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Basal buoyancy and fast moving glaciers: in defense of
analytic for ce balance

C.J. van der Veen

Department of Geography and Atmospheric Sciencejddsity of Kansas, 203 Lindley Hall, 1475
Jayhawk Blvd, Lawrence, KS 66045

Abstract. The geometric approach to force balance advodated Hughes in a series of publications has
challenged the analytic approach by implying thatlatter does not adequately account for basalanay

on ice streams, thereby neglecting the contribut@othe gravitational driving force associated wiitis
basal buoyancy. Application of the geometric apploto Byrd Glacier, Antarctica, yields physically
unrealistic results and it is argued that this éxduse of a key limiting assumption in the geometri
approach. A more traditional analytical treatmehforce balance shows that basal buoyancy does not

affect the balance of forces on ice streams, exoeptly perhaps, through bridging effects.
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1. Introduction

Ice streams are fast-moving rivers of ice embedddte more sluggish-moving main body of ice sheets
and are responsible for the bulk of drainage from interior in West Antarctica. Most ice strearterts
well upstream from the coast, some extending seévenadreds of km into the interior, and drain into
floating ice shelves or ice tongues and are bealieeerepresent the transition from inland-style ésh
flow” to ice-shelf spreading. The nature of thisrtsition remains under debate, however.

In a long series of papers, T. Hughes presentgdbemetric approach to the balance of forces acimige
shelves, ice streams, and interior ice (Hughes6.19892, 1998, 2003, 2009a, 2009b, 2012; Hughak,et
2011, 2016). Rather than working his way througje basic equations, as done by most other
investigators, including Van der Veen and Whillafi®89) and Van der Veen (2013), he presents
derivations based on graphical interpretation iaintyles representing forces acting on an ice coluhm
essence, the transition in flow regime is achidwgdhtroducing a basal buoyancy factor that desgsritine
gradual ice-bed decoupling towards the groundime,. li

The idea of basal buoyancy has been invoked mamgstbefore in glaciology, in particular in the eofit

of formulating a sliding relation. In many modetse sliding speed is assumed to be inversely ptiopal

to the “effective basal pressure” defined as tlifedince between the weight of the overlying icd #re
pressure in the subglacial drainage system. Imélyt this approach may seem to make sense: as the
subglacial water pressure increases, the normakfon the bed should be reduced, thus allowing the
glacier to move faster. However, this does natcfthe balance of forces in the horizontal dimettias
suggested by Hughes (2008, 2012).

The objective of this brief note is to evaluate thwplications of Hughes’ geometric approach to éorc

balance by applying the results to Byrd GlaciestEntarctica.

2. Force balance: analytical approach

Analytical treatments of glacier force balance muenerous and derivations of the depth-integratecefo
balance equations are now standard fare in mosipipgy textbooks. In most cases, this balancemes
is discussed in terms of stress deviators, defasethe full stress minus the hydrostatic pressiies is

done because the flow law for glacier ice relatesirsrates to stress deviators. That is

1
a'j = Gj ‘géj[f&x +qy +C§z] 1)
where the prime denotes the stress deviator andnueg stresses are full stresses, éﬂd: 1fori=jand

5ij = 0 for i# j. Deviatoric stresses are called for in the flaw for glacier ice because the rate of

deformation is in good approximation independenttte hydrostatic pressure. However, the use of

deviatoric stresses in discussing the balanceregfounnecessarily complicates the interpretatenabse
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the longitudinal deviatoric stress in one directi@pends on the full normal stresses in all thiesctions

of a Cartesian coordinate system. It is more comve to consider stresses in a glacier as the afutime

stress due to the weight of the ice (lithostatiesst) and stresseRij , due to the flow (resistive stresses).

This partitioning makes a clearer distinction bedweaction and reaction in glacier dynamics (Whélan
1987) and follows common practice in geophysicsgéher, 1993, p. 10; Turcotte and Schubert, 2002, p
77).

