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Response to reviewer #1 to «A model for the spatial distribution of snow water equivalent 1 

parameterised from the spatial variability of precipitation” by T. Skaugen and I.H. 2 

Weltzien. 3 

Let us first express our gratitude for the reviewers who spend their precious time securing the quality of our 4 

research, it is very appreciated.  5 

We have tried to break down the general comments into separate statements and will provide a response and a 6 

suggestion of correction to each of these. 7 

In the marked-up MS new text is marked in red and moved text is marked with green. Unfortunately, the word 8 

version is Norwegian, so “Slettet” means deleted and “Flyttet” means moved. We hope this is not too 9 

inconvenient.  10 

General comments:  11 

1.The context of the research, however, is not clearly formulated in the introduction. 12 
 13 
Response: We agree that, at present, the introduction could be more focused. What we want to bring 14 

across is 1) that hydrological models has too many free parameters which constitutes a problem for 15 

making predictions in ungauged basins and for a changed climate. In addition 2) we want to demonstrate 16 

that that the proposed algorithm for the spatial frequency distribution of SWE which is not calibrated 17 

against streamflow is a good alternative. 18 

Change: We have restructured and shortened the introduction in order to focus more on the two points 19 

above. We have dropped the degree-day melt model as an example of a calibrated model since it 20 

probably just confuses the issues. Furthermore, the discussion of large sample hydrology is dropped. The 21 

detailed description of SD_LN is moved to subsection 2.3 (p.17.l1-19 in marked MS) of the methods 22 

section. We have also included the review of the spatial PDF of SWE used in hydrological modelling 23 

(p5.l.11-20, p.6.,l.1-4, in marked MS), originally placed in the methods section, in the introduction.  24 
 25 
2. The basic assumptions and previous literature on the use of PDF of SWE is not clearly presented, nor the difference 26 
to SWE modelling based on simple degree-day or more sophisticated physically based snow modelling. 27 
 28 
Response: In the introduction we emphasize the importance of a realistically simulated PDF of SWE 29 

(p.4, l.19-p.5, l.3) and section 2 “Methods” (p.8,l.1-14) starts with a review of the many statistical 30 

models used for the PDF of  SWE. Furthermore, the topic is revisited in the discussion (p.25, l.13-p.26, 31 

l.15).  32 

In this study we do not consider the modelling aspects of snowmelt, only the spatial distribution (PDF) 33 

of SWE. The degree-day model is a snowmelt model, and by “more sophisticated physically based snow 34 

models” we suppose R#1 refers to point models like SNOWPACK and CROCUS, which are not used 35 

for catchment modelling and are hence not relevant for this study.  36 
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Change: The review on PDF models for SWE in section 2 is more suitably placed in the new, more 1 

focused introduction (p5.l.11-20, p.6.,l.1-4, in marked MS). It is outside the scope of the paper to also 2 

discuss snowmelt and point models. 3 
 4 
3. I would suggest to clearly outline the approach and also present literature which combines such statistical models 5 
with rainfall runoff modeling in the past. In the methodology some basic outline would be also useful (e.g. some 6 
schematics how the snow accumulation and melt is modelled by the approach). 7 
 8 
Response: Both reviewers R#1 and R#2 have comments regarding the structure of the paper, and we can 9 

understand that the paper would improve with the restructuring of especially the introduction and the 10 

methods (Section 2).  11 

Change: In the restructured and more focused introduction, the approach of this study is more clearly 12 

outlined. The methods section hasl have an introduction, an overview (p.7,l.20-22, p.8 and p.9,l.1-3 in 13 

marked MS), where the different steps for estimating the spatial PDF of SWE is outlined. The procedure 14 

for snowmelt is described in section 2.3 (p.16, l19-21 in marked MS)  15 
 16 
4. Moreover the results might be elaborated in more thorough way (including figures). I agree that using a large sample 17 
of basins is important, but the results do not show much of the value of such large dataset. It will be interesting, for 18 
example, to stratify the basins in the figures according mean elevation, size, or some other characteristics to show some 19 
more information than just the efficiency. 20 
 21 
Response: Again, this comment is common for both R#1 and R#2, and we think this is a good point. 22 

Change: We describe the results on runoff, SWE and SCA stratifying the catchments as suggested. We 23 

hav included a new table (Table 3, p43 in marked MS) showing significant correlations between the 24 

results and catchment characteristics (CCs). When the results for Runoff, SWE, SCA and snow cover 25 

duration are presented, we also present significant correlations between results and CCs. (p.20, l18-19 26 

,p.21, p22,p23,p24,l1-9, in marked MS) A new Figure (Fig.9) is included that shows the mean 27 

snowcover duration using the two models. In figures 5, 8, and 9, the catchments are now organised 28 

geographically.  29 
 30 
5. It is not very clear, why the improved snow simulations do not result in better runoff simulations. Some more 31 
evaluations will be interesting here. 32 
 33 
Response: Again, this comment is common for both R#1 and R#2, and ideally one would expect 34 

improved runoff simulations when the snow is better simulated. The failure to do so, however, is not an 35 

uncommon feature for hydrological models with many free calibration parameters. In Parajka et al. 36 

(2007) they found that when the hydrological model was calibrated against snowcover data in addition 37 

to runoff, snow simulations got better, but runoff simulations deteriorated. In our own example shown in 38 

Figure 10, SD_LN performs best with respect to runoff simulations when unrealistic snow is simulated, 39 

a clear example of a model that works well with respect to runoff, but not for the right reasons. The 40 

reason for such a behavior is probably due to inadequate model structures. When the parameter for the 41 

spatial distribution of SWE in SD_LN is allowed to be optimized against runoff without physical 42 

constraints, unreasonable values for the parameter may be the result. If, however, the snow distribution 43 



 

3 

 

is “forced” to behave realistically, given the (inadequate) model structure, the runoff simulations 1 

deteriorate quite substantially. When SD_G is used, however, we get both reasonably good runoff and 2 

snow simulations.  3 

 4 

Change: We have elaborated on this in the discussion section with arguments used above (p.25, l.7-15 5 

in marked MS).  6 
 7 
Specific comments: 8 

 9 
1) Abstract: The applied methodology and model concept is not clearly presented (the abbreviations SD_G, LN 10 

are not very intuitive). The period used for analyses is missing 11 
 12 

Response: Clearly the abbreviations should be spelled out. We do find it difficult, however, to see major 13 

points where improvements on the presentation can be made. The main point is that one method is 14 

calibrated against runoff and the other method is not. There are not much room for going into details on 15 

the method.  16 

Change: We have spelled out the abbreviations and included the period used for analysis and tried to 17 

make the outline more clear (p.2 in marked MS). 18 
 19 

2) Introduction: This part does not have a clear story. It mixes different topics, but does not clearly outline the 20 
research problematic and does not clearly show what the results of previous studies are. The meaning and 21 
basics behind the PDF modelling needs to be introduced on lower technical level. 22 
 23 

Response: This is a similar comment to the first general comment and we agree.  24 

Change: see response and change to first general comment. 25 
 26 

3) Modeling: It is not clear whether the results show the calibration or validation period. 27 
 28 

Response: That is true. The models were calibrated on data from 19858(1.9)-2000(31.8) and validated 29 

on data from 2000(1.9) -2014(31.12) 30 

Change: This information is included in section 2.4 (p.18, l.19-29 in marked MS) 31 
 32 

4) Snow cover area results. It will be interesting also to see the model performance in terms of snow cover 33 
duration. 34 

 35 
Response:Yes, and this comment is in line with that of R#2 for Page 20 line 2: An analysis of snow 36 

cover duration will reveal how many catchments that suffers from “snow-towers” using SD_LN 37 

Change: We have analysed the snowcover duration using SD_G and SD_LN, see Figure 9 and in sect 3. 38 

, (p.24, l.3-9 in marked MS) and in sect. 4 (p.27, l.4-12 in marked MS) 39 
 40 

5) Please check references. They are not always complete and consistent. 41 
 42 

Response: Yes 43 
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Change: We  have edited the references in the text (consistent ordering) and in the reference list (correct 1 

format). 2 
 3 
 4 

6) Table2: Which period? 5 
 6 

Response: Sorry, an omission. 7 

Change: We have inserted the correct period (2000-2014) p.41 in marked MS. 8 
 9 

7) Fig.2: A schematic would be important to understand the method, however, here it is not clear. From the Figure 10 
and caption, the meaning of a,s, F_s, etc is not clear. 11 
 12 

Response: We understand that this might be hard to grasp.  13 

Change: We have elaborated further on the explanation in the text and on the figure. See new Figure 2 14 

at p. 47 in marked MS and p.15, l. 1-15 in marked MS. 15 

16 
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Response to reviewer #2 to «A model for the spatial distribution of snow water equivalent 1 

parameterised from the spatial variability of precipitation” by T. Skaugen and I.H. 2 

Weltzien. 3 

 4 

General comments: 5 
1. At the first time it sounds contradictory, that an improved SWE simulation does not improve the model performance in 6 
runoff. As this is one major results it needs to be clearer evaluated. 7 
 8 
Response: R#1 had a similar comment (general comment #5), please see the response and change.  9 
 10 
2. The main novelty of this study is the implementation of SD_G to the rainfall runoff model and testing for large 11 
catchments. I would suggest including an analysis to answer some of the following research questions: In which 12 
catchments is the model performance best? Large or small catchments? High or low elevated catchments? Catchments 13 
in the south or in the north? 14 
 15 
Response: R#1 had a similar comment (general comment #4), please see the response and change. 16 
 17 
3. What would happen if the simulations using SD_LN were restarted each year in autumn with no snow? This would 18 
solve the problem of the “snow towers”. For me it is not clear why this is not considered? At least, it should be discussed 19 
in more detail. 20 
 21 
Response: Such a procedure would solve the immediate problem of the snow towers, but we would still 22 

be left with a routine for the spatial snow distribution that did not work properly and/or is conceptually 23 

wrong. The coming and going of snow in a catchment is a process governed by the climate. Sometimes, 24 

in Norwegian catchments, snow survives the summer and other times it does not. Our ambition must be 25 

to have models that simulates this behavior without relying on manually updating the snow reservoir 26 

(which is not a trivial task since the other reservoirs/states in the hydrological model have to be updated 27 

as well). 28 

Change: No change, we have already discussed this in some detail at p.25,l.15-p.26,1.1-16 in marked 29 

MS. 30 
 31 
4. The quality of the figures needs to be improved. References in the text should be ordered first chronologically and 32 
then alphabetically. Also the reference list at the end of the manuscript needs to be revised because the format is not 33 
consistent (e.g. page 31 line 7-8 vs. page 31 line 10-11 vs. page 32 line 37-38). 34 
 35 
Response: Noted  36 

Change: We have improved the Figures. Figures 1,2, 5-11 are all new and we have edited the references 37 

in the text and in the reference list. 38 
  39 
Introduction: The introduction is very technical e.g. page 6 line 4-18 belongs more to the methods. The introduction 40 
does not have a clear story. It is not clear how you get the information of the spatial variability of the precipitation in 41 
order to estimate the parameters for SD_G.  42 
 43 
Response: R#1 had a similar comment (general comment #1), please see the response and change.  44 
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Change: Information on how the spatial variability of precipitation is obtained is explained in sect 2.4, 1 

p.18, l.11-15 in the marked MS. 2 
 3 
Methods: The methods part is very detailed with a lot of formulas. For the reader it is very difficult to follow and it is not 4 
clear for which parts in the results all these formulas are necessary. You should include the period of simulation in the 5 
methods and also your runoff measurements. Where are the data from? The description of the MODIS satellite (page 6 
20 line 20 – page 21 line 3) belongs also to the methods and not to the results part. 7 
 8 
Response: R#1 had a similar comment (general comment #3), please see the response and change. The 9 

results are obtained by, at all times, having estimates of the spatial moments (the spatial mean and 10 

variance of SWE) in order to estimate the spatial PDF, so all the formulas are necessary. The 11 

precipitation data are from the Norwegian meteorological institute, whereas the runoff data are from 12 

Norwegian water resources and Energy Directorate (NVE). 13 

 14 

Change: In formation on the data and periods (including the MODIS images) are found in sect 2.4 in the 15 

new MS. 16 
 17 
Results: This part is very short compared to the methods. The authors need to evaluate runoff, SCA and SCA with 18 
respect to different characteristics (size, elevation,. . .) of the 71 catchments. 19 
 20 
Response: R#1 had a similar comment (general comment #4), please see the response and change. 21 
 22 
Specific comments: 23 
 24 
Commas are sometimes missing after an equation (e.g. equation 7), also a colon before the equation (e.g. page 13 line 25 
11). 26 
 27 
Response :Noted 28 

