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Abstract.

We present a comparison of the numerics and simulation results for two “full" Stokes ice sheet models, FELIX-S (Leng

et al., 2012) and Elmer/Ice (Gagliardini et al., 2013). The models are applied to the Marine Ice Sheet Model Intercomparison

Project for planview models (MISMIP3D). For the diagnostic experiment (P75D) the two models give very similar results

(<2% difference with respect to along-flow velocities) when using identical geometries and computational meshes, which we5

interpret as an indication of inherent consistencies and similarities between the two models. For the Stnd, P75S, and P75R

prognostic experiments, we find that FELIX-S (Elmer/Ice) grounding lines are relatively more retreated (advanced), results

that are consistent with minor differences observed in the diagnostic experiment results and largely due to slightly different

choices in the implementation of basal boundary conditions used by the two models. Based on current understanding, neither

set of implementations can be argued to be more or less favorable. In this case, we propose that, at a particular resolution,10

the span of grounding line positions from these two models provides one estimate for model error when treating the results

from full Stokes models as a metric for accuracy in model intercomparison experiments. More importantly, we show that as

grid resolution increases the grounding line positions for FELIX-S and Elmer/Ice appear to converge to within the estimated

truncation error for Elmer/Ice.

1 Introduction15

As Earth’s largest reservoirs of fresh water, ice sheets are important components of the global climate system. Humans feel

their impacts most acutely through changes in global sea level, as ice sheets grow or decay in response to climate forcing and

internally controlled dynamics. While the rate of present-day sea-level rise is dominated by ocean steric changes and eustatic

changes due to shrinking mountain glaciers, the eustatic contribution from the large ice sheets (Greenland and Antarctica) has
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increased in recent decades and is expected to continue increasing in coming decades and centuries (Clark et al., 2015). While

currently smaller than the sea-level contribution from mountain glaciers or Greenland, the future sea-level rise contribution

from Antarctica is of particular concern; because of inherent dynamic instabilities associated with marine-based ice sheets (see,

e.g., Schoof, 2007a; Schoof and Hewitt, 2013), the Intergovernmental Panel on Climate Change (IPCC) recently highlighted

future Antarctic ice sheet evolution as the largest uncertainty with respect to projecting future rates of sea-level rise (IPCC,5

2013).

Largely to address these concerns, the international community has focussed intense efforts over the last decade on improving

the predictive skill of large-scale, whole-ice-sheet models. These improvements include increased fidelity and accuracy with

respect to the governing nonlinear Stokes-flow equations, increased numerical and computational robustness and efficiency,

increased complexity and realism with respect to representation of relevant physical processes, and increased efforts towards10

partial and full coupling with Earth System Models (e.g., see models described in Cornford et al. (2013); Favier et al. (2014);

Seroussi et al. (2014); Feldmann and Levermann (2015); Tezaur et al. (2015)). Alongside and critical to advancing these

efforts have been the development of model inter-comparison exercises, which have provided community-based “benchmark"

solutions for gauging the correctness of model output (e.g., Pattyn et al., 2008, 2012, 2013). While designed to be simple,

distilling a test for a particular model feature of interest down to it’s essence, these exercises are still generally too complicated15

for the application of formal model verification through the use of analytical or manufactured solutions. Thus, these same

model intercomparisons have become increasingly dependent on the output from so-called “full" Stokes ice sheet models – the

highest fidelity representation of the equations governing the momentum balance for ice flow – to provide a metric for the most

accurate model solutions available. One example is the Elmer/Ice (Gagliardini et al., 2013), which has taken part in most of the

intercomparison projects referenced above.20

Here, we apply a second Stokes model, the FELIX-S model of Leng et al. (2012) (see also Leng et al., 2013, 2014; Zhang

et al., 2015), to the Marine Ice Sheet Model Intercomparison for plan view models (MISMIP3d) experiments (Pattyn et al.,

2013). We conduct a careful comparison of the numerical methods used and the solutions produced by FELIX-S and Elmer/Ice.

In a recent contribution, Gagliardini et al. (2016) show that both diagnostic and prognostic grounding line (GL) positions from

Elmer/Ice exhibit substantial sensitivity as a function of not only the across-flow mesh resolution (along-flow mesh resolution25

has been explored and discussed in detail previously, e.g., Durand et al. (2009b)), but also as a function of seemingly arbitrary

choices about how basal boundary conditions are implemented in the model. Here, by “arbitrary" we mean in the sense that

it is not obvious if and why one choice should be superior to another. Below, we show that a similar level of sensitivity is

apparent when comparing FELIX-S and Elmer/Ice output to marine ice sheet benchmark experiments, even when using the

same computational mesh with very high along-flow resolution. While these differences clearly argue for a degree of caution30

when interpreting Stokes model output as the metric for model solution accuracy, we also show that the differences between

Elmer/Ice and FELIX-S solutions decrease as the mesh resolution increases. The consistency between these two models at very

high resolution lends support for their use as a benchmark for lower fidelity models, provided these benchmark solutions are

generated using adequate grid resolution.
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The paper proceeds as follows. First, we give a brief overview of the governing Stokes-flow equations for ice flow, which are

discretized and solved by Elmer/Ice and FELIX-S. We then discuss in some detail the implementation of boundary conditions

– some specific to the problem of simulating marine ice sheets – and how they are implemented in the two models. A brief

introduction to the MISMIP3d model setup is then given, followed by a presentation of experimental results for the two models.

