We greatly appreciate the relevant discussion raised by the reviewers’ comments that will contribute to
improve our paper and also to argue and discuss a very hot topic in the snow community. The comments of
Reviewer #1 concern clarifications of the model and assumptions and Reviewer #2 raised the issue of the slope
angle dependency in field experiments. We acknowledge the complementary nature of these two reviews and
we believe that the open-access character of this discussion will also represent an important addition to the
paper itself. We provide detailed answers to their concerns below and we will revise our paper accordingly.

Reply to Referee #1

We thank Referee #1 for his constructive comments that helped us to significantly improve the quality of
our paper and clarify some points of the model that might have been unclear.

We provide below detailed answers to the various issues raised by the reviewer and we will revise our paper
in order to account for his/her remarks.

Comment M1). Line 27: I don’t think you mean to say that cracks form below an overload, but that the
additional overload in association with a crack may lead to failure

Answer to comment M1). In fact, we mean it as we write it. At the depth of the weak layer, if the additional
stress due to an overload exceeds the weak layer strength, the weak layer fails locally but it does not mean
that an avalanche would release. The size of this local failed zone - what we call crack - needs also to exceed
the critical crack length. Our point here was to explain where cracks come from in the snowpack. Snow is
inherently full of pre-existing flaws and cracks at the microscale but “macroscopic” cracks like those artificially
made with a snow saw in the PST, in our opinion, should form in super weak zones of the snowpack or below
local overloads.

Comment M2). Line 63 The specific fracture energy would have to be between the slab and the rigid weak
layer, since the rigid material cannot support elastic potential energy. I think that this term is an ill defined in
the original paper

Answer to comment M2). The specific fracture energy in the anticrack model is indeed for the interface
between the slab and the weak layer, assumed rigid for the purpose of deriving the mechanical energy of the
slab. We agree it was not clearly mentioned in the original paper of |[Heierli et al.| (2008) but was precisely
described in the thesis of Dr. Heierli. It is generally referred to as the “weak layer specific fracture energy” for
simplicity reasons but sometimes lead to confusions. This property characterizes the energetic cost of creating
new fracture surfaces. It should not be confused with the potential strain energy, which is related to the behavior
of the material, and is directly proportional to fracture toughness for an elastic material.

Comment M3). Line 51 suggest ...which allowed to solve the problem... to ...which allowed solution to the
problem...

Answer to comment M3). This will be changed as suggested.

Comment M4). Line 80 suggest ...anticrack model, these strength of material...
Answer to comment M4). This will be changed as suggested.

Comment MS). The strength of materials approach certainly can account for bending. I suggest that you
make the change to emphasize that the methods implemented for snow that you reference do not have bending.

Answer to comment MS5). We agree. This will be changed as suggested.

Comment M6). Line 98 Does soft contact imply that the contacts (bonds) are elastic. Are the grains taken to
be rigid in your simulations?



Answer to comment M6). Both grains and bonds are elastic and the bonds have a brittle failure criterion (in
shear and tension). We use as contact law the parallel bond model of PFC2D (elastic-brittle). This contact law
is fully described in our recent paper Gaume et al.| (2015). We believe it is enough here to refer to our paper
but we will modify the last sentence of the paragraph as follow: “The numerical setup and the cohesive contact
law implemented is fully described in|Gaume et al.|(2015]).”.

Comment M7). Figure 2 You should present labels for ac, \ and lo in caption.
Answer to comment M7). This will be done.

Comment M8). Caption Fig 2 7y = pgD sin(v) This would be the shear stress at the interface of slab and
WL. Thickness of WL is not included. Does this then imply that the stress concentration is at the interface
between the slab and WL or is shear stress in WL assumed uniform throughout the thickness?

Answer to comment M8). Weak layers are usually significantly thinner than the slab so D >> D,;. In
addition, the density of the weak layer, in particular with the very porous triangular structure used, is low
compared to slab density so the contribution of the weak layer to the overall load is negligible. We thus assume
that 7, = pgDsin(1)) inside the weak layer, regardless of the vertical position. This assumption is usually
made in the avalanche community. We did not mention this point but we will thus clarify it by adding the
following sentence in section 3 - DEM Simulations. “We assume the shear stress inside the WL to be due to
the slab weight only 7, = pgD sin vy (WL weight neglected).”

Comment M9). Caption Fig 2 How is the residual stress explicitly defined? Is this residual stress used
anywhere in this development?

Answer to comment M9). The residual stress 7,- between the slab and the remaining part of the weak layer
is defined as follows: 7,, = o, tan ¢ = pgD cos tan ¢ where ¢ is the friction angle. However, this residual
stress is not used in the current development because crack propagation occurs always before reaching the
length [y i.e. before the slab touches the broken weak layer. If it was not the case, one should correct 7,4,
which would then be equal to:

_ lo 1 Ih? a—1
Tmazx = Tg (1 + A> + io-n (A) Tr (1 + A ) .

In this case, the critical crack length would have a different expression.

Comment M10). Line 113 How does this compare with Scapozza, equation 5?

Answer to comment M10). The statement line 113 is not related to Scapozza at all. We describe how we
back-calculate the contact (micro) elastic properties from the macroscopic (bulk) elastic modulus E. This
procedure is fully described in |(Gaume et al.| (2015)) and was shortly recalled here. We introduce Scapozza’s
relationship between density and the elastic modulus in a section called “Comparison with PST experiments”
and so we only use it for the comparison with field data or in the implementation of Eq. 9 into SNOWPACK.

Comment M11). Both the slab and WL are taken to be isotropic. The triangular structure may, perhaps in a
future iteration, allow for anisotropy for forms such as surface hoar and depth hoar.

Answer to comment M11). In fact, the slab is isotropic due to the regular granular lattice used to model
it. On the other hand, the triangular structure of the weak layer very likely leads to a non-isotropic behavior.
However, in our case, speaking of anisotropy of the weak layer does not have much sense, since this layer is too
thin to define a homogenized tensorial constitutive behavior. This is why we only investigate its response in a
simple shear mode as it is usually done. Note also that the failure behavior of the weak layer strongly depends
on the loading angle (Fig. 3), similar to what is observed in laboratory experiments (Reiweger et al., 2015).

Comment M12). Figure 3 Perhaps call normal stress the ”slope normal stress”. The normal stress value, as
well as shear, is a function of the coordinate system chosen.

Answer to comment M12). Thanks for the suggestions. This will be changed throughout the whole manuscript.