Change: It is changed, see various places in marked MS 29 
 30 
The correct spelling is “i.e.” instead of “i.e” 31 
 32 
Response :Noted 33 

Change: It is changed, see various places in marked MS 34 
 35 
Page 2 line 11: ..in the already existing parameter . . ..? 36 
 37 
Response: Noted 38 

Change: “already” is deleted : see p.2, l. 12 in marked MS 39 
 40 
Page 6 line 6: You should define the SD_LN here and not later on page 7 line 1. 41 
 42 
Response :Noted 43 

Change: This section has been restructured. SD_LN is defined in the abstract and  on p.7,l.1 in the 44 

marked MS 45 
 46 
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Page 8 line 3-5: Include log-normal distribution, gamma distribution. . ..  1 
 2 
Response :Noted 3 

Change: It is changed , see p.5. l.14-19 in marked MS 4 
 5 
Page 8 line 9: should be “changed its shape” 6 
 7 
Response :Noted 8 

Change: It is changed, see p.6, l.1 in marked MS 9 
 10 
Page 8 line 13: Skaugen and Randen (2013) 11 
 12 
Response :Noted 13 

Change: It is changed, p.7, l.21 in marked MS 14 
 15 
Page 8 line 21: include the parameter for shape and scale in the text. 16 
 17 
Response :Noted 18 

Change: It is changed, see p.8, l.1 in marked MS 19 
 20 
Page 9 line 3: “reminder” 21 
 22 
Response :Noted 23 

Change: It is actually correct with “remainder”, no change. 24 
 25 
Page 9 line 6: Γ is not defined. 26 
 27 
Response: Noted 28 

Change: The gamma function is defined , see p.9, l.11. in marked MS 29 
 30 
Page 9 line 11: space is missing in equation 3. 31 
 32 
Response :Noted 33 

Change: It is changed, p.9, l.15 in marked MS 34 
 35 
Page 10 line 16: spatial mean 36 
 37 
Response :Noted 38 

Change: It is changed, see p.11, l.2. in marked MS 39 
 40 
Page 10 line 18: There is no straight line in Fig 1b) 41 
 42 
Response: Agreed 43 

Change: We have replaced “does” with “will”. See p.11, l.5 in marked MS 44 
 45 
Page 12 line 15: Do “units” have the same meaning as pixels or area in this context? 46 
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 1 
Response: No, a unit is an amount of SWE (it is later defined as 0.1 mm)  2 

Change: We have included the notation [mm], when the units are first mentioned (p.8, l.11 in marked 3 

MS) 4 
 5 
Page 13 line 7: delete the comma 6 
 7 
Response :Noted 8 

Change: It is changed, see p.13, l.5 in marked MS 9 
 10 
Page 14 line 6: bracket is not closed 11 
 12 
Response :Noted 13 

Change: It is changed, se p. 14, l.3 in marked MS 14 
 15 
Page 14 line 15: I would suggest to use f_m instead of f_s for the abbreviation of snowmelt in order to be consistent with 16 
f_a (accumulation). 17 
 18 
Response: A good idea 19 

Change: It is changed, see p.14,l.12, p.15, p.16, l. 2 in marked MS. And  new Figure 2., p. 47 in marked 20 

MS 21 
 22 
Page 14 line 16: delete “the same” 23 
 24 
Response :Noted 25 

Change: It is changed, see p.14, l.13 in marked MS. 26 
 27 
Page 15 line 3: “with respect to” 28 
 29 
Response :Noted 30 

Change: It is rewritten, see p.15, l.18 in marked MS 31 
 32 
Page 15 line 10: why is “spatial” written in italic? 33 
 34 
Response: Just to emphasize that it is spatial frequency distributions such that the frequencies and their 35 

integral can be seen as areas. 36 

Change: This part has been rewritten, see p.15 in marked MS 37 
 38 
Page 15 line 13: why “left”? 39 
 40 
Response: They will become snowfree 41 

Change: This part has been rewritten, see p.15 in marked MS 42 
 43 
Page 16 line 21: How is the correction be applied? Can you provide more details? 44 
 45 
Response: Precipitation is increased or decreased by multiplying the amount with a constant. 46 
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Change: This part has been rewritten, see p.16, l.18-19 in marked MS. 1 
 2 
Page 17 line 4: I would suggest to name the cited literature. (“is found in Skaugen. . .”) 3 
 4 
Response :Noted 5 

Change: It is changed, see p.18, l.1 in marked MS 6 
 7 
Page 17 line 6: From Table 1 only 5 instead of 11 model parameter are bold. The explanation of the reduction of the 8 
calibrated parameter is written in the discussion of the manuscript. 9 
 10 
Response: 11 parameters can potentially be calibrated. In this study only 5 parameters are calibrated 11 

either using V1 or V2 (parameters in bold in Table 1).  12 

Change: It is changed, see p.18, l.2-5 in marked MS and in the cation for Table 1, p. 38 in marked MS 13 
 14 
Page 17 line 9: “2.6” instead of 2.5 15 
 16 
Response :Noted 17 

Change: The entire ordering of sect 2 is changed, 18 
 19 
Page 17 line 11: delete “from” 20 
 21 
Response :Noted 22 

Change: It is changed, see p.18, l.9 in marked MS 23 
 24 
Page 17 line 18: The following procedure was conducted: 25 
 26 
Response :Noted 27 

Change: It is changed, see 19, l.1 in marked MS 28 
 29 
Page 18 line 20: delete “for” 30 
 31 
Response :Noted 32 

Change: It is changed, see 20, l.3 in marked MS 33 
 34 
Page 19 line 11: delete “).” 35 
 36 
Response :Noted 37 

Change: It is changed, see 21, l.7 in marked MS 38 
 39 
Page 20 line 2: What do you mean with “most catchments”? How many catchments have these “snow towers”? Is this 40 
phenomenon only observed for high elevated catchments?  41 
 42 
Response: We agree that the term “most catchments” is not very precise. The high mean annual slope of 43 

SWE using SD_LN was the cause of such a statement. 44 



 

11 

 

Change: In the stratified analysis of the catchments with respect to results SWE and SCA we have 1 

included quantification of such behavior and investigated if it is related to mean elevation, catchment 2 

size etc. (see response and change to R#1, general comment #4) 3 
 4 
Page 20 line 18: You wrote that you found 150 estimates for SCA for each catchment. In page 21 line 4 you wrote that 5 
69 catchments have values for SCA and 2 have no SCA observations. Also why did you write in line 7 70 catchments? 6 
Please correct these inconsistencies or explain better! 7 
 8 
Response: Sorry, a typo. There are 71 catchments. Only 69 catchments have estimated SCA 9 

Change: We have changed the numbers, see p.20, l.7-9 in marked MS 10 
 11 
Page 21 line 5: delete “for” 12 
 13 
Response :Noted 14 

Change: It is changed, see p.23, l.10 in marked MS 15 
 16 
Table 1: On page 16 line 18 you wrote that you use temperature and precipitation lapse rates, but why are they 0 in 17 
Table 1? Additionally, I would suggest shortening the table to the most relevant parameters, because you do not use the 18 
most of the parameters in the following. Include a space between Table and 1 (page 34 line 1) Also correct “Mean 19 
elevation of catchment” 20 
 21 
Response: They are set to zero since they are not used. Unless the editor wishes otherwise,  we would 22 

like to keep the table as it is since it is complete for the DDD model. Just having a subset of the table 23 

would demand an additional paragraph explaining the other parameters.   24 

Change: We have corrected Table 1 for misspellings, explained about the lapse rates and it has now the 25 

format suggested by the Editor, only two columns.  See p.38-40 in marked MS 26 
 27 
Table 2: Where does this 1.02 value come from? You wrote in the table caption, that 1 is the ideal value. 28 
 29 
Response: 1 is indeed the ideal value but the variability error is allowed to be more than 1 (signifies 30 

higher variability than the observed series), see Kling et al. (2012), full reference is found in the paper. 31 

Change: No change. 32 
 33 
Figure 1: “Spatial mean and standard deviation of observed precip.” I would additionally suggest including the 34 
parameter values of the fitted line and rename “m” on the x-axis to “mean”. 35 
 36 
Response :Noted 37 

Change: It is changed accordingly, see p.46 in marked MS 38 
 39 
Figure 2: This figure is very hard to understand. Where comes the 0.1 on the x-axis label come from? 40 
 41 
Response:R#1 had the same comment (specific commet #7). Since we deal with spatial frequency 42 

distributions, one must think of the frequencies as number of locations with a given SWE value. The x-43 

axis shows the number of units, so we have to multiply with the unit value (0.1 mm) in order to have 44 

mm. 45 
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Change: We have made a new Figure 2 (see p.47 in marked MS) and elaborated on the explanation, see 1 

response to R#1, specific comment #7. 2 
 3 
Figure 5: Why do you include a running average over the catchments? Are they sorted by size, mean elevation,..? 4 
 5 
Response: The running mean was included to improve readability. They are not sorted by size, elevation 6 

but geographically, starting with central southern Norway, moving along the coast to the north. 7 

Change: An explanation for the moving average is included, see p.21, l.14-15 in marked MS. A new 8 

analysis of the results is conducted (see response and change to R#1, general comment #4).  9 
 10 
Figure 6: Is your time unit days? It would be better to choose years! What does the “16.75” in the figure caption mean? 11 
 12 
Response: Yes. “16.75 “ is the identification of the catchment” 13 

Change: We have added time labels on the x-axis and removed the “16.75”. See p.52 in marked MS 14 
 15 
Figure 7: I would suggest changing the y limits in the figures a and b to clearer see the differences between the log-16 
normal and gamma distribution. Is the unit of slope of regression “mm” and “C”? I think it should be mm/time and 17 
_C/time (_C/year; mm/year) 18 
 19 
Response: Agreed, to both comments 20 

Change: We have changed the figure accordingly, see p.54 in marked MS.  21 
 22 
Figure 8: include the unit of the RMSE. Does this mean that the model is around 15% wrong in estimating the SCA? Do 23 
the models underestimate or overestimate the SCA? Where are the largest errors observed? 24 
 25 
Response: We can include the unit and yes, the models are around 15% wrong in estimating SCA.  26 

Change: In the more stratified analysis of the results we have answered the questions posed by the 27 

reviewer and included units on the y-axis, see p.55 in marked MS.( also see response and change to R#1, 28 

general comment #4).  29 
 30 
Figure 9: It is very difficult to see anything from this figure. 31 
 32 
Response: The figure should have proper labels, but we do not see why it is so difficult to read the 33 

figure. Red and blue are simulated values of SCA and the green circles represents observed SCA, just as 34 

the figure captions says. 35 

Change: We have added proper time labels on the axis and included legends, see p.59 in marked MS. 36 

 37 
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 1 

Abstract 2 

Snow is an important and complicated element in hydrological modelling. The traditional catchment 3 

hydrological model with its many free calibration parameters, also in snow sub-models, is not a well-4 

suited tool for predicting conditions for which it has not been calibrated. Such conditions include 5 

prediction in ungauged basins and assessing hydrological effects of climate change. In this study, a new 6 

model for the spatial distribution of snow water equivalent (SWE), parameterized solely from observed 7 

spatial variability of precipitation, is compared with the current snow distribution model used in the 8 

operational flood forecasting models in Norway. The former model uses a dynamic gamma distribution 9 

and is called Snow Distribution_Gamma, (SD_G), whereas the latter model has a fixed, calibrated 10 

coefficient of variation, which parameterizes a log-normal model for snow distribution and is called Snow 11 

Distribution_log-normal (SD_LN). The two models are implemented in the parameter parsimonious 12 

rainfall runoff model Distance Distribution Dynamics (DDD) and their capability for predicting runoff, 13 

SWE and snow covered area (SCA) are tested and compared for 71 Norwegian catchments. The calibration 14 

period is 1985-2000 and validation period is 2000-2014. Results show that SD_G better simulates SCA 15 

when compared with MODIS satellite derived snow cover. In addition, SWE is simulated more 16 

realistically in that seasonal snow is melted out and the building up of “snow towers” and giving spurious 17 

positive trends in SWE, typical for SD_LN, is prevented. The precision of runoff simulations using SD_G 18 

is slightly inferior, with a reduction in Nash-Sutcliffe and Kling Gupta Efficiency criterion of 0.01, but it 19 

is shown that the high precision in runoff prediction using SD_LN is accompanied with erroneous 20 

simulations of SWE. 21 

Slettet:  (SD_G),22 

Slettet: The latter model (SD_LN)23 

Slettet: .24 

Slettet:  already25 

Formatert: Engelsk (Storbritannia)