We then give an in-depth discussion of the similarities and differences between results from the two models, our interpretation5

of where these differences come from, and an assessment of their significance. We close with summary and concluding remarks.

2 Model Description

2.1 The Stokes ice flow model

Consider the flow of a viscous, incompressible fluid (ice) in a low-Reynolds number flow. Conservation of linear momentum

in expressed by the balance between the stress-tensor divergence and the gravitational body force,10

∇ ·σ = ρig, (1)

with σ representing the full stress tensor, ρi the density of ice, and g the acceleration due to gravity.

The incompressibility of glacier ice is expressed as

∇ ·u= 0, (2)

whereu= (u,v,w) denotes the ice velocity vector. For glacier ice, the constitutive relation can be expressed as for a Newtonian15

fluid,

τ = σ+ pI = 2ηε̇, (3)

where τ is the deviatoric stress tensor, p is the isotropic ice pressure, I is the identity tensor, ε̇ is the strain rate tensor, and η is

the “effective" viscosity, defined by Nye’s generalization of Glen’s flow law (Cuffey and Paterson, 2010),

η =
1

2
A−1/nε̇(1−n)/n

e . (4)20

The flow-law exponent n is assigned a value of 3, with n > 1 leading to a “shear thinning", non-linear rheology. A is the

temperature-dependent rate factor and ε̇e is the effective strain rate (the square root of the 2nd invariant of the strain-rate

tensor).

2.2 Boundary conditions

At the upper surface, a stress-free boundary condition applies,25

σ ·n= 0, (5)
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where n= (x̂, ŷ, ẑ) is the surface normal vector in a Cartesian reference frame. The lower-ice surface consists of two different

boundary conditions (Durand et al., 2009a). For the “grounded" part of the flow where ice is in contact with bedrock (i.e.,

the ice-bedrock interface), the normal stress exerted by the ice body is larger than ocean water pressure. Here we apply the

non-linear friction sliding law prescribed for the MISMIP3d experiments (Pattyn et al., 2013),

σnti +C |u|m−1
u · ti = 0, (6)5

where C is a friction coefficient that is non-zero for grounded ice only, t is the bedrock tangent vector, and m is a friction-law

exponent. For the floating part of the flow, where ice is detached from the bedrock (i.e., the ice-ocean interface, or the ice-

bedrock interface at minimal floatation), the normal stress exerted by the ice body is smaller than or equivalent to the ocean

water pressure, we apply a stress balance condition; normal stress, σnn , is balanced by the pressure due to buoyancy, Pw,

−σnn = Pw = ρwg(zw − z), (7)10

where zw is the sea level. For the case of z(x,y) = b(x,y), we also need to consider a “contact problem” (Durand et al., 2009a)

to decide the actual location of the GL. We discuss the contact problem and its implementation in Elmer/Ice and FELIX in

more detail below.

The evolution of both the upper and lower free surfaces are determined by a kinematic boundary condition,

∂zi
∂t

+u
∂zi
∂x

+ v
∂zi
∂y

= w+ ȧi, (8)15

for i= s,b denoting the upper and lower surfaces, respectively, and ȧi representing the surface or basal mass balance.

Consistent with the MISMIP3d experimental setup, the horizontal velocity is set to u= 0 m a−1 at the ice divide (x= 0 km)

and free-slip conditions are applied at the two lateral boundaries (y = 0 km and y = 100 km).

Values for all model constants and parameters, including those that specifically apply to the MISMIP3d experimental proto-

cols, are noted in Table 1.20

2.3 Lower-order approximations

Lower-order approximations to the full Stokes equations expressed above, such as the “shallow-ice approximation" (SIA;

Hutter, 1983) and “shallow-shelf approximation" (SSA; Morland, 1987), come about via geometric scaling arguments. These

arguments can be used to show that, for many locations on glaciers and ice sheets, specific velocity gradient terms in the

strain-rate tensor expressions above contribute negligibly to the momentum balance. While omitting these terms leads to a25

significant reduction in the numerical complexity and computational cost involved in solving the momentum balance equations

(see e.g., Dukowicz et al., 2010; Schoof and Hindmarsh, 2010), the resulting errors may lead to non-negligible differences in

dynamically complex regions of the ice sheet, such as near GLs (Pattyn and Durand, 2013). For this reason, full Stokes models

are assumed to provide a better measure of the most complete and accurate solution near GLs, against which solutions from

lower-order approximations may be compared in order to assess their accuracy.30
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3 Comparison of Model Numerics

Both FELIX-S and Elmer/Ice discretize the Stokes-flow momentum balance equations using the Finite Element Method (FEM).

