-sheet wide

data products for bed elevation and ice thickness (Fretwell et al., 2013; Bamber et al., 2013). These

data products provide essential boundary conditions for numerical models of ice-sheets (e.g. Gillet-

Chaulet et al. (2012); Cornford et al. (2015)), and enable investigation of a diversity of topics related25

to ice-sheet dynamics. By contrast, despite many notable regional studies (e.g. Oswald and Gogineni

(2008); Jacobel et al. (2009); Fujita et al. (2012); Schroeder et al. (2016)), ice-sheet wide data prod-

ucts for bulk basal material properties, such as quantifying regions of basal melt, do not yet exist.

As contemporary models of ice-sheet dynamics have been demonstrated to be highly sensitive to

basal traction (Price et al., 2011; Nowicki et al., 2013; Ritz et al., 2015), the poorly constrained basal30

interface poses a problem for their predictive accuracy.

Bulk material properties of glacier beds can, in principle, be identified from their basal (radar) re-

flection coefficient (Bogorodsky et al., 1983a; Peters, 2005; Oswald and Gogineni, 2008). The basal

reflection coefficient is predicted to vary over a ∼ 20 dB range for different sub-glacial materials,

with water having a∼ 10 dB higher value than the most reflective frozen bed rock (Bogorodsky et al.,35

1983a). On an ice-sheet wide scale, unambiguous radar-inference of basal melt from bed reflections

is limited primarily by uncertainty in the spatial variation of englacial attenuation (MacGregor et al.,

2012; Matsuoka, 2011). Arrhenius models, where the attenuation rate is an exponential function of

temperature (Corr et al., 1993; MacGregor et al., 2007; Macgregor et al., 2015a), predict that the

depth-averaged attenuation rate varies by a factor of ∼ 8 over the scale of the Antarctic Ice-Sheet40

(Matsuoka et al., 2012a). These models are, however, strongly limited by both inherent uncertainty

in model parameters (∼ 20-25% fractional error) (MacGregor et al., 2007, 2012; Macgregor et al.,

2015a)), and high sensitivity to the input temperature field, which itself is poorly constrained. Despite

this evidence for spatial variation in attenuation, the majority of radar-algorithms for the inference of

attenuation and basal reflection make the implicit assumption that the attenuation rate is locally sta-45

tionary e.g. Gades et al. (2000); Winebrenner et al. (2003); Jacobel et al. (2009); Fujita et al. (2012).

These radar algorithms, which use the relationship between bed-returned power and ice thickness to

identify an attenuation trend, are suspected to yield erroneous values (Matsuoka, 2011; Schroeder

et al., 2016). Moreover, these radar algorithms are not tuned for automated application over the scale

of an ice-sheet.50

In this study we introduce a new ice-sheet wide framework for the radar-inference of attenuation

and basal reflection and apply it to IPR data from the Greenland Ice-sheet (GrIS). A central feature

of our algorithm is the use of a prior Arrhenius model estimation of the attenuation rate as an initial

condition. Conceptually, the initial condition is used to estimate regions where the assumption of sta-

tionarity is valid within some specified tolereance. Specifically, the estimate is used to: (i) constrain55

a moving window for the algorithm sample region, (ii) to standardise the power for local variation in

attenuation within each sample region, (iii) to implement algorithm quality control. We demonstrate
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regions of algorithm solution convergence for two different input temperature fields and for inde-

pendently analysed IPR data. The coverage provided by the algorithm is a trade-off with solution

accuracy, and we suggest that the algorithm can be ‘tuned’ for basal melt discrimination in restricted60

regions of the GrIS. This is supported by the decibel range for the basal reflection coefficients (∼
20 dB on the scale of a major drainage basin). Additionally, we show that the attenuation rate solu-

tion can be used to infer bias in the depth-averaged temperature field of thermomechanical ice-sheet

models.

2 Data and methods65

2.1 Ice penetrating radar data

The airborne IPR data used in this study were collected by the Center for Remote Sensing of Ice

Sheets (CReSIS) within the Operation IceBridge project. Four field seasons from 2011-2014 (months

March-May) have been analysed in this proof of concept study. These field seasons are the most spa-

tially comprehensive to date, with coverage throughout all the major drainage basins of the GrIS70

and relatively dense across-track spacing toward the ice margins (Fig. 1). The radar instrument, the

Multi-Channel Coherent Radar Depth Sounder (MCoRDS), has been installed on a variety of plat-

forms and has a programmable frequency range. However, for the data used in this study, it is always

operated on the NASA P-3B Orion aircraft and uses a frequency range from 180 MHz to 210 MHz,

which, after accounting for pulse shaping and windowing, corresponds to a depth-range resolution75

in ice of 4.3 m (Rodriguez-Morales et al., 2014; Paden, 2015). The data processing steps to produce

the multi-looked Synthetic Aperture Radar (SAR) images used in this work, are described in Gogi-

neni et al. (2014). The along-track resolution after SAR processing and multilooking depends on the

season and is either ∼ 30 m or ∼ 60 m with a sample spacing of ∼ 15 m or ∼ 30 m respectively.

The radar’s dynamic range is controlled using a waveform playlist which allows low and high gain80

channels to be multiplexed in time. The digitally recorded gain for each channel allows radiomet-

ric calibration and, in principle, enables power measurements from different flight tracks and field

seasons to be combined. This is in contrast to pre 2003 CReSIS Greenland datasets, which used a

manual gain control that was not recorded in the data stream.

2.2 Overview of algorithm85

A flow diagram for the separate components of the radar algorithm is shown in Fig. 2. The along-

track processing of the IPR data (Sect. 2.3) is an adaptation of the method developed by Oswald

and Gogineni (2008, 2012), and is particularly suited to evaluation of bulk material properties

via the reflection coefficient. The Arrhenius model estimation of the attenuation rate, (Sect. 2.4),

uses the framework developed by MacGregor et al. (2007); Macgregor et al. (2015b) and assumes90

steady-state temperature fields from the GISM (Greenland Ice-Sheet Model) (Huybrechts, 1996),
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and SICOPOLIS (SImulation COde for POLythermal Ice-Sheets) (Greve, 1997) thermomechanical

models. The Arrhenius model is used to firstly constrain the sample region for the algorithm (Sect.

2.5), and then to correct for local attenuation variation within each region when inferring the atten-

uation rate, (Sect. 2.6). Algorithm quality control is then implemented, by testing for regions where95

the attenuation solution is marked by strong correlation between bed-returned power and ice thick-

ness, (Sect. 2.7). Finally, gridded maps are produced for the radar-inferred attenuation rate, the total

attenuation loss, and the basal reflection coefficient, (Sect. 2.8).