Slettet: Criterion26 
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 1 
1 Introduction 2 

 3 

Snow is an important hydrological parameter in the northern hemisphere and in Norway approximately 4 

30 % of the annual precipitation falls as snow. Snow and snow related hydrology have a significant impact 5 

on nature and society in such regions. Seasonal snow ensures variation in outdoor activities and 6 

considerable investments in infrastructure for tourism and hydropower are dependent on stable seasonal 7 

snow. Apart from snow related hazards such as spring melt floods and avalanches, snow may negatively 8 

affect construction safety and traffic flow at airports, roads and in urban areas.  Information of snow 9 

conditions at the local, regional and national scale is therefore important for the early warning of hazards, 10 

but also for tourism, hydropower production planning and water resources management.  11 

Operational snow models have evolved differently for hydrology than for meteorology and avalanche 12 

warning. Whereas the model development in the latter two scientific disciplines usually include detailed, 13 

multi-layered, physically based process representations, snow models in hydrology are typically calibrated 14 

empirical relationships between snow variables and the modest model forcing at hand, i.e. snow 15 

accumulation and melt vs precipitation and  temperature. One reason for such a discrepancy in modelling 16 

approaches is that calibrated hydrological snow models have proved themselves at low temporal 17 

resolutions (i.e. 24h resolution (Anderson, 1976)) and for stationary climatic conditions. Another reason 18 

is that hydrological snow models are expected to provide simulations at the catchment scale, for which 19 

there are usually no estimates of more non-standard hydrological model forcing such as, for example, 20 

wind and radiation. In addition, the governing equations for the physics of hydrology at the small scale 21 

Slettet: An example of such a calibrated relationship is the degree-22 
day model for snowmelt (Hock, 2005; Ohmura, 2000), where 23 
snowmelt is a linear function of the difference between air 24 
temperature and a (often calibrated) temperature threshold for which 25 
there is no snowmelt. In practise, the degree-day factor is calibrated 26 
against runoff, and will hence account for a multitude of processes 27 
and scales. 28 
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have proven difficult to scale up in time and space to be relevant for catchment hydrology (Kirchner, 1 

2006). 2 

For predictions in ungauged basins and in a changed climate, however, calibrated empirical relations in 3 

snow models cannot be expected to give reliable and useful results. Skaugen et al. (2015) used the Distance 4 

Distribution Dynamics (DDD) model (Skaugen and Onof, 2014) for predicting in ungauged basins with 5 

model parameters estimated from catchments characteristics. When analysing the deviations in 6 

performance between the calibrated and the regionalised versions of the DDD model, the regionalised 7 

degree-day factor for snowmelt and the coefficient of variation for the spatial probability density function 8 

(PDF) of snow water equivalent (SWE) emerged as the parameters most responsible for poor regionalised 9 

results for runoff.  10 

A realistically modelled spatial PDF of SWE is important for the temporal evolution of SWE, snowmelt 11 

and snow covered area (SCA) (Buttle and McDonnel, 1987; Liston, 1999; Luce et al., 1999; Essery and 12 

Pomeroy, 2004; Luce 2𝜇𝑦and Tarboton, 2004). In the literature, many models for the PDF are proposed, 13 

especially for the period of time of maximum accumulation; such as the log-normal distibution (Donald 14 

et al., 1995, Sælthun, 1996), the gamma distribution (Kutchment and Gelfan, 1996; Skaugen, 2007; 15 

Kolberg and Gottschalk, 2010; Skaugen and Randen, 2013) and the normal distribution (Marchand and 16 

Killingtveit, 2004, 2005). Helbig et al., (2015) investigated the spatial PDF of snow depth for three large 17 

alpine areas and found that the gamma -and the normal distributions were better suited than the log-normal 18 

distribution. In Alfnes et al., (2004), Skaugen (2007) and in Skaugen and Randen (2013), it was 19 

demonstrated through the repeated measurements of the same snowcourse during the accumulation and 20 

Slettet: As an example, 21 

Slettet: distribution of SWE22 

Slettet: In this study we will investigate how snow water equivalent 23 
(SWE), snow covered area (SCA) and runoff are simulated when an 24 
alternative method for parameterising the spatial distribution of SWE 25 
is implemented in a hydrological model. The method has all its 26 
parameters estimated prior to calibration and is described in Skaugen 27 
(2007) and has since been developed in Skaugen and Randen (2013). 28 
The method models the spatial probability density function (PDF) of 29 
SWE as a dynamic gamma distribution and is hereafter denoted 30 
SD_G (Snow Distribution_Gamma)).  SD_G was tested at small test 31 
sites and found to model the spatial moments of SWE and SCA well 32 
(Skaugen and Randen, 2013), but has, however, not been 33 
implemented in a hydrological model and hence not been tested for 34 
larger scales and as a tool in operational hydrology. 35 

Formatert: Normal

Slettet: SCA (Luce and Tarboton, 2004; 36 

Slettet: et al., 1999; Liston, 1999; Buttle and McDonnel, 1987). 156 
Good simulation of the evolution of SCA is especially important 157 
since it controls the runoff dynamics of the spring melt flood and is 158 
the basis for properly accounting the energy fluxes in land- surface 159 
schemes in atmospheric models (Helbig et al., 2015; Essery and 160 
Pomeroy, 2004; Liston, 1999). In addition, remotely sensed SCA is 161 
one of the few data measured at the catchment scale for which 162 
simulated hydrology can be compared, and represents hence a 163 
valuable independent data source to validate models. ¶164 ...

Flyttet ned [1]: ). The distribution is constant for up to a specified 155 

Slettet:  (CV)84 

Flyttet ned [2]:  and SWE is estimated for nine quantiles and 154 

Slettet: In this way, each additional snowfall event has a spatial 153 ...

Flyttet ned [3]:  regardless of its intensity. 89 

Slettet: Moreover, the method implies perfect spatial correlation in 152 ...

Flyttet ned [4]: 2𝜇𝑦 and the variance is 𝑉𝑎𝑟(𝑍) =  𝜎𝑦
2 + 𝜎𝑦

2 +151 

Slettet: ¶150 ...

Flyttet ned [5]: The spatial distribution of melt is constant and 149 

Slettet:  This snow distribution model is hereafter denoted SD_LN 148 ...

Flyttet ned [6]: For high elevation areas, and for the highest 147 

Slettet: The main objective of this paper is to evaluate if a method 146 ...

Flyttet ned [7]: ¶145 

Slettet: The proposed method requires that we represent the spatial 144 ...

Slettet: such 139 

Slettet: .140 

Slettet: .141 

Slettet: .142 

Slettet: .143 
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melting seasons that the spatial PDF of SWE changed its shape continuously during the periods of 1 

accumulation and melting. During the accumulation period, the spatial distribution of SWE would become 2 

less positively skewed as accumulation progressed and increasingly more positively skewed as melting 3 

progressed. Good simulation of the evolution of SCA is especially important since it controls the runoff 4 

dynamics of the spring melt flood and is the basis for properly accounting the energy fluxes in land- 5 

surface schemes in atmospheric models (Liston, 1999; Essery and Pomeroy, 2004; Helbig et al., 2015). 6 

In this study we will implement in a hydrological model and test an alternative method for parameterising 7 

the spatial PDF of SWE. In the alternative method the spatial PDF of SWE is modelled as a dynamic 8 

gamma distribution and is hereafter denoted SD_G (Snow Distribution_Gamma). The parameters of 9 

SD_G are estimated solely from observed spatial variability of precipitation, i.e. all its parameters are 10 

estimated prior to the calibration of the hydrological model against runoff. Information on the spatial 11 

variability of precipitation is available at many sites, which makes it possible to use the method for 12 

prediction in ungauged basins. Downscaled climate changes projections may also provide such 13 

information so that effects of climate change on snow conditions and hydrology may be assessed. In using 14 

such a method, the current dependency of calibration in hydrological snow models is reduced. 15 

SD_G is described in Skaugen (2007) and has since been developed in Skaugen and Randen (2013). The 16 

method was tested at small test sites and found to model the spatial moments of SWE and SCA well 17 

(Skaugen and Randen, 2013), but has, however, not been implemented in a hydrological model and hence 18 

not been tested for larger scales and as a tool in operational hydrology. In this study, the SD_G is 19 

implemented in the DDD model and its performance is compared with the currently used snow distribution 20 

Slettet: Since we aim to have an estimate of the spatial PDF of 21 
SWE at all times during the snow season, we continue here the 22 
approach outlined in Skaugen (2007) and Skaugen and Randen in 23 
(2013), modelling the spatial PDF of SWE as a sum of gamma 24 
distributed correlated unit fields. 25 

Formatert: Normal
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model, the Snow Distribution_Log-Normal (SD_LN) (Killingtveit and Sælthun, 1995; Sælthun, 1996). 1 

SD_LN distributes SWE lognormally in space with a fixed, calibrated coefficient of variation (CV). It has 2 

been used operationally in Norwegian hydrology for many years, although it has the feature of being a 3 

calibrated model and hence not suitable for climate change studies and for predictions in ungauged basins. 4 

In addition, a fixed CV, and hence an assumption of perfect spatial correlation is not supported by 5 

observations (Alfnes et al., 2004), and in a recent paper, Frey and Holzmann (2015) show that that a log-6 

normal spatial distribution of SWE with a fixed CV of introduces so called “snow towers”. For high 7 

elevation areas, and for the highest quantiles of the distribution, snow survived the summer and 8 

accumulated to give an overall positive trend in SWE which was not observed. 9 

The main objective of this paper is to evaluate if SD_G is a suitable alternative for use in rainfall runoff 10 

models. We will compare simulated results of runoff, SWE, SCA and snowcover duration simulated with 11 

DDD using the current model, SD_LN and with the alternative, SD_G for 71 catchments in Norway. Time 12 

series of satellite-derived SCA from MODIS (Moderate Resolution Imaging Spectroradiometer) images 13 

are available for the catchments so simulated runoff and SCA will also be compared against observed 14 

values.  15 

 16 

 17 
2 Method 18 

 19 
The proposed method requires an estimate of the spatial PDF of SWE at all times during the snow season. As in 20 

Skaugen (2007) and Skaugen and Randen (2013) we model the spatial PDF of 𝑍’ (the accumulated positive SWE, 21 

not including zeros) as a two parameter gamma distribution. We hence need the estimates of the mean, 𝐸(𝑍′), and 22 

Flyttet (innsetting) [6]

Flyttet (innsetting) [7]
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variance, 𝑉𝑎𝑟(𝑍′), in order to estimate the shape, 𝜈, and scale, 𝛼, parameters of the gamma distribution. This 1 

following subsection describes how 𝐸(𝑍′) and 𝑉𝑎𝑟(𝑍′) are estimated for accumulation and melting events. 2 

Accumulation and melting events may change the spatial extent of SCA, which will require special consideration 3 

when estimating the 𝐸(𝑍′) and 𝑉𝑎𝑟(𝑍′). In this study SCA is set equal to 1 (full coverage) for every snowfall event, 4 

whereas a melting event implies a reduction in coverage. With estimates of 𝐸(𝑍′) and 𝑉𝑎𝑟(𝑍′), the parameters 5 

of the gamma distributions are calculated as: 6 

𝜈 =
𝐸(𝑍′)2

𝑉𝑎𝑟(𝑍′)
 and 𝛼 =

𝐸(𝑍′)

𝑉𝑎𝑟(𝑍′)
.                                                           (1) 7 

In the first subsection, the model for estimating the statistical moments, 𝐸(𝑍′) and 𝑉𝑎𝑟(𝑍′), for the 8 

accumulated sum of SWE, 𝑍’, is presented. As in Skaugen and Randen (2013), the moments are derived 9 

from the sum of correlated gamma distributed unit fields, 𝑦(𝑥) [𝑚𝑚], where 𝑥 represents space. For the 10 

remainder of the paper the unit field, 𝑦(𝑥), is denoted 𝑦.  11 

The subsections 2.1.1-2 briefly address the estimation of 𝐸(𝑍′) and 𝑉𝑎𝑟(𝑍′) for accumulation and melting 12 

events with a changing SCA. The derivation for accumulation events differs from that presented in 13 

Skaugen and Randen (2013) and is presented in detail. For melting events, however, only the resulting 14 

equations are presented since the full derivations can be found in Skaugen and Randen (2013). 15 

Subsection 2.2 describes how change in SCA is estimated after a melting event and Subsection 2.3 16 

describes briefly the hydrological model and its current model for the spatial distribution of SWE, SD_LN. 17 

