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The abstract has been revised to reflect that our algorithm is designed with attenuation solution

accuracy in mind (rather than constraining reflection in absence of attenuation estimates)

Abstract. Radar-inference of the bulk properties of glacier beds, most notably identifying basal melt-

ing, is, in general, derived from the basal reflection coefficient. On the scale of an ice-sheetice sheet,5

unambiguous determination of basal reflection is primarily limited by uncertainty in the englacial at-

tenuation of the radio wave, which is an exponentialArrhenius function of temperature. Most existing

radar algorithms assume stationarity in the attenuation rate Existing bed-returned power algorithms

for deriving attenuation assume that the attenuation rate is regionally constant which is not feasible

at an ice-sheetice sheet wide scale. Here we introduce a new semi-empirical framework for deriv-10

ing englaicalenglacial attenuationbasal reflection, and, to demonstrate its efficacy, we apply it to the

Greenland ice-sheetIce Sheet. A central feature is the use of a prior Arrhenius temperature model to

estimate the spatial variation in englacial attenuation as a first guess input for the radar algorithm. We

demonstrate regions of solution convergence for two input temperature fields, and for independently

analysed field campaigns. The coverage achieved is a trade-off with uncertainty and we propose that15

the algorithm can be ‘tuned’ for discrimination of basal melt (attenuation loss uncertainty ∼ 5 dB).

This is supported by our physically realistic (∼ 20 dB) range for the basal reflection coefficient.

Finally, we show that the attenuation solution can be used to predict the temperature bias of thermo-

mechanical ice-sheetice sheet models, and is in agreement with known model temperature biases at

the Dye 3 ice core.20
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1 Introduction

Following our author comments the following revisions have been made to the introduction: (i) we

make it clear that Oswald and Goginenni (2008, 2012) concluded that relative reflection/reflection

anomalies can be constrained in the interior of Greenland where attenuation rate variation is low,

(ii) we make a greater emphasis regarding how our attenuation solution is useful for evaluation of25

englacial temperature, (iii) we note that there is potentially an additional uncertainty in the Arrhe-

nius model due to the frequency dependence of attenuation.

Ice Penetrating Radar (IPR) data provide valuable insights into several physical properties of glaciers

and their beds including: ice thickness (e.g. Fretwell et al. (2013); Bamber et al. (2013)), bed rough-30

ness (e.g. Berry (1973); Siegert et al. (2005); Rippin (2013)), basal material properties (e.g. Oswald

and Gogineni (2008); Jacobel et al. (2009); Fujita et al. (2012); Schroeder et al. (2016)), internal

layer structure (e.g. Matsuoka et al. (2010a); Macgregor et al. (2015a)), basal melting or freezing

(e.g. Fahnestock et al. (2001); Catania et al. (2010); Bell et al. (2011)), and englacial tempera-

ture (Macgregor et al., 2015b). In recent years, there has been a noticeablesubstantial increase in35

radar track density in Greenland and parts of Antarctica, which has lead to the development of new

ice-sheetice sheet wide data products for bed elevation and ice thickness (Fretwell et al., 2013; Bam-

ber et al., 2013; Mor). These data products provide essential boundary conditions for numerical

models of ice-sheetice sheets (e.g. Gillet-Chaulet et al. (2012); Cornford et al. (2015)), and enable

investigation of a diversity of topics related to ice-sheetice sheet dynamics. By contrast, despite many40

notable regional studies (e.g. Oswald and Gogineni (2008); Jacobel et al. (2009); Fujita et al. (2012);

Schroeder et al. (2016)), ice-sheetice sheet wide data products for bulk basal material properties,

such as quantifying regions of basal melt do not exist. As contempararycontemporary models of

ice-sheetice sheet dynamics have been demonstrated to be highly sensitive to basal traction (Price

et al., 2011; Nowicki et al., 2013; Ritz et al., 2015), the poorly constrained basal interface poses a45

problem for their predictive accuracy. Additionally, ice sheet wide evaluation of englacial temper-

ature from IPR data over the full ice column has yet to be realised, with recent advances focusing

primarily on the isothermal regime (Macgregor et al., 2015b).

Bulk material properties of glacier beds can, in principle, be identified from their basal (radar)

reflection coefficient (Oswald and Robin, 1973; Bogorodsky et al., 1983a; Peters, 2005; Oswald50

and Gogineni, 2008). The basal reflection coefficient is predicted to vary over a ∼ 20 dB range for

different sub-glacialsubglacial materials, with water having a ∼ 10 dB higher value than the most

reflective frozen bedrock (Bogorodsky et al., 1983a). Relative basal reflection values can be fairly

well constrained in the interior of ice sheets where the magnitude and spatial variation in the atten-

uation rate is low (Oswald and Gogineni, 2008, 2012). On an ice-sheet wide scaleHowever, toward55

the margins of ice sheets unambiguous radar-inference of basal melt from bed reflections is limited

primarily by uncertainty in the spatial variation of englacial attenuation (Matsuoka, 2011; MacGre-
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gor et al., 2012). Arrhenius models, where the attenuation rate is an exponential function of inverse

temperature (Corr et al., 1993; Wolff et al., 1997; MacGregor et al., 2007; Macgregor et al., 2015b),

predict that the depth-averaged attenuation rate varies by a factor of ∼ 8decibel range of ∼ 5-40 dB60

overthe scale of the Antarctic ice-sheetIce Sheet (Matsuoka et al., 2012a). These models are, how-

ever, strongly limited by both inherent uncertainty in model parameters (∼ 20-25% fractional error)

(MacGregor et al., 2007, 2012; Macgregor et al., 2015b), including a potential systematic underes-

timation of attenuation at the frequency of the IPR system (Macgregor et al., 2015b). Additionally

Arrhenius models are highly sensitive to the input temperature field, which itself is poorly con-65

strained. Despite this evidence for spatial variation in attenuation, the majority of radar-algorithms,

which use the relationship between bed-returned power and ice thickness to identify an attenuation

trend, for the inference of attenuation and basal reflection make the implicit assumption that the

attenuation rate is locally stationaryconstant (e.g. Gades et al. (2000); Winebrenner et al. (2003);

Jacobel et al. (2009); Fujita et al. (2012)). Due to this constancy assumption these radar algorithms70

which use the relationship between bed-returned power and ice thickness to identify an attenuation

trend,are suspected to yield erroneous values (Matsuoka, 2011; Schroeder et al., 2016). Moreover,

these radar algorithms and are not tuned for automated application over the scale of an ice-sheetice

sheet.

In this study we introduce a new ice-sheetice sheet wide framework for the radar-inference of at-75

tenuation and basal reflection and apply it to IPR data from the Greenland ice-sheetIce Sheet (GrIS).

A central feature of our approach is to use a prior Arrhenius model estimation of the attenuation

rate as an initial condition.A central feature of our radar algorithm is to use an Arrhenius model to

estimate the attenuation rate. Conceptually, the initial condition is used to estimate regions where

the assumption of stationarity is valid within some specified tolereanceSpecifically, the estimate is80

used to: (i) constrain a moving window for the algorithm sample region, enabling a formally regional

method to be applied on a ice sheet wide scale; (ii) to standardise the power for local variation in

attenuation within each sample region when deriving attenuation using bed-returned power.(iii) to

implement algorithm quality control. We demonstrate regions of algorithm solution convergence for

two different input temperature fields and for independently analysed IPR data. The coverage pro-85

vided by the algorithm is a trade-off with solution accuracy, and we suggest that the algorithm can be

‘tuned’ for basal melt discrimination in restricted regions of the GrIS,(primarily in the southern and

eastern GrIS). This is supported by the decibel range for the basal reflection coefficients (∼ 20 dB on

the scale of a major drainage basinfor converged regions). Additionally, we show that the attenuation

rate solution can be used to infer bias in the depth-averaged temperature field of thermomechanical90

ice-sheetice sheet models.
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2 Data and methods

2.1 Ice penetrating radar data

The airborne IPR data used in this study were collected by the Center for Remote Sensing of Ice

Sheets (CReSIS) within the Operation IceBridge project. Four field seasons from 2011-2014 (months95

March-May) have been analysed in this proof of concept study. These field seasons are the most spa-

tially comprehensive to date, with coverage throughout all the major drainage basins of the GrIS

and relatively dense across-track spacing toward the ice margins (Fig. 1). The radar instrument, the

Multi-Channel Coherent Radar Depth Sounder (MCoRDS), has been installed on a variety of plat-

forms and has a programmable frequency range. However, for the data used in this study, it is always100

operated on the NASA P-3B Orion aircraft and uses a frequency range from 180 MHz to 210 MHz,

which, after accounting for pulse shaping and windowing, corresponds to a depth-range resolution

in ice of 4.3 m (Rodriguez-Morales et al., 2014; Paden, 2015). The data processing steps to produce

the multi-looked Synthetic Aperture Radar (SAR) images used in this work, are described in Gogi-

neni et al. (2014). The along-track resolution after SAR processing and multilooking depends on the105

season and is either ∼ 30 m or ∼ 60 m with a sample spacing of ∼ 15 m or ∼ 30 m respectively.

