

Interactive comment on "A fully automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat imagery: A new rock outcrop map and area estimation for the entire Antarctic continent" by A. Burton-Johnson et al.

A. Burton-Johnson et al.

alerto@bas.ac.uk

Received and published: 27 May 2016

Dear Allen Pope.

Many thanks for your helpful and thorough review of our submitted manuscript to The Cryosphere. We have addressed each of your comments below and in the revised manuscript (included along with the additional revised supplementary material in the supplement to this reply).

C1

Gratefully,

Alex Burton-Johnson

Authors' response to Review 1:

General Comments

Burton-Johnson et al. present a new, largely automated method for identifying rock outcrops across all of Antarctica using Landsat 8 data. This paper contributes both a well-documented, open methodology as well as the resulting dataset. I wanted to especially commend the authors on their commitment to reproducible and open science. The paper is clearly, concise, and open and will surely be widely used by the community (I know I will cite it when I update "Open Access Data in Polar and Cryospheric Remote Sensing", Remote Sensing, 2014). I look forward to seeing it fully published in The Cryosphere. Nevertheless, some edits could be made to make this method more applicable to future studies, to slightly expand the region over which Landsat data are applied, and to stylistically clarify a few points. See below for more specific comments.

- Many thanks for these positive comments. We hope to see the open access data for Polar research continue to increase and we hope that this contribution helps forward that goal.

Specific Comments

- 1) You include a short discussion of "how robust to a new sensor," but there are specific points you can include in the paper to better ensure this. Specifically, use units rather than DNs for thresholds (K, % reflectance), and also describe specifically how each threshold was set. For example, it appears that the NDSI threshold was the 95th percentile of sunlit rock. Including this would allow this method to be applied for future Landsats (to look for change), or with other sensors (to not rely on the ADD where Landsat coverage is unavailable).
- The TOA and brightness corrected Landsat 8 products provided by espa.cr.usgs.gov

are scaled for storage in a 16-bit raster. This is discussed now in the "Methodology" section and both the scaled and non-scaled values are now provided in the text to aid readability of the document and application of the methodology by the reader. Non-scaled values are now included in the thresholds figure, Fig. 5. The derivation and definition of each threshold value is now described in the Methodology section.

2) The authors include a discussion and figure to illustrate the paucity of medial moraines in Antarctica. While this is largely true, I believe some manual cleaning must still be done. For example, in blue ice areas / the Dry Valleys, there may be some medial moraines which should be removed. A quick investigation of the Ferrar Glacier indicates this may be the case there.

The presence of localised occurrences of glacial debris cover mapped as outcrop is now acknowledged in the "Introduction" and "Limitations" sections: "4. Whilst Antarctic glaciers are rarely show any debris cover (Fig. 4) there are local occurrences where extensive debris cover does occur (most notably in the vicinity of the Dry Valleys and the NW coast of the Ross Ice Shelf) which are mapped as outcrop in the new dataset. However, it should be noted that these occurrences are isolated on the continental scale. As this project aims to provide a consistent and automated approach that can be reproduced in the future (for example to monitor change in ice cover over time or season) our methodology attempts to be as free as possible from manual changes. We accept that in some areas localized occurrences of debris covered glaciers may need to be manually altered if detailed topographic maps of rock outcrop are required."

3) Regarding extent of available Landsat 8 coverage – is there a mechanism in place to allow for updated data collections where Landsat 8 is now available rather than the ADD. Specifically: A very quick EarthExplorer search showed that, for example, LC80021082016077LGN00 could possibly be used for Peter 1 Island. I would expect this to be the case for other sub-Antarctic islands. Please consider checking again for new Landsat 8 acquisitions, and discuss if there will be an updating procedure. There have been very recent Landsat 8 off-nadir acquisitions which extend Landsat coverage

C3

further south (and more are planned for next year). Could you include these in your analysis to reduce the areas where the ADD is needed? Will you be able to update next year to extend, too? Or is that prohibitive?