It may be noted that the term “resistive” stresarisunfortunate choice, perhaps, because thessedreo
not necessarily always offer resistance to flonor Example, gradients in longitudinal stress canirac

cooperation with the driving stress in pulling tite forward. A more appropriate terminology would

perhaps bedlow stress or, following geophysical terminologytectonic stress. The Rij represent the

stresses that are associated with glacier defoomadis opposed to the lithostatic stress whichritescthe
action of gravity. However, the existing termingjoappears to have made its way into the glacioligi
literature (e.g. Cuffey and Paterson, 2010 sec8¢dh2) and a name change at this stage likely would
introduce even more confusion.

Van der Veen (2013, sect. 3.1) presents a derivatib the column-average balance equations by
integrating the momentum balance equations ovefulhée thickness. Van der Veen and Payne (2004)
and Van der Veen (2013, sect. 3.2) present a dismu®f force balance based on geometric arguments
and, not surprisingly, arrive at the same resWithout loss of generality, flow in one horizontitection
may be considered. That is, the horizontal x-&xishosen in the direction of flow and it is assdntigat
there is no component of flow in the other horizbnytdirection. The z-axis is vertical upward, lwit = 0

at sea level. Force balance in the flow direcitihen described by the following equation (Vandeen

and Whillans, 1989; Van der Veen, 2013, sect. 3.1):

Tax = Thx ~ %(Hﬁxx) - aa_y(Hﬁxy) 2)

In this expressionTy, denotes the gravitational driving stress, defiagd

Tgc = ~PgHS. 3)
where p represents the density of ice, g the gravitatiaaaleleration, H the ice thickness, and h the
elevation of the upper ice surface. The termsherright-hand side of equation (2) represent tkestance
to flow associated with, respectively, drag at th&cier base, gradients in longitudinal stress I{iipg
power”) and lateral drag arising from shear betwten faster-moving ice stream and the near-stagnant
interstream ridges or fijord walls. The tilde (-9ndtes depth-averaged values. Resistive stresses a

defined following Van der Veen and Whillans (1983)

Ryx = Oxx + pg(h- 2 (4)



79 Ryy = Oxy (5)

80 whereq;; represents the full stress, apgh — z) the lithostatic stress (weight of theab®ve) at depth z.
1j

y

81  The balance equation (2) is exact. No approximatiare involved in deriving this expression frora th
82  basic equations describing the balance of forcea sagment of ice (Van der Veen and Whillans, 1989;
83  Van der Veen, 2013, sect. 3.1). Consequently,dfisation applies to free-floating ice shelves whtbe

84  gravitational driving stress is balanced entirely dradients in longitudinal stress, yielding theasdlic

85  Weertman (1957) solution (Van der Veen, 2013, séd), as well as laminar flow with basal drag
86  providing sole resistance to flow (Van der Veenl20sect. 4.2). Except for these two end-member
87  solutions, equation (2) does not permit analytisalutions without making additional assumptions.
88  Nevertheless, because no approximations were nmaitke derivation, balance equation (2) applies #gua
89  well to transitory flow regimes such as ice streamd outlet glaciers.

90 Integrating the balance equation over the widtthefflowband simplifies the resistive term assadatith
91 drag at the lateral margins. Denoting the latehalar stress at the margins by (assumed to have the

92  same magnitude but opposite signs at both latesadjims), and glacier width by W, lateral resistannea
93  section of glacier of unit width is (Van der Ve@913, eq. (4.39))

2Ht
94 K= = 6
5=y (6)
95 and the width-averaged force-balance equation besom
oh _ 0 (= 2HT1g
96 TPOHZ = Tox - &(H Ryx) + ()

97  with the understanding that all terms are averamest the flowband width (or, equivalently, consietkr
98 constant across the flowband), and equation (3)kas substituted for the driving stress on thehahd

99 side. Note that contrary to what Hughes (200%3).states, lateral drag does not vanish at theeceha
100 glacier. While the shear stresRXy, is zero at the centerline, its transverse devigadnd thereby
101 resistance from lateral drag, is not zero therefatt, according to equation (6), this resistaisogonstant

102  across the glacier width.