Flyttet (innsetting) [8]

Slettet: 2.1 Moments of spatial SWE¶18 
¶19 
We need, at all times, estimates of the spatial conditional mean, 20 
𝐸(𝑍′) and variance 𝑉𝑎𝑟(𝑍′), of accumulated SWE. The PDF of 21 

Flyttet ned [9]:  𝑍′ does not contain zeros and is hence 22 
conditional on snow. For the non-conditional distribution of SWE, 23 
which also includes zeros, the variable SWE is denoted 𝑍. 24 

Slettet: The notation of 𝑍 will hereafter determine if we discuss the 25 
conditional or the non-conditional spatial distribution of 𝑍.26 

Flyttet ned [10]: ¶27 
The 28 

Formatert

Slettet: spatial  conditional PDF of SWE is modelled as a gamma 29 
distribution with shape and scale parameters: ¶30 

Slettet: PDF of accumulated SWE is approximated by31 

Slettet: 𝑦,32 

Slettet: x33 

Slettet: this34 

Flyttet (innsetting) [11]
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The final subsection, Section 2.5, describes the procedure for testing and comparing the new model for 1 

the spatial distribution of SWE, SD_G against the current, SD_LN. The data used will also be presented 2 

here.  3 

 4 

2.1 Statistical moments of spatial SWE 5 

 6 

The PDF of 𝑍′ does not contain zeros and is hence conditional on snow. For the non-conditional 7 

distribution of SWE, which also includes zeros, the variable SWE is denoted 𝑍. The unit fields of snowfall 8 

are distributed in space according to a two-parameter gamma distribution, 𝑦 = 𝐺(𝜈0, 𝛼0) with PDF: 9 

𝑓(𝑦) =
1

Γ(𝜈0)
𝛼0

𝜈0𝑦𝜈0−1𝑒−𝛼0𝑦,       𝛼0, 𝜈0, 𝑦 > 0𝑓(𝑦) =
1

Γ(𝜈0)
𝛼0

𝜈0𝑦𝜈0−1𝑒−𝛼0𝑦,       𝛼0, 𝜈0, 𝑦 > 0,                                            10 

(2) 11 

Where Γ is the gamma function and 𝛼0 and 𝜈0 are shape and scale parameters respectively. The mean of 12 

the unit equals 𝐸(𝑦) = 𝜈0/𝛼0 and the variance equals 𝑉𝑎𝑟(𝑦) =  𝜈0/𝛼0
2. When estimating the moments 13 

for the sum of 𝑛 units, 𝑍′(𝑛) =  ∑ 𝑦𝑖
𝑛
𝑖=1 , we have to take into account that the unit fields are correlated. 14 

This has no bearing on the mean, 𝐸(𝑍′) but affects the variance, 𝑉𝑎𝑟(𝑍′), i.e.: 15 

𝐸(𝑍′) = 𝑛
𝜈0

𝛼0
=  

𝜈

𝛼
,                                                                               (3) 16 

𝑉𝑎𝑟(𝑍′) =  𝑛
𝜈0

𝛼0
2 + 2 ∑ 𝐶𝑜𝑣(𝑦𝑖 , 𝑦𝑗)𝑖<𝑗 = 𝑛

𝜈0

𝛼0
2 [1 + (𝑛 − 1)𝑐(𝑛)] =

𝜈

𝛼2,                           (4) 17 

where the function 𝑐(𝑛) is the average correlation over 𝑛 units.   18 

Flyttet (innsetting) [10]

Formatert: Normal, Linjeavstand:  Enkel

Flyttet (innsetting) [9]

Flyttet (innsetting) [12]

Flyttet opp [12]: The unit fields of snowfall are distributed in 19 
space according to a two-parameter gamma distribution, 𝑦 =20 
𝐺(𝜈0, 𝛼0) with PDF:¶21 
𝑓(𝑦) =

1

Γ(𝜈0)
𝛼0

𝜈0𝑦𝜈0−1𝑒−𝛼0𝑦,       𝛼0, 𝜈0, 𝑦 > 022 

Slettet:                                             (2)¶23 
where24 

Flyttet (innsetting) [13]

Slettet:  25 

Flyttet opp [13]:  and the variance equals 𝑉𝑎𝑟(𝑦) =  𝜈0/𝛼0
2. 26 

Slettet:  27 

Slettet: :28 

Flyttet (innsetting) [14]

Flyttet (innsetting) [15]
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From Eq. (4) we see that if we have perfect and constant correlation between the 𝑦’s, 𝑐(𝑛) = 1, the 1 

variance of 𝑍′ equals 𝑉𝑎𝑟(𝑍′)  = 𝑛2 𝜈0

𝛼0
2, and by Eq. (3) we have that the relationship between  the standard 2 

deviation, 𝜎𝑍′ and the mean, 𝐸(𝑍𝑉𝑎𝑟(𝑍′) =  𝑛
𝜈0

𝛼0
2 + 2 ∑ 𝐶𝑜𝑣(𝑦𝑖, 𝑦𝑗)𝑖<𝑗 = 𝑛

𝜈0

𝛼0
2 [1 + (𝑛 − 1)𝑐(𝑛)] =

𝜈

𝛼2 3 

On the other hand, if we have no correlation between the 𝑦’s, 𝑐(𝑛) = 0, the variance equals 𝑉𝑎𝑟(𝑍′)  =4 

𝑛
𝜈0

𝛼0
2 On the other hand, if we have no correlation between the 𝑦’s, 𝑐(𝑛) = 0, the variance equals 5 

𝑉𝑎𝑟(𝑍′)  = 𝑛
𝜈0

𝛼0
2, which gives a relationship between 𝜎𝑍′ and 𝐸(𝑍′) as a curved line that departs from that 6 

of perfect correlation by 𝑛−0.5, 𝜎𝑍′= (𝜈0𝑛)−0.5𝐸(𝑍′). The variance, however, is linearly related to the 7 

mean. Correlation between the units, 𝑐(𝑛), gives a relationship between the mean and the standard 8 

deviation that is something between the two cases described above. A typical analytical approximation to 9 

the spatial and temporal correlation function for precipitation is an exponentially decaying function with 10 

either time or space as argument.  gives a relationship between the mean and the standard deviation that 11 

is something between the two cases described above. A typical analytical approximation to the spatial and 12 

temporal correlation function for precipitation is an exponentially decaying function with either time or 13 

space as argument. Zawadski (1973, 1987) found exponential decorrelation for rainfall for both time and 14 

space. As 𝑛 (number of summations) may be considered a variable akin to time, 𝑐(𝑛) is approximated by 15 

an exponential correlation function:   16 

𝑐(𝑛) = exp (−
𝑛

𝐷
) ,                                                                     (5) 17 

where 𝐷 is the decorrelation range where the correlation equals 1/𝑒 (Zawadski, 1973).  18 

Flyttet (innsetting) [16]

Slettet:  =
𝜈

𝛼
 19 

Flyttet opp [14]:                                                                                20 
(3)¶21 
𝑉𝑎𝑟(𝑍′) =  𝑛

𝜈0

𝛼0
2 + 2 ∑ 𝐶𝑜𝑣(𝑦𝑖 , 𝑦𝑗)𝑖<𝑗 = 𝑛

𝜈0

𝛼0
2 [1 + (𝑛 − 1)𝑐(𝑛)] =

𝜈

𝛼2
22 

Slettet:  23 

Flyttet opp [15]:                            (4)¶24 
where the function 𝑐(𝑛) is the average correlation over 𝑛 units.  ¶25 
From Eq. (4) we see that if we have perfect and constant correlation 26 
between the 𝑦’s, 𝑐(𝑛) = 1, the variance of 𝑍′ equals 𝑉𝑎𝑟(𝑍′)  =27 
𝑛2 𝜈0

𝛼0
228 

Flyttet opp [16]:  and by Eq. (3) we have that the relationship 29 
between  the standard deviation, 𝜎𝑍′ and the mean, 𝐸(𝑍30 

Slettet: ′)′), is a straight line with the slope equal to 𝜈0
−0.5,  𝜎𝑍′ =31 

𝜈0
−0.5𝐸(𝑍′).32 

Flyttet (innsetting) [17]

Slettet: 𝜈0
−0.5𝐸(𝑍′) .33 

Flyttet opp [17]:  On the other hand, if we have no correlation 34 
between the 𝑦’s, 𝑐(𝑛) = 0, the variance equals 𝑉𝑎𝑟(𝑍′)  = 𝑛

𝜈0

𝛼0
235 

Flyttet (innsetting) [18]

Flyttet (innsetting) [19]

Slettet:  36 

Flyttet opp [18]:  as a curved line that departs from that of 37 
perfect correlation by 𝑛−0.5, 𝜎𝑍′= (𝜈0𝑛)−0.5𝐸(𝑍′). 38 

Flyttet opp [19]: The variance, however, is linearly related to the 39 
mean. 40 

Flyttet (innsetting) [20]

Slettet: ) 41 

Flyttet opp [20]:  gives a relationship between the mean and the 42 
standard deviation that is something between the two cases described 43 
above. A typical analytical approximation to the spatial and temporal 44 
correlation function for precipitation is an exponentially decaying 45 
function with either time or space as argument. Zawadski46 

Slettet: ,47 
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The variance of 𝑍’ can now, with eqs. (4) and (5), be expressed as: 1 

𝑉𝑎𝑟(𝑍′) = 𝐸(𝑍′)
1

𝛼0
[1 + (𝑛 − 1)𝑒𝑥𝑝(−𝑛/𝐷)].                                           (6) 2 

From measured, positive (i.e. not including zeros) precipitation over an area we can observe the 3 

relationship between the spatial mean and spatial variance of precipitation. Furthermore, we can estimate 4 

the two unknowns, 𝐷 and 𝛼0 from such data by nonlinear regression. Figure 1 a) shows a scatterplot of 5 

spatial mean and standard deviation of positive precipitation (from the Norwegian Meteorological 6 

Institute) with a fitted function of the type Eq. (6). From Figure 1 b), where the spatial mean and standard 7 

deviation are plotted in log-log space, we see that the relationship is not that of a power law, as suggested 8 

in Skaugen and Randen (2013) and Skaugen and Andersen (2010), since a straight line will not represent 9 

the point cloud very well.   10 

The parameters 𝑎0, 𝜈0 and 𝐷 are estimated from an analysis of the variability of precipitation as shown in 11 

Figure 1 at the catchment of interest. A mean of the units has been chosen as 𝐸(𝑦) =
𝜈0

𝛼0
= 0.1 𝑚𝑚, since 12 

0.1 𝑚𝑚 is the smallest precipitation value measured by the Norwegian Meteorological Institute.   13 

 14 

2.1.1 Statistical moments of spatial SWE after an accumulation event  15 

From a single snowfall event of n units on a snow-free surface, the mean and the variance of the snow 16 

reservoir 𝑍’ are estimated according to eqs. (3) and (4). 𝜈0If there is an additional snowfall event of u units, 17 

the mean and the variance of the resulting snow reservoir are simply:  18 

Slettet: ] 19 

Slettet: man20 

Slettet:  a21 

Slettet: does22 

Flyttet (innsetting) [21]

Flyttet (innsetting) [22]

Flyttet (innsetting) [23]

Slettet: During the snow season, the snowpack may experience a 23 
series of melting and accumulation events and estimating the 24 
temporal variability of the spatial variance of SWE is clearly a 25 
challenge.  Furthermore, SCA varies throughout the season, which 26 
necessarily adds to this complexity.27 

Flyttet opp [8]:  In this study SCA is set equal to 1 (full coverage) 28 
for every snowfall event, whereas a melting event implies a reduction 29 
in coverage. 30 

Slettet: In the following subsections we will briefly address the 31 
estimation of the mean and variance of SWE for accumulation and 32 
melting events under different conditions of snow coverage.33 

Flyttet opp [11]:  The derivation for accumulation events differs 34 
from that presented in Skaugen and Randen (2013) and is presented 35 
in detail. 36 

Slettet: For melting events and for the estimation changes in SCA, 37 
however, only the resulting equations are presented since the full 38 
derivations can be found in Skaugen and Randen (2013). ¶39 
¶40 
2.2 Moments41 

Flyttet opp [21]: The parameters 𝑎0, 42 

Slettet:  43 

Flyttet opp [22]: 𝜈0 and 𝐷 are estimated from 44 

Slettet: a priori analysis of the local variability of precipitation (see 45 
Figure 1).46 