The radar’s dynamic range is controlled using a waveform playlist which allows low and high gain

channels to be multiplexed in time. The digitally recorded gain for each channel allows radiomet-

ric calibration and, in principle, enables power measurements from different flight tracks and field

seasons to be combined. This is in contrast to pre 2003 CReSIS Greenland datasets, which used a110

manual gain control that was not recorded in the data stream.

2.2 Overview of algorithm

A flow diagram for the separate components of the radar algorithm is shown in Fig. ??. The along-

track processing of the IPR data (Sect. 2.3) is an adaptation of the method developed by Oswald and

Gogineni (2008, 2012), and is particularly suited to evaluation of bulk material properties via the115

reflection coefficient. The Arrhenius model estimation of the attenuation rate, (Sect. 2.4), uses the

framework developed by MacGregor et al. (2007); Macgregor et al. (2015b) and assumes steady-

state temperature fields from the GISM (Greenland ice-sheetIce Sheet Model) (Huybrechts, 1996),

and SICOPOLIS (SImulation COde for POLythermal ice-sheetIce Sheets) (Greve, 1997) thermome-

chanical models. The Arrhenius model is used to firstly constrain the sample region for the algorithm120

(Sect. 2.5), and then to correct for local attenuation variation within each region when inferring the

attenuation rate. Sections 2.5 and 2.6 represent the central original method contributions in this

study. They both address how the regional bed-returned power method for attenuation evaluation

(which assumes local constancy) can be modified for spatial variation. Algorithm quality control is

then implemented, by testing for regions where the attenuation solution is marked by strong correla-125

tion between bed-returned power and ice thickness, (Sect. 2.7). Finally, gridded maps are produced
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for the radar-inferred attenuation rate, the total attenuation loss, and the basal reflection coefficient,

(Sect. 2.8).

2.3 Waveform processing

The processing of the IPR data, based upon the method developed by Oswald and Gogineni (2008,130

2012), uses an along-track (phase-incoherent) average of the basal waveform and a depth aggre-

gated/integrated definition of the bed-returned power. The advantage of using this definition, com-

pared with the conventional peak power definition, is that the variance due to variable surface rough-

ness (e.g. Berry (1973); Peters (2005)) is reduced. This reduction in variance is thought to occur be-

cause, based on conservation of energy principles, the aggregated definition of bed-returned power135

for a diffuse surface is more directly related to the predicted (specular) reflection coefficients than

equivalent peak power values (Oswald and Gogineni, 2008). In our study we make two important

modifications to this method, which are described here, along with an overview of the key process-

ing steps. The first modification corresponds to defining a variable window size for the along-track

averaging of the basal waveform (which enables us to optimise the effective data resolution in thin140

ice), and the second corresponds to the implementation of an automated waveform quality control

procedure.

Using the waveform processing method of Oswald and Gogineni (2008, 2012), the along-track

waveform averaging window is set using the first return radius

r =

√
p

(
s+

h
√
εice

)
, (1)145

where p=4.99 m is the (pre-windowed) radar pulse half-width in air (Rodriguez-Morales et al., 2014),

s is the height of the radar sounder above the ice surface, h is the ice thickness and, εice = 3.15 is the

real part of the relative dielectric permittivity for ice. For a flat surface, r, corresponds to the radius of

the circular region illuminated by the radar pulse such that it extends the initial echo return by <50%

(Oswald and Gogineni, 2008). Additionally, if adjacent waveforms within this region are stacked150

about their initial returns and arithmetically averaged, they represent a phase-incoherent average

where the effects of power fluctuations due to interference are smoothed (Oswald and Gogineni,

2008; Peters, 2005). Oswald and Gogineni (2008, 2012) considered the northern interior of the GrIS

where h∼ 3000 m, and subsequently r and the along-track averaging interval were approximated

as being constant. Since our study considers IPR data from both the ice margins and the interior, we155

use Eq. (1) to define a variable size along-track averaging window. For the typical flying height of

s=480 m, r ranges from ∼ 55 m in thin ice (h=200 m) to ∼ 105 m in thick ice (h=3000 m), though

can be higher during plane maneuvers. The number of waveforms in each averaging window is then

obtained by dividing 2r by the along-track resolution.

The incoherently averaged basal waveforms range from sharp pulse-like returns associated with160

specular reflection, to broader peaks associated with diffuse reflection (refer to Oswald and Gogineni
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(2008) for a full discussion). An example of an incoherently averaged waveform is shown in Fig. 3a,

in units of linear power, P , versus depth-range index Di. The plot shows the upper and lower limits

of the power depth integral, Dlower and Dupper. These limits are symmetric about the peak power

value, with (Dupper −Dlower) = 2r (in units of the depth-range index); a range motivated by the165

observed fading intervals described in (Oswald and Gogineni, 2008). Subsequently, as is the case for

the along-track averaging bin, the power integral limits vary over the extent of the ice-sheetice sheet

and are of greater range in thicker ice. The aggregated (integrated) power is then defined by

Pagg =

Di=Dupper∑
Di=Dlower

P (Di). (2)

Waveform quality control, was implemented by testing if the waveform decays to a specified fraction170

of the peak power value within the integral limits Dlower and Dupper. This effectively provides a

test that the SAR beamwidth is large enough to include all of the scattered energy, which was argued

to be the general case by Oswald and Gogineni (2008). Decay fractions of 1%, 2% and 5% were

considered, and 2% was established to give the best coverage, whilst excluding obvious waveform

anomalies. The waveform in Fig. 3a is an example that satisfies the quality control measure, whereas175

the waveform shown in Fig. 3b does not. The relative decibel power for each waveform is then

defined by

[P ] = 10log10Pagg, (3)

where the decibel notation [X] = 10log10X is used. Finally, the relative power is corrected for the

effects of geometrical spreading using180

[PC ] = [P ]− [G], (4)

where

[G] = 20log10
gλ0

8π
(
s+ h√

εice

) , (5)

(Bogorodsky et al., 1983b) with g = 4 the antenna gain (corresponding to 11.8 dBi) (Paden, 2015),

and λ0=1.54 m the central wavelength of the radar pulse (Rodriguez-Morales et al., 2014).185

2.4 Arrhenius temperature model for attenuation

Following our author comments we have now substantially rewritten this section. Major changes

include: (i) introducing the W97 model alongside the M07 model, (ii) outlining the empirical fre-

quency correction in Macgregor et al. 2015b, (iii) referencing the results of Appendix A (where we

conclude that the M07 model is a good estimate for attenuation at the radar frequency. (iv) Better190

introducing our notation for the modeled/estimated variables.
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It is well established that the electrical conductivity and radar attenuation rate in glacier ice is de-

scribed by an Arrhenius relationship where there is exponential dependence upon inverse tempera-

ture and a linear dependence upon the concentration of soluble ionic impurities (Corr et al., 1993;195

MacGregor et al., 2007; Macgregor et al., 2015b; Stillman et al., 2013). The Arrhenius modelling

framework introduced by Macgregor et al. (2015b) for the GrIS, which we adopt here, includes three

soluble ionic impurities: hydrogen/acidity (H+), chlorine/sea salt (Cl−), and ammonium (NH+
4 ). Our

Arrhenius model assumes uniform, depth-averaged, molar concentrations: cH+=0.8 M, cCl−=1.0 M

and cNH+
4

=0.4 M, which are derived from GRIP core data (Macgregor et al., 2015b). A decomposi-200

tion of the temperature dependence for the attenuation rate for pure ice and the different ionic species

is shown in Fig. 4. Use of layer stratigraphy for the concentration of the ionic species (rather than

depth-averaged values) is discussed in detail in MacGregor et al. (2012); Macgregor et al. (2015b).

The equations and parameters for the model calculation of the attenuation rate, B̂ (indB km−1), the

depth-averaged attenuation rate, < B̂ > (indB km−1), and the total loss, [L̂] (indB), are outlined in205

Appendix A. Throughout this manuscript we use X̂ notation to distinguish Arrhenius model esti-

mates from the radar derived values, and <X > to indicate depth-averages. For brevity we in the

rest of the paper weoften refer to the depth-averaged attenuation rate as the attenuation rate.

The Arrhenius relationship is empirical and the dielectric properties of impure glacier ice, (pure

ice conductivity, molar conductivities of soluble ionic impurities, and activation energies), need to be210

measured with respect to a reference temperature and frequency. Two Arrhenius models for the elec-

trical conductivity and the attenuation rate were applied to the GrIS by Macgregor et al. (2015b): the

W97 model introduced by Wolff et al. (1997), and the M07 model introduced by MacGregor et al.

(2007). For equivalent temperature and chemistry the W97 model produces conductivity/attenuation

rate values at∼ 65 % of the M07 model (Macgregor et al., 2015b). In Appendix A we describe these215

models in more detail, along with an empirical correction to the W97 model (from herein referred

to as W97C), which accounts for a proposed frequency dependence of the electrical conductivity

between the radar system frequency (195 MHz) and the reference frequency of the Arrhenius model

(300kHz). In Appendix A we propose a test, based upon the thickness correlation for the estimated

values of the basal reflection coefficient, for how well tuned each model is for estimating the con-220

ductivity/attenuation at the radar frequency. From this test we conclude that the M07 model provides

a suitable estimate for our algorithm, and unless stated we use it an all further attenuation estimates.