Comment M13). Caption You should state that compression is taken as positive.
Answer to comment M13). This will be stated.

Comment M14). Caption v is labeled in the text as the slope angle. Should this be a critical slope angle?
Should this be 1y instead?

Answer to comment M14). Thanks for pointing that out. ¢/ is indeed the slope angle (or loading angle). v is
the angle for which we have a transition between the Mohr-Coulomb and Cap behavior (Reiweger et al., 2015).
However it is written in the caption that tan ¢ = 7, /0, which would indeed characterize a critical slope angle.
This will be changed to tan ) = 7,/0p,.

Comment M15). Line 115 I'm not clear why you can state that these are satisfactory based on fig 37 While
the initial slopes of increasing normal stress are similar, the actual values are quite dissimilar. Normal stresses
are actually of opposite sign for the initial slope on the figure?

Answer to comment M15). We do not claim any quantitative satisfactory reproduction here. We just say that
the main features of real failure envelopes are modeled with our simplified weak layer, i.e. that we can have,
tensile, shear, compression and mixed-mode failures in contrast to previous work which generally assumed
only pure shear. This sentence will be reworded as follow: “the main features of real WL failure envelopes
(Reiweger et al.|, [2015)) are modeled with possible failures both in shear and compression (closed envelope)”.

Comment M16). Line 125 “specific fracture energy” is used only in the anticrack model. Correct? “the
penetration resistance using the snow micropenetrometer (SMP) in the weak layer according to Reuter et al.”
This would not be possible if the layer was actually rigid, as is assumed for the anticrack model. Resistance
would be infinite.

Answer to comment M16). In our paper, we use the specific fracture energy only to compute the critical
crack length from the anticrack model to compare to the result of our new formulation (Fig. 6). It was recently
shown (Reuter et al.,|2015) that integrating the penetration resistance over the weak layer thickness was leading
to a good proxi of the specific fracture energy, although the physical assumptions are indeed not compatible.
This will be clarified.

Comment M17). Egq 1 1), is not defined.

Answer to comment M17). ), is defined below eq. (4). It is the angle for which we have a transition between
the Mohr-Coulomb and Cap behavior (Reiweger et al.,|2015). We will try to define it earlier in the text.

Comment M18). Line 140 So is K = 1 kPa ? From figure
Answer to comment M18). Yes, this is correct, it will be added in the main text.

Comment M19). Eq 5 Is this for the slab only? Or both slab and WL?

Answer to comment M19). Scapozza’s relationship between elastic modulus and density is used to describe
the slab. This relationship has been derived for snow that is typically found in slab layers. The WL density is
not involved in the model. This will be clarified by modifying the sentence line 145 as follows: “The Young’s
modulus of the slab was derived from density according to Scapozza (2004)”.

Comment M20). Line 148 Is this Poisson’s ratio for the slab and the weak layer? Is this used for calculation
of the elastic mismatch? Is the elastic mismatch used in your development or merely mentioned as an aside?
Answer to comment M20). The Poisson’s ratio v is for the slab. This will be clarified as well. The Poisson’s
ratio is used for the calculation of the elastic mismatch, in detail A = (E'DD,,;/ Gwl)l/ >with B = E/(1—1?),
as written line 171.

Comment M21). Line 151 I presume that you mean to relate the tension in the slab to imply the slope
parallel normal stress due to gravity. Slab bending may also cause a slope parallel tension component as well
compression and shear in this same coordinate orientation



Answer to comment M21). We agree, the slope parallel normal stress (tensile stress) in the slab is a combi-
nation of a pure tension term and a pure bending term (0., = pgasin) + 3pg cos 1pa?/ D according to beam
theory). We would like to keep this terminology since it relates to the formulation of 7,4, as the sum of a
tension and bending term but we will change the sentence as follows: “...induces tension and bending in the
slab...”. We also agree that slab bending induces shear stresses in the slab which could in turn induce normal
stress variations in the WL. Nevertheless the good agreement between our model (Eq. 9) and DEM results
shows that these effects are of second order. A very detailed analysis of the stresses within the slab and the
WL before the onset of crack propagation is currently undertaken in our group using the finite element method
but is beyond the scope of the present study. To account for the reviewer’s concern, we will add the following
paragraph in the Discussion section: “Note that slab bending also induces shear stresses within the slab lead-
ing to possible normal stress variations in the WL. However, the good agreement between our model (Eq. 9)
and DEM results (Fig. 4) suggests that these effects are of second order, and constitutes a validation of the
assumption that the maximum shear stress at the crack tip has two main contributions related to slab tension
and bending (Eq. 6).”

Comment M22). Line 152 Is the crack tip calculated to be the thickness of the weak layer or at the bonds
between the slab and WL? If it is at the interface, as appears to be implied at some points in the presentation,
it would seem that this may differ from the max within the WL.

Answer to comment M22). As stated before, due to the low density of the weak layer and its thin character,
we assume the stresses in the weak layer to be homogeneous and due to the slab load as it is usually done. We
hope that the changes made with regards to comment M8 will clarify this issue.

Comment M23). Figure 4 Young’s Modulus, E, is a function of density, p in equation 5. Figure 4a has the
critical crack varying with E with a fixed density of 300 kg m3. Similarly, figure 4b has a fixed E with crack
length varying with density. Something seems wrong here? Is this somehow related to the calculation of E
described in line 112?

Answer to comment M23). Concerning this point, perhaps we were not clear enough about the use of
Scapozza’s relationship. This point also relates to comment M10. Scapozza’s relation was introduced in the
section called “Comparison with PST experimeents”. For the DEM simulations, Scapozza’s relation was not
used. We made a systematic parametric study of the effect of each model property, with constant values of the
other parameters in order to infer an analytical expression (this is stated lines 156-158 “...properties were varied
independently in the simulations™). Then, once the analytical expression was found, we applied it to field data
for which we did not measure directly the elastic modulus of the slab which was thus estimated using a rela-
tion based on Scapozza’s laboratory experiments. To clarify this issue we will change the following sentence
line 144: “The Young’s modulus of the slab, which was not measured, was derived from density according to
Scapozza (2004)”. As mentionned above, this is not related to the statement in line 112 which explains how the
grain properties are related to the macroscopic properties in the DEM model (Gaume et al., [2015).

Comment M24). Line 163 Is this statement implying that you are considering only the influence of shear
stress on the stress concentration? Relating to failure envelope? Again, is this assumed to be at the interface
between the layers or within the WL itself?