Flyttet opp [23]:  A mean of the units has been chosen as 𝐸(𝑦) =47 
𝜈0

𝛼0
= 0.1 𝑚𝑚, since 0.1 𝑚𝑚 is the smallest precipitation value 48 

measured by the Norwegian Meteorological Institute.  49 
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The mean: 1 

 𝐸(𝑍𝑛+𝑢
′ ) = (𝑛 + 𝑢)

𝑎0

𝜈0
,                                                                    (7) 2 

and the variance: 3 

𝑉𝑎𝑟(𝑍𝑛+𝑢
′ ) =

𝜈

𝛼2 +  𝑢
𝜈0

𝛼0
2 [1 + (𝑢 − 1)𝑐(𝑢)],                                              (8) 4 

where 
𝜈

𝛼2 is the conditional variance prior to the accumulation event. In order to keep the notation simple 5 

we say that 𝑛 is the number of units at 𝑡 − 1 and 𝑢 is the number of units of the event at time 𝑡. 6 

Equations (7) and (8) are valid if 𝑆𝐶𝐴 = 1 for both events. If SCA prior to the new event was reduced due 7 

to melting (𝑆𝐶𝐴𝑡−1 <  1), we have to scale the contributions of 𝑛 and 𝑢 according to the change in SCA 8 

from  𝑆𝐶𝐴𝑡−1 <  1 to 𝑆𝐶𝐴𝑡 = 1, hence: 9 

the mean 10 

𝐸(𝑍𝑛+𝑢
′ ) =

𝑎0

𝜈0
(𝑆𝐶𝐴𝑡−1(𝑛 + 𝑢) + 𝑆𝐶𝐴𝑡𝑢),                                               (9) 11 

and the variance 12 

𝑉𝑎𝑟(𝑍𝑛+𝑢
′ ) = 𝑆𝐶𝐴𝑡−1

2 (
𝜈

𝛼2
+ 𝑢

𝜈0

𝛼0
2

([1 + (𝑢 − 1)𝑐(𝑢)])) + 13 

𝑆𝐶𝐴𝑡
2 𝜈0

𝛼0
2 𝑢([1 + (𝑢 − 1)𝑐(𝑢)])  .                                                 (10) 14 

 15 

Slettet:  16 

Slettet: second17 

Slettet: has been18 

Slettet: ,19 

Slettet:  , 20 

Slettet: The21 

Slettet: (𝑆𝐶𝐴𝑡−1(𝑛 + 𝑢) + 𝑆𝐶𝐴𝑡𝑢) 22 

Slettet: And23 

Slettet:  24 
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2.1.2 Statistical moments of spatial SWE after a melting event  1 

Let the snow reservoir, consisting of n  units, be reduced by u  units after a melting event. The snow 2 

coverage before and after the melting event is 
1t

SCA  and 
t

SCA  respectively, where 
1


tt

SCASCA . We 3 

set 
1t

SCA as 1, so that 
t

SCA is the relative reduction in snow coverage due to melting, and not the 4 

catchment value. Reduction in snow coverage needs special attention regarding the conditional (𝑍’) and 5 

the non-conditional (𝑍) moments since we have to determine the spatial moments for the area of the new 6 

coverage, 
t

SCA  (not including zeros, i.e. conditional moments) and for the area which includes the 7 

previously covered part, 
1t

SCA  (including zeros, i.e. non-conditional moments).  8 

The non-conditional mean after the melting event is estimated as: 9 

𝐸(𝑍𝑛−𝑢) = (𝑛 − 𝑢)
𝜈0

𝛼0
,                                                                 (11) 10 

and the conditional mean is  11 

𝐸(𝑍𝑛−𝑢
′ ) =

𝐸(𝑍𝑛−𝑢)

𝑆𝐶𝐴𝑡
=

1

𝑆𝐶𝐴𝑡
(𝑛 − 𝑢)

𝜈0

𝛼0              (12)
 12 

We note that the difference in conditional means before and after the melting event is  13 

𝐸(𝑍′𝑛) − 𝐸(𝑍′𝑛−𝑢) =
𝜈0

𝛼0
(𝑛 − (𝑛 − 𝑢)

1

𝑆𝐶𝐴𝑡
) =

𝜈0

𝛼0
(𝑢′),

                                  (13)
 14 

where 'u is the conditional number of melted units and describes the difference in units when the (relative) 15 

reduction in SCA is taken into account.  16 
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Skaugen and Randen (2013) gives a detailed derivation of the conditional spatial variance of SWE after a 1 

melting event. Here, only the final expression is reported: 2 

𝑉𝑎𝑟(𝑍𝑛−𝑢
′ ) =  

𝜈

𝛼2 − 2𝑢′𝑛
𝜈0

𝛼0
2 𝑐𝑚𝑙𝑡(𝑢′) + 𝑢′ 𝜈0

𝛼0
2 + 𝑢′(𝑢′ − 1)

𝜈0

𝛼0
2 𝑐(𝑢′),                        (14) 3 

where  
𝜈

𝛼2 is the variance of 𝑍′ prior to the melting event, and 𝑐𝑚𝑙𝑡(𝑢′) is the  (negative) correlation between 4 

melt and SWE and is estimated as a linearly decreasing function of 𝑢’ and equal to:  5 

 𝑐𝑚𝑙𝑡(𝑢′) =  
𝑢′

𝑛
 (

1

2𝑛
(

𝜈

𝛼2

𝛼0
2

𝑛𝜈0
+ 1 + (𝑛 − 1)𝑐(𝑛))).                                         (15) 6 

It is clear from Eq. (13) that estimation of the change in SCA due to melting is needed in order to assess 7 

𝑢’ and consequently 𝑉𝑎𝑟(𝑍𝑛−𝑢
′ ) in Eq. (14). The next subsection describes such a procedure.  8 

 9 

2.2 Estimating changes in snow covered area  10 

After a snowfall event, the SCA for the area of interest (a catchment or a part of a catchment in the case 11 

of elevation bands) is set equal to 1.  For a melting event, however, the estimate of changes in SCA is 12 

more complex. The previous subsection suggests modelling the accumulated SWE as a gamma 13 

distribution, 𝑓𝑎, with parameters 𝜈 and 𝛼 derived from the estimated mean and variance of accumulated 14 

SWE as described above. In Skaugen and Randen (2013), also the spatial frequency of snowmelt, 𝑓𝑚, was 15 

modelled as a gamma distribution, following the same principles as for accumulation, i.e. that the moments 16 
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can be estimated using eqs. (3) and (4) with 𝑢’ replacing 𝑛. At all times nu ' , which implies that until 1 

the final melting event occurs, 𝑓𝑚 is more skewed to the left than 𝑓𝑎  2 

Figure 2 illustrates how the reduction in SCA due to a melting event is estimated. Since the energy 3 

requirements for transforming a snowpack into snowmelt is linearly related to snow depth (Dingman, 4 

2002), it is reasonable to assume that areas with smallest SWE are the first to become snow free. Figure 5 

2 a) shows the PDFs of melt (𝑓𝑚, red) and accumulation (𝑓𝑎, blue). In Figure 2 b) we have plotted the 6 

integral of the PDFs for successive intervals of SWE, so each horizontal bar represents a fractional area 7 

(see the x-axis) of SWE or melt values. The horizontal bars for each integrated PDF sum up to unity, i.e. 8 

the entire area covered by snow. The figure illustrates that melt values less than 𝑋 cover a large area (the 9 

integral of 𝑓𝑚 up to 𝑋, called 𝑚, ∫ 𝑓𝑚
𝑋

0
= 𝑚 in the Figure 2a) and much larger than the area of SWE 10 

values less than 𝑋 (the integral of 𝑓𝑎 up to 𝑋,called 𝑎, ∫ 𝑓𝑎
𝑋

0
= 𝑎 in Figure 2a). Consequently, the 11 

fractional area of SWE values less than 𝑋, 𝑎, becomes snow free after the melting event. In addition, 12 

there are melt values higher than 𝑋 that reduce the coverage of corresponding SWE values. The sum of 13 

these bars adds up to 1 − 𝑚, and equals the integral ∫ 𝑓𝑚
∞

𝑋
= 1 − 𝑚. In total, the reduction of SCA after 14 

a melting event is:  15 

𝑆𝐶𝐴𝑟𝑒𝑑 = 𝑎 + 1 − 𝑚,                                                                 (17) 16 

and is seen in Figure 2b) as the sum of the cross-hatched bars. Recall that the reduction in SCA is relative, 17 

i.e. it is the reduction from the previous snow-cover which is also the probability space of both 𝑓𝑎 and 𝑓𝑚, 18 

and equal to 1. 19 
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The correlation of snowmelt 𝑐(𝑢’) as a function of intensity (𝑢’) (see Eq. 14) has not yet been investigated in detail 1 

and is, in this study, modelled as that of accumulation. Skaugen and Randen (2013), however, reported empirical 2 

evidence supporting such an assumption. The observed features of 𝑓𝑚 are found to be similar to those of 𝑓𝑎, i.e. that 3 

the spatial distribution is generally skewed to the left and becomes less skewed as the intensity of melt increases. 4 

These features for 𝑓𝑚 are confirmed by additional measurements of spatial snowmelt by Weltzien (2015).  5 

 6 

 7 

2.3 The hydrological model 8 

 9 

The DDD model (Skaugen and Onof, 2014; Skaugen et al., 2015; Skaugen and Mengistu, 2015) is a 10 

rainfall runoff model written in the programming language R (www.r-project.org) and runs operationally 11 

at daily and 3-hourly time steps at the Norwegian flood forecasting service at the Norwegian Water 12 

Resources and Energy Directorate (NVE). The DDD model introduces new concepts in its description of 13 

the subsurface and of runoff dynamics and is developed with the objective of having as many as possible 14 

of its model parameters estimated directly from observed data such as maps and runoff characteristics and 15 

not through calibration against runoff. In its current version, the parameters of the modules for subsurface- 16 

and runoff dynamics are all estimated prior to calibration against runoff. Input to the DDD model is 17 

precipitation and temperature. The model is semi-distributed in that the moisture-accounting (rainfall and 18 

the accumulating and melting of snow) is performed for ten elevation bands of equal area. The catchment 19 

averages of precipitation and temperature are distributed to the elevation bands using calibrated lapse 20 

rates. The catchment averaged precipitation can be corrected by multiplying the amount with a constant 21 

in order to get the long-term water balance right. Snowmelt is estimated using a degree-day model 22 
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(Ohmura, 2000; Hock, 2005) where the melted amount is a linear function of the difference between actual 1 

air temperature and a calibrated threshold temperature for melting. In the current routine in DDD for the 2 

spatial PDF of SWE (SD_LN), the PDF is modelled as the sum of uniform- and log-normally distributed 3 

snowfall events (Killingtveit and Sælthun, 1995; Sælthun, 1996). The distribution is constant for up to a 4 

specified threshold of accumulated SWE (i.e. 20 mm). Each additional snowfall event is log-normally 5 

distributed through a calibrated coefficient of variation, 𝜃𝐶𝑉, and SWE is estimated for nine quantiles and 6 

added to previous quantile values. In this way, each additional snowfall event has a spatial distribution of 7 

a fixed shape (through the calibrated 𝜃𝐶𝑉) regardless of its intensity. Moreover, the method implies perfect 8 

spatial correlation in that a new snowfall is distributed such that the quantiles with highest SWE always 9 

receives most SWE so that the coefficient of variation of the sum of snowfall events remains a constant. 10 

A simple example demonstrates this: if the accumulation of SWE, 𝑍, is the sum of two snowfall events 𝑦, 11 

𝑍 = 𝑦1 +  𝑦2, where 𝑦~𝐿𝑁(𝜇𝑦, 𝜎𝑦
2) is log-normally distributed with mean 𝜇𝑦 and variance 𝜎𝑦

2, then the 12 

mean of 𝑍 is 𝐸(𝑍) = 2𝜇𝑦 and the variance is 𝑉𝑎𝑟(𝑍) =  𝜎𝑦
2 + 𝜎𝑦

2 + 2𝐶𝑂𝑉(𝑦1, 𝑦2). With perfect 13 

correlation the variance equals 𝑉𝑎𝑟(𝑍) =  𝜎𝑦
2 + 𝜎𝑦

2 + 2𝜎𝑦
2 (Haan, 1977, p.56) and it is easily seen that the 14 

that the coefficient of variation for 𝑍 equals that of 𝑦, i.e. 15 

𝐶𝑉𝑍 =
𝜎𝑍

𝜇𝑍
=

2𝜎𝑦

2𝜇𝑦
= 𝐶𝑉𝑦.                                                        (18) 16 

The spatial distribution of melt is constant and reduction in SCA occurs when the SWE associated with a 17 

quantile becomes zero. The fraction of snow-free areas is thus the sum of quantiles with zero SWE. 18 