The steady state temperature fields for GISM and SICOPOLIS were used to estimate the spatial

variation in the depth-averaged attenuation rate for the GrIS. The calculation wastemperature fields

were interpolated at 1 km grid resolution, and usedthe 1 km Greenland Bedmap 2013 thickness data225

product was used (Bamber et al., 2013). For the SICOPOLIS temperature field it is necessary to

convert the (homologous) temperature values from degrees below pressure melting point to units

of K (or ◦C) using a depth correction factor of -8.7×10−4 K m−1 (Price et al., 2015). For both

temperature fields, the attenuation rate is predicted to vary extensively over the GrIS, with minimum
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values in the interior (∼ 7 dB km−1) and maximum values for the south western margins of > 35230

dB km−1 (shown for GISM in Fig. 5a and SICOPOLIS in Fig. 5b). For the majority of the IPR

data coverage region GISM has a negative temperature bias, and therefore attenuation rate bias, with

respect to SICOPOLIS (Fig. 5c).For the majority of the IPR data coverage region, GISM has lower

temperature and therefore lower attenuation rate than SICOPOLIS (Fig. 5c). The GISM vertical

temperature profiles are in better overall agreement with the temperature profiles at the deep ice core235

sites shown in Fig. 1b (refer to Macgregor et al. (2015b) for summary plots of the core temperature

profiles).

2.5 Constraining the algorithm sample region

Following our author comments we have now substantially revised this section, moving the more

technical details to Appendix B.240

Radar-inference of the depth-averaged attenuation rate, using the relationship between bed-returned

power and ice thickness, requires sampling IPR data from a local region of the ice-sheetice sheetwith

a range of ice thicknesses (Gades et al., 2000; MacGregor et al., 2007; Jacobel et al., 2009; Fujita

et al., 2012; Matsuoka et al., 2012b). An implicit assumption of the method, which considers the

relationship between bed-returned power and ice thickness, is that the depth-averaged attenuation245

rate is stationaryconstant across the sample region (Layberry and Bamber, 2001; Matsuoka et al.,

2010a). However, as was shown in Sect. 2.4, the depth-averaged attenuation rate is predicted to have

pronounced spatial variation, and therefore an ice-sheetice sheet wide radar attenuation algorithm

must take this into account. In our development of an automated framework we use the spatial dis-

tribution of < B̂ > (the prior Arrhenius model estimate)firstly to constrain the size and shape of the250

sample region as a function of position (a ‘moving target window’) by estimating regions where the

attenuation rate is constant subject to a specified tolerance. The most general, but computationally

expensive, approach to defining the sample region would be to define an irregular contiguous region

about each window centre where the attenuation rate is less than a tolerance criteria (such as an

absolute difference). Here, motivated by computational efficiency, we have developed a ‘segmen-255

tation approximation’ for defining the anisotropic sample region window. This approach uses local

differences in the estimated < B̂ > field along 8 grid directions, and is similar in its representation

of anisotropy to numerical gradient operators defined on an orthogonal grid. Below we describe the

key conceptual steps to our method with the further details in Appendix B.

Fig.6a illustrates an example of the anisotropy that can occur in the spatial distribution of < B̂ >260

for a 120 km2 region of the GrIS. For simplicity of computational implementation The target window

is divided into eight segments, (notated by Sn with n=1,2,...,8), in a plane-polar coordinate system

about a central point (x0,y0), (Fig. 6b), with the ultimate goal to produce a variable radial length

of the target window by interpolating with respect to angle. The size of each segment is defined

by its central radius vector, Rn, for angles θn = (n−1)π
8 , with R1 =R5, R2 =R6, R3 =R7, R4 =265
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R8. The estimate < B̂ > is then approximated in the plane-polar coordinate system by defining

the attenuation rate in each segment to have the same radial dependence as along the direction of

the central radius vector: < B̂(r)>=< B̂(rn,θn)> with r =
√
(x−x0)2 +(y− y0)2) (Fig. 6c).

The Euclidean distance of < B̂ > from (x0,y0) is then used to define a tolerance metric, shown

for
√
(< B̂(x,y)>−< B̂(x0,y0)>)2 in Fig. 6d and

√
(< B̂(rn,θn)>−< B̂(x0,y0)>)2 (the270

segment approximation) in Fig. 6e respectively. Finally, the boundaries of the target window are

defined by linear interpolation along a circular arc (Fig. 6f). Note that the target window boundaries

are largest in the direction approximately parallel to the contours of constant < B̂ > in Fig. 6a.

A primary consideration for the spatially varying moving target window is that the target windowdimensions,

Rn, are smoothly varying in space. If the converse were true then there would be a sharp disconti-275

nuity in the IPR data that is sampled. It was established that, rather than use of a simple maximum

Euclidean distance criteria to define Rn, a Root Mean Square (RMS) integral measure produces

greater spatial continuity (described fully in Appendix B). The spatial distribution of the target win-

dow radius vectorsR1,R2,R3,R4 for RMS=1 dB km−1 using GISM temperature field are shown in

Fig. 7. All four plots have the general trend that the target window radi are larger in the interior of the280

ice-sheetice sheet corresponding to where the< B̂ > field is more slowing varying. The dependence

ofR1,R2,R3,R4 upon the anisotropy of the< B̂ > field in Fig. 5 is also evident, with smallerlarger

radi approximately parallel to contours of constant< B̂ > and largersmaller radi approximately per-

pendicular. This target windowing approach is sensitive to the input temperature field and repeat

plots for the SICOPOLIS temperature field are shown in the supplementary material. Additionally,285

we note that the approach is sensitive to the horizontal gradient in (depth-averaged) temperature

rather than the absolute value and, thus, systematic biases in the model temperature fields are not

important.Finally, we note that the segmentation approach is sensitive to the horizontal gradient/local

difference in < B̂ > (and therefore the horizontal gradient of depth-averaged temperature). Hence

systematic biases in the model temperature fields are less important.290

2.6 Radar-inference of attenuation rate

The basic method of using the relationship between ice thickness and bed-returned power to infer the

radar-attenuation rate and basal reflection coefficient has been employed many times to local regions

of ice-sheetice sheets (Gades et al., 2000; Winebrenner et al., 2003; MacGregor et al., 2007; Jacobel

et al., 2009; Matsuoka et al., 2012b; Fujita et al., 2012). An explanation offor how this method works,295

begins with the radar power equation

[PC ] = [R]− [L]+[S], (6)

where [R] is the basal reflection coefficient, [L] is the total (two way) power loss (Matsuoka et al.,

2010a). This version of the radar power equation neglects instrumental factors, which here we as-

sume to be a constant for each field campaign. In our study [PC ] is the aggregated geometrically300
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corrected power, as defined by Eqs. (2)-(4), whereas in the majority of other studies [PC ] is the

geometrically corrected peak-power of the basal echo. Equation (6) does not include additional loss

due to internal scattering, which can occur when the glacial ice has crevasses and is not well strat-

ified as is often the case for fast flowing regions near the ice sheet margin (Matsuoka et al., 2010a;

MacGregor et al., 2007). Expressing the total loss in terms of the depth averaged attenuation rate as305

[L] = 2<B > h, and then considering the variation in Eq. (6) with respect to ice thickness gives

δ[PC ]

δh
=
δ[S]

δh
+
δ[R]

δh
− 2<B >, (7)

(Matsuoka et al., 2010a). Ifboth δ[S]
δh << δ[PC ]

δh and δ[R]
δh << δ[PC ]

δh , (refer to Sect. 2.7 for the algo-

rithm quality control measures that test for this), then

<B >≈−1

2

δ[PC ]

δh
. (8)310

Subsequently, radar-inference of the attenuation rate is achieved via linear regression of Eq. (8),

the total loss can be calculated from [L] = 2<B > h, and the basal reflection coefficients can be

calculated from Eq. (6).

As discussed here and in Sect. 2.5, in applying this linear regression approach, it is assumed that

the regression gradient (i.e. the depth-averaged attenuation rate) is constant throughout the sample315

region. In practice, however, the sample region must necessarily include ice with a range of thick-

nesses, and therefore a range of temperatures and attenuation rates. In our modification to the basic

method, the Arrhenius model is used to ‘standardise’ bed-returned power for local attenuation vari-

ation, using the central point of each target window as a reference point. This is achieved via the

power correction320

[PC ]i→ [PC ]i+2
(
< B̂(xi,yi)>−< B̂(x0,y0)>

)
hi, (9)

where (xi,yi) corresponds to the position of the ith data point within the target window and (x0,y0)

corresponds to the central point. This power correction represents an estimate of the difference in

attenuation loss between an ice column of the actual measurement (loss estimate 2< B̂(xi,yi)>

hi), and a fictitioushypothetical ice column with the same thickness as the measurement but with the325

attenuation rate of the central point (loss estimate 2< B̂(x0,y0)> hi).