Answer to comment M24). We decided to present our model with shear stresses in order to relate our work
to previous studies. However our model has a full mixed-mode shear-compression propagation criterion and
could have been presented in compression as well. In a pure shear model (Eq. 7), the maximum stress is a
function of the shear stress only. Our model has a compressive term o,, due to the addition of the bending term
(Eq. 8) and because of the mixed-mode failure envelope allowing for compressive failure. It would be possible
to propose a fully equivalent expression of Eq. (9) with a maximum compressive stress oy,q, but it would be
harder to interpret it with regards to previous studies. The failure occurs inside the WL, not at the interface
between the slab and the WL (but often in WL bonds near the interface).



Comment M25). Equation 7 You are examining the case in which “WL has no thickness”. But at this point
A (line 171) goes to zero so a/A goes to infinity. The max shear in the WL then goes to infinity in equation 7?
There is a singularity at the crack tip. This is also apparent in the bending component in equation 8. Even for
any very thin layer of finite thickness this will be huge. This needs to be discussed and explained.

Answer to comment M25). This is an important observation. We intended not to go into the details of the
limiting case of zero thickness for the sake of simplicity but we will clarify this issue in the revised version.
As mentioned above, Figure 4 is the result of a parametric analysis in which only one parameter was varied for
each plot. However, for Figure 4d, when the WL thickness tends to zero, the weak layer shear modulus G,
becomes undefined since it is a volumetric quantity. Interfacial WLs are not characterized by the shear modulus
G but by the shear stiffness ky; = Gqi/ Dy Hence the characteristic length becomes A = (E'D/ kwl)l/ 2
and is thus defined even for D,,; = 0. In Figure 4d, we did 3 simulations for different WL thicknesses and
we kept the same shear modulus which explains the modeled trend, but in practice, having a critical crack
length equal to zero and a fixed G,,,; would imply an infinite stiffness. We will add the following paragraph line
172 to explain this: “Note that in the limit case of a WL without thickness D,,; = 0, the WL shear modulus
G, becomes undefined since it is a volumetric quantity. Interfacial WLs are not characterized by the shear
modulus G,,; but by the shear stiffness k,; = G/ Dy (Chiaia et al} 2008} [Gaume et al.| 2013). Hence, the
characteristic length A = (E'D /kyy)"/? is still defined for D, — 0.”

Comment M26). Line 177 suggest slope normal stress.
Answer to comment M26). This will be changed as suggested.

Comment M27). Line 180 If you assume a rigid weak layer, the elastic properties of the weak layer are ir-
relevant. It is also not clear why the rigid layer is assumed if the shear stress is independent of these properties.
Answer to comment M27). We regret that this statement was confusing. We did not assume a rigid weak
layer. The elastic character of the WL is one (together with the mixed-mode failure criterion) of the major
improvements of our model compared to the anticrack model. Here we wanted to say that, in contrast to our
model, if beam theory was used with a fixed boundary condition to represent the weak layer, the bending term
would scale with D instead of A similar to the anticrack model since it assumes a rigid weak layer. This
sentence will be reworded accordingly to avoid any confusion: “If, in contrast to our model, beam theory
(Timoshenko and Goodier, [1970) was used with a fixed boundary condition to represent the WL to compute
the bending term 70, it would scale with o,,(a/D)?, similar to the anticrack model since it assumes a rigid
weak layer.”

Comment M28). Line 180 I think you need to more explicitly describe the beam boundary conditions as-
sumed. according to beam theory is rather vague. I am also not seeing where this reference (Timoshenko and
Goodier, 1970), is dealing with cracks, except for a brief mention relative to Griffith fracture. Can you be more
specific?

Answer to comment M28). The boundary conditions will now be described (see previous point). In addition,
we will add to the paper (see above), that beam theory is used only to compute the bending term in the case of
a beam bending over a fixed substratum and compare it to our formulation based on DEM. This is not a crucial
point but allows to emphasize the importance of considering the elastic mismatch.

Comment M29). Line 182 suggest replace allows with provides a means
Answer to comment M29). This will be changed as suggested.

Comment M30). Line 182 Is it using Dundur’s elastic mismatch parameters in the numerical solution? Does
this imply that you are calculating the crack to be at the interface between layers? How does scaling with A
instead of D come into play?



Answer to comment M30). Our characteristic length A is not the same as the Dundurs’ elastic mismatch
parameters. You can find in [Chiaia et al.| (2008)) and (Gaume et al.| (2013)) the full derivation of A. However,
it is likely that it is possible to relate A to the Dundurs’ parameters and the ratio D/ D, since A can also be

expressed as
DA /E' |Gy .
/D /Dy,

Hence, the crack tip is not supposed to be at the slab - WL interface, but within the WL.

Concerning the second part of the comment, the scaling with A instead of D is extremely important. Figure 5
highlights this crucial part of our paper. Any scaling with D could not explain the DEM results since it would
not account for the elastic mismatch between the slab and the weak layer. The clarifications that will be made
to the paper (comment M27) will also make this point clearer.

Comment M31). Line 191 I presume that the residual stress, 1, is not used as the result of this condition. And
this paper is not concerned with the sliding following failure of the week layer.

Answer to comment M31). That is perfectly correct. If this condition was not fulfilled, one would need to
correct T,,q. by removing a term related to this frictional stress (see comment M9).

Comment M32). Line 211 This is an important result, since in the avalanche community the concept of slope
independence has been quite widely accepted of late.

Answer to comment M32). Thanks for this remark, we agree that this is important but may be seen as
controversial according to Reviewer #2. We provide a detailed answer on this issue with explanations of the
discrepancies between our model and trends observed in field experiments in the replies to Reviewer #2.

Comment M33). Line 215 Here again I think that it should be clearly stated that you are referring to the
stress due to the gravity along the slope and independently, the stress state as the result of bending.

Answer to comment M33). See comment 21. The sentence line 215 will be changed to “...the interplay
between tension and bending in the slab.”.

Comment M34). Line 215 Parts of this development seem to imply that the failure would be at the bonds
between the slab and the weak layer. I think that what is being calculated should be clearly stated. As an aside,
in the physical situation for depth hoar the failure may well be at the lower interface or at the upper and lower.
The crystals themselves often appear to remain intact.

Answer to comment M34). Please refer to answers on comments M8, M22 and M24. In addition, if the
failure would be at the interface only, the WL thickness would play no role (see also comment M25) similar to
the anticrack model, which is not the case here.