103  The geometric approach developed by Hughes aratvasimilar balance equation, namely

Ah AHog | 2HTg
104 -pgH— =1 - + 8
PO T T Tax W (®)
105  (Hughes, 2003, eq. (36)) or, taking the linflix — O
oh OHog | 2HTg
106 -pgH— =1, - + 9
POH= =Tp ™ W 9

107  Inthese balance equatiorsg is related to the deviatoric tensile stress; xisce interpretation has evolved

108 over the years. To avoid unnecessary confusi@onaistent notation is used in the following distos,
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based on Hughes (2008, 2012). Comparison of eanga(i’) and (9) shows that = Iixx. It is the way

this stress is calculated that sets Hughes' geanapproach apart from the analytical approach.
essence, this stress is linked to basal buoyandy ianlater versions, downglacier-integrated resise

from basal and lateral drag. While the force bedaequation (7) does not imply any assumption athmut

depth-variation in the longitudinal resistive s&reR, , Hughes (2003) explicitly argues that bati and

the associated stretching ragg,, , must be constant in the vertical direction.

3. Force balance: geometric approach

Discussing force balance for stream flow, Hughé¥08 section 11) equate®e with a basal buoyancy

factor,@, as
H
OfF = E!l__q@
2
where
H R
pH R

(10)

(11)

In

is determined by the ratio of the areal averageefvptessure under the ice, and basal ice pressure (

weight of the ice column)p,, represents the density of sea water. For a figatie shelfp = 1, and

expression (10) reduces to the solution for a fieating ice shelf spreading in the x-direction ynl
(Weertman, 1957; Van der Veen, 2013, sect. 4.9r iRand-style flow,¢ = 0, and the lamellar flow

solution can be derived. For ice streams and togléeiers that represent the transition from iotestyle

flow to ice-shelf spreading, O@< 1. In first-order approximation

HO
H(x)

(p:

(12)

where H represents the thickness at the grounding lind, lfx) the ice thickness at some distance x

upstream of the grounding line (Hughes, 2008, &4.1()). This relation is robust and a decrease in

going upglacier from the grounding line increasesbed coupling and generally yields a concaveasarf

profile (Hughes, 2008, p. 58).

Hughes (2008) takes the geometric approach to andével and relates all resistance to flow on ice

streams to the basal buoyancy facgor)n addition to relating the longitudinal stressviator to this factor,

lateral and basal drags are linkedgt@as (Hughes, 2008, table 12.1; see also Hughe®afiOHughes,

2012, table 12.1; Hughes et al., 2016, egs. (12Y)

ah 9
Tp = —ng(l—cp)Z& - pgH? (1—<p)§p

(13)
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_ 2HTtg

oh 1 0
R = - 2pgHPW-9);" ~ SPOHW(- B’ (14)
ox 2 0x
while the longitudinal stress gradient term is gy
OoHo oh 0
F = pgHgl g7 + Hoo (15)
X 0x 0x

These equations are derived without consideratibrice® velocity or physical properties of the ice
(temperature, stiffness, fabric development, etir,) for that matter, basal water availability dralance.
Presumably, all these factors are somehow refleictetthe ice-stream geometry and the inferred basal

buoyancy.

4. Geometric approach: application to Byrd Glacier, Antarctica

Balance of forces on Byrd Glacier, East Antarctigas first discussed by Whillans et al. (1989) wised
measurements of surface velocity and surface t@pbyr derived from repeat aerial photogrammetry, to
evaluate the relative roles of lateral drag, gnaien longitudinal stress, and basal drag in tiegjsthe
gravitational driving stress. Van der Veen et @014) reconsidered these calculations and also
investigated the effect of drainage of two sub-gldakes in the catchment region. Both studiepleged

the analytical force-balance approach.

Reusch and Hughes (2003), Hughes (2009a), Hugheds @011), and Hughes et al. (2016) discuss force
balance on Byrd Glacier from the geometrical perpe and take issue with the analytical approakch o
Whillans et al. (1989). None of these studies ieipt shows how the various resistive forces valgng

the glacier and, instead, largely base their dsionson how the basal buoyangy,varies upstream of the
grounding line. Therefore, to fully appreciate theplications of the geometrical approach, equati¢i8)

— (15) are applied here to evaluate all terms énbtlance of forces.