An example of a [PC ] versus h regression plot pre- and post- power correction, Eq. (9), is shown

in Fig. 8. Typically, ice columns that are thinner/warmer than the central point have (< B̂(xi,yi)>

−< B̂(x0,y0)>)> 0 and the power values are increased by Eq. (9), whereas ice columns that are

thicker/cooler than the central point have (< B̂(xi,yi)>−< B̂(x0,y0)>)< 0 and the power val-330

ues are decreased. Subsequently, the power correction acts to enhance the linear correlation between

power and ice thickness, (as demonstrated by the increase in the r2 value in Fig. 8), and enables

the underlying attenuation trend to be better discriminated. It follows that, for this typical situation
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described, failing to take into account the spatial variation in attenuation rate in the linear regres-

sion procedure results in a systematic underestimation of the true attenuation rate. The difference in335

radar-inferred attenuation rate pre- and post-power correction depends upon the distribution of IPR

flight track coverage within the sample region and the size of the sample regiondefined by Eq. (B2),

and is typically∼ 1-4 dB km−1. Equation (9) represents our central modification to the bed-returned

power method for deriving attenuation. We anticipate that, if a temperature model is available, this

correction for local attenuation variation could be applied in future regional studies (even if the340

windowing methods describe in Sect. 2.5 are not).

When applying the linear regression approach described in this section, IPR data from each field

season were considered separately. To ensure that there was sufficiently dense data within each sam-

ple region a minimum threshold of 20 data measurements was enforced, where each ‘measurement’

corresponds to a separate along-track averaged waveform as described in Sect. 2.3. Additionally,345

target window centres that were more than 50 km from the nearest IPR data point were excluded.

2.7 Quality control

The accuracy of the radar-inferred attenuation rate solution from Eq. (8) depends upon: (i) the cor-

relation strength of δ[PC ]
δh , (ii) the relative correlation strength of δ[PC ]

δh with respect to δ[R]
δh . When

the radar-inferred attenuation rate is obtained via linear regression of δ[PC ]
δh , Eq. (8), it is assumed350

that, in comparison, the correlation for δ[R]
δh is negligible (i.e. that the basal reflector is statistically

uniform with ice thickness). To make a prior estimate of the correlation for δ[R]
δh we use the prior

Arrhenius model estimate of the loss andthe basal reflection coefficient governed by

[R̂] = [L̂] + [PC ]+[S] = 2< B̂ > h+ [PC ]+[S], (10)

and consider the correlation and linear regression model for δ[R̂]
δh . The joint quality control threshold:355

r2[PC ] > α, (11)

r2ratio =
r2[PC ]

r2
[PC ]

+ r2
[R̂]

> β, (12)

is then enforced where r2[PC ] and r2
[R̂]

are r2 correlation coefficients for the δ[PC ]
δh and δ[R̂]

δh linear re-

gression models, and 0≥ α≥ 1, 0≥ β ≥ 1 are threshold parameters. This thresholding criteria The

first thresholding criteria, Eq. (11) tests for both strong absolute correlation in δ[PC ]
δh , and the second360

thresholding criteria, Eq. (12), tests for strong relative correlation in δ[PC ]
δh with respect to δ[R̂]

δh . The

name for the r2ratio parameter represents that it is ‘correlation ratio’. Both quality measures are de-

signed with attenuation rate/loss accuracy in mind, (rather than directly constraining the distribution

of relative reflection). Unlike the use of the Arrhenius model attenuation estimate in Sect. 2.5 and

Sect. 2.6, which uses the local difference in the< B̂ > field, in Eq. (10) the absolute value of< B̂ >365

is used. A justification for the use of the absolute value here, is that it is used only as a quality control

measure and does not directly enter the calculation of the radar-inferred attenuation rate.
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In general, r2
[R̂]

can be high (or equivalently r2ratio can be low) due to: (i) there being a true

correlation in the basal reflection coefficient with thickness, (ii) there being a correlation due to

additional losses other than attenuation such as internal scattering, (iii) the Arrhenius model estimate370

of the attenuation rate being significantly different from the true attenuation rate. Whilst the first

two reasons are both desirable for quality control filtering, the third reason is an erroneous effect.

However, as the dual threshold filters out all three classes of sample region, this erroneous effect

simply reduces the coverage of the algorithm.

2.8 Gridded maps375

The attenuation rate solution from the radar algorithm, <B >, is at a 1 km grid resolution set

fromand arises as a consequence of the scan resolution of the moving target window described in

Sect. 2.5. It is defined on the same polar-stereographic coordinate system as in Fig. 1 and the gridded

thickness data from Bamber et al. (2013). Subsequently, a gridded data set for the two way loss can

be calculated using [L] = 2<B > h. For grid cells that contain IPR data, the mean [PC ] value is380

calculated, and using Eq. (6) an along-track map for the gridded relative reflection coefficient, [R],

is obtained., under the assumption that [S] is the same for all measurements. Due to the definition

of relative power in Eqs. (3) and (4), the values of [R] are also relative. As described in Sect. 2.3

the averaging procedure for the basal waveforms means that the effective resolution of the processed

IPR data varies over the extent of the ice-sheetice sheet. Consequently, the number of data points385

that are arithmetically averaged in each grid cell varies according to both this resolution variation

and the orientation of the flight tracks relative to the coordinate system. For a single flight line,

(i.e. no intersecting flight tracks), the number of points in a grid cell typically ranges from ∼ 4 in

thick ice to ∼ 16 in thin ice. Initially, maps for the four field seasons were independently processed,

which enables cross over analysis for the uncertainty estimates. Joint maps were then produced by390

averaging values where there were grid cells with coverage overlap.

3 Results and discussion

With a view toward identifying regions of the GrIS where the radar attenuation algorithm can be

applied, we firstly consider ice-sheetice sheet wide properties for the linear regression correlation

parameters (Sect. 3.1). We then demonstrate that, on the scale of a major drainage basin, basin 4 in395

Fig. 1b (SE Greenland), the attenuation solution converges for the two input temperature fields (Sect.

3.2). We go on to show that, over this extended region, the converged attenuation solution produces

a physically realistic range for the basal reflection coefficients (Sect. 3.3).We go on to show that the

converged attenuation solution produces a physically realistic range and spatial distribution for the

basal reflection coefficient (Sect. 3.3). The relationship between algorithm coverage and uncertainty400
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is then outlined (Sect. 3.4). Finally, we consider how the attenuation solution can be used to predict

temperature field bias in thermomechanical ice-sheetice sheet models (Sect. 3.5).

3.1 ice-sheetIce sheet wide properties

ice-sheetIce sheet wide maps for the linear regression correlation parameters are shown in Fig. 9a-c

using the GISM temperature field as an input. We have move the next sentence to Sect. 2.8These405

maps are for the four independently processed field seasons, and where there are points of coverage

overlap an average value is taken.As discussed in Sect. 2.6 and Sect. 2.7, the radar algorithm requires:

(i) a strong correlation between bed-returned power and ice thickness (high r2[PC ]), (ii) a weak cor-

relation between basal reflection and ice thickness (low r2
[R̂]

and high r2ratio). In general, r2[PC ] has

stronger correlation values in southern Greenland (typically∼ 0.7-0.9). These regions of higher cor-410

relation correspond to where there is higher variation in ice thickness due to basal topography, and

are correlated with regions of higher topographic roughness (Rippin, 2013). Correspondingly, in the

northern interior of the ice-sheetice sheet where the topographic roughness is lower there are weaker

correlation values for r2[PC ] (typically ∼ 0.2-0.3). The correlation values for r2[PC ] in the northern

interior can also, in part, be explained by the lower absolute values for the depth-averaged attenua-415

tion rate as predicted in Fig. 5. The correlation values for r2
[R̂]

are generally much lower than r2[PC ]

and more localised. As discussed in Sect. 2.7, regions where r2
[R̂]

is high can arise due to both true

target-window scale variation in the basal reflector or due to a significant bias in the Arrhenius model

estimation, [R̂]. The values for r2ratio, are largely correlated with r2[PC ].

Examples of algorithm coverage for three different sets of (α,β) quality control thresholds, Eqs.420

(11) and (12), are shown in Fig. 9d. These are chosen such that each successively higher qual-

ity threshold region is contained within the lower threshold region. In Sect. 3.4 we discuss how

the coverage regions relate to uncertainty in the radar-inferred attenuation rate/loss, and the central

problem of the radar-inference of the basal material properties. For the discussion here, it is sim-

ply important to note that algorithm coverage is fairly continuous for a significant proportion of the425

southern ice sheet, (corresponding to large regions of major drainage basins 4,5,6,7), and toward the

margins of the other drainage basins. The spatial distribution of the radar-inferred attenuation rate,

<B(TGISM)>, is shown in Fig. 9e and the radar-inferred attenuation loss , [L(TGISM)], is shown in

Fig. 9f, both for threshold (α,β) = (0.6,0.8). Note that the ice-sheetice sheet wide properties for

<B(TGISM)> are similar to the Arrhenius model predictions (Fig. 5a) with higher values (∼ 15-30430

dB km−1) toward the ice margins and lower values (∼ 7-10 dB km−1) in the interior.