Comment M35). Line 221 suggest changing accounts for slab bending only to accounts for stresses due to
slab bending only

Answer to comment M35). This will be done as suggested.

Comment M36). Line 223 Should clearly state that you are referring to the shear stress at the crack tip
induced by the slope parallel loading of the slab. This results in the shear stress at the interface between the
slab and WL.

Answer to comment M36). This sentence will be changed as follows: “For steep slopes (¢ > 30°), where
the shear stress at the crack tip due to slab bending becomes negligible compared to that due to slab tension,...”.

Comment M37). Line 224 ac t goes toward zero as WL thickness goes to zero. Following discussion above.
Answer to comment M37). Please refer to answer on comment M25.

Comment M38). Figure 6 caption suggest changing represents to represent
Line 227 suggest changing decreases to decrease.



Answer to comment M38). Thanks, this will be changed.

Comment M39). Line 252 1 think that you should state that you are using a mechanics of materials or
perhaps an elasticity approach, if that is appropriate.

Answer to comment M39). The sentence line ”252 will be modified as follows."...from which analytical
expressions can be inferred using a strength-of-material approach.”

Comment M40). Line 254 Suggest changing allows to reconcile shear and collapse to reconciles the shear
and collapse

Answer to comment M40). The will modified as suggested.

Comment M41). Line 321 suggest changing that skier triggered avalanches are more likely on steep rather
than on flat slopes to that avalanche initiation is more likely on steep rather than on flat slopes

Answer to comment M41). As we generally use the term initiation in the sequence of processes preceding
avalanche release (failure initiation and then crack propagation), we will modify this sentence as follows:
“..triggering an initial failure leading to slab avalanche release is more likely on steep rather than on flat
slopes™.



Reply to Referee #2

We thank Referee #2 for his constructive comments that helped us to significantly improve the quality of
our paper, in particular, by providing a more detailed discussion about the effect of slope angle and comparison
with field experiments.

We provide below detailed answers to the various issues raised by the reviewer and we will revise our paper
in order to account for his remarks.

Main comments

Comment M1).

I am not a DEM expert, but the model set up and results appear sound to me. The analytical work is also
sound. My main criticism is that the analytical model does not explain previous fieldwork with PSTs [Gauthier
and Jamieson, 2008; McClung,2009; Bair et al., 2012] showing that snowpacks with identical slab thickness
(slope normal) and densities showed the same or increasing critical cut lengths as slope angle increased.
Rather than addressing this discrepancy directly, the authors dismiss previous fieldwork with PSTs by stating
that the snowpack properties could not have remained the same throughout the range of slope angles tested,
thereby calling into question the accuracy of the reported values in each of these studies. As the author of
one of these previous field studies, 1 find this particularly irksome given the trouble that I went to in ensuring
uniform conditions throughout the slope angles tested. Further, the authors do not present any field evidence
to support their modeled slope angle dependence, i.e. PSTs showing decreasing critical length with increasing
slope angle given constant slab thickness and density. Finding constant slab thickness and density over a range
of slope angles in the field is not that difficult, which explains why multiple studies have been able to do it.

Answer to comment M1).
We agree that we did not discuss in detail the discrepancy between the model prediction and the results of
previous field work. We will do so in the revised manuscript.

Whereas we do not question that the authors of the mentioned field work tried to perform their experiments
as good as possible under uniform conditions, we are not aware that the WL mechanical properties (shear
strength or specific fracture energy) as well as slab properties were quantified in detail to actually confirm
uniform conditions in space and time. In fact, the slab thickness (slope normal) decreases with slope angle in
Bair et al.[|(2012)) in contrast to what is stated by the reviewer (cf section 3.2 of their paper). Furthermore, the
weak layer properties (which were not measured in these studies) might be significantly different with respect
to slope angle due to different settlement/creep processes between a flat, undisturbed snowpack and a sloping
one and due to the inherent spatial variability of the snowpack (Schweizer et al., [2008]).

In addition, in the study of |Gauthier and Jamieson| (2008)), according the PhD thesis of Dave Gauthier (page
104, \Gauthier, 2007) the measurements made at 0 degrees were performed one day before the measurements
that were made on slopes which would lead to important differences in WL strength due to settlement and
sintering processes since the WL consisted of precipitation particles and which would in turn strongly influence
the critical crack length (Brown et al., 2001; Szabo and Schneebeli, 2007 |Podolskiy et al., 2014). Just as an
example, in |Bair et al.|(2012), although the slab remained the same between the 19 and 20 March 2011, the
weak layer hand hardness index changed from 0.8 to 1. In fact, in both |Gauthier and Jamieson| (2008)); |Bair
et al. (2012), the WLs are composed of precipitation particles, not typical persistent WLs.

Before going into the explanation of the discrepancies between our results and the outcomes of the field
studies of |Gauthier and Jamieson| (2008); Bair et al.[(2012)), we would like to point out that previous compar-
isons of the anticrack model with field experiments include some ambiguities due to the type of presentation
(log-scale, marker size). For example, let’s consider Fig. 3 in Bair et al.[|(2012) more closely, since more data
are available at different slope angles and because the data were gathered the same day (19 March 2011). We
digitized their data and plotted them on Fig. 1 of the document. First of all, it seems that there is a good overall



critical crack length a, (m)

agreement with the anticrack model. We want to highlight the fact that, in their study, the WL specific fracture
energy and the elastic modulus of the slab were derived (and not measured) from a fit of the anticrack model
to the data (this method was developed by the second author of our paper: [van Herwijnen and Heierli (2010);
van Herwijnen et al.| (2016)). Hence, in the end, it is normal that a relatively (log-scale, large markers) good
agreement is observed since the only parameter characterizing the WL and the slab elastic modulus were fitted
to the data. If we plot, with the same axis and log scale as in |Bair et al.| (2012)), our model (with the same
input properties as in [Bair et al.| (2012)) and a cohesion of 500 Pa estimated from hand hardness and grain type
according to (Geldsetzer and Jamieson| (2001)); Jamieson and Johnston| (2001)) next to their data (Fig. 1a), we
would not be able to say which of the models is the best. In fact, even a pure shear model (Eq. 7 of our paper)
with the same cohesion (500 Pa) would lead to a reasonable agreement. This is not really the way we wanted
to validate our model. In contrast, in our paper, when we compare our model to the data (Fig. 6) none of the
mechanical properties are fitted, and still, we find a better agreement than the anticrack model so we do not
agree that our model does not explain field data, on the contrary.