- It will not be possible to update the dataset as individual images are acquired, but it is intended to be updated in the future once a significant improvement has been made in image coverage, especially for the Antarctic islands and off-nadir regions. The dataset and the procedure will be incorporated into the ADD and consequently future iterations of the ADD will aim to widen the image coverage. This is now discussed at the end of the "Applications and future developments" section: "Once the available imagery has improved the Antarctic rock outcrop dataset will again be updated to exploit the new data and increase coverage of the continent (especially south of 82°40' S). By providing the code used in this study (GitHub, github.com/mblack2xl/AntarcticRockOutcrop) users will be able to apply the new methodology to their specific areas of interest and modify the thresholds for improved results on local scales. Such work may be possible to integrate in to future iterations of the continental dataset if users inform the authors regarding their new datasets."

Technical Corrections

Title: This is not technically a fully automated method (manual cleaning is performed) – please edit title.

- The word "fully" is removed from the title and text. However, we argue that this term does not require further dilution as the methodology presented is automated, the manual intervention only being performed because of inadequacies in the Antarctic coastline dataset rather than the new methodology. Should the coastline be better mapped the methodology would be fully automated, and remains so away from the coast.

Title: "Landsat" should be "Landsat 8"

- Corrected

Abstract L9: I would suggest including an introductory sentence that provides motivation for the study.

- The following sentence is included: "As the accuracy and sensitivity of remote sensing satellites improve there is an increasing demand for more accurate and updated base data sets for surveying and monitoring."

Abstract L14: This is not a "fully automated" method – there is some manual cleaning. Please edit, perhaps to "largely" "nearly" or "overwhelmingly"

- "almost" included

Abstract L18: May need to edit latitude (see Specific Comments)

- Reworded to "merged with existing data where Landsat 8 tiles are unavailable; most extensively south of 82°40' S". This is discussed further under Specific Comments.

Abstract L19: please indicate what physical areas 0.18% corresponds to.

- Extent of outcrop included in the text and abstract (21,745 km2)

P1 L21: I suggest citing appropriate examples where the ADD has been used.

- Three examples given of publications on different subjects (glaciology, geological mapping and geophysics) using the ADD rock outcrop data (Golynsky et al., 2006; Riley et al., 2011; Vaughan et al., 1999)

P1 L26: Should "data" be treated as singular or plural?

- This is a classic point of discussion and controversy based on whether "data" represents "facts" (plural) or "information" (singular). Copernicus and the EGU journals do not specify whether they view "data" as a singular or plural noun. We have taken the singular here based simply on its readability and our personal preference, but understand that other readers may feel differently.

C5

P1 L27-28: Parenthetical note is perhaps presented too early for smooth flow of an introduction.

- Parenthetical section removed

P1 L21-29: You should include some durable citation for the ADD if at all available. And/or a citation describing the dataset.

- Citation added (Thomson and Cooper, 1993)

P2 L1: Consider adding a figure to illustrate the issues in the ADD dataset?

- Figure added to illustrate the issues of georeferencing, generalisation and overestimation in the existing ADD rock outcrop dataset.

P2 L1: Comma after "Additionally"

- Comma added

P3 L8: "Landsat" should be "Landsat 8"

- Changed to "Landsat 8"

P3 L19: Follow parallelism in sentence structure – ". . .and be divided into sufficiently large scenes to allow for manual selection of suitable tiles for the entire continent."

- Replaced with suggested text.

P4 L1: Note that when building the Landsat Image Mosaic of Antarctica, Bindschadler et al. used TOA reflectance as well, given then largely dry and thin atmosphere over Antarctica. This could be a good supporting reference for TOA, if you wanted to include one.

- It doesn't hurt to include a supporting reference for your decisions! The LIMA reference is now included: "...rendering surface reflectance corrected data unsuitable. Instead, top of atmosphere reflectance and brightness temperature corrected products were used, as were also used for the Landsat Image Mosaic of Antarctica (Bind-

schadler et al., 2008).

P4 L10: I love that you're sharing your code! Perhaps also consider putting it on GitHub to allow sharing, editing, forking, etc.?