Both models have undergone extensive formal verification (see Gagliardini et al., 2013; Leng et al., 2013), have been subject

to formal convergence studies (see Gagliardini et al., 2013; Leng et al., 2012, 2013), and have been shown to compare very

favorably to one another when applied to the Ice Sheet Model Intercomparison for Higher-Order Models (ISMIP-HOM) (Pattyn5

et al., 2008) experiments (see, Figures 6, 7, 10, 11, 13, and 14 in Leng et al. (2012)). Additional details (and references)

for Elmer/Ice are given in Gagliardini and Zwinger (2008) and Gagliardini et al. (2013), and for FELIX-S in Leng et al.

(2012, 2013, 2014). Here, we provide a summary of several important similarities and differences between the numerical

implementations used by Elmer/Ice and FELIX-S, noting that we view the differences as arbitrary. That is, there are not clear

arguments for why one choice is superior to another and, in that sense, we view both methods as equally valid.10

The first significant difference between Elmer/Ice and FELIX-S is in the choice of finite elements; Elmer/Ice uses hexahedral

elements with P1-P1 basis functions (linear in velocity and pressure) and “bubble" function stabilization, whereas FELIX-S

uses tetrahedral, Taylor-Hood elements with P2-P1 basis functions (quadratic in velocity, linear in pressure). The second

important difference is that Elmer/Ice and FELIX-S use slightly different “masking" schemes for identifying grounded versus

floating regions of the lower surface; Elmer/Ice marks the nodes bounding each element whereas FELIX-S marks the element15

faces. The third important difference, which is a generic FEM implementation issue and not specific to the Stokes-flow problem,

is in how the value of the basal friction coefficient, C, is applied at the Gaussian quadrature points. FELIX-S calculates the

values of C at quadrature points directly (with the accuracy of integration increasing with the number of integration points),

whereas Elmer/Ice interpolates the values of C at Gaussian quadrature points from nodal values (Gagliardini et al., 2016) (with

the number of integration points needed for a given degree of accuracy determined by the order of the basis function).20

In terms of similarities, Elmer/Ice and FELIX-S use the same scheme for evolving the free surfaces, based on an FEM

discretization of the kinematic boundary equation (8) (Gagliardini et al., 2013). The two models also use nearly identical

implementations of the contact problem. For FELIX-S, the ocean water buoyancy pressure is compared to the normal stress of

the ice on the bed and for Elmer/Ice, the ocean water buoyancy pressure is first integrated and then compared to the normal

force of the ice on the bed (Durand et al., 2009a). While both models solve the contact problem at nodes, the information is used25

slightly differently; Elmer/Ice uses it to decide if nodes in contact with the bed are floating or grounded whereas FELIX-S uses

it to decide if nodes in contact with the bed constitute an element face that is floating or grounded. We return to the discussion

of these different schemes and their impact on model output in Section 6.

Lastly, of the three potentially different ways for defining how the basal friction coefficient C varies over the area of a

grounded-to-floating element – “Last Grounded” (LG), “Discontinuous” (DI), and “First Floating” (FF) (discussed in more30

detail in Gagliardini et al., 2016) – FELIX-S uses what amounts to the DI implementation (the C values are discontinuous

across the GL) (Figure 1). However, because the values of C are intimately tied to the location of the GL, and because of the

different masking schemes used to decide on grounded versus floating nodes (in Elmer/Ice) or element faces (FELIX-S), a
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direct comparison based on the implementation of the friction coefficient is really only meaningful for the P75D (diagnostic)

simulation. We also return to this discussion in more detail in Section 6.

4 Experimental Setup

We provide a brief review of the MISMIP3d experimental setup, referring the reader to Pattyn et al. (2013) for additional

details. Three experiments are conducted and reported on; the “standard" prognostic experiment (Stnd), the prognostic, basal5

sliding perturbation experiments (P75S and P75R), and the diagnostic experiment (P75D). The Stnd experiment is similar to

that conducted in the original, two-dimensional MISMIP experiment for flowline models (Pattyn et al., 2012), where steady-

state ice sheet GL positions are examined for a uniform, downward sloping (non-retrograde) bed in the along-flow (x) direction,

with a uniform basal friction coefficient and uniform bed properties in the across-flow (y) direction. The goal is to compare

three-dimensional model results to those from the two-dimensional test case, for which analytic solutions are available (Schoof,10

2007a). The prognostic P75S experiment starts from the steady-state geometry of the Stnd experiment and introduces a two-

dimensional, Gaussian perturbation (a slippery patch) to the basal sliding coefficient field, C(x,y), which introduces changes to

the model state (velocity and geometry fields). The ice sheet geometry and GL are then allowed to advance for 100 years. The

P75R experiment, which starts from the final state of the ice sheet at the end of the P75S experiment, returns the C(x,y) field

to its original, uniform distribution, inducing GL retreat. The model is then integrated forward in time for another 100 years.15

The P75D experiment compares the diagnostic model state when using the P75S geometry calculated by the Elmer/Ice model.