The geometry is shown in Figure 1 (Van der Veemlgt2014, fig. 6). Only the lower 30 km stretch
upstream of the grounding line (at x = -10 km) @nsidered here because that is the region laterally
bounded by near-parallel ford walls. Also showrFigure 1 is the basal buoyancy factor calculatethf

eg. (12);p increases from around 0.7 a little more than 30ugstream of the grounding line, to 1 where
the ice starts to float. While there is nothingparticular wrong or disturbing about this basabyancy
factor, the situation becomes more problematic vtheractual forces are considered.

The average driving stress is ~160 kPa, but shamge Ispatial variations that appear to be tempofiakd
(Figure 2). Gradients in longitudinal stress arestly negative, averaging -140 kPa along the flogli
implying that, except in a few isolated locatiotigs term acts in the same directions as the djisginess,
draining the grounded ice into the Ross Ice Shélb maintain balance of forces, flow resistance is
partitioned between basal drag (~53 kPa) and lateag (~247 kPa). In the geometric approach bilik

of flow resistance is associated with lateral daagl basal drag supports only about 1/3 of the miyivi

stress. The finding that longitudinal stress ggathi act in cooperation with the driving stressroae

6
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distance of more than 30 km is surprising and tieer® credible physical mechanism that can exgtam
Even on a free-floating ice shelf, where other sesrof flow resistance may be neglected, gradients
longitudinal stress arising from water pressuretaaippose the driving stress (Weertman, 1957; tfem
Veen, 2013, sect. 4.5). Hughes et al. (2016, f) 26gue that the water buttressing produces ashrasls
in the longitudinal force balance, and that thia i®al stress that is obscured using continuunhargcs in
the conventional analytical approach. AccordindHtimghes (2008, 2012), this stress, or “pulling pdwe

results in the overestimation of longitudinal strgsadients, adding to the driving stress.

5. Limitation of the geometric approach

To understand the limitation in the geometricalrapph to force balance, consider the forces alongea
stream flow line as discussed in Hughes (2008 3f.% (see also figure 1 in Hughes (2003), and &gy
(2012, section 11)). The geometry is shown in F@g8. While Hughes (2008, p. 53; 2012, p. 66)
erroneously states that resistance from laterag daamishes at the centerline of an ice stream lagcktore
does not include this source of resistance in tsisudsion, this has no significant impact on thHev¥ang
discussion — lateral drag can be readily addetieédobsal drag term without altering the generatttenf
the analysis.

According to Hughes (2008, 2012), the gravitatiairaling force at x is

E

g = area ADF= %p gﬁ (16)

and this force must be balanced by longitudinaistieg) forces consisting of a “water buttressingcé’
(area CDE), a tensile force (area BCE), and a lursg force (area ABEF). The basal drag force lsqua
integrated basal resistance from the grounding tinéhe upglacier location (integrated resistarmoenf
lateral drag could also be included in this ternthe area of each triangle is obtained from theilfam

formula (basex height) / 2, where the base either equals theweeburden pressure (DFpgH) or water

pressure (DE =p,, gH), and the height equals the ice thickness (AM)s flotation height (BD =

H¢ = (py /P)Hy ). or the piezometric height (CD #H,, =R, /(p,,9)). Thus, each of the resistive

terms can be evaluated as a function of local ltekbhess and water pressure. The reason why, for
example, area ABEF should be associated with laiaglforce (or basal plus lateral drag), remairdaar

but is irrelevant.

The problem with this reasoning is thléé does not represent the gravitational driving force. Rathbis

force equals the lithostatic force associated withweight of ice. When considering horizontakcts at
any location, this force is balanced exactly bygnal but opposite force from ice of equal thiclknes the
left of the vertical line AD, except at the calvirigpnt. In other words, adhering to the geometric
representation, triangle ADF is balanced by theanitriangle ADP (Figure 4a), whether one considers
ice shelf, ice stream, or interior ice. The gramvitnal force that drives glacier flow is assodiateith

gradients in lithostatic stress (Figure 4b). Areot geometry-based discussion of force balancddvou
7
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consider the difference between lithostatic stegssand at some location xAx downglacier, and, in the
case of a sloping bed, lithostatic stress actingherbed, and the difference between longituditralss at
both locations, in addition to basal and lateralgdacting over the distance considered. Doingssghe
balance equation (7) with the term on the left-hsiulé representing the driving stress (Van der \awh
Payne, 2004; Van der Veen, 2013, section 3.2).