- Hosted on GitHub with a URL included in the paper (github.com/mblack2xl/AntarcticRockOutcrop)

P5 Eqn2: You use the "TIRS" acronym, so to be consistent I think you should also use the "OLI" acronym, rather than referring to it as the Landsat 8 platform.

- "OLI" included for consistency both on these lines and elsewhere in the document with definitions of "OLI" and "TIRS" included in the section "Input Data".

P5 L8: Please clarify whether "liquid water" refers to ocean, on land, or melt ponds on ice (or all of the above). It is a little confusing right now.

- The following definitions included in this paragraph: "...procedures to exclude liquid water offshore (seawater) and onshore (melt ponds)" and "...was also used as a mask for excluding seawater and sea ice".

P5 L11-12: What is "blue intensity"? Reflectance? Some index?

- Changed to "By comparing the blue reflectance values of pixels representing rock and snow..."

P5 L23-24: Aren't all Antarctic satellite images already provided in Antarctic Polar Stereographic? Why is any reprojection necessaru?

- Not for scenes with a centre latitude greater than or equal to -63° S (e.g. the South Shetland Islands), as is now stated in the text: "Tiles not already projected with the WGS 1984 Stereographic South Pole spatial reference (i.e. those at scenes with a centre latitude greater than or equal to -63° S) were then reprojected to this projection before the results of all the tiles were mosaicked together for the entire continent."

C7

P5 L26: "Landsat", not "LANDSAT"

- Corrected

P6 L3-6: Include total area used for this? What about an error matrix for this test?

- Total area and pixel count included. Given that the QC used 10 different images and determined mean values from them, an error matrix would not be suitable. However, we have now included a summary table of the mean QC statistics.

P6 L11: reference formatting

- Reference corrected

P7 L14: See Specific Comments.

- See reply in "Specific Comments"

P7 L15: Have you considered including some quality information in the dataset, which indicates the date/image from which a particular polygon was digitized?

- This was not included here as most outcrop polygons were derived from multiple overlapping polygons. However, should/when this dataset is updated such attributes would be invaluable to trace the development of the dataset.

P7 L20: Somewhere in the discussion, it would be good to acknowledge the issues that TIRS has been having, its recalibration efforts, etc. This is important if your TIRS thresholds are at all sensitive. . .

- The calibration issues are now acknowledged in the Input Data section: "However, the TIRS has suffered from calibration issues and whilst calibration changes have been made to some of the TIRS1 datasets, the TIRS2 data has a larger and more variable calibration uncertainty. Consequently only TIRS1 data is used in this study."

P7 L27: What was used as "truth" for this manual removal?

- This distinction could only be made by eye, as is now discussed in the manuscript.

P8 L7: Include space after "km2" and before "total"

- Space added

P8 L10-17: See Specific Comments. The modification and selection of thresholds should be discussed more in depth in methods to facilitate this cross-application.

- See reply in "Specific Comments"

P8 L26: Period after "respectively" (not a comma)

- Corrected

P8 L27: May need to amend sentence with information about subantartic islands / off-nadir acquisitions (see Specific Comments).

- As noted in Specific Comments, we acknowledge that there are sparse off-nadir images slowly being acquired. Hopefully this will facilitate an update of this dataset in the future, but we do not intend to update it piecemeal as each image is acquired.

P8 L27: Include are which 0.18% corresponds to.

- Area added

P8 L28: ". . .48% of the previous estimate (0.37%, ____km2)."

- Area and percentage added

Figure 1: The snow reflectance line is solid in the legend but dashed in the figure. Make it solid in the figure. Consider using line colors from ColorBrewer to help colorblind readers.

- The snow reflectance plot is now a solid line. The colours remain unchanged as for the wavelength boxes they relate to the RGB wavelength they represent (blue for blue, etc...) and having looked at ColorBrewer, the different warm shades (red and yellow) for the spectra should not be a problem for colour blind readers. Many thanks for drawing this facility to our attention though – it will be very useful for future publications

CS

and maps.

Figure 2: Where did these data come from? Are the shadowed areas rock, it is hard to the viewer to see.