The ice-sheetice sheet wide properties of the algorithm are preserved using the SICOPOLIS tem-

perature field as an input (refer to Supplemental Material for a repeat plot of Fig. 9). Notably, the

ice-sheetice sheet wide distribution for r2[PC ] is similar, and for equivalent choices of threshold pa-

rameters there is better coverage for the southern GrIS than for the northern interior.435
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3.2 Attenuation solution convergence

To demonstrate the convergence of the attenuation solution for different input temperature fields

(defined here as a normally distributed difference distribution about zero), we compare the solu-

tion differences for the (input) Arrhenius models, < B̂(TGISM)>−< B̂(TSIC)> and [L̂(TGISM)]−
[L̂(TSIC)], with the corresponding (output) radar-inferred solution differences, <B(TGISM)>−<440

B(TSIC)> and [L(TGISM)]−[L(TSIC)]. As [L] = 2<B > h, it is necessary to consider the thickness

dependence of the solution differences and the consequences for a thickness correlated bias in basal

reflection values. We focus on the southeast GrIS, corresponding to target window centres that are

located in drainage basin 4 Fig. 1a. This region is selected post ice-sheetice sheet wide processing,

and the IPR data from neighboring drainage basins are incorporated in the linear regression plots for445

the target windows that lie close to the basin boundaries. We consider an attenuation rate solution

for fixed threshold parameters (α,β)=(0.6,0.8). These are chosen to achieve a solution uncertainty

deemed to approach the accuracy required to discriminate basal melt (discussed fully in Sect. 3.4).

The inset region we consider is shown in (Fig. 10a). The prior Arrhenius model solution difference

for the attenuation rate, < B̂(TGISM)>−< B̂(TSIC)>, is strongly negatively biased (Fig. 10b). If450

the solution difference is aggregated over all grid cells that contain IPR data the mean and standard

deviation, µ±σ, is -2.42 ± 0.88 dB km−1 (Fig. 10d). Note, that σ does not represent an uncertainty

for the Arrhenius modeled attenuation rate. It is a measure of the spread of the two different input

attenuation rate fields. On the scale of the drainage basin, this solution bias is approximately constant

with ice thickness (Fig. 10e). By contrast, the radar algorithm solution difference, < B̂(TGISM)>455

−< B̂(TSIC)>, fluctuates locally between regions of both small positive and negative bias (Fig.

10c). The aggregated radar solution bias is approximately normally distributed about zero, µ±σ=-

0.18 ± 1.53 dB km−1 (Fig. 10d), and approximately constant with ice thickness (Fig. 10e).

Corresponding difference distributions for the attenuation loss are shown in Fig. 10f and Fig.

10g. These represent a rescaling of the distributions in Fig. 10d and Fig. 10e, by the factor 2h and460

do not take thickness uncertainty into account. The Arrhenius model solution difference is weakly

negatively correlated with thickness (r2=0.09), and from Eq. (6) results in a thickness correlated

bias for the basal reflection coefficient. As the attenuation loss solution bias can be > 10 dB for thick

ice (h ∼ 2000 m or greater), this would potentially result in a different diagnosis of wet and dry

glacier beds using the different temperate fields in the Arrhenius model. Again, the radar-inferred465

solution difference is approximately normally distributed about zero (µ±σ=-0.56 ± 5.19 dB). The

radar-inferred difference is also uncorrelated with ice thickness (r2=0.00) which is essentialhighly

desirable for unambiguous radar-inference of basal material properties on an ice-sheetice sheet wide

scale.

If a similar analysis for the attenuation solution differences is applied to drainage basins 3,5,6470

(southern and eastern Greenland) we observe algorithm solution convergence, (in the sense of a

normally distributed difference centred on zero), and an associated reduction in the solution bias
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from the Arrhenius model input. In drainage basins 1,2,7,8 (northern and western Greenland) we do

not observe analogous solution convergence for the radar-inferred values. We do, however, typically

see a reduction in the mean systematic bias for the attenuation rate/loss solution relative to the475

Arrhenius model input. In the supplementary material we provide additional plots and discuss the

potential reasons for the algorithm non-convergence, which are thought to relate primarily to the

more pronounced temperature sensitivity of the algorithm target windows in the northern GrIS.

3.3 Attenuation rate and basal reflection maps for the southeast GrIS

We have now revised this section. In particular: (i) we now combine analysis of reflection/attenuation/velocity480

in a single figure, (ii) we map the attenuation solution for all the converged regions

For regions of the GrIS where the attenuation rate solution converges and there is algorithm cover-

age overlap for the different temperature field inputs, it is possible to define the mean radar-inferred

attenuation rate solution

<B >=
1

2
(<B(TSIC)>+<B(TGISM)>) . (13)485

Note, that the explicit temperature dependence for the mean value is dropped as, for the regions of

convergence, it represents a solution that is (approximately) independent of the input temperature

field. Within the drainage basins where the solution converges and where only one of <B(TSIC)>

or<B(TGISM)> is above the coverage threshold, we use the single values to define the mean<B >

field. A justification for this approach is that regions where only one temperature field has coverage490

are most likely an instance of where the other temperature field has erroneous estimates for δ[R̂]
δh as

discussed in Sect. 2.7. Hence, for a given (α,β) threshold, the coverage region for <B > is slightly

larger than for <B(TSIC)> and <B(TGISM)>. A regional map for the southeast GrIS using Eq.

(13) is shown in Fig. 11. This field is generally smoothly varying, as would be expected given its

primary dependence upon temperature.A map for the converged attenuation rate solution using Eq.495

(13) is shown in Fig. 11 for coverage threshold (α,β)=(0.60,0.80). This field is generally smoothly

varying, as would be expected given its primary dependence upon temperature.

Inset maps for the depth-averaged attenuation rate and basal reflection coefficient are compared

with balance velocity (Bamber et al., 2000) in Fig. 11b-d. Following the naming convention in Bjørk

et al. (2015), this region is upstream from the Apuseeq outlet glacier. Balance velocities rather than500

velocity measurements are used due to incomplete observations in the region of interest (Joughin

et al., 2010). The correspondence between the fast flowing region region (approximately > 120 m

a−1) and the near-contiguous regions of higher attenuation rate (approximately > 18 dB km−1) and

higher basal reflection values (approximately > 8 dB) is evident. This supports the view that the fast

flowing region corresponds to relatively warm ice, and is underlain by a predominately thawed bed505

which acts to enhance basal sliding.
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The frequency distribution for the relative basal reflection coefficient, [R], over the whole drainage

basinconverged region is shown in Fig. 11e.This distribution corresponds to 63 %63% of the grid

cells that contain IPR data satisfying the waveform processing quality control (Sect. 2.3). The dis-

tribution is self-normalised by setting the mean value to equal zero. The decibel range for the basal510

reflection coefficient is ∼ 20 dB which is consistent with the predicted decibel range for sub-glacial

materials (Bogorodsky et al., 1983a), and our estimate of the loss uncertainty (∼ 5 dB), discussed

in more detail in Sect. 3.4. Since our definition of the basal reflection coefficient is based upon the

aggregated definition of the bed-returned power, Eqs. (2) and (3), the overall range will be less than

using the conventional peak power definition. The corresponding thickness envelope for the basal515

reflection coefficients is shown in Fig. ??c.

3.4 Relationship between uncertainty and coverage

There are two metrics, both as a function of the quality threshold parameters (α,β), that we pro-

pose can be used to quantify the uncertainty of the radar algorithm. The first metric is the standard

deviation of the attenuation solution differences for different input temperature fields as previously520

described in Sect. 3.2. This metric assesses solution variation due to the target windowing and the lo-

cal correction to the power within the target window described in Sect. 2.5 and Sect. 2.6 respectively.

The second metric is to consider the standard deviation of the attenuation solution differences for

independently analysed field seasons for a fixed input temperature field. This metric provides a test

that the waveform-processing and system performance is consistent between different field seasons.525

Furthermore, it provides a test if different flight track distributions and densities in the same target

window, produce a similar radar-inferred attenuation rate.

Attenuation rate and loss solution difference distributions for three (α,β) coverage thresholds for

the different temperature field inputs (the first uncertainty metric) are shown in Fig. 12a and Fig.

12b respectively, along with corresponding coverage regions in Fig. 12c. As in Sect. 3.2, these dis-530

tributions are for grid cells that contain IPR data within drainage basin 4. It is clear that the standard

deviation of the difference distribution is related to how strict the coverage threshold is, with the

strictest coverage threshold having the smallest standard deviation value (refer to plots for values).

Subsequently, we suggest that the coverage of the algorithm is a trade-off with uncertainty. The

systematic bias for the strictest coverage threshold, (α,β) = (0.80,0.90), is thought to arise due to535

sampling an insufficiently small region of the ice-sheetice sheet. The standard deviation values in

Fig. 12 for drainage basin 4 are similar in the other drainage basins where there is solution conver-

gence. For example, for (α,β) = (0.60,0.80), σ ∼ 1.5 dB km−1 for the attenuation rate difference

distribution.

A similar relationship between the choice of (α,β) threshold parameters and solution accuracy540

arises for independently analysed field campaign data and a full data table is supplied in the sup-

plementary material. The attenuation solution difference distributions are close to being normally
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distributed about zero, with small systematic biases (∼ 0.1-0.7 dB km−1) for the attenuation rate.

For the same choice of (α,β) threshold parameters, the attenuation rate solution standard deviations

are of similar order to the equivalent temperature field difference distributions. For example, for545

(α,β) = (0.60,0.80), σ is in the range 0.98-1.71 dB km−1 for the different field season pairs.