In addition, in Fig 1a, our model (Eq. 9) shows a gentler decrease of the critical crack length with increasing
slope angle compared to Fig. 4 of the paper. In fact, in this example, the critical crack length becomes almost
constant for ¢ > 25 degrees with our model. There are two reasons for this behavior:

e The slab density in [Bair et al. (2012) is extremely low (84 kg/m?, storm snow) leading to a very low
elastic modulus. Fig. 2 below shows that the slab elastic modulus has a strong effect on the decrease of
the critical crack length with slope angle, the lower the modulus, the lower the decrease.

o In the data of Bair et al.|(2012), the slab depth H is constant as usually observed (gravity-driven snow-
falls). Hence, the slab thickness D decreases with increasing slope angle according to D = H cos .
Since a lower slab thickness leads to a higher critical crack length, this explains the gentler decrease.
Note that this variation in slab thickness with slope angle was correctly accounted for by [Bair et al.
(2012) in the comparison with the anticrack model but was seemingly disregarded in|Heierli et al.|(2008)
who assumes a constant (and extremely low) slab thickness D = 0.11 m.
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Figure 1: (a) Critical crack length vs slope angle: comparison between the data of |Bair et al.| (2012)) (black
circles) and our new model (Eq. 9, red line), the anticrack model (purple dashed-line) and a pure shear model
(Eq. 7, green dotted line) for a constant slab depth H = 0.35 m (D = H cos ) and same input properties as in
Bair et al.|(2012) with a semi-log scale. The cohesion ¢ = 500 Pa was estimated for the hand hardness provided
in Bair et al.|(2012)) using |Geldsetzer and Jamieson| (2001)); Jamieson and Johnston! (2001)). Inset: linear scale.
(b) Effect of geometry on the slope angle dependency. SNF: Slope normal faces. VF: Vertical faces.

In this example, we managed to recover the trend in the field only by accounting for variations in slab
thickness. We would probably get an even better agreement if we knew the variations in WL shear strength.
This is exactly as we wrote in our paper “Hence we argue that the dependence of the critical crack length with
slope angle obtained with a model with constant values of the other parameters should not be compared to



trend observed in the experiments which is the result of a combination of many varying properties”. Similarly,
if we account for the vertical character of the PSTs in Gauthier and Jamieson (2008)) by adding D /2 tan )
to the critical length (Heierli et al., [2008)), we would actually obtain a slightly increasing trend which nicely
reproduces their data (Fig. 1b). However, as stated in the paper, we prefer to show the true trend with slope
angle and make a meaningful point by point comparison with field data as it is done in our paper. Nevertheless,
a new paragraph (provided in the appendix) and three new graphs (Fig. 1 and 2 of this document) will be added
to our paper to answer the reviewer’s concern.
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Figure 2: Effect of the slab elastic modulus on the slope angle dependency of the critical crack length for
p = 200 kg/m3, D = 0.2 m, D,,; = 4 cm. Inset: Effect of the slab depth on the slope angle dependency of the
critical crack length for p = 200 kg/m3, E = 2 MPa, D,; = 4 cm.

Comment M2). Note that the same behavior has been shown in Extended Column Tests [Heierli et al., 2011;
Bair et al., 2012] and Compression Tests [Birkeland et al., 2014], all with the same slab thickness and density.
I realize those tests were not modelled here, but the fact that the three main stability tests all show the same
trend cannot be ignored.

Answer to comment M2). We do not ignore these results. First, the ECT is made with vertical faces such
as the PSTs measurements from |Gauthier and Jamieson| (2008)); [Heierli et al.| (2008). Our model and data have
slope-normal faces. In line with the vertical to slope-normal correction proposed by Heierli et al.| (2008)), if the
ECT score remains constant with increasing slope angle it means that you would get a decreasing trend with
slope normal faces. This is again in line with our model results. Second, when the effect of slope angle on the
ECT score is studied, the slab depth is generally constant, we recall that in our model, the slab thickness (slope
normal) is constant. If one accounts for both vertical faces and the decrease of slab depth with increasing slope
angle in our model, this would lead to a slightly increasing trend with increasing slope angle as shown in Fig.
1b (blue dashed-dotted line). Finally it is important to note that the loading conditions (vertical taps) in the
CT/ECT lead to non-uniform loading conditions with respect to slope angle.

Comment M3). Perhaps the authors need to re-read these studies more carefully. For instance, they state
that Heierli et al. [2008] only used three PSTs to validate the anticrack model. In fact, it was 44 PSTs over
three different slope angles [Gauthier and Jamieson, 2008] used, with the means taken for each of the three
slope angles.

Answer to comment M3). In fact, we read this paper in the greatest detail, even the supplementary material,
which allowed us to note that Heierli et al.| (2008)) did not account for the vertical character of the PST faces
in the data comparison. We can find no evidence that [Heierli et al.| (2008)) used the 44 PSTs of |Gauthier and
Jamieson| (2008). Looking at the data of |(Gauthier and Jamieson| (2008) (Table on Fig. 3) and that of Heierli
et al.| (2008) (Table in Fig. 4), one realizes that the data are partly different: the average slab thickness at



zero degree (i.e. D = H cos0 = H) is 0.14 m in (Gauthier and Jamieson| (2008) and 0.11 m in Heierli et al.
(2008)); the median critical crack length for 0 degree is 0.24 m in |Gauthier and Jamieson| (2008) and 0.13 m
in |[Hezerli et al.| (2008)) (it is not a matter of correction since tan 0 = 0); the median critical crack length for
38 degrees is 0.13 m in |Gauthier and Jamieson| (2008)) and 0.22 m in Heierli et al.|(2008). So it is actually not
very clear which subset of the data was used. In addition, Heierli et al.| (2008]) assume a constant slab thickness
D although the depth H should be constant, as correctly assumed in the paper of Bair et al.|(2012). Finally,
(Gauthier, 2007, p. 104) performed the 23 measurements made at zero degree one day before the 21 tests made
on slopes (17 at 28-30 degrees and 4 at 38 degrees) in contrast to what is shown in (Gauthier and Jamieson
(2008) and [Heierli et al.| (2008)). This indicates that the trend with slope angle may be flawed since sintering
and settlement effects can strongly affect snowpack properties within one day, especially with the layer of
precipitation particles which was tested. Again, we do not question the comprehensive and very important field
work of (Gauthier and Jamieson| (2008]), only the use of their data in|Heierli et al.| (2008)).