- False colour image (in the combination Red: SWIR2; Green: Blue; Blue: Blue) now used to help the reader differentiate rock, snow and clouds. The scene ID is now in the figure caption.

Figure 3: I don't find this figure very helpful – especially given Specific Comment regarding Ferrar Glacier. Could be removed or combined with other figure I suggest (illustrating issues with ADD).

- There are localised areas of debris cover on Antarctic glaciers, of which the Dry Valleys region is the most notable, likely associated with the presence of extensive outcrop and liquid water in the region. However these are exceptional occurrences on the continental scale, and it is important that readers unfamiliar with this feature (especially those who work at lower latitudes) have this property illustrated to them. From experience, those who work with lower latitude glaciers view debris cover as their principal issue when detecting glacial extent making them sceptical of work at higher latitudes where this is not such a problem, and so we recommend keeping this figure in the final manuscript. The issue of debris cover is now acknowledged in the "Limitations" section (see "Specific Comments").

Pre-calculated Figure 4: In general, I don't see a systematic use of boxes and arrows to indicate particular inputs/outputs/actions. For example, rather than have an arrow pointing at "Identify Sunlit Rock" or "Identify Shaded Rock," these should be larger boxes (possibly shaded background) which encompass the specific tasks which achieve those goals.

- As is the standard for flowchart design, the parallelogram is used initially to represent the input data, the oblongs are used to indicate the start and end of the program

flow (for both sunlit and shaded rock outcrops) and the intermediate processes are all indicated in rectangular boxes. The "Identify Sunlit Rock" and "Identify Shaded Rock" boxes are now shaded to make them stand out and more visually separate the two processes.

In the top box "corrected" is not the right word, I don't think. "Pre-calculated" or just removed it, perhaps?

- Changed to "brightness temperature converted" and left included in the figure as is one of the options users must select when requesting the tiles for download.

Relatedly, when are mask arrows being added or removed from each other? Clarify.

- Addition of masks now specified on flowchart.

Units should be used either instead of or in addition to the DN values for TIRS and Blue.

- Scaling removed from units and units now defined on the y-axes.

Remove superfluous steps (e.g. possibly reprojection, or "repeat steps for all Landsat images" What method specifically was used for mosaicking Landsat rasters?

- Both "reprojection" and "repeat..." are required steps, so remain in the workflow.

What process used for overlapping areas?

- A paragraph is now included in the "Methodology" section describing the raster mosaicking process.

What connectivity or filtering was used in polygonization?

- As the raster is composed of 30 m wide, square-sided pixels no filtering was required. Instead, the extent of the binary raster mosaic could be converted in to a new polygon using the ArcGIS "raster to polygon (conversion)" tool. Some minor modifications are made to the text.

C11

Rather than clipping ADD to a particular latitude, consider clipping to specifically areas of no Landsat?

- The ADD was clipped using the footprints of the Landsat 8 tiles. The Latitude of their southerly extent was used to describe this in the text but as this is less specific the text and figure have now been corrected.

Caption can deleted "using the new methodology" - this is implicit.

- Text removed from caption.

Figure 5: Regarding y axis units – some are clear (e.g. NDSI, NDWI), but it would be good to clarify the units/scaling factors for TIRS, Blue, etc. Also, again, what is "Blue Intensity"? Do you mean reflectance? Finally – how were test areas selected? And are "n" values pixels?

- The TIRS1 brightness temperature, blue reflectance and TIRS1/Blue values have been corrected for the scaling factor and labelled as such. Scaling is discussed in Section 2.2 and referenced as such in the caption. "n" is now defined in the caption. Test area selection is now defined in the body text.

Figure 6: See Specific Comment regarding islands and coverage.

- See reply in Specific Comments. The caption is also corrected to state that the ADD outcrop dataset was used for areas without Landsat 8 coverage rather than a specific latitude.