2.3 Waveform processing

The processing of the IPR data, based upon the method developed by Oswald and Gogineni (2008,100

2012), uses an along-track (phase-incoherent) average of the basal waveform and a depth aggre-

gated/integrated definition of the bed-returned power. The advantage of using this definition, com-

pared with the conventional peak power definition, is that the variance due to variable surface rough-

ness (e.g. Berry (1973); Peters (2005)) is reduced. This reduction in variance is thought to occur be-

cause, based on conservation of energy principles, the aggregated definition of bed-returned power105

for a diffuse surface is more directly related to the predicted (specular) reflection coefficients than

equivalent peak power values (Oswald and Gogineni, 2008). In our study we make two important

modifications to this method, which are described here, along with an overview of the key process-

ing steps. The first modification corresponds to defining a variable window size for the along-track

averaging of the basal waveform (which enables us to optimise the effective data resolution in thin110

ice), and the second corresponds to the implementation of an automated waveform quality control

procedure.

Using the waveform processing method of Oswald and Gogineni (2008, 2012), the along-track

waveform averaging window is set using the first return radius

r =

√
p

(
s+

h√
εice

)
, (1)115

where p=4.99 m is the (pre-windowed) radar pulse half-width in air (Rodriguez-Morales et al., 2014),

s is the height of the radar sounder above the ice surface, h is the ice thickness and, εice = 3.15 is the

real part of the relative dielectric permittivity for ice. For a flat surface, r, corresponds to the radius of

the circular region illuminated by the radar pulse such that it extends the initial echo return by <50%

(Oswald and Gogineni, 2008). Additionally, if adjacent waveforms within this region are stacked120

about their initial returns and arithmetically averaged, they represent a phase-incoherent average

where the effects of power fluctuations due to interference are smoothed (Oswald and Gogineni,

2008; Peters, 2005). Oswald and Gogineni (2008, 2012) considered the northern interior of the GrIS

where h∼ 3000 m, and subsequently r and the along-track averaging interval were approximated

as being constant. Since our study considers IPR data from both the ice margins and interior, we125

use Eq. (1) to define a variable size along-track averaging window. For the typical flying height of
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s=480 m, r ranges from ∼ 55 m in thin ice (h=200 m) to ∼ 105 m in thick ice (h=3000 m), though

can be higher during plane maneuvers. The number of waveforms in each averaging window is then

obtained by dividing 2r by the along-track resolution.

The incoherently averaged basal waveforms range from sharp pulse-like returns associated with130

specular reflection, to broader peaks associated with diffuse reflection (refer to Oswald and Gogineni

(2008) for a full discussion). An example of an incoherently averaged waveform is shown in Fig.

3a, in units of linear power versus depth-range index Di. The plot shows the upper and lower limits

of the power depth integral, Dlower and Dupper. These limits are symmetric about the peak power

value, with (Dupper −Dlower) = 2r (in units of the depth-range index), a range motivated by the135

observed fading intervals described in (Oswald and Gogineni, 2008). Subsequently, as is the case for

the along-track averaging bin, the power integral limits vary over the extent of the ice-sheet and are

of greater range in thicker ice. The aggregated (integrated) power is then defined by

Pagg =
Di=Dupper∑

Di=Dlower

P (Di). (2)

Waveform quality control, was implemented by testing if the waveform decays to a specified fraction140

of the peak power value within the integral limits Dlower and Dupper. This effectively provides a

test that the SAR beamwidth is large enough to include all of the scattered energy, which was argued

to be the general case by Oswald and Gogineni (2008). Decay fractions of 1%, 2% and 5% were

considered, and 2% was established to give the best coverage, whilst excluding obvious waveform

anomalies. The waveform in Fig. 3a is an example that satisfies the quality control measure, whereas145

the waveform shown in Fig. 3b does not. The relative decibel power for each waveform is then

defined by

[P ] = 10log10 (Pagg) , (3)

where the decibel notation [X] = 10log10X is used. Finally, the relative power is corrected for the

effects of geometrical spreading using150

[PC ] = [P ]− [G], (4)

where

[G] = 20log10

gλ0

8π
(
s+ h√

εice

) , (5)

(Bogorodsky et al., 1983b) with g = 4 the antenna gain (corresponding to 11.8 dBi) (Paden, 2015),

and λ0=1.54 m the central wavelength of the radar pulse (Rodriguez-Morales et al., 2014).155

2.4 Arrhenius temperature model for attenuation

It is well established that the radar attenuation rate in glacier ice is described by an Arrhenius re-

lationship where there is exponential dependence upon temperature and a linear dependence upon

5
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the concentration of soluble ionic impurities (Corr et al., 1993; MacGregor et al., 2007; Macgregor

et al., 2015a; Stillman et al., 2013). The Arrhenius relationship is empirical and the dielectric prop-160

erties of impure glacier ice, (pure ice conductivity, molar conductivities of soluble ionic impurities,

and activation energies), need to be measured with respect to a reference temperature. An Arrhe-

nius modelling framework has recently been developed for the GrIS, from herein referred to as the

M07 model following MacGregor et al. (2007); Macgregor et al. (2015a), that includes three sol-

uble ionic impurities: hydrogen/acidity (H+), chlorine/sea salt (Cl−), and ammonium (NH+
4 ). The165

equations and parameters for the M07 model calculation of the attenuation rate, B∞ (in dB km−1) ,

the depth-averaged attenuation rate <B∞ >, (in dB km−1), and the total loss [L∞] (in dB) are out-

lined in Appendix A. The∞ subscript is used for these quantities as they are derived from the high

frequency limit of the electrical conductivity, σ∞, and it enables them to be distinguished from the

corresponding radar-inferred values, (introduced in Sect. 2.6), which have no subscript. For brevity,170

in the rest of the paper we refer to the depth-averaged attenuation rate, <B∞ >, as the attenuation

rate.

The Arrhenius model assumes uniform, depth-averaged, molar concentrations: cH+=0.8 µM, cCl−=1.0

µM and cNH+
4

=0.4 µM, which are derived from GRIP core data (Macgregor et al., 2015b). A decom-

position of the temperature dependence for B∞ for pure ice and the different ionic species is shown175

in Fig. 4a. The pure ice component dominates at higher temperatures, (for example at -10◦C ∼84%

of the total attenuation rate is due to the pure ice component), whilst the H+ component is signif-

icantly greater than the Cl− and NH+ components at all temperatures. Use of layer stratigraphy

for the concentration of the ionic species (rather than depth-averaged values) is discussed in detail

in MacGregor et al. (2012), and is considered less crucial for an attenuation model than spatially180

varying temperature.