However, the above mentioned discrepancies are not really essential, but we simply pointed them out in
response to the reviewer’s criticism. We will not go into these details in the revised manuscript as we prefer to
focus on our new model rather than on the ambiguities in previous work, but we hope that the new paragraph
on slope angle dependency (see Appendix) will provide the clarification needed.

Table 1
Summary of experiment days, including selected results snowpack properties
Date n Cut dir. Type v (%) Cut (m) Slab Weak layer
H (m) p (kg m) Form E (mm)

24-JAN-06 23 ~ CrL 0

17 upP CcrL 29-30

4 upP CcrL 38 0.13 0.14 134 2a 2-4
24-Jan-06 23 ~ CrL 0 0.24 0.14 134 2a 2-4

17 uprP crL 29-30

4 upP CrL 38

Figure 3: Table taken from Gauthier and Jamieson|(2008)) (top) and a preprint of Gauthier and Jamieson| (2008))
(bottom) showing some snowpack properties on 24 January 2006, when the slope angle dependence was stud-
ied. Note that H corresponds to slab depth (measured vertically).

p E h 0 TI. Wi Cut
(kgm™) (MPa) (cm)  (deg) (cm) (1m?) direction
Gauthier et al. (9) 134 15 +0.8 11 0 13 0.03 Up
30 19 Up
38 22 Up

Figure 4: Table taken from Heierli et al.| (2008)) showing the data used for their model validation. Note that h
represents the slab thickness (slope normal)

Comment M4). Likewise, one of the major criticisms of the anticrack model has been that it assumes a linear
elastic slab. This model is supposed to be an improvement in accuracy, but the authors make the same linear
elastic assumption without discussing pitfalls. This may explain some of the scatter in Figure 6 for both models.

Answer to comment M4). Our model is an improvement of the anticrack model in many ways: (i) slope-
dependent failure criterion of the weak layer (as observed and measured in laboratory experiments, Reiweger
et al. (2015); Chandel et al.| (2015))), (ii) elasticity of the weak layer treated as a real material with finite thick-
ness, (iii) accurate modeling of the interplay between slab bending and tension based on DEM simulations.
Our DEM model allows for failure of the bonds in the slab leading to an elastic-brittle behavior. We recently
showed (Gaume et al., [2015]) that the propagation distance (distance between the lower edge and slab fracture)
was almost always higher than the critical crack length except for combinations of very low slab densities and



thicknesses. This behavior is also observed in field experiments. Accordingly, the linear elastic assumption for
the slab makes sense. This assumption was also confirmed by recent field studies (van Herwijnen and Heierli,
2010; [van Herwijnen et al.} 2016) showing that the slab displacement measured using particle tracking can be
described by beam theory with a linear elastic assumption. In addition, we believe that a slab thickness of 0.11
m (Heierli et al., 2008) is extremely low and thus rather the exception than the rule for which size effects might
be very important. Concerning the scattering in Figure 6 it is very likely due to the uniform character of the
slab which is assumed in our model as shown by Reuter et al.| (2015) (Fig. 8 of their paper) who managed to
significantly reduce the scattering by accounting for the layers in the slab. This is stated lines 265-272 of our
paper. To account for the reviewer’s concern about the linear elastic assumption, we will add the following
sentences to our revised paper in section 4. Discussion - Relevance and limitation:

“In a recent study, [Gaume et al] (2013)) showed that the DEM model can reproduce the dynamic phase of
crack propagation as well as fracture arrest in the slab which was treated as an elastic-brittle material. In par-
ticular, the crack propagation speed and distances obtained by PTV analysis of the PST were well reproduced.
It was also shown that the propagation distance (distance between the lower edge and slab fracture) was almost
always higher than the critical crack length except for combinations of very low slab densities and thicknesses.
This behavior is also observed in field experiments. Accordingly, treating the slab as a linear elastic material
before the onset of crack propagation is justified. This assumption was also confirmed by recent field studies
(van Herwijnen and Heierli} [2010; [van Herwijnen et al.| [2016) showing that the slab displacement as obtained
particle tracking can be described by beam theory with a linear elastic assumption. Hence, with the present
study, we show that our model is able to address the whole crack propagation process.”.

Comment M5). Further, the evaluation of the anticrack model is flawed since a constant (0.1 J m-2) specific
fracture energy is used. Field data show this value varies by more than an order of magnitude [Schweizer et
al., 2011]. A constant specific fracture energy in the anticrack model is akin to setting a constant value for the
weak layer shear strength in the authors model.

Answer to comment M5). We do not agree on this point. The anticrack model inherently considers that the
failure of the WL is slope independent which is why the weak layer fracture energy was not modified with
respect to slope angle exactly in the way it was proposed in[Heierli et al|(2008). This is the very nature of the
anticrack model. A constant specific fracture energy is akin to a unique failure envelope of the weak layer in
our model which is what was set (constant cohesion, tensile and compressive strength). The slope-dependent
failure criterion is an improvement of our model. One could of course try to improve the anticrack model by
assuming a slope-dependent failure behavior of the WL but this is not the point here. However, we did not
assume a constant specific fracture energy of the WL when we compared field data to the anticrack model. The
WL specific fracture energy was evaluated from the SMP resistance (Reuter et al., 2015) and ranges from 0.07
to 2.9 J/m? and effectively span two orders of magnitude.

Comment M6). The manuscript requires extensive editing to correct grammatical errors. I suggest an En-
glish language service. For instance, there were too many errors of tense for me to correct. I gave up. Likewise,
symbols are used in graphs and equations without being defined until later in the text.

Answer to comment M6). Thanks for these corrections. We will improve the language and correct remaining
grammatical errors.

Comment M7). [ suggest deleting the Application to simulated snow stratigraphy section, as it is not con-
vincing with only one measured and modelled profile for comparison. Other minor corrections are included as
an annotated PDF

Answer to comment M7). The SNOWPACK implementation highlights that our new formulation is directly
applicable in physics based snowpack models and produces useful results. This shows the relevance and ap-
plicability of our work. Of course, the example we provide should by no means be seen as a validation, but
rather as an illustration of the potential of our new model and future prospect. After thorough validation, the
implementation of our new model into SNOWPACK will very likely lead to the improvement of avalanche
forecasting by accounting for crack propagation and not only classical stability indices in the evaluation of the



avalanche danger, as suggested by (Reuter et al.,|2015). This application also stresses that our model is imple-
mented in SNOWPACK and available to everyone for download for research or for practical purposes. As a
consequence, we prefer to keep this section.