Since for both uncertainty metrics, the solution differences are a function of (α,β), we suggest

that the coverage region can be ‘tuned’ to a desired accuracy. For the problem of basal melt discrim-

ination, where the reflection coefficient difference between water and frozen bedrock is ∼ 10-15 dB

(Bogorodsky et al., 1983b), we suggest that standard deviation values for the attenuation loss of ∼550

5 dB approaches the required accuracy. If this is rescaled by the ice thickness for a typical sample

region (ice thickness ∼ 1500-2000 m) this results in a desired attenuation rate accuracy ∼ 1-1.5

dB km−1. For both uncertainty metrics this corresponds to approximately (α,β) = (0.6,0.8). This

interpretation of uncertainty is consistent with the ∼ 20 dB decibel range for the basal reflection

coefficients in Fig. 11. Throughout the algorithm development, we continually considered both un-555

certainty metrics. Of particular note, if the Arrhenius model is used to constrain the target window

dimensions (Sect. 2.5), but not to make a power correction within each target window (Sect. 2.6),

there are more pronounced systematic biases present for both uncertainty metrics.

The recent study by Macgregor et al. (2015b) also produced a GrIS wide map for the radar-inferred

attenuation rate. This study used returned power from internal layers in the glacier ice to infer the560

attenuation rate (Matsuoka et al., 2010b), and the values are therefore only for some fraction of the

ice column (roughly corresponding to the isothermal region of the vertical temperature profiles). The

uncertainty was quantified using the attenuation rate solution standard deviation (σ=3.2 dB km−1)

at flight transect crossovers. A direct comparison between their uncertainty estimate and ours is not

possible, as we use a different definition of cross-over point (i.e. all grid-cells that contain IPR data565

in a mutual coverage region), and we can tune the coverage of our algorithm for a desired solution

accuracy. Additionally, whereas each value using the internal layer method is spatially independent,

the moving target-windowing approach of our algorithm means each radar-inferred value is depen-

dent upon neighboring estimates.

3.5 PredictionEvaluation of temperature bias of ice-sheetice sheet models570

Following our author comments we now fully rewritten this section. Key changes include: using

the W97C alongside the M07 model to illustrate sensitivity/robustness, and extending the attenua-

tion/temperature bias plots to include all of our converged region.

The evaluation of the temperature bias of a thermomechanical ice sheet model using attenuation

rates inferred from IPR data was recently considered for the first time by Macgregor et al. (2015b);575

in this case the ISSM model described by Seroussi et al. (2013). For the internal layer method used

by Macgregor et al. (2015b) the attenuation rate inferred from the IPR data represents a truly inde-

pendent test of temperature bias. For our temperature field-conditioned, bed-returned power, method
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this is not necessarily the case, and we only consider regions where the radar-inferred values tend to

converge for different input temperature fields (the map in Fig. 11a). The inversion of the Arrhenius580

relations (solving for a depth-averaged temperature given a depth-averaged attenuation rate) is both

a non-linear and non-unique problem. We leave this problem, which is potentially more complex for

full ice column temperature than the (approximately) isothermal regime considered by (Macgregor

et al., 2015a), for future work. Instead we estimate temperature bias using the Arrhenius model-

radar algorithm solution differences for the depth-averaged attenuation rate: < B̂(TGISM)>-<B >585

and < B̂(TSIC)>-<B >. These differences can only give a broad indication regarding the horizon-

tal distribution of depth-averaged temperature bias, and will not hold exactly if ionic concentrations

or the shape of the vertical temperature profiles differ substantially over the region. In order to illus-

trate the sensitivity of our results, and the evaluation of model temperature fields in general, to the

choice of conductivity model, we use the W97C model alongside the M07 model.590

Arrhenius model-radar algorithm attenuation solution differences are shown for the M07 model

(GISM Fig. 13a, SICOPOLIS Fig. 13b) and W97C model (GISM Fig. 13c, SICOPOLIS Fig.13d).

The frequency correction parameter for W97C corresponds to σ195MHz/σ300kHz=1.7 (the ratio of the

electrical conductivity at the IPR system frequency relative to the reference frequency of the Arrhe-

nius model), and is described in detail in Appendix A. Dye 3 is the only ice core within the coverage595

region and the model and core temperature profiles are shown in Fig. 13e. For the M07 model

< B̂(TGISM)>-<B > is negative in the region of the Dye 3 core (suggestive of negative tempera-

ture bias), whereas < B̂(TSIC)>-<B > is positive (suggestive of positive temperature bias) which

is in agreement with the known model temperature biases Fig. 13e. Arrhenius model attenuation rate

values at the core are < B̂(TGISM)>=12.8 dB km−1 and < B̂(TSIC)>=16.7 dB km−1 and the radar600

inferred value is <B >= 15.8 dB km−1. The W97C model (which estimates attenuation rate val-

ues ∼ 10-15 % higher than the M07 model) is also consistent with this attenuation rate/temperature

bias hierarchy, with < B̂(TSIC)>= 18.7 dB km−1 and < B̂(TGISM)>= 14.3 dB km−1. It is also

possible to use the ice core temperature profile at Dye 3 in the Arrhenius model to predict depth-

averaged attenuation rate values. This gives < B̂(TCORE)>=13.9 dB km−1 for the M07 model and605

< B̂(TCORE)>=15.8 dB km−1 for the W97C model. These values are both consistent with the radar-

inferred value subject to the original uncertainty estimate of the M07 model (∼ 5 dB km−1 when

the temperature field is known (MacGregor et al., 2007)).

A final caveat to our approach here is that it does not include layer stratigraphy in the Arrhenius

model. The analysis in Macgregor et al. (2015b) predicts that, throughout the GrIS, radar-inferred610

temperatures that incorporate layer stratigraphy are generally systematically lower (correspondingly

depth-averaged attenuation rates are systematically higher). This deficit is predicted to be most pro-

nounced in southern and western Greenland, due to the higher fraction of Holocene ice in these

regions which has higher acidity than the depth-averaged values at GRIP.

18



4 Conclusions615

As with the introduction, we have edited the conclusions to reflect that our algorithm addresses at-

tenuation solution accuracy.

In this study, we considered the first application of a ‘bed-returned power’ radar algorithm for

englacial attenuation and basal reflectionover the extent of an ice-sheetice sheet. In developing our

automated, ice-sheetice sheet wide, approach we made various refinements to previous regional ver-620

sions of the algorithm (Gades et al., 2000; MacGregor et al., 2007; Jacobel et al., 2009; Fujita et al.,

2012; Matsuoka et al., 2012b). These included using a waveform processing procedure that is specifi-

cally tuned for evaluation of bulk material properties, incorporating a prior Arrhenius model estimate

for the spatial variation in attenuation to constrain the sample area, standardising the power within

each sample area, and introducing an automated quality control approach based upon the underlying625

radar equation. We demonstrated regions of attenuation solution convergence for two different input

temperature fields and for independently analysed field seasons. A feature of the algorithm is that

the uncertainty, as measured by standard deviation of the attenuation solution difference distribu-

tion for different input temperature fields and separate field seasons, is tunable. Subsequently, we

suggested that the algorithm could be used for the discrimination of bulk material properties over630

selected regions of ice-sheetice sheets. Notably, assuming a total loss uncertainty of ∼ 5 dB to be

approximately sufficient for basal melt discrimination, we demonstrated that, on the scale of a major

drainage basin, the attenuation solution produces a physically realistic (∼ 20 dB) range for the basal

reflection coefficient.

We suggest that the converged radar algorithm attenuation solution is preferable to using a forward635

Arrhenius temperature model to calculate basal reflection coefficients.The converged radar algorithm

attenuation solution provides a means of assessing the bias of forward Arrhenius temperature mod-

els. Where temperature fields are poorly constrained, and where the algorithm has good coverage,

we suggest that it is preferable to using a prior Arrhenius model calculation. This is due to the

large reduction in the spatially correlated attenuation rate/loss bias that inis present in Arrhenius640

models.With this in mind, the potential problems with using a forward Arrhenius model for bed

reflection valuesattenuation were illustrated (Sect. 3.2). Notably, we demonstrated that even a small

constant bias in the attenuation rate across a region; (this could be either with respect to a‘true’ value

or another modelled value), leads to a thickness correlated bias in attenuation loss and therefore the

basal reflection coefficients.Notably, we demonstrated that even a small regional bias in attenuation645

rate (this could arise either due to temperature bias or due a systematic bias in the Arrhenius model

parameters) leads to thickness-correlated errors in attenuation losses and therefore the basal reflec-

tion coefficients. These thickness-correlated errors persist regardless of whether the regional bias is

with respect to the ‘true’ value or to another modelled value. We hypothesise that the algorithm con-

vergence for different input temperature fields occurs because the local differences in the Arrhenius650

model attenuation rate field that are used as an algorithm input (i.e. < B̂(x,y)>−< B̂(x0,y0)>)
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are more robust than the absolute values. This is broadly equivalent to saying that the horizontal

gradients in the depth-averaged temperature field of the ice-sheetice sheet models are more robust

than the absolute values of the depth-averaged temperature. Similarly, our use of local differences

for the attenuation rate estimate is also robust to systematic biases in the Arrhenius model.655

We have yet to consider an explicit classification of the subglacial materials and quantification of

regions of basal melting. In future work, we aim to combine IPR data from preceding CReSIS field

campaigns to produce a finalgridded data product for the attenuation rate, loss basal reflection values

and basal melt. We have yet to consider an explicit classification of the sub-glacial materials, and

quantification of regions of basal meltingIt is anticipated that, as outlined by Oswald and Gogineni660

(2008, 2012); Schroeder et al. (2013), the specularity properties of the basal waveform, and how this

relates to basal melt detection, could also be incorporated in this analysis. As the regions of algo-

rithm coverage are sensitive to uncertainty, we suggest that these data products could have spatially

varying uncertainty incorporated. Additionally, for the basal reflection and basal melt data sets, un-

certainty in the measurements of [PC ] will have to be incorporated in the uncertainty estimate for665

[R]. Establishing a procedure for the interpolation of these data sets where either: (i) the algorithm

coverage is poor due to low attenuation solution accuracy, or (ii) the IPR data are sparse, will form

part of this framework. Regions of lower solution accuracy, generally correspond to the interior of

the ice-sheetice sheet where spatial variation in the attenuation rate is much less pronounced (pri-

marily the northern interior). Due to this lower spatial variability, (and despite the caveats in the670

paragraph above), these regions could potentially have their basal reflection values derived by using

a forward Arrhenius temperature model for the attenuation.