The prior estimation of <B∞ > and [L∞] was obtained using the steady state temperature fields

for GISM and SICOPOLIS and is explained fully in Appendix A. The calculation was interpolated

at 1 km grid resolution, and used the Greenland Bedmap 2013 thickness data product (Bamber et al.,

2013). For the SICOPOLIS temperature field it is necessary to convert the (homologous) temperature185

values from degrees below pressure melting point to units of K (or ◦C) using a depth correction factor

of -8.7×10−4 K m−1 (Price et al., 2015). For both temperature fields, the depth-averaged attenuation

rate is predicted to vary extensively over the GrIS, with minimum values in the interior∼ 7 dB km−1

and maximum values for the south western margins of > 35 dB km−1 (shown for the GISM field in

Fig. 4b). For the majority of the IPR data coverage region GISM has a negative temperature bias,190

and therefore depth-averaged attenuation rate bias, with respect to SICOPOLIS (Fig. 4c).The GISM

vertical temperature profiles are in better overall agreement with the temperature profiles at the deep

ice core sites shown in Fig. 1b (refer to Macgregor et al. (2015b) for summary plots of the core

temperature profiles).
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2.5 Constraining the algorithm sample region195

Radar-inference of the depth-averaged attenuation rate requires sampling IPR data from a local re-

gion of the ice-sheet with a range of ice thicknesses (Gades et al., 2000; MacGregor et al., 2007;

Jacobel et al., 2009; Fujita et al., 2012; Matsuoka et al., 2012b). An implicit assumption of the

method, which considers the relationship between bed-returned power and ice thickness, is that the

depth-averaged attenuation rate is stationary across the sample region (Matsuoka et al., 2010; Lay-200

berry and Bamber, 2001). However, as was shown in Sect. 2.4, the depth-averaged attenuation rate

is predicted to have pronounced spatial variation, and therefore an ice-sheet wide radar attenuation

algorithm must take this into account. In our development of an automated framework, we use the

spatial distribution of <B∞ > (the prior Arrhenius model estimate) firstly to constrain the size and

shape of the sample region (described here), and secondly to correct for local attenuation variation205

within each sample region (described in Sect. 2.6). The steps for determining the sample region ‘tar-

get window’ size as a function of position (assuming a 1 km scan resolution) are described below.

Fig.5a illustrates an example of the anisotropy that can occur in the spatial distribution of<B∞ >

for a 120 km2 region of the GrIS . For simplicity of computational implementation the target win-

dow is divided into eight segments, (notated by Sn with n=1,2,...,8), in a plane-polar coordinate210

system about a central point (x0,y0), (Fig. 5b). The size of each segment is defined by its cen-

tral radius vector, Rn, for angles θn = (n−1)π
8 . <B∞ > is then approximated in the plane-polar

coordinate system by defining the attenuation rate in each segment to have the same radial de-

pendence as along the direction of the central radius vector: <B∞(r)>=<B∞(rn,θn)> with

r =
√

(x−x0)2 + (y− y0)2) (Fig. 5c). The Euclidean distance of <B∞ > from (x0,y0) is then215

used to define a tolerance metric, shown for
√

(<B∞(x,y)>−<B∞(x0,y0)>)2 in Fig. 5d and

the segment approximation
√

(<B(rn,θn)>−<B∞(x0,y0)>)2 in Fig. 5e respectively.

A primary consideration for the spatially varying moving target window is that the target window

dimensions,Rn, are smoothly varying in space. If the converse were true then there would be a sharp

discontinuity in the IPR data that is sampled. It was established that, rather than use of a simple220

maximum Euclidean distance criteria to define Rn, a Root Mean Square (RMS) integral measure

produces greater spatial continuity. The RMS measure, which is similar to the RMS integral measure

for a continuous-time function, is defined for each segment by

RMS(Rn) =

√√√√√
Rn∫

0

π
4 (<B∞(rn,θn)>−<B∞(x0,y0)>)2rndrn

πR2
n

8

. (6)

Specifying a value of RMS(Rn), then enables radius vectors Rn to be derived from evaluating225

the integral, Eq. (6). It was further established that smoother windowing occurs if the constraints
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R1 =R5, R2 =R6, R3 =R7, R4 =R8, are applied and the joint integral

RMS(Rn) =
1
2

√√√√√
Rn∫

0

π
4 (<B∞(rn,θn)>−<B∞(x0,y0)>)2rndrn

πR2
n

8

+
1
2

√√√√√
Rn∫

0

π
4 (<B∞(rm,θm)>−<B∞(x0,y0)>)2rmdrm

πR2
n

8

, (7)

with index pairs (n,m)=(1,5), (2,6), (3,7) and (4,8) is used to solve for Rn. Finally, the boundaries230

of the target window, are defined by linear interpolation along a circular arc (Fig. 5f). Note that

the target window boundaries are largest in the direction approximately parallel to the contours of

constant <B∞ > in Fig. 5a.

Tuning the RMS tolerance, Eq. (7), is discussed in the Supplementary Material. Briefly, the chosen

value (RMS=1 dB km−1), is a balance between being large enough to ensure that there is an adequate235

spread in ice thickness, whilst being sufficiently small to ensure that attenuation rate values are

sufficiently close to the central point of the target window. It will be shown later that, in central

Greenland, this condition is generally not satisfied because the gradient in ice thickness with distance

is too small. The spatial distribution of the target window radius vectors R1, R2, R3, R4 for RMS=1

dB km−1 using GISM temperature field are shown in Fig. 6. All four plots have the general trend240

that the target window radi are larger in the interior of the ice-sheet corresponding to where the

<B∞ > field is more slowing varying. The dependence of R1, R2, R3, R4 upon the anisotropy

of the <B∞ > field in Fig. 4 is also evident, with smaller radi approximately parallel to contours

of constant <B∞ > and larger radi approximately perpendicular. This target windowing approach

is sensitive to the input temperature field and repeat plots for the SICOPOLIS temperature field245

are shown in the Supplementary Material. Additionally, we note that the approach is sensitive to

the horizontal gradient in (depth-averaged) temperature rather than the absolute value and, thus,

systematic biases in the model temperature fields are not important.

2.6 Radar-inference of attenuation rate

The basic method of using the relationship between ice thickness and bed-returned power to infer250

the radar-attenuation rate and basal reflection coefficient has been employed many times to local

regions of ice-sheets (Gades et al., 2000; Winebrenner et al., 2003; MacGregor et al., 2007; Jacobel

et al., 2009; Matsuoka et al., 2012b; Fujita et al., 2012). An explanation of how this method works,

begins with the radar power equation

[PC ] = [R]− [L] + [S], (8)255

where [R] is the basal reflection coefficient, [L] is the total (two way) power loss, and [S] represents

all additional gain characteristics of the radar instrumentation (Matsuoka et al., 2010). In our study

8
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[PC ] is the aggregated geometrically corrected power, as defined by Eqs. (2)-(4), whereas in the ma-

jority of other studies [PC ] is the geometrically corrected peak-power of the basal echo. Equation (8)

does not include additional loss due to internal scattering, which can occur when the glacial ice has260

crevasses and is not well stratified (Matsuoka et al., 2010; MacGregor et al., 2007). Expressing the

total loss in terms of the depth averaged attenuation rate as, [L] = 2<B > h, and then considering

the variation in Eq. (8) with respect to ice thickness gives

δ[PC ]
δh

=
δ[S]
δh

+
δ[R]
δh
− 2<B >, (9)

(Matsuoka et al., 2010). If both δ[S]
δh << δ[PC ]

δh and δ[R]
δh << δ[PC ]