It is not possible to relate resistive forces af ktation to point values such as basal waterspiresor
weight of the ice at location x. While resistiveesses, such aR,, , can be evaluated at specific points,

resistance to flow is associated with gradientthase stresses (see, e.g., Van der Veen, 2013e fgjli

and egs. (3.8) — (3.9)). Balance of forces is anbaningful if applied to flowline segments, natgie
locations. Consequently, the concept of forcermadaat any location is inherently flawed. Whilenpaif

not most, glaciologists, Van der Veen (2013) ineldidoften refer to driving stress or basal dralgedtion

X, it would be more appropriate to refer to thesmrgities as areal averages. If the surface sippe
calculated over a distanc&2 the associated driving stress is the average theeinterval (x -Ax, X +

Ax), and similarly for basal drag. Nuancing comnpamlance to reflect this subtlety would render many
discussions of glacier dynamics unnecessarily cusabee and should be superfluous for most readers

understanding the fundamentals of glacier dynamics.

6. Discussion

While the geometric force balance approach is stydimited, it is worth exploring the central prima of
Hughes'’ ideas, namely that the transition from sfees to shelf flow is achieved through basal baogy,
with interior ice firmly grounded on bedrock anea ishelves floating in sea water. It should be chobat

for both these end member solutions, at any lopétie weight of an ice column is fully supportednfr
directly below: terra firma in the case of groundss] and sea water for ice shelves.

While not immediately obvious, the role of varyisgbglacial water pressure is included in the force-
balance equation (2), namely though bridging effgdtan der Veen, 2013, sect. 3.4). To clarify this
consider that resistive stresses are linked tanstedes, or velocity gradients, by invoking Glefiaw law

for glacier ice (Van der Veen and Whillans, 198an\der Veen, 2013, sect. 3.3):

1/n=-1( ,. .

Ryx = Beg | (26xx +Eyy) + Ry (17)
1/n-1.

Ryy = Bég | “£xy (18)

Here, B represents the temperature-dependent aaterf and n = 3 the flow-law exponerdg is the

effective strain rate defined as the second inmacéthe strain-rate tensor. The last term onridpet-hand

side of equation (17) is the vertical resistivessrdefined as

Rz2(2) = 0+ pg(h- 2) (19)
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The stress R represents the difference between the full verst@ss,o,,, and the lithostatic stress, or

weight of the ice above some level. This termearis equation (7) because Glenn’s flow law relatesn
rates to deviatoric stresses, rather than fulkses.

For brevity of notation, the along-flow resistivieess is written as the sum of a contribution assed
with along-flow gradients in velocity (first ternrmahe right-hand side of equation (17)) and thdicalr

resistive stress:

Rxx = Rg(?() + Ry (20)