Below, we first report on the comparison between Elmer/Ice and FELIX-S for the P75D experiment. We then follow with a

comparison for the Stnd, P75S and P75R experiments.

For all experiments (unless otherwise noted) the vertical dimension in both models is discretized with 10 layers. For the

P75D and Stnd experiments, the nodal coordinates used by Elmer/Ice and FELIX-S are identical, with along-flow resolution of20

50 m in the vicinity of the GL and across-flow resolution of 2500 m. For the P75S and P75D experiments, along-flow resolution

is 50 m and across-flow resolution is varied from 2500 to 625 m. In this case the Elmer/Ice and FELIX-S nodal coordinates are

very similar but not identical, as discussed further below in Section 5.3 (Note that we distinguish identical nodal coordinates

as distinct from identical meshes, because the mesh can also be considered a function of element type, which are different for

Elmer/Ice and FELIX-S).25

5 Results

5.1 The diagnostic experiment, P75D

We first compare the two models for the diagnostic experiment, P75D (Figure 2). Both models use the same parameters (e.g.,

A, C, and m; see also Table 1) and, despite the different element types discussed above, have identical nodal coordinates over

the entire model domain. From Figure 2, it is clear that the three velocity components (u, v and w) for Elmer/Ice and FELIX-30

S are in very good agreement for both the upper and lower surfaces, an indication of inherent consistencies between the two
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models. For this experiment, the most direct comparison between Elmer/Ice and FELIX-S is afforded by the DI results as, prior

to determining C, we directly interpolate the nodal basal boundary condition mask from the Elmer/Ice diagnostic solution onto

the element-face mask used by FELIX-S. In general, for the horizontal velocity, u, the differences are relatively small over the

entire model domain (<2%), relatively less near the ice divide and increase continuously from the GL to the ice shelf portion

of the domain (Figure 3). For the v and w velocity components, we observe relatively larger discrepancies in the region of the5

GL (around km 535 – 555), but still very small differences (<5%) over the majority of the domain (Figure 3).

Despite efforts to make mesh, initial and boundary conditions, and parameter settings identical between the two models,

several non-negligible differences discussed above are likely responsible for the small differences in velocities shown in Figure

3. The first likely cause for the small differences is the different boundary masking schemes; as noted above, FELIX-S marks

the basal boundary faces in an element-wise manner versus the node-wise manner used by Elmer/Ice. To apply as similar as10

possible boundary settings for the P75D test case, FELIX-S applies the nodal mask from Elmer/Ice when generating its own

element-based mask; element faces in FELIX-S are marked as grounded only if all 3 nodes of a triangle are marked as grounded

according to the Elmer/Ice mask. Otherwise, the elements are marked as floating (Figure 1) (We note that this is not the same

criteria that is used by FELIX-S in the remainder of the experiments to determine the location of floating versus grounded

ice, as discussed further below). This may lead to small differences when assembling the element stiffness matrices and the15

right hand side vectors (for the Dirichlet boundary conditions) as part of the FEM discretization of the Stokes system. Another

likely cause for the minor velocity differences in the P75D experiment is the specification of the sliding coefficient C at Gauss

quadrature points, as discussed above in Section 3. Finally, despite identical mesh coordinates, Elmer/Ice and FELIX-S use

different element types, basis functions, and interpolation schemes as discussed above.

Overall, for the P75D experiment FELIX-S results in slightly larger horizontal velocities (u) at the GL than does Elmer/Ice.20

As a result, FELIX-S exhibits a slightly (1%) larger ice flux through the GL than does Elmer/Ice. This systematic difference

between the two models is likely a combination of the slightly different numerical choices discussed above. Again, as these

choices appear arbitrary with respect to our current level of understanding, it is not clear that the implementation and results

from one model can be distinguished as being superior to the other.

5.2 Stnd prognostic experiment25

The comparison of Elmer/Ice and FELIX-S diagnostic experiment results demonstrate that model solutions are very close

to one another when using identical nodal-mesh coordinates, but that slightly different numerics and/or implementations of

boundary conditions result in non-zero differences in the model solutions. In turn, the prognostic experiments demonstrate

how those biases accumulate and affect the time-integrated model solutions.