Slettet: Hock, 2005; 19 

Flyttet (innsetting) [1]

Flyttet (innsetting) [2]

Flyttet (innsetting) [3]

Flyttet (innsetting) [4]

Slettet: The catchment averaged precipitation can be corrected in 20 
order to get the long-term water balance right21 

Formatert: Skrift: Times New Roman, Engelsk (Storbritannia)

Flyttet (innsetting) [5]



 

18 

 

The model parameters relevant for snow accumulation and melt which are estimated by calibration against 1 

runoff include 𝜃𝐶𝑉, describing the spatial distribution of SWE, 𝜃𝐶𝑋, which is the degree- day factor and  2 

𝜃𝑊𝑠, which is the maximum liquid water content in the snowpack  (see Table 1 of model parameters).  3 

Further details on the DDD model are found in Skaugen and Onof (2014) and in Skaugen and Mengistu 4 

(2015). Model parameters that can be calibrated against runoff are denoted by 𝜃 with subscripts (e.g. 𝜃𝐶𝑉), 5 

in order to clearly distinguish between estimated and calibrated parameters. From Table 1 we see that 11 6 

model parameters have the potential to be calibrated. The next subsection shows, however, that the number 7 

of calibrated parameters for this study is reduced to five (shown in bold in Table 1).   8 

 9 

2.4 Test of SD_G in DDD 10 

 11 

We will evaluate the performance of SD_G, parameterised from observed spatial variability of 12 

precipitation, by implementing it in DDD (DDD_G) and compare performance with DDD_LN, in which 13 

SD_LN, with its calibration parameter 𝜃𝐶𝑉, is implemented. The parameters 𝐷 and 𝛼0 for SD_G are 14 

estimated for each catchment by analysing the spatial mean and spatial standard deviation of positive 15 

precipitation (excluding zero values). The precipitation data, provided by the Norwegian Meteorological 16 

Institute, are daily precipitation values from precipitation gauges (a minimum of 2 stations) located close 17 

to the catchment in question and are from the period 1990-2011. 18 

DDD_G and DDD_LN are run for 71 catchments distributed across Norway (see Figure 3). The 19 

catchments vary in latitude, size, elevation and surface cover (see histograms of selected catchment 20 

Slettet: which describes21 

Slettet: is22 

Slettet: the cited literature.23 

Slettet:  hereafter24 

Slettet: altogether 25 

Slettet: can26 

Slettet: 527 

Slettet: from 28 

Formatert: Engelsk (USA)

Slettet:  29 

Slettet: ¶30 

Formatert: Skrift: Times New Roman

Slettet: new parametrization31 

Formatert: Engelsk (Storbritannia)

Slettet: the subsurface is tested32 

Slettet:  33 

Slettet:  34 



 

19 

 

characteristics in Figure 4) and constitute thus a varied, representative sample of Norwegian catchments. 1 

The runoff data is provided by NVE and we use the period 1.9.1985-31.8.2000 for calibration of DDD_G 2 

and DDD_LN and the period 1.9.2000-31.12.2014 for validation.  3 

The following procedure was conducted: the models were initially calibrated using long time series of 4 

precipitation and temperature to simulate runoff using a Monte-Carlo Markov-Chain method (Soetart and 5 

Petzhold, 2010) written in R. The time series for precipitation and temperature are mean areal catchment 6 

values extracted from the current, operational meteorological grid (1 x 1 km²) which provides daily values 7 

of precipitation and temperature for Norway from 1957 to the present day (see www.senorge.no).  This 8 

meteorological grid is denoted V1.  Recently, a new improved meteorological grid was developed, denoted 9 

V2, (Lussana et al. 2014a, Lussana et al. 2014b) which reduced much of the positive bias in precipitation 10 

characteristic of V1 (see Saloranta, 2012). The new meteorological grid (V2) in DDD gives reasonable 11 

simulated values of runoff without the need for a calibrated correction of the amount of precipitation (𝜃𝑃𝑐, 12 

see Table 1 for parameters of the DDD model). Areal averages of precipitation and temperature values are 13 

extracted for ten elevation zones which makes it possible to eliminate calibrated precipitation and 14 

temperature gradients (𝜃𝑃𝑙𝑟 and 𝜃𝑇𝑙𝑟). Three parameters associated with snow accumulation and melt (the 15 

correction factor for solid precipitation (𝜃𝑆𝑐 = 1.0), the threshold temperature for snowmelt (𝜃𝑇𝑠 = 0 °𝐶) 16 

and the threshold temperature for solid and liquid precipitation (𝜃𝑇𝑋 = 0.5 °𝐶) were fixed, thereby 17 

reducing the number of calibration parameters from 11 to 5. For the remaining 5 parameters, the calibrated 18 

values (from using V1 as input) are retained for 3 parameters (𝜃𝑊𝑠, 𝜃𝑣𝑟
, and 𝜃𝑐𝑒𝑎), whereas for the 19 
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data.  In using such a procedure we assume that the 3 parameters which are calibrated using the V1 data 1 

(and, most likely, not optimal for the V2 data as input) will not favor either of the two compared model 2 

structures (DDD_LN and DDD_G). When recalibrating the 𝜃𝐶𝑉 with V2 data, we attempt to make it as 3 

difficult as possible to accept the new spatial frequency distribution of SWE (SD_G). If we calibrated all 4 

3 parameters (𝜃𝑊𝑠, 𝜃𝑣𝑟
, and 𝜃𝑐𝑒𝑎)  using V2, we could risk that errors associated with the structures of 5 

SD_G and SD_LN were compensated by the other 3 parameters, such that we could not isolate and 6 

evaluate the effect of implementing SD_G. In addition, for the DDD_ G model, the degree-day factor 𝜃𝐶𝑋, 7 

was calibrated since correlation between this parameter and 𝜃𝐶𝑉 was revealed. It would hence be probable 8 

that a 𝜃𝐶𝑋 optimised using SD_LN with V1 would not be optimal for testing SD_G. 9 

From almost 1500 optical satellite scenes from MODIS during the period 2001- 2015, SCA for each 10 

elevation band have been estimated for 69 of the 71 catchments (for two of the catchments SCA 11 

observations were not retrieved). Many scenes are discarded due to insufficient light caused by the low 12 

solar angle during the Norwegian winter, but for each catchment, about 150 estimates of SCA during the 13 

15 years can be used for validation of the snow distribution models’ ability to simulate a realistic evolution 14 

of snow free areas during the snowmelt period. For each MODIS satellite scene, each pixel (500 X 500 15 

meters) is assigned a SCA value between 0-100% coverage using a method based on the Norwegian linear 16 

reflectance to snow cover algorithm (NLR) (Solberg et al., 2006). The input to the NLR algorithm is the 17 

normalized difference snow index signal (NDSI- signal) (Salomonsen and Apple, 2004). 18 
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With the procedures and data described in the previous section, we can compare the performances of the 1 

DDD model with calibrated PDF of SWE (DDD_LN ) and the DDD model with estimated PDF of SWE 2 

(DDD_G) with respect to runoff, SWE, SCA and duration of the snow cover for the validation period 3 

(1.9.2000-31.12.2014). In Table 3 we present the significant spearman correlations (with p-value < 0.01) 4 

between simulation results for these variables and catchment characteristics such as catchment size, areal 5 

percentages of lakes, bogs, bare rock and forest and mean elevation of catchment in order to investigate if 6 

the results are stratified with respect to the physiography of the catchments.  7 

3.1 Runoff 8 

Figure 5 shows different skill scores obtained for runoff simulations for the 71 catchments with DDD_LN  9 

(red crosses) and DDD_G (blue circles). The figure is organised such that the catchments are sorted 10 

geographically starting from the South-East (S-E), then follows the South-West (S-W) and Mid-Norway 11 

(M-N) and finally Northern-Norway (N-N). Figure 5 a) shows the Nash-Sutcliffe efficiency criterion 12 

(NSE, Nash and Sutcliffe, 1970) and 5 b) the Kling-Gupta Efficiency criterion (KGE, Gupta et al., 2009; 13 

Kling et al. 2012) and 5 c-e) the three components of the KGE, correlation, bias and variability error, 14 

respectively. The variability error is given by the ratio of the coefficients of variation of simulated and 15 

observed runoff as suggested in Kling et al. (2012). The mean values of the skill scores for DDD_LN and 16 

DDD_G are shown  in Table 2 and as straight lines in the plots. We have also added a moving average of 17 

the results for enhanced readability.  We see from the Figure 5 and Table 2 that little precision in predicting 18 

runoff is lost when using DDD_G. The mean values for NSE, KGE, and the different elements of KGE are 19 
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practically identical. Differences between runoff simulations for DDD_G and DDD_LN are mostly 1 

pronounced in the South- East, where, especially for NSE, DDD_LN appears to be consistently better.  2 

Table 3 shows that significant correlation between NSE and CC was only found for catchment area. Such 3 

a correlation was not found for KGE, rather, significant negative correlation were found for both models 4 

between KGE and the areal fraction of bare rock.  5 

 6 

3.2 Snow water equivalent 7 

Figure 6 shows an example of a timeseries of simulated SWE using DDD_G (blue) and DDD_LN (red).  8 

This example illustrates that SWE simulated with DDD_LN tends to survive the summers at the highest 9 

elevations, which results in a positive trend for SWE. Seasonal SWE simulated by DDD_G and DDD_LN 10 

is similar at the start of the time series but deviates increasingly as time proceeds. Figure 7 a) shows a 11 

scatterplot of the mean simulated SWE (averaged over the timeseries) for the 71 catchments by the two 12 

models and it is clearly seen that SWE simulated by DDD_LN is higher than simulated by DDD_G 13 

although both the precipitation and temperature input are identical for the two models. From linear 14 

regression between SWE, precipitation and temperature with time we can estimate simple annual trends. 15 

Figures 7 b, c, d) show plots of the slopes of the regression lines. Whereas both precipitation and 16 

temperature show very modest annual rates of change, both models simulate increasing SWE with time, 17 

but DDD_LN, on average, 5 times as much as DDD_G.  If a 100 days a year may serve as an estimate of 18 

days with solid precipitation, the increase in SWE due to the positive trend in precipitation comes very 19 

close to the trend in SWE found for DDD_G.  Positive trends of SWE greater than 5 mm/year was found 20 
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for 26 out 71 (37%) catchments for DDD_LN model and 7 out of 71 catchments (10%) for the DDD_G 1 

model.  2 

The regression slopes of SWE for both models were correlated with CC and for DDD_LN no significant 3 

correlations were found. Significant correlation was, however, found between the slopes of SWE for 4 

DDD_LN and the parameter values of 𝜃𝐶𝑉, 𝑟𝑆_𝑆𝑊𝐸,𝜃𝐶𝑉
= 0.45, which in turn is significantly correlated 5 

with skill score KGE, 𝑟𝐾𝐺𝐸_𝐿𝑁,𝜃𝐶𝑉
= 0.40.  For DDD_G significant correlations were found between the 6 

slopes and lakes, bare rock, bogs and forest.  7 

 8 

3.3 Snow covered area and snow cover duration 9 

Figure 8 a) shows the root mean square error (RMSE) between observed and simulated catchment values 10 

of SCA for 69 catchments. Although the mean RMSE does not differ much between the two models 11 

(mean(RMSE) = 0.14 for DDD_G and mean(RMSE) = 0.15 for DDD_LN) we can note that SCA is better 12 

estimated using DDD_G for 46 out of 69 catchments (67%). DDD_LN appears to be better in the South 13 

Western part of Norway whereas DDD_G performs better in the other regions.  The mean elevation of 14 

catchments was found to be significantly correlated  to RMSE for simulated SCA using DDD_LN and 15 

nearly significantly correlated using DDD_G. The correlation implies that the errors in estimating SCA 16 

are, for both models, reduced as the mean elevation of the catchments increase. Figure 8 b) shows the 17 

mean absolute error (MAE) and we see that DDD_G is the superior method with respect to MAE for all 18 

regions except for the South-West. The errors are mostly positive indicating a general overestimation of 19 
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SCA, although underestimation is also found in South-Western Norway. The mean value over all the 1 

catchments is mean(MAE) = 0.03 for DDD_G and mean(MAE) = 0.06 for DDD_LN. For both models, 2 