Finally, we envisage that the framework introduced in this paper could be used for radar-inference

of radar-attenuation, basal reflection and basal melt for the Antarctic ice-sheetIce Sheet. Given that

for high solution accuracy the radar algorithm requires high topographic roughness and relatively675

warm ice we suggest that IPR data in rougher regions toward the margins should be analysed first

(refer to Siegert et al. (2005) for an overview of topographic roughness in East Antarctica). Addi-

tionally, the prediction of the model temperature field bias using the attenuation rate solution could

be extended to the Antarctic ice-sheetIce Sheet.

680

Following our author comments we now have included: (i) A revised Appendix A that focuses on the

choice of conductivity model, (ii) A new Appendix B (which incorporates the more technical details

from Sect. 2.5
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Appendix A: Equations for Arrhenius temperature modelAdditional information for

Arrhenius model685

A1 Model equations

In ice, a low loss dielectric, the radar attenuation rate, B̂ (indB km−1) is linearly proportional to the

high frequency limit of the electrical conductivity, σ∞ (in µS m−1), following the relationship

B̂ =
10log10 e

1000ε0c
√
εice

σ∞, (A1)

where c is the vacuum speed of the radio wave (Winebrenner et al., 2003; MacGregor et al., 2012).690

For εice = 3.15, as is assumed here, B̂ = 0.921σ∞. The Arrhenius relationship describes the tem-

perature dependence of σ∞ for ice with ionic impurities present, and is given by

σ∞ = σpure exp

{
Epure
kB

(
1

Tr
− 1

T

)}
+µH+cH+ exp

{
EH+

kB

(
1

Tr
− 1

T

)}
+µCl−cCl− exp

{
ECl−

kB

(
1

Tr
− 1

T

)}
+µNH+

4
cNH+

4
exp

{
ENH+

4

kB

(
1

Tr
− 1

T

)}
, (A2)

where T (in K) is the temperature, Tr is a reference temperature, KB = 1.38× 10−23 J K−1 is the

Boltzmann constant, and cH+ , cCl− and cNH+
4

are the molar concentrations of the chemical impurities695

(in µM)(M) (MacGregor et al., 2007; Macgregor et al., 2015b). The reference temperature .... etcThe

model parameters are summarised in tabular form by Macgregor et al. (2015b) for both the M07

model and W97 model.

Following the assumptions in Sect. 2.4 for the GrIS temperature field, ionic concentrations, and ice

thickness data set, it is possible to obtain the spatial dependence of the attenuation rate, B̂(x,y,z),700

where (x,y) are planar coordinates and z is the vertical coordinate. The total (two way) attenuation

loss for a vertical column of ice, [L̂(x,y)] (in dB), is then obtained via the depth integral

[L̂] = 2

h∫
0

B̂(z)dz. (A3)

Finally, the depth averaged (one-way) attenuation rate,< B̂(x,y)> (in dB km−1) is calculated from

705

< B̂ >= [L̂]/2h. (A4)
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A2 Frequency dependence and empirical correction

Both the W97 model and the M07 model assume that the electrical conductivity/attenuation rate

is frequency independent between the medium frequency, MF; 0.3-3 MHz, (the range that the Ar-710

rhenius model parameters are measured) and the very high frequency, VHF; 30-300 MHz, (the range

encompassing the frequency of IPR systems) (Macgregor et al., 2015b). The W97 model is derived

using the dielectric profiling method at GRIP core and is referenced to 300 kHz (Wolff et al., 1997),

whereas the M07 model is derived from a synthesis of prior measurements and is not referenced

to a specific frequency (MacGregor et al., 2007). The empirical frequency correction to the W97715

model between the MF and VHF, W97C, was motivated by an inferred systematic underestimation

in the attenuation rate at the GrIS ice cores. This analysis was based upon using reflections from

internal layers to derive attenuation rate values and then inverting the Arrhenius relations to estimate

englacial temperature. The frequency corrected model represents a departure from the classical (fre-

quency independent) Debye model for dielectric relaxations under an alternating electric field. The720

physical basis for the frequency dependence is related to the presence of a log-normal distribution

for the dielectric relaxations (Stillman et al., 2013).

For the MCoRDS system that is considered in this study and by Macgregor et al. (2015b), the

empirical frequency correction to σ∞ in Eq. (A2) is given by

σ∞ −→
(
σ195MHz

σ300kHz

)
σ∞, (A5)725

where σ195MHz/σ300kHz is the ratio of the conductivity at the central frequency of the radar system to

the W97 model frequency. A ratio σ195MHz/σ300kHz = 2.6 was inferred by Macgregor et al. (2015b),

from minimising the difference between radar-inferred temperatures and borehole temperatures. This

value was thought to potentially represent an overestimate due to unaccounted biases in the internal

layer method (e.g. non-specularity, volume scattering). Additionally, Paden et al. (2005) observed730

a 8 ± 1.2 dB increase in signal loss from the bed at NGRIP between 100 and 500 MHz. If this

is interpreted as being entirely to the frequency dependence of the conductivity then this implies

σ195MHz/σ300kHz = 1.7 (Macgregor et al., 2015b).

A3 Test for model bias and model selection735

The W97C model with σ195MHz/σ300kHz = 2.6 calculates attenuation rate values at∼ 170 % of the

M07 model, whereas the W97C model with σ195MHz/σ300kHz=1.7 calculates conductivity/attenuation

rate values at ∼ 115 % of the M07 model. To date, neither of these frequency-corrected models

have been used to calculate full ice column losses or basal reflection coefficients for MCoRDS IPR

data. In order to inform our choice of conductivity model, we considered the decibel range of the740

estimated reflection coefficient, [R̂], as a function of ice thickness. Whilst it is not strictly necessary

that this distribution is invariant with ice thickness (there may be an overall thickness dependence
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to the distribution of thawed/frozen beds), a thickness-invariant distribution over an extended region

serves as an indirect test of the validity the conductivity models. We consider northern Greenland

(drainage basin 1 in Fig. 1) as a trial region since the attenuation rate/temperature is low compared to745

southern Greenland with less spatial variation (Fig. 5). Initially, the GISM temperature field is used

as it is closer to the NEEM and Camp Century core profiles (see supplementary material).

A prior estimate for the basal reflection coefficient, [R̂], as a function of ice thickness for four con-

ductivity models is shown in Fig. 14: (a) W97 (uncorrected), (b) M07, (c) W97C ( σ195MHz/σ300kHz=1.7)

(the inferred value from Paden et al. (2005)), (d) W97C (σ195MHz/σ300kHz=2.6) (the inferred value750

from Macgregor et al. (2015a)). The W97 (uncorrected) model has negative correlation with ice

thickness, (-6.03 dB km−1, r2=0.29), the M07 model is near invariant with ice thickness (-0.29 dB

km−1, r2=0.0009), the W97C model with σ195Mz/σ300kHz=1.7 has a minor positive correlation (1.86

dB km−1, r2=0.03), and the W97C model with σ195MHz/σ300kHz=2.6 has a strong positive correlation

(12.02 dB km−1, r2=0.49). The negative correlation for W97C is consistent with the conclusion by755

Macgregor et al. (2015b) that the model is an underestimate of the conductivity at frequency of the

radar system. The reasoning behind this is that, since [L̂] = 2< B̂ > h, a systematic underestimate

in the attenuation rate results in an underestimation of the loss that increases with ice thickness,

and from Eq. (10) a negative thickness gradient results for the basal reflection coefficient. The op-

posite is true for W97C with σ195MHz/σ300kHz=2.6, where the strong positive correlation indicates760

that the attenuation rate is significantly overestimated. Since both the M07 model and W97C with

σ195MHz/σ300kHz=1.7 are close to being thickness invariant, we infer that the conductivity models

are better tuned for estimating the attenuation rate at the IPR frequency. Repeat analysis for other

regions of the GrIS and using the SICOPOLIS temperature field confirm these general conclusions.