Figure 7: Include NDSI threshold either annotating figure (or in supplementary information if you think that would be too crowded). Also, consider organizing a-j by type of scene (or labeling as such) to make translation between text (P6 L11-16) and the structure of the figure easier. Two specific comments: "tree" should be "three" and "Automated Outcrop Identification" should be "Automated Outcrop Identification (presented here)"

- The NDSI threshold is now shown in brackets on each figure. Reviewer 2 requested that the figure size be increased, so this change has not resulted in overly crowded images. They figures have also been reorganised as suggested to match the discussion in the text and make the figure easier to follow. The word "tree" has been corrected to "three" and the Legend has been modified to include "Automated Outcrop Identification (presented here)".

Figure 8: How were areas chosen to not use any Landsat imagery? What if outcrops are showing up in new locations? Is there a method to handle that sort of change? Or inform selection of imagery from other sensors?

- Whilst not as accurate as the new rock outcrop dataset, the existing ADD dataset was produced to highlight all areas of outcrop, even exaggerating the size of very small areas so that they could be seen and liberally classifying areas of shaded snow in case they contained rock outcrop. Consequently we can be confident that all outcrops on the continent detectable by the new method are represented in the old dataset. This meant that we could use the existing ADD outcrop dataset to select the Landsat 8 tiles based on the Landsat tiles' classification grid, the World Referencing System (WRS) and analyse just these tiles rather than having to analyse tiles over the entire continent (a process that may have made this work far more time consuming, potentially unfeasible, and increase the opportunity for commission misclassification).

Figure 9: Should "Jr" have a period after it in the citation?

- Period added

Figure 10: I would cut off the y axis of part b at 2 or a little below and include a label to indicate the large bar. It would make the rest of the figure more readable.

- Y axis cut off at 2 with the cropped error bar now labelled to indicate its maximum

Figure 11: In the figure, it is not clear what is seawater - partly because it is zoomed

C13

in so much, and partly because of the lack of color. Please fix the figure to clarify this. Consider including a "because. . ." at the end of the caption to explain the conservative estimation.

- False colour images are now used to accentuate the rock, snow and seawater pixels (in the combination Red: SWIR2; Green: Blue; Blue: Blue). An explanation of the conservative chosen threshold values is also included at the end of the caption.

Supplemental data: Include list of Landsat scenes as txt or csv (in addition to PDF) to allow it to be more easily used in the future.

- List of scenes now also included as a tab delimited text file as well as a PDF.

Interactive comment on The Cryosphere Discuss., doi:10.5194/tc-2016-56, 2016.

New References Bindschadler, R., Vornberger, P., Fleming, A., Fox, A., Mullins, J., Binnie, D., Paulsen, S. J., Granneman, B. and Gorodetzky, D.: The Landsat image mosaic of Antarctica, Remote Sens. Environ., 112(12), 4214-4226, 2008. Golynsky, A., Chiappini, M., Damaske, D., Ferraccioli, F., Finn, C. A., Ishihara, T., Kim, H. R., Kovacs, L., Masolov, V. N., Morris, P. and others: ADMAPâĂŤa digital magnetic anomaly map of the Antarctic, in Antarctica, pp. 109-116, Springer. [online] Available from: http://link.springer.com/chapter/10.1007/3-540-32934-X_12 (Accessed 11 April 2016), 2006. Riley, T. R., Flowerdew, M. J. and Haselwimmer, C. E.: Geological Map of Eastern Graham Land, Antarctic Peninsula (1:625 000 scale), British Antarctic Survey, Cambridge, UK., 2011. Thomson, J. W. and Cooper, A. P. R.: The SCAR Antarctic digital topographic database, Antarct. Sci., 5(03), 239-244, 1993. Vaughan, D. G., Bamber, J. L., Giovinetto, M., Russell, J. and Cooper, A. P. R.: Reassessment of net surface mass balance in Antarctica, J. Clim., 12(4), 933-946, 1999.

Please also note the supplement to this comment: http://www.the-cryosphere-discuss.net/tc-2016-56/tc-2016-56-AC1-supplement.zip

C14

Interactive comment on The Cryosphere Discuss., doi:10.5194/tc-2016-56, 2016.