To account for the reviewer’s concern, we will change the conclusion sentence as follows:“While validation
is still required, this opens promising perspectives to improve instability evaluation by combining traditional
stability indices with a new metric to evaluate crack propagation propensity.”

Specific comments

Comment ml). line 5: better explain instead of allow for better explaining.

Answer to comment m1).

Comment m2).

Comment m3).

Comment m4).

Comment m5).

Line 14:
Answer to comment m2).

Line 16:
Answer to comment m3).

Line 18:
Answer to comment m4).

Line 18:
Answer to comment m5).

This change will be done.

change to opens a promising

This change will be done.

rank instead of range
This change will be done.

remove ubiquitous
This change will be done.

remove ubiquitous
This change will be done.

Line 32:

Answer to comment me6).
we will reconsider this.

Comment mé6). the critical crack length instead of critical crack length.

The Editor suggested to remove the “the” article as much as possible. However,

Comment m7). Line 40: more highly resolved spatially? Temporally? Geographically? All of the above?

Answer to comment m7). Spatially and temporally. This will be specified.

Comment m8). Line 64: That’s the definition of fracture toughness.

Answer to comment m8). We agree, however, the fracture toughness is related to the specific fracture energy
through the elastic modulus. We feel that saying that the specific fracture energy represents the resistance to
crack propagation is more illustrative than saying it is the energy dissipated during fracture, which would be

actually wrong for the anticrack model since no energy is dissipated as the weak layer is purely rigid.

Comment m9). Line 106: I assume modeling spherical elements at the size of snow grains themselves (e.g.
r=0.0001) would be too costly computationally? What’s the tradeoff?

Answer to comment m9). This would have been indeed more costly computationally but this is not really
the point. We could have grains with r=0.00001m but with the same macroscopic failure envelope whose shape
depends only on the WL structure. Hence, the tradeoff is to have grain radii smaller than the WL thickness to
be able to obtain the desired WL structure. This point was addressed in detail by Gaume et al.| (2015).

Comment m10). This caption needs refer to each of the elements (a-e) individually. Many of the symbols,
e.g. lg and Lambda, have not been defined in the text yet.

Answer to comment m10). This will be done as suggested.
Comment m11).
lar shape chosen?

Can you explain this further? It looks like upside down surface hoar. How was the triangu-



Answer to comment m11). The shape of the WL was chosen to mimic the porous and unstable nature of
weak layers consisting of depth hoar or surface hoar. This allows to obtain a realistic closed failure envelope
(including tensile, shear, compressive and mixed-mode failure). The angle of the crystal is very important
and characterizes the slope of the increasing and decreasing parts of the failure envelope as shown in |Gaume
et al.[|(2014). However, the crystals being close to each other, this structure is mechanically equivalent to the
same structure with upside down structures. Finally, note that our expression of critical crack length (Eq. 9) is
independent of the WL structure since one can input any failure criterion in 7.

Comment m12). Can you comment on the differences in modeled vs observed shear strength? Where does
the mismatch arise from?

Answer to comment m12). Our objective was not to obtain the exact same failure envelope as |[Reiweger
et al.[(2015)) but to obtain similar important features such as a mixed-mode shear compression failure, which is
important for failure initiation but also for crack propagation. Note that a WL made from ballistic deposition
would lead to a quantitatively similar failure envelope as in Reiweger et al.| (2015) as shown by |(Gaume et al.
(2014). Please refer to|Gaume et al.| (2014) for more details about the failure envelope.

Comment m13). Line 139 Lambda is not defined
Answer to comment m13). Right, A will be defined here.

Comment m14). line 145 Please put units here and elsewhere You need to discuss why the linear assumption
was made, given that snow, like most materials, is not purely elastic under high strain rates.

Answer to comment m14). We will add the units here since it is an empirical relationship. For the other
relationships, being analytical, there is no need to precise the unit. As discussed in the major comments above,
a new paragraph will be added to the Discussion section in which the linear elastic assumption will be justified.

Comment m15). line 147 What Eq. is this used in?

Answer to comment m15). G,,; and v are used to compute A. We agree it was not clear since A was only
defined in section 3. A will be defined earlier to clarify this issue.

Comment m16). Fig 4 This figure is shown to earlier. Eq 9 isn’t shown until near the end of the next page,
after Fig 5. Each plot in this figure needs to be labeled.

Answer to comment m16). We agree but there is more information in this figure than the results of Eq. 9. In
particular, the grey markers are the DEM simulations results which are presented at the beginning of Section
3. It is quite usual to describe the results in several steps: 1. numerical model results 2. analytical model. The
plots are already labeled from a to e.

Comment m17). Line 172 E’ is given in Eq. 4 but not defined until here.
Answer to comment m17). We agree and this will be modified (see m13 and m15)

Comment m18). Fig 5 varied how? No ranges are given.
Answer to comment m18). The parameters were varied according to the ranges shown in Fig. 4. The points
correspond to the same simulations shown in Figs. 4a 4b 4c and 4d (zero slope angle). This will be clarified.

Comment m19). line 191 remove “(not shown)”
Answer to comment m19). This will be done.

Comment m20). line 200 remove “As for the... (not shown)”

Answer to comment m20). We will remove “not shown” but we prefer to keep the first part. Indeed, we said
above that the critical crack length was always lower than [y in the simulations. Here we say the same thing but
for the experiments which is different and which strengthens this conclusion.



Comment m21). Where does this come from? Using a constant value for wf almost ensures that the anticrack
model will not perform as well.

Answer to comment m21). Please refer to the major comment M5. We used a constant WL specific fracture
energy only for the comparison to our DEM simulations for which we have one single failure envelope (constant
cohesion, tensile and compressive strength). Having a specific fracture energy independent of the slope angle
is in the inherent nature of the anticrack model. Furthermore, we are not aware of any studies on the effect
of slope angle on the weak layer specific fracture energy; it is not our objective here to improve the anticrack
model. As explained in Section 2 “Comparison with PST experiments”, the WL specific fracture energy was
estimated from SMP measurements and ranges from 0.07 to 2.9 J/m?.

Comment m22). Read Heierli et al. (2008) and its citations in Table 1 more carefully. The data used from
Gauthier et al (2008) comprised means from 44 PSTs @ 3 different slope angles.

Answer to comment m22). Please refer to comment M3.