For the Stnd prognostic experiment, FELIX-S uses the same initial ice sheet geometry (based on the boundary-layer theory30

solution of Schoof (2007b)), the same along- and across-flow resolution (50 m in the vicinity of the GL and 2500 m, respec-

tively), and the same nodal mesh coordinates as Elmer/Ice. From this initial condition, the forward model is integrated for

∼1300 years, by which time the GL position is in equilibrium (based on the criteria that the relative rate of volume change is

<10−5, the same criteria used by Elmer/Ice (Pattyn et al., 2013)). Both models demonstrate a continuous advance of the GL,

7



with FELIX-S reaching a steady state GL position (xg) of 519.85 km (Table 2) and Elmer/Ice reaching steady state positions of

xg = 529.55, 526.80 and 522.35 km, for LG, DI and FF, respectively (Gagliardini et al., 2016). Apparently, FELIX-S produces

a slightly smaller equlibrium-sized ice sheet with a GL position that is slightly more retreated than that of Elmer/Ice.

We attribute the different equilibrium GL locations to differences in the numerical schemes already discussed above. While

the overall retreated grounding line of FELIX-S relative to Elmer/Ice is consistent with the minor velocity differences observed5

– FELIX-S produces slightly higher along-flow velocities (and hence flux) upstream from, at, and downstream from the GL,

with the time-integrated result of slightly thinner ice (and hence floatation) occurring slightly farther inland relative to Elmer/Ice

– we note that Elmer/Ice velocities when using the FF scheme are significantly faster than for FELIX-S (Figures 1 and 2), and

yet the Elmer/Ice GL when using the FF scheme is still advanced relative to that of FELIX-S (Table 2). Hence, other differences

in the two numerical schemes must be more important in contributing to the observed steady-state GL location differences (we10

return to the discussion of these differences in greater detail in Section 6). Regardless of the reasons, we note that the differences

between the equilibrium positions for the FELIX-S and Elmer/Ice GL locations, for both DI and FF, are very close to or within

the range of the estimated truncation error for Elmer/Ice at an along-flow resolution of 50 m (see Durand et al. (2009a), Figure

6, and Gagliardini et al. (2016), Figure 1c, and related discussions therein).

We repeat the Stnd prognostic experiment with FELIX-S but starting from an initially over-sized configuration, allowing the15

ice sheet to shrink over time and the GL to retreat to its equilibrium position (as opposed to starting from an under-sized initial

configuration with an advancing GL). In this case, an equilibrium GL position is reached after a forward model integration

time of ∼1500 years and we find xg = 524.50 km, approximately a 5 km difference relative to the case with an advancing GL.

This difference in equilibrium GL positions under advanced versus retreated initial configurations is consistent with that found

by Durand et al. (2009a) and Gagliardini et al. (2016) and is consistent with a model truncation error of ∼5 km at an along-20

flow resolution of 50 m. Gagliardini et al. (2016) demonstrated that steady-state GL locations from an advanced or retreated

initial condition do converge with increasing grid resolution. Based on the seemingly similar truncation error estimate at 50

m along-flow resolution, and results from the P75S and P75R experiments (discussed next), we speculate the FELIX-S would

show similar behavior.

Lastly, we conduct a convergence study for the Stnd experiment by comparing solution error against mesh resolution. In25

order to control computational costs, the mesh is modified slightly relative to that discussed above. The number of across

flow elements is unchanged but the number of vertical layers is reduced from 10 to 5. Also, we do not double the along-flow

mesh resolution everywhere in the domain at each step in the convergence study but rather over a particular region within the

vicinity of the grounding line (a similar approach has been taken in previous work, e.g. Durand et al. (2009a)). Simulations are

conducted with along-flow resolution of 1600, 800, 400, 200, 100, and 50 m in this refined region. For the highest along-flow30

resolution, which coincides with that of the Stnd experiment discussed above, the equilibrium GL position is 519.55 km (a

difference of 0.30 km relative to when using 10 vertical layers). Figure 4 shows the Richardson estimate for the solution error

versus the along-flow mesh resolution. Slight irregularities in the GL position as a function of increasing resolution result

from doubling the mesh resolution in the along-flow direction and in the region of the GL, rather than over the entire mesh.

8



Regardless of these minor irregularities, the GL position is clearly convergent as a function of resolution with a convergence

rate between linear and quadratic.

5.3 P75S and P75R prognostic experiments

In the P75S and P75R prognostic experiments, we investigate advance and retreat of the GL following a step-change perturba-

tion in the basal friction distribution, for 100 years, and a return to the initial basal friction distribution, for a further 100 years5

(the P75S and P75R experiments, respectively), as discussed above in Section 4. The initial condition for the P75S experiment

is the steady-state GL position of the Stnd prognostic experiment discussed above. To manage computational costs, especially

in experiments where sensitivity to mesh resolution is explored, both models employ regional refinement near the GL. Initial

mesh resolution in this region is 50 m along flow and 2500 m across flow for both models but, because of the different equilib-

rium GL positions for the Stnd experiment, the area of refined mesh in FELIX-S and Elmer/Ice is located in slightly different10

regions. Thus, the two meshes have the same refined resolution around the GL but slightly different nodal coordinates for this

set of experiments (i.e., the two model meshes are not identical as they are for the P75D and Stnd experiments).