MAE was significantly correlated to the areal percentage of lakes and the size of the catchment, but not 3 

the mean elevation.  4 

The mean annual snow cover duration was calculated as the mean number of days with snow present in 5 

the catchment and is shown in Figure 9. There is a striking difference in this results between DDD_LN 6 

and DDD_G. The mean duration of the snow cover of DDD_ LN shows almost no variability, is very high 7 

and suggests an almost perennial snow cover. This result is consistent with the positive trends for SWE 8 

associated with DDD_LN. From Table 3 we see that the snow cover duration are, for both models, 9 

significantly correlated with catchment size, fraction of forest and bare rock and the mean elevation of the 10 

catchment. 11 

 12 

4 Discussion 13 

Table 2 and Figure 5 show that, according to the Nash-Sutcliffe and Gupta-Kling efficiencies, the models 14 

are almost identical with respect to the simulation of runoff. This implies that little performance is lost in 15 

simulating runoff by introducing the new procedure for modelling the spatial frequency distribution of 16 

SWE although there are one parameter less to calibrate against runoff. A reduction in the number of 17 

parameters to calibrate reduces the dimensions of the parameter space and thus the parameter uncertainty. 18 

In addition, it makes the model less flexible and more dependent on its structure so that possible structural 19 

deficiencies more easily can be identified (Kirchner, 2006).  These are very important points when the 20 
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demands on hydrological models moves from just predicting runoff to reliable predictions for more 1 

elements in the hydrological cycle such as for example SWE and SCA. In addition, to properly assess the 2 

hydrological effects of climate change and to provide useful predictions for ungauged basins, we have to 3 

move towards the use of hydrological models with a minimum of calibration parameters.  4 

The major objective of this study is to investigate whether DDD_G gives a more realistic simulation of 5 

snow properties, such as a realistic temporal evolution of SWE and SCA during the snow season. Figures 6 

6 and 7 show that DDD_LN gives a pronounced positive trend for simulated SWE, whereas DDD_G gives 7 

a small positive trend in SWE that corresponds roughly to that of precipitation (recall that SWE is the 8 

accumulated solid precipitation during a period of time). It is notable that such an obvious erroneous 9 

simulation of SWE using SD_LN has so little impact on the precision of runoff predictions. A possible 10 

reason is that the surplus of snow, located at the highest elevations and for small areal fractions, will not 11 

have temperatures high enough, even during summer, to generate intense snowmelt affecting the precision 12 

of runoff simulations. In overparameterized rainfall runoff models, the optimal runoff simulation is often 13 

a system of compensating errors in states (i.e. soilmoisture and  SWE) and updating one of  the states from 14 

observations may, in fact, deteriorate the simulation result because the balance of errors is disturbed 15 

(Parajka et al., 2007). It is, however, of concern that the method itself introduces trends that could easily 16 

be interpreted as a trend in SWE in a climatic study. This problem of “snow towers” in models using a 17 

log-normal distribution for SWE with a fixed, calibrated CV has recently been addressed in the literature 18 

(Frey and Holzmann, 2015).  In Norway, using such a snow distribution model with the, well known, 19 

Swedish rainfall-runoff model, HBV (Hydrologiska Byråns Vattenbalansmodell, (Bergström, 1992)) has 20 
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led to the operational procedure of deleting the remaining snow reservoir at the end of summer. Such a 1 

procedure clearly constitutes an example of a model working well (with respect to runoff) but not for the 2 

right reasons. This point is further illustrated when we focus on one of the catchments that gives better 3 

NSE values using DDD_LN than DDD_G. The Masi catchment (5543 km2) is located in Northern Norway 4 

and is relatively flat (90 % of its area is located below 600 m.a.s.l and its minimum and maximum elevation 5 

is 370 and 1085 m.a.s.l respectively) so that the snow melt season is quite short and intense. Figure 10 a) 6 

shows the simulation of SWE using SD_LN with optimised CV (𝜃𝐶𝑉= 0.88) which gave a NSE value for 7 

runoff of NSE=0.75 and using SD_G which gave a NSE value for runoff equal to NSE=0.72. In Figure 10 8 

b) we have adjusted the CV value from 𝜃𝐶𝑉=0.88 to 𝜃𝐶𝑉=0.1 and the simulation of SWE using SD_LN no 9 

longer exhibit the very strong positive trend seen in Fig. 10 a), looks more realistic and very similar to that 10 

of SD_G. The precision of runoff simulation was, however affected and the NSE value dropped from 11 

NSE= 0.75 to NSE= 0.60. A reasonable conclusion may thus be that the slightly higher values for NSE 12 

and KGE using SD_LN is at the expense of unrealistic values of SWE. The correlation analysis supports 13 

this conclusion (see Table 3). The increase in SWE with time of DDD_LN is not correlated to any CC but 14 

to the parameter values of the method for spatial distribution of SWE, 𝜃𝐶𝑉. The parameter 𝜃𝐶𝑉 is found to 15 

be significantly correlated to the skill score for predicting runoff, KGE, i.e. high values of 𝜃𝐶𝑉 gives high 16 

values of KGE. The high skill scores for DDD_LN is clearly not due to a realistic process description of 17 

snow, but rather to an inadequate model structure that gets it right for the wrong reasons.  18 

Figure 8 shows that, in general, SCA is better simulated using DDD_G than DDD_LN. Figure 11 shows 19 

a typical example where DDD_G has estimates of SCA close to the observed especially during late spring. 20 
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Naturally, the problem of “snow towers” of DDD_LN influences its ability to simulate a realistic decrease 1 

in SCA since small fractions of the catchments remains snow covered at all times. The heavy tails of the 2 

optimised accumulation distribution produced by DDD_LN make a complete melt-out of the snow 3 

reservoir very difficult. DDD_G, on the other hand, provides an accumulation distribution without the 4 

heavy tail, which appears as a better choice with respect to the simulation of both SWE and SCA. The 5 

difference between the two methods with respect to the modelling of SCA became very clear when we 6 

compared the average annual duration of the snow cover. DDD_LN, due to the positive trends in SWE, 7 

ended up with an almost perennial snow cover for most of the catchments (see Figure 9), whereas DDD_G 8 

showed a variability in snowcover durations that is more consistent with the varying climate in Norway. 9 

For both models the correlation analysis between snow cover duration and CC showed that the duration 10 

of snow cover was positively correlated to catchment size, mean elevation and areal fraction of bare rock 11 

(area above the treeline) and negatively correlated to the areal fraction of forest. Since the areal fraction 12 

of forest and bare rock are highly correlated, these are expected relations illustrating that both models have 13 

a realistic snow distribution with respect to elevation. 14 

A more realistically simulated SCA is important for many applications. Updating of snow- and 15 

hydrological models using observed SCA is dependent on realistic simulations of SCA. A realistic 16 

simulation of SCA is also necessary for the properly accounting of energy fluxes over an area partly 17 

covered by snow (Liston, 1999; Essery and Pomeroy, 2004) and is hence important for the assessment of 18 

hydrological impacts of climate change. Without realistically simulated SCA, we cannot expect credible 19 

simulations for climate projections for neither runoff dynamics nor energy fluxes.  20 
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SWE is represented here as the sum of correlated (in time) spatial variables (solid precipitation). 1 

Precipitation events as snow is assumed to be gamma distributed in space with parameters varying with 2 

intensity. The parameters scale, 𝛼0, and decorrelation length, 𝐷, are estimated from observed spatial 3 

moments of precipitation. Recall that the shape parameter 𝜈0, is just set as one tenth of 𝛼0 through the 4 

relation 𝐸(𝑦) =
𝜈0

𝛼0
= 0.1 𝑚𝑚. From Figure 1 we see that the variance levels off, and even decreases, for 5 

increased spatial mean intensity. The presented model captures this observed feature since the variance 6 

will cease to increase as the correlation decreases with intensity (the number of summations). As 7 

correlation approaches zero, we will have a sum of independent events. According to the central limit 8 

theorem, such a sum will have a normal distribution. The shape parameter of 𝑦, 𝜈0 and the correlation 9 

determines the rate of the convergence to a normal distribution. For example, if the decorrelation range is 10 

long, then more summations are needed for the spatial frequency distribution of SWE to approach a normal 11 

distribution. The literature shows that empirical spatial distribution of SWE has a tendency to be positively 12 

skewed.  This is especially the case for many observations of SWE in Norway in high alpine areas (Alfnes 13 

et al., 2004; Marchand and Killingtveit, 2004; Marchand and Killingtveit, 2005). For more lowland and 14 

forested areas, the distribution tend to be more normal (Alfnes et al, 2004; Marchand and Killingtveit, 15 

2004; Marchand and Killingtveit, 2005). In our modelling framework, this would imply that we would 16 

expect small shape parameters and long decorrelation lengths for mountain areas, and larger shape 17 

parameters together with short decorrelation lengths for lower lying forested areas. Table 4 show 18 

correlations and their significance (p-values) between the parameters 𝛼0 and 𝐷 and the CCs fraction of 19 

bare rock, fraction of forest, mean elevation and catchment area. We see that 𝛼0 is significantly correlated 20 

Slettet:  21 

Slettet: ,22 

Slettet:  at a certain23 

Slettet: , and even decreases24 

Slettet: For uncorrelated events25 

Slettet: finally26 

Slettet: .27 

Slettet: parameter28 

Slettet:  29 

Slettet: 330 

Slettet: with catchment values of31 

Slettet: ¶32 



 

29 

 

to the mountain/forest and highland/lowland indices as expected. The decorrelation length 𝐷 is weakly 1 

correlated to the mean elevation in a way implying shorter correlation lengths at high altitudes, i.e. contrary 2 

to what is expected from reported shapes of the PDF of SWE, and uncorrelated to the other indices. It is 3 

promising, and somewhat unexpected, that correlation between 𝛼0(𝜈0) and catchment characteristics 4 

supports our theory so clearly since the location of Norwegian precipitation gauges, which is has a very 5 

poor representation at high elevations (Dyrrdal et al. 2012; Saloranta, 2012), was not expected to 6 

discriminate this behaviour very well. The somewhat confusing results of the decorrelation length, 7 

suggests a dedicated study using a more dense network of precipitation gauges.   8 

As mentioned in the introduction, many models for the spatial PDF of SWE have been proposed in the 9 

literature (i. e. normal, gamma, log-normal, mixed log-normal). The diversity in distributions is often 10 

addressed to the physical processes responsible for the shape of the spatial distribution of SWE, which 11 

include wind, during and after the snowfall, spatial variability of precipitation and topographic features. 12 

This topic is continuously debated in the literature (Liston, 2004; Skaugen, 2007; Lehning et al., 2008; 13 

Clark et al., 2011; Mott et al., 2011; Scipion et al., 2013) and, in addition, various spatial scales and 14 

landscape types interact and further complicate the matter (Blöschl, 1999; Alfnes et al. 2004; Liston, 2004; 15 

Marchand and Killingtveit, 2004; Marchand and Killingtveit, 2005). A major problem is that the spatial 16 

distribution of snow and SWE is very hard to measure at the appropriate scale, i.e. the catchment scale, 17 

which often covers different elevations and both forested and open (alpine) areas. Various airborne 18 

observation techniques such as laser scan (Melvold and Skaugen, 2013) and passive microwave 19 

(Vuyovich, 2014) are promising but restricted by landscape features such as vegetation and topography 20 
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and the state of the snow (wet/dry). Consequently, investigations on the spatial distribution of SWE has 1 

to rely on in situ measurements, which seldom covers entire catchments. In this study, in situ information 2 

(the spatial variability of solid and liquid precipitation), is obtained from the station network of 3 

precipitation gauges of the Norwegian Meteorological Institute, which measures precipitation at 2 m above 4 

ground. It is highly probable that the observed spatial variability, measured at such near-surface, captures 5 

information of the influence of the wind on precipitation in general and on snowfall in particular. This 6 

assumption is justified by the significant and relatively high correlations seen in Table 4 between the scale 7 

parameter, 𝛼0, (and hence, in our case, the shape parameter, 𝜈0) to landscape features such as elevation 8 

and vegetation and suggests a sensitivity to the exposure of wind. Johansson and Chen (2003) demonstrate 9 

the influence of wind speed on the spatial distribution of precipitation and Mott et al. (2011) and Lehning 10 

et al. (2008) show that near-surface wind fields highly influence snow distribution patterns through 11 

preferential deposition.  12 

The method presented in this study does not include redistribution of SWE due to wind as a driving force 13 

for shaping the spatial frequency distribution of SWE at the catchment scale. Some authors suggest that 14 

this process occur on a spatial scale much smaller than the catchment scale (Liston, 2004; Melvold and 15 