δh , (refer to Sect. 2.7 for the algo-265

rithm quality control measures that test for this), then

<B >≈−1
2
δ[PC ]
δh

. (10)

Subsequently, radar-inference of the attenuation rate is achieved via linear regression of Eq. (10),

the total loss can be calculated from [L] = 2<B > h, and the basal reflection coefficients can be

calculated from Eq. (8).270

As discussed here and in Sect. 2.5, in applying this linear regression approach, it is assumed that

the regression gradient (i.e. the depth-averaged attenuation rate) is constant throughout the sample

region. In practice, however, the sample region must necessarily include ice with a range of thick-

nesses, and therefore a range of temperatures and attenuation rates. In our modification to the basic

method, the Arrhenius model is used to ‘standardise’ bed-returned power using the central point of275

each target window as a reference point. This is achieved via the power correction

[PC ]i→ [PC ]i + 2(<B∞(xi,yi)>−<B∞(x0,y0)>)hi, (11)

where (xi,yi) corresponds to the position of the ith data point within the target window and (x0,y0)

corresponds to the central point. This power correction represents an estimate of the difference in

attenuation loss between an ice column of the actual measurement (loss estimate 2<B∞(xi,yi)>280

hi), and a fictitious ice column with the same thickness as the measurement but with the attenuation

rate of the central point (loss estimate 2<B∞(x0,y0)> hi).

An example of a [PC ] versus h regression plot pre- and post- power correction, Eq. (11), is shown

in Fig. 7. Typically, ice columns that are thinner/warmer than the central point have (<B∞(xi,yi)>

−<B∞(x0,y0)>)> 0 and the power values are increased by Eq. (11), whereas ice columns that285

are thicker/cooler than the central point have (<B∞(xi,yi)>−<B∞(x0,y0)>)< 0 and the

power values are decreased. Subsequently, the power correction acts to enhance the linear corre-

lation between power and ice thickness, (as demonstrated by the increase in the r2 value in Fig.

7), and enables the underlying attenuation trend to be better discriminated. It follows that, for this

typical situation described, failing to take into account the spatial variation in attenuation rate in290

the linear regression procedure results in a systematic underestimation of the true attenuation rate.
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The difference in radar-inferred attenuation rate pre- and post-power correction depends upon the

distribution of IPR flight track coverage within the sample region and the size of the sample region

defined by Eq. (7), and is typically ∼ 1-4 dB km−1.

When applying the linear regression approach described in this section, IPR data from each field295

season were considered separately. To ensure that there was sufficiently dense data within each sam-

ple region a minimum threshold of 20 data measurements was enforced, where each ‘measurement’

corresponds to a separate along-track averaged waveform as described in Sect. 2.3. Additionally,

target window centres that were more than 50 km from the nearest IPR data point were excluded.

2.7 Quality control300

When the radar-inferred attenuation rate is obtained via linear regression of δ[PC ]
δh , Eq. (10), it is

assumed that, in comparison, the correlation for δ[R]
δh is negligible (i.e. that the basal reflector is

statistically uniform with ice thickness). To make a prior estimate of the correlation for δ[R]
δh we use

the prior Arrhenius model estimate of the loss and basal reflection coefficient governed by

[R∞] = [L∞] + [PC ] + [S] = 2<B∞ > h+ [PC ] + [S], (12)305

and consider the correlation and linear regression model for δ[R∞]
δh . The joint quality control thresh-

old:

r2[PC ] > α, (13)

r2ratio =
r2[PC ]

r2
[PC ]

+ r2[R∞]

> β, (14)

is then enforced where r2[PC ] and r2[R∞] are r2 correlation coefficients for the δ[PC ]
δh and δ[R∞]

δh linear310

regression models, and 0≥ α≥ 1, 0≥ β ≥ 1 are threshold parameters. This thresholding criteria

tests for both strong absolute correlation in δ[PC ]
δh and strong relative correlation in δ[PC ]

δh with respect

to δ[R∞]
δh . Unlike the use of the Arrhenius model attenuation estimate in Sect. 2.5 and Sect. 2.6, which

uses the local difference in the <B∞ > field, in Eq. (12) the absolute value of <B∞ > is used. A

justification for the use of the absolute value here, is that it is used only as a quality control measure315

and does not directly enter the calculation of the radar-inferred attenuation rate.

In general, r2[R∞] can be high (or equivalently r2ratio can be low) due to: (i) there being a true

correlation in the basal reflection coefficient with thickness, (ii) there being a correlation due to

additional losses other than attenuation such as internal scattering, (iii) the Arrhenius model estimate

of the attenuation rate being significantly different from the true attenuation rate. Whilst the first320

two reasons are both desirable for quality control filtering, the third reason is an erroneous effect.

However, as the dual threshold filters out all three classes of sample region, this erroneous effect

simply reduces the coverage of the algorithm.
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2.8 Gridded maps

The attenuation rate solution from the radar algorithm is at a 1 km grid resolution (set from the325

scan resolution of the moving target window described in Sect. 2.5). It is defined on the same polar-

stereographic coordinate system as in Fig. 1 and the gridded thickness data from Bamber et al.

(2013). Subsequently, a gridded data set for the two way loss can be calculated using [L] = 2<B >

h. For grid cells that contain IPR data, the mean [PC ] value is calculated, and using Eq. (8) a map

for the gridded relative reflection coefficient, [R], is obtained, under the assumption that [S] is the330

same for all measurements. Due to the definition of relative power in Eqs. (3) and (4), the values

of [R] are also relative. As described in Sect. 2.3 the averaging procedure for the basal waveforms

means that the effective resolution of the processed IPR data varies over the extent of the ice-sheet.

Consequently, the number of data points that are averaged in each grid cell varies according to both

this resolution variation and the orientation of the flight tracks relative to the coordinate system. For335

a single flight line, (i.e. no intersecting flight tracks), the number of points in a grid cell typically

ranges from ∼ 4 in thick ice to ∼ 16 in thin ice.

3 Results and discussion

With a view toward identifying regions of the GrIS where the radar algorithm can be applied, we

firstly consider ice-sheet wide properties for the linear regression correlation parameters (Sect. 3.1).340

We then demonstrate that, on the scale of a major drainage basin, basin 4 in Fig. 1b, the attenuation

solution converges for the two input temperature fields (Sect. 3.2). We go on to show that, over

this extended region, the converged attenuation solution produces a physically realistic range for the

basal reflection coefficients (Sect. 3.3). The relationship between algorithm coverage and uncertainty

is outlined (Sect. 3.4). Finally, we consider how the attenuation solution can be used to predict345

temperature field bias in thermomechanical ice-sheet models (Sect. 3.5).