Similar to the Stnd experiment, FELIX-S predicts relatively less GL advance (P75S) and / or relatively more GL retreat

(P75R) than Elmer/Ice, as shown in Figures 5–7. Similar to Elmer/Ice (Gagliardini et al., 2016), FELIX-S shows a clear

sensitivity to the across-flow resolution (∆y); as the number of elements in the y direction increases from 20 to 80 (∆y15

decreases from 2500 m to 625 m), the “reversibility" – i.e. the return to the initial position – of the GL improves (note that

we expect >>100 yrs to demonstrate full reversibility (Gagliardini et al., 2016)). More importantly, we also find that as the

number of elements in the y direction increases from 20 to 80, the agreement between FELIX-S and Elmer/Ice increases for all

of Elmer/Ice GL implementations (i.e., LG, DI, and FF; Figures 5–7). For the highest across-flow grid resolution, differences

in the FELIX-S and Elmer/Ice DI and FF grounding line position changes are close to or below the published truncation error20

for Elmer/Ice, and differences relative to Elmer/Ice LG are converging to that same value (Figure 8).

6 Discussion

As noted above, some fraction of the differences in the prognostic model simulation results can likely be attributed to the small

differences in the model velocity fields, as seen in the P75D experiment. In turn, these differences are likely related to the

different type of finite elements and basis functions used by the two models. However, we attribute the bulk of the prognostic25

model simulation differences to differences in the treatment of the contact problem, and more importantly, to the different

masking schemes used for the basal boundary conditions.

There are small differences in the way the contact problem is implemented in FELIX-S versus Elmer/Ice; while following

the same physical basis for the contact problem, FELIX-S compares the normal stress and the sea water pressure acting at

nodes, whereas Elmer/Ice compares the normal and sea water force acting at nodes (Durand et al., 2009a). The result may30

be that, effectively, Elmer/Ice and FELIX-S “feel" slightly different normal forces (or pressures) at basal nodes of the ice-bed

interface, resulting in slight differences when assessing whether a node (Elmer/Ice) or element (FELIX-S) is grounded or not.

9



Unfortunately, the different element types used by FELIX-S and Elmer/Ice do not allow for a definitive confirmation of this

hypothesis.

Of greater importance, however, are the different treatments of the basal boundary condition masking schemes discussed in

Section 3. Figure 1 provides a schematic summary of the differences in the Elmer/Ice and FELIX-S basal boundary masking

schemes and demonstrates how those differences would impact the GL location in the two models for a particular “edge" case.5

In the upper part of Figure 1, the nodes marked A and C are unambiguously floating (i.e., z(x,y, t)> b(x,y), so that no contact

problem needs to be considered for those nodes). Because FELIX-S considers any element with one or more floating nodes to

be floating, elements 3, 4, and 8 are all marked as floating, with the resulting FELIX-S GL position shown by the blue line in

Figure 1. For the same geometric configuration, the node-based scheme used by Elmer/Ice defines a slightly different position

for the GL, shown by the red line in Figure 1.10

In addition to the slightly different grounding line locations, the different basal boundary masking schemes will lead to

different profiles for C, as shown schematically in the lower part of Figure 1 where we plot approximate nodal C profiles for

the two models. These differences come about because, for FELIX-S, the nodal matrix coefficients contain the contributions

of C (and other variables) from the surrounding elements. As an example, consider profiles 1 and 3 in Figure 1. The C = 0

contributions from elements 3 and 8, and assuming additional floating elements to the north of element 3 and to the south15

of element 8, reduce the matrix coefficients associated with the node along the centers of profiles 1 and 3 by a factor of

approximately 2/6=1/3 (for these nodes, 2 of the 6 surrounding elements are floating), relative to Elmer/Ice. This estimate is

only approximate because, in reality, the nodal coefficients contain additional terms related to the ice velocity and the basis

functions, which are not uniform for all elements surrounding a node. Similarly, assuming that additional elements downstream

of the FELIX-S GL are also floating, the coefficient at node B along profile 2 will be reduced by ∼5/6 relative to the Elmer/Ice20

value, since 5 of the 6 surrounding elements are floating.

We attribute the majority of the differences observed in prognostic model simulations to these slight differences in GL

position, and more importantly to these slight differences in the value of C. If we again consider profile 2 in Figure 1 (and to

a lesser extent profiles 1 and 3), the relatively larger value of C for Elmer/Ice will lead to relatively less basal sliding there

and, eventually, relatively thicker ice. This in turn will make it more likely that neighboring nodes may also eventually ground.25

The overall, time-integrated result will be that, all other things being equal, the Elmer/Ice masking scheme will slightly favor

grounding and/or grounding line advance relative to the FELIX-S scheme. This proposed difference in model behavior is

consistent with the differences observed when the two models are applied to the prognostic experiments.