Skaugen, 2013). In Figure 11 we see that DDD_LN shows a better simulation of SCA for the start of the 16 

melting period than DDD_G for, at least, two of the years (2011 and 2014). The reason to why DDD_LN 17 

simulates the initial development of snow-free areas better than DDD_G is probably that SD_LN produces 18 

a generally more positively skewed distribution of SWE than SD_G, and has, hence, a higher frequency 19 

of small values of SWE that melts quickly. Whereas the distribution of SD_G, which in general seems to 20 
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be more appropriate, should perhaps have a fraction of the catchment populated with small values of SWE 1 

in order to simulate this observed initial development of snow-free areas. By including redistribution due 2 

to wind, we might produce areas of shallow SWE, such as over wind-exposed ridges which are known to 3 

become free of snow rather early in spring.  4 

Finally, it is important to keep in mind that this study aims at determining the spatial frequency distribution 5 

of SWE for elevation bands for a catchment. These areas may comprise several square kilometres. The 6 

spatial distribution of SWE for distributed hydrological modelling, i.e.  simulating the amount of SWE at 7 

specific locations, is another, and much more challenging, task which involves taking into account very 8 

small scale (< 25 m according to Lehning et al., 2008) landscape features and their complex relation to 9 

accumulation, melting and redistribution of SWE.   10 

 11 

5 Conclusions 12 

In this paper a method for estimating the spatial frequency distribution of SWE is implemented in the 13 

parameter parsimonious rainfall- runoff model DDD. The new method, first described by Skaugen (2007) 14 

and further developed by Skaugen and Randen (2013) and here, has its parameters estimated from 15 

observed spatial variability of precipitation measured from precipitation gauges.  The new method (SD_G) 16 

has hence no parameters to be optimized from calibration against runoff unlike the current operational 17 

snow distribution routine (SD_LN), which has one calibration parameter. The new method gives a 18 

dynamic presentation of the distribution of SWE, which, at the start of the accumulation season may be 19 

positively skewed, but converges to a more symmetrical distribution as the accumulation season 20 
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progresses. The parameters of the method show significant correlations with catchment characteristics 1 

discriminating between sheltered and wind exposed areas. 2 

DDD_G is tested for 71 catchments in Norway and little loss in precision of predicted runoff is seen when 3 

skill is measured with the Nash-Sutcliffe and Kling-Gupta efficiency criteria. SWE is simulated more 4 

realistically in that the seasonal snow is melted out every year and no trend in SWE is observed, which is 5 

consistent with the absence of trends in precipitation and temperature. The current operational routine for 6 

snow distribution (SD_LN), however, displays a tendency to produce ever increasing “snow towers” (Frey 7 

and Holzmann, 2015), which in turn gives the erroneous impression of an increasing trend in SWE and 8 

unrealistic annual durations of snow cover which for most catchments approach a full year. Such a 9 

behaviour can be remedied by adjusting the optimised parameter value for the spatial snow distribution, 10 

𝜃𝐶𝑉 , but at the expense of the precision of simulated runoff. The simulated SCA for both SD_G and 11 

SD_LN is compared to MODIS derived SCA and SD_G has the lower RMSE. The difference in simulated 12 

SCA between the two models is especially seen for median to low values of SCA. SD_LN can be seen to 13 

simulate better SCA at the beginning of the melt season, suggesting that SD_G has a too low frequency 14 

of low SWE values.    15 
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Table 1. Parameters of the DDD model with description and method of estimation. Some parameters (denoted with a *) have 1 

values obtained through experience in calibrating DDD for gauged catchments in Norway. These values are within the 2 

recommended range for the HBV model (Sælthun,1996). Other parameter values are assigned standard values as suggested in 3 

the literature. The GIS analyses are carried out using the national 25 X 25 m DEM (www. statkart.no). Parameters in bold have 4 

been calibrated in this study, either by dataset V1 or V2.  5 

Parameter Description    

Hypsograpic curve 11 values describing the quantiles 

0,10,20,30,40,50,60,70,80,90,100. 

Derived from GIS. 

   

𝜽𝑾𝒔 [%] Max liquid water content in snow. 

Calibrated (V1). 

   

Hfelt Mean elevation of catchment. 

Derived from GIS 

   

𝜃𝑇𝑙𝑟 [°C/100 m.] Temperature lapse rate (pr 100 m.). 

Not used in this study. 

   

𝜃𝑃𝑙𝑟 [mm/100 m.] Precipitation lapse rate (pr 100 m.). 

Not used in this study. 

   

𝜃𝑃𝑐 Correction factor for precipitation. 

Fixed at value 1.0 (see text).  

   

𝜃𝑆𝑐   Correction factor for precipitation 

as snow. Fixed at value 1.0 (see 

text). 

   

𝜃𝑇𝑋  [°C] Threshold temperature rain /snow. 

Fixed at value 0.5 (see text). 

   

𝜃𝑇𝑆  [°C] Threshold temperature melting / 

freezing. Fixed at value 0.0 (see 

text). 

   

𝜽𝑪𝑿  [mm/°C/day] Degree-day factor for melting 

snow. Calibrated (V2). 

   

*𝐶𝐺𝑙𝑎𝑐   [mm/°C/day]  Degree-day factor for glacial melt. 

Fixed at value 1.5x𝜽𝑪𝑿 

   

*𝐶𝐹𝑅 [mm/°C/day]  Degree-day factor for refreezing. 

Fixed at value 0.02.  

   

 Area[m2] Catchment area. Derived from GIS    

maxLbog[m] Max of distance distribution for 

bogs. Derived from GIS 

   

midLbog[m] Mean of distance distribution for 

bogs. Derived from GIS. 

   

Bogfrac Fraction of bogs in catchment. 

Derived from GIS. 
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Zsoil Areal fraction of zero distance to 

the river network for soils. Derived 

from GIS. 

   

Zbog Areal fraction of zero distance to 

the river network for bogs. Derived 

from GIS. 

   

𝑁𝑂𝐿 Number of storage levels. Fixed at 

value 5 (Skaugen and Onof, 2014). 

   

𝜽𝒄𝒆𝒂 [mm/°C/day] Degree day factor for 

evapotranspiration. Calibrated 

(V1).  

   

𝑅 Parameter defining field capacity 

(Skaugen and Onof, 2014).  

   

𝛿 Shape parameter of gamma 

distributed recession characteristic. 

Estimated from recession  

   

𝛽 Scale parameter of gamma 

distributed recession characteristic. 

Estimated from recession 

   

𝜽𝑪𝑽  Coeff. of variation for spatial 

distribution of snow. Calibrated 

(V2). 

   

𝛼0  Scale parameter of unit 

precipitation. Estimated from 

observed spatial variability of 

precipitation. 

  

𝐷  Decorrelation length of spatial 

precipitation. Estimated from 

observed spatial variability of 

precipitation. 

  

𝜽𝒗𝒓
 [m/s] Mean celerity in river. Calibrated 

from (V1). 

   

𝑚𝑅𝑑[m] Mean of distance distribution of the 

river network. Derived from GIS 

   

𝑠𝑅𝑑[m] Standard deviation of distance 

distribution of the river network. 

Derived from GIS 

   

𝑅𝑑𝑚𝑎𝑥[m] Max of distance distribution in river 

network. Derived from GIS 

   

𝑚𝑆[mm] Mean of subsurface water reservoir. 

Estimated from recession. 

   

𝑑̅[m] Mean of distance distribution for 

hillslope. Derived from GIS 
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𝑑𝑚𝑎𝑥[m] Max of distance distribution for 

hillslope. Derived from GIS 

   

Glacfrac Fraction of bogs in catchment. 

Derived from GIS 

   

𝑚𝐺𝑙[m] Mean of distance distribution for 

glaciers. Derived from GIS 

   

𝑠𝐺𝑙[m] Standard deviation of distance 

distribution for glaciers. Derived 

from GIS  

   

Areal fraction 

of  glaciers in 

10 elevation 

zones 

 Derived from GIS   

 1 
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Table 2 .Mean values of skill scores for the validation period 2000-2014 simulated with DDD_G and DDD_LN for 71 1 

catchments. KGE_r measures correlation, KGE_b, the bias error and KGE_g the variability error. All skill scores have an ideal 2 

value of 1. 3 

 NSE KGE KGE_r KGE_b KGE_g 

DDD_G 0.64 0.70 0.85 0.85 1.02 

DDD_LN 0.65 0.71 0.85 0.84 0.99 

 4 

  5 
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 1 

Table 3. Spearman correlations between simulated model results and catchment characteristics for the validation period 2 

2000-2014. Only significant correlations are shown (p-value < 0.01) expect for the correlation marked * which has a p-value 3 

slightly larger than 0.01 (p-value = 0.013). 4 

 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
  35 

  Catchment 

size  

%Lake  %Bog  %Bare-

rock 

%Forest  Mean 

elevation  

NSE DDD_G 0.38      

 DDD_LN 0.38      

KGE DDD_G    -0.33   

 DDD_LN    -0.35   

Slope SWE DDD_G  0.38 -0.46 0.44 -0.40  

SCA_RMSE DDD_G      -0.3* 

 DDD_LN      -0.34 

SCA_MAE DDD_G 0.50 -0.40     

 DDD_LN 0.44 -0.42     

Duration of 

snowcover 

DDD_G 0.32   0.67 -0.63 0.73 

 DDD_LN 0.42   -0.41 0.41 0.55 



 

43 

 

 1 
Table 4. Spearman correlations between model parameters and catchment characteristics indicating alpine and lowland areas 2 

where the 3 
spatial 4 

distribution of SWE is expected to vary . The bracketed numbers indicate significance (p-value) 5 
 6 
 7 
 8 
 9 
 10 
 11 
 12 
 13 
 14 
 15 
  16 

 %Forest %Bare rock Mean elevation Catchment size 

𝛼0 0.34 (0.00) -0.40 (0.00) -0.35 (0.00) -0.28 (0.02) 

𝐷 0.13 (0.29) -0.14 (0.24) -0.25 (0.03) -0.15 (0.19) 
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 1 
Figure captions 2 
 3 
Figure 1. Scatter plot of the spatial mean and spatial standard deviation of observed precipitation over a catchment.  4 

Equation (6) is fitted to the data by non-linear regression (red line). Bottom panel shows the scatter plot in log-log.  5 

Figure 2. Schematic of how changes in SCA are estimated. a) 𝑓𝑚 and 𝑓𝑎 are the spatial frequency distributions 6 

(PDF) of snowmelt and accumulation respectively. 𝑚, 1 − 𝑚, 𝑎 and 1 − 𝑎 are partially integrated values of the 7 

PDFs.  b) The integral of the PDFs for successive intervals of SWE and melt and their spatial coverage. The cross-8 

hatched bars constitute the reduction in SCA 9 

Figure 3. Location of the 71 catchments used to evaluate the new subsurface routine 10 

Figure 4. Histograms of catchment characteristics for the 71 catchments. a) mean of the hillslope distance 11 

distribution, 𝑑̅, b) areal percentage of lakes, c) areal percentage of bogs, d) catchment area , e) mean elevation, f) 12 

areal percentage of glaciers, g) areal percentage of forests and h) areal percentage of bare rock. 13 

Figure 5. Skill scores for DDD_G (blue circles) and DDD_LN (red crosses) for 71 Norwegian catchments. Mean 14 

skill score values are shown in horizontal lines along with moving averages (same color code).a) NSE, b) KGE, c) 15 

KGE_r (correlation), d) KGE_b (bias) and e) KGE_g (variability error). 16 

Figure 6. Time series of simulated SWE using DDD_G (blue line) and DDD_LN (red line) for  catchment Tansvatn 17 

in Southern Norway. 18 

Figure 7. Scatter plot of mean SWE simulated with DDD_G and DDD_LN for 71 catchments (a), scatterplot of 19 

annual slope of SWE b), annual slope of precipitation c) and temperature d). 20 
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Figure 8. a) Root mean square error (RMSE) for simulated SCA for DDD_G (blue) and DDD_LN (red).  b) Mean 1 

absolute error (MAE) for simulated SCA for DDD_G (blue) and DDD_LN (red). Moving averages and mean values 2 

of RMSE and MAE are shown with the same color code. 3 

Figure 10. Time series of simulated SWE for the Masi catchment in northern Norway with DDD_G (blue) and 4 

DDD_LN (red). In a) SWE is simulated with optimised CV=0.77, which gives a NSE=0.75. In b) SWE is simulated 5 

with adjusted CV=0.1 which gives a NSE=0.60. Using DDD_G gives a NSE=0.72.  6 

Figure 11. Time series of simulated SCA with DDD_G (blue) and DDD_LN (red) together with MODIS derived 7 

SCA (green circles) for  catchment Tansvatn in southern Norway. 8 
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