3.1 Ice-sheet wide properties

Ice-sheet wide maps for the linear regression correlation parameters are shown in Fig. 8a-c using

the GISM temperature field as an input. These maps are for the four independently processed field

seasons, and where there are points of coverage overlap an average value is taken. As discussed in350

Sect. 2.6 and Sect. 2.7, the radar algorithm requires: (i) a strong correlation between bed-returned

power and ice thickness (high r2[PC ]), (ii) a weak relative correlation between basal reflection and

ice thickness (high r2ratio). In general, r2[PC ] has stronger correlation values in southern Greenland

(typical values ∼ 0.7-0.9). These regions of higher correlation correspond to where there is higher

variation in ice thickness due to basal topography, and are correlated with regions of higher topo-355

graphic roughness (Rippin, 2013). Correspondingly, in the northern interior of the ice-sheet where

the topographic roughness is lower there are weaker correlation values for r2[PC ] (typically ∼ 0.2-
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0.3). The correlation values for r2[PC ] in the northern interior can also, in part, be explained by the

lower absolute values for the depth-averaged attenuation rate as predicted in Fig. 4b. The correlation

values for r2[R∞] are generally much lower than r2[PC ] and more localised. As discussed in Sect. 2.7,360

regions where r2[R∞] is high can arise due both true target-window scale variation in the basal reflec-

tor or due to a significant bias in the Arrhenius model estimation, [R∞]. The values for r2ratio, are

largely correlated with r2[PC ].

Examples of algorithm coverage for three different sets of (α,β) quality control thresholds, Eqs.

(13) and (14), are shown in Fig. 8d. These are chosen such that each successively higher qual-365

ity threshold region is contained within the lower threshold region. In Sect. 3.4 we discuss how

the coverage regions relate to uncertainty in the radar-inferred attenuation rate/loss, and the central

problem of the radar-inference of the basal material properties. For the discussion here, it is sim-

ply important to note that algorithm coverage is fairly continuous for a significant proportion of the

southern ice sheet, (corresponding to large regions of major drainage basins 4,5,6,7), and toward the370

margins of the other drainage basins. The spatial distribution of the radar-inferred attenuation rate,

<B(TGISM)> is shown in Fig. 8e and the radar-inferred attenuation loss [L(TGISM)] is shown in Fig.

8f, both for threshold (α,β) = (0.6,0.8). Note that the ice-sheet wide properties for <B(TGISM)>

are similar to the Arrhenius model predictions (Fig. 4b) with higher values (∼ 15-30 dB km−1)

toward the ice margins and lower values (∼ 7-10 dB km−1) in the interior.375

The ice-sheet wide properties of the algorithm are preserved using the SICOPOLIS temperature

field as an input (refer to Supplemental Material for a repeat plot of Fig. 8). Notably, the ice-sheet

wide distribution for r2[PC ] is similar, and for equivalent choices of threshold parameters there is

better coverage for the southern GrIS than for the northern interior.

3.2 Attenuation solution convergence380

To demonstrate the convergence of the attenuation solution for different input temperature fields, we

compare the solution differences for the (input) Arrhenius models,<B∞(TGISM)>−<B∞(TSIC)>

and [L∞(TGISM)]− [L∞(TSIC)], with the corresponding (output) radar-inferred solution differences,

<B(TGISM)>−<B(TSIC)> and [L(TGISM)]− [L(TSIC)]. As [L] = 2<B > h, it is necessary to

consider the thickness dependence of the solution differences and the consequences for a thickness385

correlated bias in basal reflection values. We focus on the southeast GrIS, corresponding to target

window centres that are located in drainage basin 4 in Fig. 1a. This region is selected post ice-sheet

wide processing, and the IPR data from neighboring drainage basins are incorporated in the linear

regression plots for the target windows that lie close to the basin boundaries. We consider an atten-

uation rate solution for fixed threshold parameters (α,β)=(0.6,0.8). These are chosen to achieve a390

solution uncertainty deemed to approach the accuracy required to discriminate basal melt (discussed

fully in Sect. 3.4).
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The prior Arrhenius model solution difference for the attenuation rate, <B∞(TGISM)>−<
B∞(TSIC)>, is strongly negatively biased (Fig. 9a). If the solution difference is aggregated over

all grid cells that contain IPR data the mean and standard deviation, µ±σ, is -2.42 ± 0.88 dB km−1395

(Fig. 9c). Note, that σ does not represent an uncertainty for the Arrhenius modeled attenuation rate.

It is a measure of the spread of the two different input attenuation rate fields. On the scale of the

drainage basin, this solution bias is approximately constant with ice thickness (Fig. 9d). By con-

trast, the radar algorithm solution difference, <B∞(TGISM)>−<B∞(TSIC)>, fluctuates locally

between regions of both small positive and negative bias (Fig. 9b). The aggregated radar solution400

bias is approximately normally distributed about zero, µ±σ=-0.18 ± 1.53 dB km−1 (Fig. 9c), and

approximately constant with ice thickness (Fig. 9d).

Corresponding difference distributions for the attenuation loss are shown in Fig. 9e and Fig. 9f.

These represent a rescaling of the distributions in Fig. 9c and Fig. 9d, by the factor 2h and do not

take thickness uncertainty into account. The Arrhenius model solution difference is weakly nega-405

tively correlated with thickness (r2=0.09), and from Eq. (8) results in a thickness correlated bias

for the basal reflection coefficient. As the attenuation loss solution bias can be > 10 dB for thick

ice (h ∼ 2000 m or greater), this would potentially result in a different diagnosis of wet and dry

glacier beds using the different temperate fields in the Arrhenius model. Again, the radar-inferred

solution difference is approximately normally distributed about zero (µ±σ=-0.56 ± 5.19 dB). The410

radar-inferred difference is also uncorrelated with ice thickness (r2=0.00) which is essential for un-

ambiguous radar-inference of basal material properties on an ice-sheet wide scale.

If a similar analysis for the attenuation solution differences is applied to drainage basins 3,5,6 we

observe algorithm solution convergence, (in the sense of a normally distributed difference centred on

zero), and an associated reduction in the solution bias from the Arrhenius model input. In drainage415

basins 1,2,7,8 we do not observe analogous solution convergence for the radar-inferred values. We

do, however, typically see a reduction in the mean systematic bias for the attenuation rate/loss so-

lution relative to the Arrhenius model input. In the Supplementary Material we provide additional

plots and discuss the potential reasons for the algorithm non-convergence, which are thought to re-

late primarily to the more pronounced temperature sensitivity of the algorithm target windows in the420

northern GrIS.

3.3 Attenuation rate and basal reflection maps for the southeast GrIS

For regions of the GrIS where the attenuation rate solution converges and there is algorithm coverage

overlap for the different temperature field inputs, it is possible to define the mean radar-inferred

attenuation rate solution425

<B >=
1
2

(<B(TSIC)>+<B(TGISM)>) . (15)
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Note, that the explicit temperature dependence for the mean value is dropped as, for the regions of

convergence, it represents a solution that is (approximately) independent of the input temperature

field. Within the drainage basins where the solution converges and where only one of <B(TSIC)>

or<B(TGISM)> is above the coverage threshold, we use the single values to define the mean<B >430

field. A justification for this approach is that regions where only one temperature field has coverage

are most likely an instance of where the other temperature field has erroneous estimates for δ[R∞]
δh as

discussed in Sect. 2.7. Hence, for a given (α,β) threshold, the coverage region for <B > is slightly

larger than for <B(TSIC)> and <B(TGISM)>. A regional map for the southeast GrIS using Eq.