We further note that the differences between the nodal C profiles for Elmer/Ice and FELIX-S shown in Figure 1 are broadly

similar to the differences between the DI and FF implementations in Elmer/Ice; despite the DI-like implementation of C in30

FELIX-S, the different masking scheme results in C values at nodes that effectively “look" more similar to the FF implemen-

tation of Elmer/Ice (dashed C profile lines in Figure 1). Simulations using Elmer/Ice with these two different implementation

demonstrate differences that are broadly similar to the FELIX-S and Elmer/Ice differences observed here for prognostic sim-

ulations; the FELIX-S equilibrium grounding line for the Stnd experiment is closest to that for Elmer/Ice when using the FF

implementation (Table 2), the change in FELIX-S GL in the P75S experiment is closest to that observed for Elmer/Ice when35
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using the FF implementation (Table 2), and, at all across-flow resolutions, the advance and retreat curves for FELIX-S in the

P75S and P75R experiments most closely resemble those for Elmer/Ice when using FF (Figures 5–7).

Based on our understanding of these model-to-model differences and their hypothesized impact on model simulations, we

have a strong expectation that the differences in model outputs will decrease as model resolution increases. As the element

size decreases, the gradients in ice sheet geometry that are the primary cause for differences in the nodal- versus element-5

based masking schemes will also decrease, and the two sets of model results should converge. Indeed this is exactly what

we see for the P75S and P75R experiments. Similar to the observation of Gagliardini et al. (2016) that the LG, DI, and

FF implementations in Elmer/Ice all converge to a similar solution with increasing resolution, we demonstrate here that the

FELIX-S results also appear to converge to that same solution with increasing grid resolution (Figures 5-7). When considering

the two most comparable implementations of the basal boundary condition masking schemes (FELIX-S and Elmer/Ice FF), the10

two models agree for the P75S and P75R experiments to within the estimated truncation error for Elmer/Ice at all across-flow

grid resolutions explored here (Figure 8). For the Elmer/Ice DI and LG implementations, the differences with FELIX-S as a

function of grid resolution are also clearly converging (Figure 8).

7 Conclusions

We have conducted a first, detailed comparison of two full Stokes ice sheet models, FELIX-S and Elmer/Ice, applied to the15

MISMIP3d benchmark experiments. While previous informal comparisons have suggested very close agreement between the

two models (Leng et al., 2012), here we explore the model similarities and differences much more carefully, focussing on how

differences in model numerics lead to differences in model outputs when using identical meshes and forcing, and in particular

on differences important for the simulation of marine ice sheet dynamics.

Overall, we find very close agreement between the two model outputs for cases where the impact of rather arbitrary choices20

in the implementation of basal boundary conditions can be minimized; for the P75D experiment, diagnostic solutions (e.g.,

velocity fields) agree to within ∼2-5%. While it is difficult to attribute those small differences to particular numerical choices

made by the two models, it is likely that different element types and basis functions and slightly different implementations of

the contact problem for floating ice play a role. More significant differences between the two sets of model results are found for

prognostic problems. Overall, we find that equilibrium grounding lines for FELIX-S are relatively more retreated than those25

for Elmer/Ice (as demonstrated by the Stnd experiment) and that FELIX-S is slightly less inclined to ground, and hence less

inclined to show grounding line advance then Elmer/Ice (as demonstrated by the Stnd and P75S and P75R experiments).

A detailed look at the two models strongly argues that differences in the basal boundary masking schemes and in the

implementation of the basal friction coefficient are the source of these differences. As we are currently unable to judge whether

or not one scheme is superior to the other, our results urge caution when interpreting the results from full Stokes models as30

the metric for accuracy in model intercomparisons. More importantly, however, we are encouraged to find that, as the grid

resolution for both models increases, the differences between the two models continues to decrease. For their most comparable

implementations, the models agree to within the estimated truncation error for one of the models. This finding suggests (but

11



does not prove) that, in the limit of high grid resolution, multiple full Stokes models can be shown to agree on a particular test

case solution, despite small differences in their numerics.

Future efforts could improve on the work presented here by confirming the truncation error for the FELIX-S model, in order

to understand if different numerics might be a means for further reducing model truncation error. Also, by running simulations

at even finer grid resolutions, future efforts could definitively confirm that the results from multiple Stokes models converge in5

the limit of very fine grid resolution.
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Table 1. Parameters used in Elmer/Ice and FELIX-S.

Symbol Constant Value/Units

ρi ice density 900 kg m−3

ρw water density 1000 kg m−3

g gravitational acceleration 9.8 m s−2

n flow law exponent 3

A flow law parameter 10−25 s−1Pa−3

C Bed friction parameter 107 Pa m−1/3 s1/3

m Bed friction exponent 1/3

ȧs Accumulation rate 0.5 m a−1

Table 2. Comparison between Elmer/Ice (LG, DI and FF) and FELIX-S GL positions for the Stnd and P75S experiments. The xG0 denotes

the steady state GL position in the Stnd experiment. The rows for ∆xGLc and ∆xGLm denote the differences between xG0 and the GL

position at year 100 in the P75S experiment, at the centerline and margin, respectively. As it is invariant in the across-flow direction, we do

not explore the sensitivity of the Stnd experiment to across-flow resolution. All GL positions and differences are given in km.