Comment m23). This argument dismisses careful field work done with the PST, all of which shows that a.
is constant or increases with slope angle in PSTs (e.g. Gauthier and Jamieson, 2008; McClung, 2009; Bair
et al. 2012) even when slab thickness (slope normal) and density were carefully measured and held constant.
From your list, the only material property not measured in these tests was weak layer strength, which you claim
decreases with slope angle (Reiweger and Schweizer, 2010; 2013). Thus, r. should have decreased with slope
angle yet the opposite occurred in these careful field tests. I suggest you hypothesize on other reasons besides
D/E, rho, and WL strength for the discrepancy.

Answer to comment m23). Please refer to comment M1. Furthermore, we would like to point out that
there is a big difference between the effect of the slope (or loading) angle on the same snowpack configuation
(Reiweger and Schweizer, 2010; 2013; Reiweger, 2015) which we studied here and the effect of slope angle
in reality. The settlement/creep of snow in steep slopes will induce different sintering effects than on a flat
snowpack. So if you take different samples of the same snowpack and load them with different loading angles,
you would find a decreasing trend of the strength or critical crack length with slope angle. However, if you
take samples at different slope angles, even with the same slab properties, you might not have a decresing
trend because the weak layer went through different settlement/sintering processes. The intrinsic mechanical
behavior of a material needs to be distinguished from the physical process acting at the slope scale. This is
why we prefer to make a point-to-point comparison in which the properties measured at each snowpit are used
directly as input of our model. Finally we want to recall that the slab thickness is not constant in Bair et al.
(2012) but decreasing with increasing slope angle (constant slab depth, cf section 3.2 of Bair et al.| (2012))
contrary to what is stated by the reviewer.

Comment m24). line 279 remove might
Answer to comment m24). This will be done

Comment m25). This section is unconvincing, given only one measured/modeled profile. I suggest it be
deleted.

Answer to comment m25). Please see comment M7.



A Appendix — New paragraph to be included in the Discussion section:
Slope angle dependency

We showed that the critical crack length a. decreases with increasing slope angle 1) for a PST with slope-normal
faces, a constant slab thickness D and constant values of the other mechanical properties. Fig.|[A.T|shows that
the rate of decrease of a. with ¢ is strongly influenced by the elastic modulus F and thickness D of the slab.
Low values of E and/or D lead to a gentler decrease of a. with 1.
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Figure A.1: Effect of the slab elastic modulus on the slope angle dependency of the critical crack length (Eq.
9) for p = 200 kg/m?, D = 0.2 m, D,,; = 4 cm. Inset: Effect of the slab depth on the slope angle dependency
of the critical crack length for p = 200 kg/m?, E = 2 MPa, D,; = 4 cm.

However, in the field, slab thickness D (slope normal) is not constant with respect to slope angle but slab
depth H (vertical) generally is. Accordingly, the slab thickness decreases with increasing slope angle according
to D = H cos. Since a lower slab thickness leads to a higher critical crack length (Fig. 4c¢) this leads to a
reduction of the decrease of a. with . As an illustration, we compare on Fig. our model (Eq. 9) to the
data of Bair et al.|(2012) for which H is constant and the slab density and elastic modulus are very low (storm
snow, p = 84 kg/m>, E = 0.22 MPa). The low elastic modulus and the decrease of slab thickness with 1 thus
lead (Eq. 9) to a very gentle decrease of a. with ¥ which reproduces well the data. The anticrack model was
also plotted on Fig. and shows very comparable results. Yet, the values of the WL specific fracture energy
wy and slab elastic modulus E' in |Bair et al.|(2012) were estimated by a fit of the anticrack model to the data
using the method developed by van Herwijnen et al.[ (2010, 2016) which in turn, obviously leads to a good but
meaningless agreement. Note also that even a pure shear model (Eq. 7) with the same input properties as for
our model (Eq. 9) would lead to a reasonable agreement for steep slopes (¢ > 30°). In the studies of [Heierli
et al.| (2008)); Bair et al.| (2012), the significant difference obtained between the anticrack model and the pure
shear model (McClung, [1979; |Gaume et al., [2013)) is irrelevant because the same specific fracture energy was
taken as input of both models although the underlying physical assumption are strictly incompatible. Indeed,
the pure shear model considers a quasi-brittle behavior for the weak layer and the anticrack model considers a
purely rigid one. In fact, for ¢y > 30° and short critical crack lengths which are typically encountered in field
experiments, Gaume et al.|(2014) recently showed from the energy balance equations that both approaches lead
to very comparable results, which is confirmed by our new findings.

Finally, we want to point out the significant influence of geometrical effects on the slope angle dependency
of the critical crack length. Figure [A.2b shows the critical crack length vs slope angle for three different PST
configurations: (i) constant slab thickness D and slope normal faces (SNF); constant slab depth H and and slope
normal faces (SNF); (iii) constant slab depth and vertical faces (VF). The vertical character can be accounted
for by adding D /2 tan 1 to the critical crack length as proposed by |Heierli et al.| (2008) (in the supplement). We
clearly observe that the decrease of a. with v is gentler with a constant slab depth H than with a constant slab
thickness D as shown before. In addition, we observe an increase of the critical crack length with increasing
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Figure A.2: (a) Critical crack length vs slope angle: comparison between the data of Bair et al. (2012) (black
circles) and our new model (Eq. 9, red line), the anticrack model (purple dashed-line) and a pure shear model
(Eq. 7, green dotted line) for a constant slab depth H = 0.35 m (D = H cos v) and same input properties as in
Bair et al.|(2012]) with a semi-log scale. The cohesion ¢ = 500 Pa was estimated for the hand hardness provided
in Bair et al.|(2012)) using |Geldsetzer and Jamieson| (2001); Jamieson and Johnston! (2001). Inset: linear scale.
(b) Effect of geometry on the slope angle dependency. SNF: Slope normal faces. VF: Vertical faces. const.:
constant.

slope angle if the PST is made with vertical faces and if the slab depth is constant. This is in line with the PST
experiments of |(Gauthier and Jamieson| (2008) performed with vertical faces and a constant slab depth H. Note
that Heierli et al.| (2008)) did not account neither for the vertical character of the faces nor the decrease of slab
thickness with slope angle in their comparison to the data of (Gauthier and Jamieson| (2008). The increasing
trend observed for our model with a constant slab depth H and vertical faces might explain why the ECT
(Extended Column Test) score is often increasing with increasing slope angle (Heierli et al., 2011} Bair et al.,
2012).
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