(15) is shown in Fig. 10. This field is generally smoothly varying, as would be expected given its435

primary dependence upon temperature.

A gridded map for the basal reflection coefficient along the IPR flight tracks for a 200 km2 region

of the ice sheet is shown in Fig. 11a. This map was produced using the attenuation rate values in Fig.

10 and following the procedure described in Sect. 2.8. The frequency distribution for the relative

basal reflection coefficient, [R], over the whole drainage basin is shown in Fig. 11b. This distribution440

corresponds to 63 % of the grid cells that contain IPR data satisfying the waveform processing

quality control (Sect. 2.3). The decibel range for the basal reflection coefficient is ∼ 20 dB which is

consistent with the predicted decibel range for sub-glacial materials (Bogorodsky et al., 1983a), and

our estimate of the two-way loss uncertainty (∼ 5 dB), discussed in more detail in Sect. 3.4. The

corresponding thickness envelope for the basal reflection coefficients is shown in Fig. 11c.445

3.4 Relationship between uncertainty and coverage

There are two metrics, both as a function of the quality threshold parameters (α,β), that we pro-

pose can be used to quantify the uncertainty of the radar algorithm. The first metric is the standard

deviation of the attenuation solution differences for different input temperature fields as previously

described in Sect. 3.2. This metric assesses solution variation due to the target windowing and the lo-450

cal correction to the power within the target window described in Sect. 2.5 and Sect. 2.6 respectively.

The second metric is to consider the standard deviation of the attenuation solution differences for

independently analysed field seasons for a fixed input temperature field. This metric provides a test

that the waveform-processing and system performance is consistent between different field seasons.

Furthermore, it provides a test if different flight track distributions and densities in the same target455

window, produce a similar radar-inferred attenuation rate.

Attenuation rate and loss solution difference distributions for three (α,β) coverage thresholds

for the different temperature field inputs (the first uncertainty metric) are shown in Fig. 12a and

Fig. 12b respectively, along with corresponding coverage regions in Fig. 12c. As in Sect. 3.2, these

distributions are for grid cells that contain IPR data within drainage basin 4. It is clear that the460

standard deviation of the difference distribution is related to how strict the coverage threshold is,

with the strictest coverage threshold having the smallest standard deviation value (refer to plots for
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values). Subsequently, we suggest that the coverage of the algorithm is a trade-off with uncertainty.

The systematic bias for the strictest coverage threshold, (α,β) = (0.80,0.90), is thought to arise due

to sampling an insufficiently small region of the ice-sheet. The standard deviation values in Fig. 12465

for drainage basin 4 are similar in the other drainage basins where there is solution convergence. For

example, for (α,β) = (0.60,0.80), σ ∼ 1.5 dB km−1 for the attenuation rate difference distribution.

A similar relationship between the choice of (α,β) threshold parameters, and solution accuracy

arises for independently analysed field campaign data and a full data table is supplied in the Sup-

plementary Material. The attenuation solution differences distributions are close to being normally470

distributed about zero, with small systematic biases (∼ 0.1-0.7 dB km−1) for the attenuation rate.

For the same choice of (α,β) threshold parameters, the attenuation rate solution standard deviations

are of similar order to the equivalent temperature field difference distributions. For example, for

(α,β) = (0.60,0.80), σ is in the range 0.98-1.71 dB km−1 for the different field season pairs.

Since for both uncertainty metrics, the solution differences are a function of (α,β), we suggest475

that the coverage region can be ‘tuned’ to a desired accuracy. For the problem of basal melt discrim-

ination, where the reflection coefficient difference between water and frozen bedrock is ∼ 10-15

dB (Bogorodsky et al., 1983b), we suggest that standard deviation values for the attenuation loss of

∼ 5 dB approach the required accuracy. For both uncertainty metrics this corresponds to approxi-

mately (α,β) = (0.6,0.8). This interpretation of uncertainty is consistent with the ∼ 20 dB decibel480

range for the basal reflection coefficients in Fig. 11. Throughout the algorithm development, we con-

tinually considered both uncertainty metrics. Of particular note, if the Arrhenius model is used to

constrain the target window dimensions (Sect. 2.5), but not to make a power correction within each

target window (Sect. 2.6), there are more pronounced systematic biases present for both uncertainty

metrics.485

The recent study by Macgregor et al. (2015b) also produced a GrIS wide map for the radar-inferred

attenuation rate. This study used returned power from internal layers in the glacier ice to infer the

attenuation rate, and the values are therefore only for some fraction of the ice column (roughly

corresponding to the isothermal region of the vertical temperature profiles). The uncertainty was

quantified using the attenuation rate solution standard deviation (σ= 3.2 dB km−1) at flight transect490

crossovers. A direct comparison between their uncertainty estimate and ours is not possible, as we

use a different definition of cross-over point (i.e. all grid-cells that contain IPR data in a mutual

coverage region), and we can tune the coverage of our algorithm for a desired solution accuracy.

Additionally, whereas each value using the internal layer method is spatially independent, the mov-

ing target-windowing approach of our algorithm means each radar-inferred value is dependent upon495

neighboring estimates.
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3.5 Prediction of temperature bias of ice-sheet models

The possibility of inverting the Arrhenius relationship, Eq. (A2), to solve for depth-averaged temper-

ature (for an input depth-averaged attenuation rate field) was recently considered by Macgregor et al.

(2015b). Radar-inferred temperature values are desirable since they provide a spatially-extensive, in-500

dependent test of the temperature field produced by thermomechanical ice-sheet models, and for the

accuracy of the Arrhenius model parameters to be established. As was proposed by Macgregor et al.

(2015b), the inversion of the Arrhenius relationship should ideally take into account layer stratigra-

phy and spatial variability in the concentration of H+, Cl−, and NH+
4 . However, even for uniform

depth-averaged ionic concentrations as described in Sect. 2.4, the relationship between the depth-505

averaged temperature and the depth-averaged attenuation rate is non-unique. Subsequently, solutions

to the inverse problem will depend upon the choice of input temperature profile, and developing a

robust inversion procedure requires further investigation.

Here, we estimate temperature field bias using the Arrhenius model-radar algorithm solution dif-

ferences for the depth-averaged attenuation rate (i.e. <B∞(TGISM)>-<B > and <B∞(TSIC)>-510

<B >). As discussed above, these solution differences can only give a broad indication regarding

the horizontal distribution of depth-averaged temperature bias, and may not hold exactly if ionic

concentrations or the shape of the vertical temperature profiles differ substantially over the region.