FELIX-S Elmer/Ice (LG) Elmer/Ice (DI) Elmer/Ice (FF)

Ny 20 40 80 20 40 80 20 40 80 20 40 80

xG0
519.850 – – 529.550 – – 526.800 – – 522.350 – –

∆xGLc 0.100 4.350 9.400 18.950 16.350 15.050 9.250 10.825 11.950 1.950 6.425 9.900

∆xGLm −14.050 −8.950 −6.250 −0.100 −2.750 −3.850 −8.000 −7.050 −6.250 −13.050 −10.250 −7.850
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Figure 1. A schematic of the different basal boundary masking schemes used by FELIX-S and Elmer/Ice and their impact on the definition

of the MISMIP3d basal friction coefficient (C(x,y) is assumed uniform beneath grounded ice for illustrative purposes. For floating ice,

C(x,y) = 0.). Circles denote the nodes at the ice-bed interface, defining the basal finite element faces (triangular and quadrilateral for

FELIX-S and Elmer/Ice, respectively); open circles denote floating nodes for which z(x,y, t)> b(x,y) and solid circles denote grounded

nodes for which z(x,y, t) = b(x,y) and −σnn > Pw. Numbers 1-8 identify triangular element faces of FELIX-S and letters A-C identify

specific nodes common to both models. As discussed in Section 6, the different masking schemes lead to the different grounding line positions

and also to the different nodal values of C along profiles 1-3. The C profiles based on DI for Elmer/Ice (heavy red line) and FELIX-S profiles

(heavy blue line) are shown, as are the corresponding Elmer/Ice FF (black dashed) and LG (black dotted) profiles.
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Figure 2. Comparisons of mean across-flow velocities for lower (ub, vb, wb) and upper (us, vs and ws) surfaces along the x direction

for FELIX-S (black-solid line), Elmer/Ice FF (red-dashed line), DI (black-dotted line) and LG (blue-dotted line) cases for the diagnostic

experiment P75D. Where the black dotted line is not clearly visible, Elmer/Ice and FELIX-S solutions are overlying.
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Figure 3. Comparisons of mean across-flow velocity differences for lower (∆ub, ∆vb and ∆wb) and upper (∆us, ∆vs and ∆ws) surfaces

along the x direction for FELIX-S and Elmer/Ice for the diagnostic experiment P75D. The blue-dotted, black-solid, and red-dashed lines

denote the differences by substracting Elmer/Ice LG, DI and FF values from FELIX-S values, respectively.
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Figure 4. Convergence of the Stnd experiment as a function of along-flow grid resolution (circles), as discussed in Section 5.2. Error

estimate for grounding line position are based on Richardson error estimation. Black-dashed and dash-dot lines show perfect linear and

quadratic convergence rates (respectively).
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Figure 5. GL evolution on both the symmetry axis (upper curves) and free-slip boundary (lower curves) for the P75S (solid curves) and

P75R (dashed curves) comparisons between FELIX-S (bold-black curves) and Elmer/Ice DI (a; thin-black curves), LG (b; thin blue curves)

and FF (c; thin red curves). The number of elements along the y direction is 20 (∆y = 2500 m). Note that GL positions are plotted relative

to their equilibrium positions in the Stnd experiment.
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Figure 6. GL evolution on both the symmetry axis (upper curves) and free-slip boundary (lower curves) for the P75S (solid curves) and

P75R (dashed curves) comparisons between FELIX-S (bold-black curves) and Elmer/Ice DI (a; thin-black curves), LG (b; thin blue curves)

and FF (c; thin red curves). The number of elements along the y direction is 40 (∆y = 1250 m). Note that GL positions are plotted relative

to their equilibrium positions in the Stnd experiment.
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Figure 7. GL evolution on both the symmetry axis (upper curves) and free-slip boundary (lower curves) for the P75S (solid curves) and

P75R (dashed curves) comparisons between FELIX-S (bold-black curves) and Elmer/Ice DI (a; thin-black curves), LG (b; thin blue curves)

and FF (c; thin red curves). The number of elements along the y direction is 80 (∆y = 625 m). Note that GL positions are plotted relative to

their equilibrium positions in the Stnd experiment.
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Figure 8. Difference in FELIX-S and Elmer/Ice GL position changes (∆GLElmer - ∆GLFELIX ) at the centerline for the P75S experiment

as a function of increasing across-flow (y) resolution (resolution increases from 2500-625 m asNy increases from 20-80). Lines representing

the differences relative to the LG, DI, and FF implementations in Elmer/Ice are labeled. Black-dashed line shows the slope for a theoretical

first-order convergence rate. Grey-dashed line shows the estimated Elmer/Ice truncation error of ∼2 km, from Durand et al. (2009a) and

Gagliardini et al. (2016).
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