765

Appendix B: Additional information for constraining the algorithm sample region

In this Appendix we describe the RMS integral measure that we use to define the sample region

boundaries, as described conceptually in Sect. 2.5. The RMS measure, which is similar to the RMS

integral measure for a continuous-time function, is defined for each segment by

RMS(Rn) =

√√√√√ 2

R2
n

Rn∫
0

(< B̂(rn,θn)>−< B̂(x0,y0)>)2rndrn. (B1)770

Specifying a value of RMS(Rn), then enables radius vectors Rn to be derived from evaluating

the integral, Eq. (B1). It was further established that smoother windowing occurs if the constraints
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R1 =R5, R2 =R6, R3 =R7, R4 =R8, are applied and the joint integral

RMS(Rn) =
1

2

√√√√√ 2

R2
n

Rn∫
0

(< B̂(rn,θn)>−< B̂(x0,y0)>)2rndrn

+
1

2

√√√√√ 2

R2
n

Rn∫
0

(< B̂(rm,θm)>−< B̂(x0,y0)>)2rmdrm, (B2)775

with index pairs (n,m)=(1,5), (2,6), (3,7) and (4,8) is used to solve for Rn.

Tuning the RMS tolerance, Eq. (B2), is discussed in the supplementary material. Briefly, the cho-

sen value (RMS=1 dB km−1) is a balance between being large enough to ensure that there is an

adequate spread in ice thickness, whilst being sufficiently small to ensure that attenuation rate values

are sufficiently close to the central point of the target window. It will be shown later thatis shown in780

this study that in central Greenland, this condition is generally not satisfied because the gradient in

ice thickness with distance is too small. The segmentation approximation and RMS tolerance mea-

sure is just one possible approach to constraining the sample region and incorporating anisotropy.

For example, we could have considered an ovular or ellipsoidal shape region.
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Table 1. List of principleprincipal symbols. We have now used the ’hat’ notation to indicate estimated values

Symbol Units Description Equation(s)

[PC ] dB Aggregated and geometrically corrected bed-returned power (2)-(5)

h km Thickness of ice column

B̂ dB km−1 Arrhenius model estimate for attenuation rate (A1), (A2)

[L̂] dB Arrhenius model estimate for total loss (A3)

< B̂ > dB km−1 Arrhenius model estimate for depth-averaged attenuation rate (A4)

[R̂] dB Arrhenius model estimate for basal power reflection coefficient (12)

Rn km Radius vectors for sample regions with n=1,2,3,4

RMS(Rn) dB km−1 Root mean square tolerance measure for sample regions (7)

<B > dB km−1 Radar-inferred value for depth-averaged attenuation rate (10)

[L] dB Radar-inferred value for total loss

[R] dB Radar-inferred value for basal power reflection coefficient (8)

r2[PC ] r2 correlation coefficient for [PC ] versus h

r2
[R̂]

r2 correlation coefficient for [R̂] versus h

r2ratio RatioCorrelation ratio of r2[PC ] to (r2[PC ] + r2
[R̂]

) (14)

α Quality control threshold for r2[PC ] (13)

β Quality control threshold for r2ratio (14)
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We have implemented both reviewers suggestions for the figures, revising the captions where nec-

essary. Major changes include: (i) Titles in words (rather than symbols), (ii) the Arrhenius model

plot (plot 4 in original submission) now is split into 2 separate plots, (iii) we have merged the reflec-

tion map and attenuation rate map (10 and 11 in original submission). Our attenuation map is now945

over all of the converged region, and likewise for the reflection distribution, (iv) The temperature

bias is also over the converged region and also considers the W97C model, (v) We have an extra plot

for Appendix A, which reflection-thickness plots for the different conductivity models.

Figure 1. (a) Source map for CReSIS flight tracks. (b) Ice core locations and GrIS drainage basins (Zwally et al.,

2012). The coordinate system, used throughout this study, is a polar-stereographic projection with reference

latitude 71◦ N and longitude 39◦ W. The land-ice-sea mask is from Howat et al. (2014).

30



Figure 2. Flow diagram for the components of the radar algorithm.
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Figure 3. Waveform processing using the power depth-integral method, Eq. (2). (a) A waveform that satisfies

the quality control criteria (decays to 2% of peak power within integral bounds). (b) A waveform that does not

satisfy the quality control criteria.

Figure 4. Temperature dependence of estimated attenuation rate, B̂, assuming depth-averaged chemical con-

centrations at GRIP core and the Arrhenius model in MacGregor et al. (2007).
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Figure 5. Estimated spatial dependence of depth-averaged attenuation rate for the GrIS using Arrhenius model.

(a) GISM temperature field, < B̂(TGISM)>. (b) SICOPOLIS temperature field, < B̂(TSIC)>. (c) Attenuation

rate difference plot for GISM-SICOPOLIS, < B̂(TGISM)>-< B̂(TSIC)>.
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Figure 6. Constraining the target window boundaries. (a) Estimated attenuation rate, < B̂(x,y)>.

(b) Segment approximation: segments Sn=1,...,7,8, radi Rn=1,...,7,8 with n=1,...,7,8. (c) Seg-

ment approximation for the attenuation rate, < B̂(r)>=< B̂(rn,θn)>. (d) Local toler-

ance/absolute difference,
√

(< B̂(x,y)>−< B̂(x0,y0)>)2. (e) Segment approximation for tolerance,√
(< B̂(rn,θn)>−< B̂(x0,y0)>)2. (f) Target window boundaries.
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Figure 7. Maps for target window radi vector length using the GISM temperature field.with RMS=1 dB km−1

in Eq. (B2) (a) Vector R1, (b) Vector R2, (c) Vector R3, (d) Vector R4. The orientation of each radi vector is

shown in each subplot.
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Figure 8. Bed-returned power versus ice thickness pre and post local attenuation correction, Eq. (9). The radar-

inferred attenuation rate pre correction is <B >=15.4 dB km−1 (r2=0.56) and post correction is <B >=19.3

dB km−1 (r2=0.89). The central point of the sample region is 64.30◦ N, 43.82◦ W (100 km due South of the

Dye 3 ice core) and has ice thickness 1604 m.
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Figure 9. ice-sheetIce sheet wide properties of the radar algorithm using the GISM temperature field. (a) Power-

thickness correlation, r2[PC ]. (b) Arrhenius reflection coefficient-thickness correlation, r2
[R̂]

. (c) Correlation ra-

tio, r2ratio, Eq. (12). (d) Coverage for three thresholds (green is a subset of red and red is a subset of blue). (e)

Radar-inferred attenuation rate, <B(TGISM)>, for (α,β) = (0.60,0.80). (f) Radar-inferred attenuation loss,

[L(TGISM)], for (α,β) = (0.60,0.80).
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Figure 10. Attenuation solution convergence for the SE GrIS. (a) Region of interest. (b) Map for <

B̂(TGISM)>-< B̂(TSIC)> (Arrhenius model input). (c) Map for <B(TGISM)>-<B(TSIC)> (algorithm out-

put). (d) Difference distributions for (b) and (c). (e) Thickness dependence for plot (d). (f) Difference distribu-

tions for attenuation loss. (g) Thickness dependence for plot (f).
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Figure 11. Attenuation solution and basal reflection. (a) Converged radar-inferred attenuation rate map,<B >

(average for both input temperature fields). (b) Attenuation rate map for inset region. (c) Along-track map for

basal reflection coefficient for inset region. (d) Balance velocities for inset region. (e) Frequency distribution

for basal reflection coefficient for entire coverage region in (a). The reflection coefficient is defined using the

aggregated power for the basal echo.
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Figure 12. Relationship between algorithm coverage and uncertainty as measured by attenuation solution

difference distributions. (a) Attenuation rate, <B(TGISM)>-<B(TSIC)>. (b) Attenuation loss, [L(TGISM)]-

[L(TSIC)]. (c) Algorithm coverage. Green is a subset of red and red is a subset of blue. The region is the same

as Fig. 10.
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Figure 13. Evaluation of temperature bias for ice sheet models using attenuation rate differences.

(a) < B̂(TGISM)>-<B >: M07. (b) < B̂(TSIC)>-<B >: M07. (c) < B̂(TGISM)>-<B >: W97C

(σ195MHz/σ300kHz=1.7). (d) < B̂(TSIC)>-<B >: W97C (σ195MHz/σ300kHz=1.7). Red regions are suggestive of

positive bias for depth-averaged temperature and blue regions are suggestive of negative bias. (e) Temperature

profiles at Dye 3 core (data from (Gundestrup and Hansen, 1984)).
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Figure 14. Estimated basal reflection coefficient, [R̂], versus ice thickness in northern Greenland for four differ-

ent conductivity models: (a) W97, (b) M07, (c) W97C (σ195MHz/σ300kHz=1.7), (d) W97C (σ195MHz/σ300kHz=2.6).

The negative and positive correlations in (a) and (d) are interpreted as underestimates/overestimates of the con-

ductivity at the IPR frequency, whereas the near thickness-invariance in (b) and (c) are interpreted as good es-

timates of the conductivity. M07 is approximately equivalent to W97C with σ195MHz/σ300kHz=1.48.For brevity,

we chose not to include a ‘forward’ along-track reflection map for the region (which encompasses some of the

northern interior). It should, however, be clear that for the M07 model, the overall spread of the distribution is

well constrained in this region.
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