As <B∞(TGISM)>-<B > is negative over the majority of the southeast GrIS it is suggestive that

the depth-averaged GISM temperature field has an overall negative temperature bias in this region515

(Fig. 13a). Contrastingly, as <B∞(TSIC)>-<B > is positive over the majority of the same area it

is suggestive that the depth-averaged SICOPOLIS temperature field has an overall positive tempera-

ture bias in this region (Fig. 13b). Both of these predicted temperature field biases are in agreement

with the known model temperature biases at Dye 3 (Fig. 13c). It is also possible to use the ice core

temperature profile at Dye 3 in the Arrhenius model to predict a depth-averaged attenuation rate520

value. This gives <B∞(TCORE)>=13.9 dB km−1, which compares with the radar-inferred value of

<B >=15.8 dB km−1. These values are consistent within the uncertainty of the Arrhenius model

parameters (∼ 5 dB km−1 when the temperature field is known (MacGregor et al., 2007)).

4 Conclusions

In this study, we considered the first application of a ‘bed-returned power’ radar algorithm for525

englacial attenuation and basal reflection over the extent of an ice-sheet. In developing our auto-

mated, ice-sheet wide, approach we made various refinements to previous regional versions of the

algorithm (Gades et al., 2000; MacGregor et al., 2007; Jacobel et al., 2009; Fujita et al., 2012;

Matsuoka et al., 2012b). These included using a waveform processing procedure that is specifically

tuned for evaluation of bulk material properties, incorporating a prior Arrhenius model estimate530

for the spatial variation in attenuation to constrain the sample area, standardising the power within
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each sample area, and introducing an automated quality control approach based upon the underly-

ing radar equation. We demonstrated regions of attenuation solution convergence for two different

input temperature fields and for independently analysed field seasons. A feature of the algorithm is

that the uncertainty, as measured by standard deviation of the attenuation solution difference dis-535

tribution for different input temperature fields and separate field seasons, is tunable. Subsequently,

we suggested that the algorithm could be used for the discrimination of bulk material properties

over selected regions of ice-sheets. Notably, assuming a total loss uncertainty of ∼ 5 dB to be ap-

proximately sufficient for basal melt discrimination, we demonstrated that, on the scale of a major

drainage basin, the attenuation solution produces a physically realistic (∼ 20 dB) range for the basal540

reflection coefficient.

We suggest that the converged radar algorithm attenuation solution is preferable to using a forward

Arrhenius temperature model to calculate basal reflection coefficients. This is due to the large reduc-

tion in the spatially correlated attenuation rate/loss bias that in present in Arrhenius models. With

this in mind, the potential problems with using a forward Arrhenius model for bed reflection values545

were illustrated. Notably, we demonstrated that even a small constant bias in the attenuation rate

across a region; (this could be either with respect to a‘true’ value or another modelled value), leads

to a thickness correlated bias in attenuation loss and therefore the basal reflection coefficients. We

hypothesise that the algorithm convergence for different input temperature fields occurs because the

local differences in the Arrhenius model attenuation rate field that are used as an algorithm input (i.e.550

<B∞(x,y)>−<B∞(x0,y0)>) are more robust than the absolute values. This is broadly equiv-

alent to saying that the horizontal gradients in the depth-averaged temperature field of the ice-sheet

models are more robust than the absolute values of the depth-averaged temperature.

In future work, we aim to combine IPR data from preceding CReSIS field campaigns to produce

a final gridded data product for the attenuation rate, loss, basal reflection values and basal melt.555

We have yet to consider an explicit classification of the sub-glacial materials, and quantification of

regions of basal melting. It is anticipated that, as outlined by Oswald and Gogineni (2008, 2012);

Schroeder et al. (2013), the specularity properties of the basal waveform, and how this relates to basal

melt detection, could also be incorporated in this analysis. As the regions of algorithm coverage are

sensitive to uncertainty, we suggest that these data products could have spatially varying uncertainty560

incorporated. Additionally, for the basal reflection and basal melt data sets, uncertainty in the mea-

surements of [PC ] will have to be incorporated in the uncertainty estimate for [R]. Establishing a

procedure for the interpolation of these data sets where either: (i) the algorithm coverage is poor due

to low attenuation solution accuracy, or (ii) the IPR data are sparse, will form part of this framework.

Regions of lower solution accuracy, generally correspond to the interior of the ice-sheet where spa-565

tial variation in the attenuation rate is much less pronounced (primarily the northern interior). Due

to this lower spatial variability, (and despite the caveats in the paragraph above), these regions could
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potentially have their basal reflection values derived by using forward Arrhenius temperature model

for the attenuation.

Finally, we envisage that the framework introduced in this paper could be used for radar-inference570

of radar-attenuation, basal reflection and basal melt for the Antarctic Ice-Sheet. Given that for high

solution accuracy the radar algorithm requires high topographic roughness we suggest that IPR data

in rougher regions should be analysed first (refer to Siegert et al. (2005) for an overview of East

Antarctica). Additionally, the prediction of the temperature field bias using the attenuation rate so-

lution could be extended to other regions of both the Greenland and Antarctic ice-sheets.575

Appendix A: Equations for Arrhenius temperature model

In ice, a low loss dielectric, the radar attenuation rate, B∞ (in dB km−1) is linearly proportional to

the high frequency limit of the electrical conductivity, σ∞ (in µS m−1), following the relationship

B∞ =
10log10 e

1000ε0c
√
εice

σ∞, (A1)

where c is the vacuum speed of the radio wave (Winebrenner et al., 2003; MacGregor et al., 2007).580

For εice = 3.15, as is assumed here, B∞ = 0.921σ∞. The Arrhenius relationship describes the tem-

perature dependence of σ∞ for ice with ionic impurities present, and is given by

σ∞ = σpure exp
{
Epure
kB

(
1
Tr
− 1
T

)}

+µH+c+H exp
{
EH+

kB

(
1
Tr
− 1
T

)}

+µCl−cCl− exp
{
ECl−

kB

(
1
Tr
− 1
T

)}

+µNH+
4
cNH+

4
exp

{
ENH+

4

kB

(
1
Tr
− 1
T

)}
, (A2)

where T (in K) is the temperature, KB = 1.38× 10−23 J K−1 is the Boltzmann constant, and cH+ ,

cCl− and cNH+
4

are the molar concentrations of the chemical impurities (in µM) (MacGregor et al.,585

2007; Macgregor et al., 2015b). The reference temperature used in the M07 model is Tr=251 K,

which corresponds to activation energies:Epure=0.51 eV,EH+=0.20 eV,ECl−=0.19 eV,ENH+
4

=0.23

eV (1 eV=96.5 kJ mol−1); electrical conductivity for pure ice σpure=9.2 µS m−1; and molar elec-

trical conductivities: µH+=3.2 S m−1 mol−1, µCl−=0.43 S m−1 mol−1, µNH+
4

=0.19 S m−1 mol−1

(MacGregor et al., 2007; Macgregor et al., 2015b). The higher activation energy of pure ice relative590

to the ionic species explains the greater non-linearity of the pure ice component of B∞ in Fig.4a.