Force-balance in the horizontal direction can thiso be written as
h

Tax = Tpy — %(H RO) - aiy(H Ryy) - %hJH R,,(2)dz (1)
Where the weight of the ice is fully supported hg substrate below, the vertical resistive streszero.
This is the assumption usually made when consigehia budget of forces acting on glaciers (e.g. ¥an
Veen and Whillans, 1989). Locally, however, bridgieffects may be important, for example where a
water-filled cavity exists at the ice-bed interfg&an der Veen, 2013, sect. 7.2). Where cavitatiocurs
and basal ice becomes separated from the bedatlity cannot support the weight of the ice leading
shear-stress gradients that effectively transferviieight to surrounding areas where the ice isoimaxt
with the bed, such that the areal average of thiécaéresistive stress is zero. Thus, on a laage, such
as the length of ice streams and outlet glacieasabbuoyancy is a non-issue where horizontal force
balance is concerned. Indeed, Hughes (1998, €5)) (Bes not include bridging effects in his dssions
and equates the total vertical stress at depthetdithostatic stress.
Basal buoyancy may be important on ice streamsoaiiét glaciers according to the commonly-adopted
sliding relation in which sliding speed is invess@roportional to the effective basal pressure effef
(2007) suggests that this proportionality may explapid velocity increases on tidewater glaciens a
Greenland outlet glaciers: as these glaciers thlirarel thickness approached flotation, the effedbagal
pressure approached zero, resulting in a largeed@ser in sliding velocity. Another possibility isat
increased basal buoyancy reduces basal drag, thallelwing glaciers to move faster. The importanée
these effects can be evaluated from analysis & teries of surface speed and glacier geometnysiog
numerical models based on the balance equation (7).
The primary difference between shelf flow and streffow is not that on ice shelves the ice weight is
supported by water and on grounded interior ice Wheight is supported by the bed below. The main
difference is that, because ice shelves float itewydasal drag is zero and resistance to flow rbest
partitioned between gradients in longitudinal "resd lateral drag, whereas for sheet flow, baszj d
provides most resistance to flow. Thus, it wolddra reasonable to propose that the transition floeet
to shelf flow involves a gradual reduction in basadistance, perhaps associated with the preseitizien w

deforming sediments, or gradual drowning of bedtatles. As basal drag becomes less important,
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longitudinal stress gradients and lateral drag rmesease and provide most or all resistance tdlthe of

ice streams.

7. Concluding remarks

The geometrical approach to ice sheet modelingslick-bed coupling directly to the stresses thsiste
horizontal gravitational motion (Hughes, 2008, @).3 This basal buoyancy supposedly translatesanto
major component of gravitational forcing by whiaeisheets discharge ice into the sea (Hughes, 2003)
As shown in this contribution, the geometric forbalance as presented by Hughes in a series of
publications cannot be successfully applied tosteams and outlet glaciers. This is not to say ¢h
geometric approach is inherently flawed — if impéted correctly it should produce consistent amdect
results but this has yet to be achieved.

The charge that the analytical force-budget apprdaits to account for basal buoyancy and excluales
“water buttressing force” on ice streams is incarreEquation (7) describing the depth-integratetiubce

of horizontal forces is derived without making asiynplifying assumptions and applies equally well to
floating ice shelves and firmly grounded interice.i If some force is missing from this equatids force
must also be missing from the momentum balance tieqsathat form the starting point for deriving
equation (7).

Hughes is correct that ice streams and outlet glacepresent the transition from sheet flow aradf Slow

and that much remains to be understood about ttueenaf this transition. Advantageously, ongoiagid
changes on many of the outlet glaciers have bedndaeumented through time series of surface elemat
and surface velocity. The latter, in particulare @owerful indicators of the distribution of stses on
glaciers because strain rates (velocity gradieats)directly linked to stresses through the flow far
glacier ice. Improved understanding of the dynanuitrapidly-changing ice-sheet components will eom

from interpretation of strain rates and temporarges therein.
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337  Figure 1. Geometry of the lower part of Byrd GeagciEast Antarctica. The dashed line in the lopaarel

338  shows the buoyancy factor, calculated from eq..(12)
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14



D 5 E
e

340 Figure 3. Geometric force balance according to Hésg(2008). H represents ice thickness,tit
341 flotation height or height of the ice column supgpdrby basal water pressure, ang Hhe piezometric

342  height; Ry and R represent the basal water pressure and weighedté column, respectively. Ice flow is

343  fromright to left.
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Figure 4. (a) at any location the lithostatic s¢rencreases linearly with depth from zero at teesurface
to pgH at the base; the lithostatic stress from icéherright of the vertical line AD is balanced byegual
but opposite lithostatic stress from ice on théntrignd the area of triangle ADF equals that ofngla
ADP. (b) gradients in lithostatic stress are asded with a sloping ice surface, h(x), resultingaismaller
lithostatic stress in the downslope direction; difeerence between the areas of both trianglesneasure

of the gravitational driving stress responsibledtacier flow.
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