Following the assumptions in Sect. 2.4 for the GrIS temperature field, ionic concentrations, and ice

thickness data set, it is possible to obtain the spatial dependence of the attenuation rate, B∞(x,y,z),

where (x,y) are planar coordinates and z is the vertical coordinate. The total (two way) attenuation
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loss for a vertical column of ice, [L∞(x,y)] (in dB), is then obtained via the depth integral595

[L∞] = 2

h∫

0

B∞(z)dz. (A3)

Finally, the depth averaged (one-way) attenuation rate, <B∞(x,y)> (in dB km−1) is calculated

from

<B∞ >= [L∞]/2h. (A4)
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Table 1. List of principle symbols

Symbol Units Description Equation(s)

[PC ] dB Aggregated and geometrically corrected bed-returned power (2)-(5)

h km Thickness of ice column

B∞ dB km−1 Arrhenius model estimate for attenuation rate (A1), (A2)

[L∞] dB Arrhenius model estimate for total loss (A3)

<B∞ > dB km−1 Arrhenius model estimate for depth-averaged attenuation rate (A4)

[R∞] dB Arrhenius model estimate for basal power reflection coefficient (12)

Rn km Radius vectors for sample regions with n=1,2,3,4

RMS(Rn) dB km−1 Root mean square tolerance measure for sample regions (7)

[L] dB Radar-inferred value for total loss

<B > dB km−1 Radar-inferred value for depth-averaged attenuation rate (10)

[R] dB Radar-inferred value for basal power reflection coefficient (8)

r2[PC ] r2 correlation coefficient for [PC ] versus h

r2[R∞] r2 correlation coefficient for [R∞] versus h

r2ratio Ratio of r2[PC ] to (r2[PC ] + r2[R∞]) (13)

α Quality control threshold for r2[PC ] (13)

β Quality control threshold for r2ratio (14)
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Figure 1. (a) Source map for CReSIS flight tracks. (b) Ice core locations and GrIS drainage basins (Zwally et al.,

2012). The coordinate system, used throughout this study, is a polar-stereographic projection with reference

latitude 71◦ N and longitude 39◦ W. The land-ice-sea mask is from Howat et al. (2014).
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Figure 2. Flow diagram for the components of the radar algorithm. The blue box indicates a processing step

along a flight track, the green boxes indicate processing steps for a gridded data set of the GrIS , and the orange

boxes indicate processing steps for each grid point. IPR data for each field season is considered separately.
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Figure 3. Waveform processing using the power depth-integral method, Eq. (2). (a) A waveform that satisfies

the quality control criteria (decays to 2% of peak power within integral bounds). (b) A waveform that does not

satisfy the quality control criteria.

27

The Cryosphere Discuss., doi:10.5194/tc-2016-8, 2016
Manuscript under review for journal The Cryosphere
Published: 22 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 4. Arrhenius model for englacial attenuation. (a) Temperature dependence of attenuation rate, B∞, for

the M07 model (MacGregor et al., 2007), and depth-averaged ionic concentrations at GRIP core (Macgregor

et al., 2015b). (b) Map for the Arrhenius model depth-averaged attenuation rate using the GISM temperature

field, <B∞(TGISM)>. (c) Depth-averaged attenuation rate difference map for the two temperature fields, <

B∞(TGISM)>-<B∞(TSIC)>. 28
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Figure 5. Constraining the target window boundaries. (a) Attenuation rate, <B∞(x,y)>. (b) Schematic of

the segment approximation: segments Sn=1,...,7,8, radi Rn=1,...,7,8 with n=1,...,7,8. (c) Segment approxi-

mation for the attenuation rate, <B∞(r)>=<B∞(rn,θn)>, where θ = (n−1)π
4

. (d) The tolerance metric√
(<B∞(x,y)>−<B∞(x0,y0)>)2 where (x0,y0) is the central point. (e) Segment approximation for the

tolerance metric,
√

(<B(rn,θn)>−<B∞(x0,y0)>)2. (f) Target window boundaries derived from Eq. (7),

with RMS= 0.5 dB km−1.
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Figure 6. Maps for target window radi vectors using the GISM temperature field with RMS=1 dB km−1 in Eq.

(7). (a) R1, (b) R2, (c) R3, (d) R4. The orientation of each radi vector is shown in each subplot.
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Figure 7. Bed-returned power versus ice thickness pre and post attenuation correction, Eq. (11). The radar-

inferred attenuation rate pre correction is <B >=15.4 dB km−1 (r2=0.56) and post correction is <B >=19.3

dB km−1 (r2=0.89). The central point of the sample region is 64.30◦ N, 43.82◦ W (100 km due South of the

Dye 3 ice core) and has ice thickness 1604 m.
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Figure 8. Ice-sheet wide properties of the radar algorithm using the GISM temperature field. (a) Power-

thickness correlation, r2[PC ]. (b) Arrhenius reflection coefficient-thickness correlation, r2[R∞].(c) Power ratio-

thickness correlation, r2ratio, Eq. (14). (d) Coverage for three thresholds. (e) Radar-inferred attenuation

rate, <B(TGISM)>, for (α,β) = (0.60,0.80). (f) Radar-inferred attenuation loss, [L(TGISM)], for (α,β) =

(0.60,0.80).
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Figure 9. Attenuation solution convergence for the SE GrIS. (a) Map for <B∞(TGISM)>-<B∞(TSIC)>

(Arrhenius model input). (b) Map for <B(TGISM)>-<B(TSIC)> (algorithm output). (c) Comparison of dif-

ference distributions for (a) and (b). (d) Thickness dependence for plot (c). (e) Corresponding difference distri-

butions for attenuation loss. (f) Thickness dependence for plot (e).
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Figure 10. Radar-inferred attenuation rate map for the SE GrIS using Eq. (15).
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Figure 11. Properties of the basal reflection coefficient for the SE GrIS. (a) An example of a gridded map along

the IPR flight tracks. (b) Frequency distribution for drainage basin 4. (c) Thickness dependence for plot (b).

The basal reflection coefficients are self-normalised by setting the mean value to be zero.

35

The Cryosphere Discuss., doi:10.5194/tc-2016-8, 2016
Manuscript under review for journal The Cryosphere
Published: 22 January 2016
c© Author(s) 2016. CC-BY 3.0 License.



Figure 12. Relationship between algorithm coverage and uncertainty as measured by attenuation solution

difference distributions. (a) Attenuation rate, <B(TGISM)>-<B(TSIC)>. (b) Attenuation loss, [L(TGISM)]-

[L(TSIC)]. (c) Algorithm coverage.
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Figure 13. Predicted temperature bias for ice-sheet models in the SE GrIS. (a) Map for<B∞(TGISM)>-<B >

(suggestive that depth-averaged GISM temperature field is negatively biased). (b) Map for <B∞(TSIC)>-

<B > (suggestive that depth-averaged SICOPOLIS temperature field is positively biased). (c) Temperature

profiles at Dye 3 core (indicated by black circles in (a) and (b)). The core data is from Gundestrup and Hansen

(1984). 37
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