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 3 

Abstract. A realistic simulation of snow cover and its thermal properties are important for 1 

accurate modelling of permafrost. We analyze simulated relationships between air and near-2 

surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, 3 

with a particular focus on snow insulation effects in nine land surface models and compare 4 

them with observations from 268 Russian stations. There are large across-model differences in 5 

the simulated differences between near-surface soil and air temperatures (ΔT) (3 to 14 °C), in 6 

the sensitivity of soil to air temperature (0.13 to 0.96°C/°C), and in the relationship between ΔT 7 

and snow depth. The observed relationship between ΔT and snow depth can be used as a metric 8 

to evaluate the effects of each model’s representation of snow insulation, and hence guide 9 

improvements to the model’s conceptual structure and process parameterizations. Models with 10 

better performance apply multi-layer snow schemes and consider complex snow processes. 11 

Some models show poor performance in representing snow insulation due to underestimation 12 

of snow depth and/or overestimation of snow conductivity. Generally, models identified as 13 

most acceptable with respect to snow insulation simulate reasonable areas of near-surface 14 

permafrost (13.19 to 15.77 million km2). However, there is not a simple relationship between 15 

the sophistication of the snow insulation in the acceptable models and the simulated area of 16 

Northern Hemisphere near-surface permafrost, because several other factors such as soil depth 17 

used in the models, the treatment of soil organic matter content, hydrology, and vegetation 18 

cover also affect the simulated permafrost distribution. 19 
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1  Introduction 1 

Present-day permafrost simulations by global climate models are limited and future 2 

projections contain high, model-induced uncertainty (e.g., Slater and Lawrence, 2013; Koven 3 

et al., 2013). Most of the model biases and across-model differences in simulating permafrost 4 

area are due to inaccurate atmospheric simulation e.g. of air temperature and precipitation, 5 

deficient simulation of snow and soil temperature, and the coupling between atmosphere and 6 

land-surface. In winter, the snow insulation effect is a key process for the air-soil temperature 7 

coupling. Its strength depends on the snow depth, areal coverage, snow density and 8 

conductivity (see overview by Zhang, 2005). Many individual model studies have shown the 9 

strong impact of snow parameterizations on soil temperature simulations (e.g., Langer et al., 10 

2013; Dutra et al., 2012; Gouttevin et al., 2012; Essery et al., 2013; Wang et al., 2013; Jafarov 11 

et al., 2014). Most importantly, these studies showed that the consideration of wet snow 12 

metamorphism and snow compaction, improved snow thermal conductivity and multi-layer 13 

snow schemes can improve the simulation of snow dynamics and soil temperature. 14 

Parameterizations that take into account snow compaction (e.g. related to overburden pressure, 15 

thermal metamorphism and liquid water) work better than simpler schemes such as an 16 

exponential increase of density with time (Dutra et al., 2010). The influence of snow thermal 17 

conductivity on soil temperature has been demonstrated by many model studies (e.g., Bartlett 18 

et al., 2006; Saha et al., 2006; Vavrus, 2007; Nicolsky et al., 2007; Dankers et al., 2011; 19 

Gouttevin et al., 2012). Winter soil temperature can change by up to 20 K simply by varying 20 

the snow thermal conductivity by 0.1-0.5 W m-1 K-1 (Cook et al., 2008). The snow insulation 21 

effect also plays an important role for the Arctic soil temperature response to climate change 22 

and therefore for future near-surface permafrost thawing and soil carbon vulnerability (e.g., 23 

Schuur et al., 2008). Shallower snow can reduce soil warming while shorter snow season can 24 

enhance soil warming (Lawrence and Slater, 2010). The model skill in atmosphere-soil 25 

coupling with the concomitant snow cover in the Arctic is an important factor in the 26 

assessment of limitations and uncertainty of carbon mobility estimates (Schaefer et al., 2011). 27 

 28 

The Snow Model Intercomparison Project (Snow MIP) (Essery et al., 2009) and the Project 29 

for Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase 2e (Slater et 30 

al., 2001) examined the snow simulations of an ensemble of land-surface schemes for the 31 

mid-latitudes. However, until now there has been no attempt to evaluate the air-soil 32 

temperature relationship in the Northern Hemisphere permafrost region and the detailed role 33 
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of snow depth therein across an ensemble of models. In such an investigation, a first suitable 1 

approach is the evaluation of stand-alone (off-line) land surface models (LSMs). The 2 

retrospective (1960-2009) simulations from the model integration group of the Permafrost 3 

Carbon Network ("PCN"; http://www.permafrostcarbon.org) provide an opportunity to 4 

evaluate an ensemble of nine state-of-the-art LSMs. Here, the LSMs are run with observation-5 

based atmospheric forcing, meaning that snow depth is not influenced by biases in the 6 

atmospheric forcing in a coupled model set-up. The evaluation of the offline modeled air 7 

temperature - snow depth - near-surface soil temperature relationship in winter is therefore 8 

important for revealing a model’s skill in representing the effects of snow insulation. 9 

 10 

Most of the LSMs participating in PCN are the land-surface modules of Earth System Models 11 

(ESMs) participating in the Coupled Model Intercomparison Project (CMIP5; http://cmip-12 

pcmdi.llnl.gov/cmip5/) although in some cases different versions were used for PCN and 13 

CMIP5 simulations. Thus, the results we present can guide the corresponding evaluation of 14 

these ESMs, though analysis of coupled model results requires consideration of couplings 15 

between model components and is necessarily more complex. 16 

 17 

The scope of the present study is to analyze the extent to which the ensemble of PCN models 18 

can reproduce the observed relationship between air and near-surface soil temperatures in the 19 

Northern Hemisphere permafrost region during winter, with a particular focus on the snow 20 

insulation effect. For the latter we analyze the impact of snow depth on the difference 21 

between near-surface soil and air temperatures. Our related key questions are: How well do 22 

the models represent the observed spatial pattern of the air-soil temperature difference in 23 

winter and its control by the snow depth? What is the range of the simulated air-soil 24 

temperature relationship across the model ensemble? To the extent possible, we try to relate 25 

the performance of the models to their  snow schemes. With this aim in mind, a simultaneous 26 

analysis of simulated air and near-surface soil temperatures, and snow depth is presented and 27 

compared with those from a novel data set of Russian station observations. We used this data 28 

set  because it has been compiled within PCN, and it is hard to find other station data sets 29 

which provide simultaneous observations of both air and soil temperatures as well as snow 30 

depth over a long period.  31 

 32 

In Sect. 2, we describe the model simulations, the station observations used for evaluation, 33 

and the analysis methods. In Sect. 3, we present a detailed analysis of near-surface air 34 

http://cmip-pcmdi.llnl.gov/cmip5/
http://cmip-pcmdi.llnl.gov/cmip5/
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temperature - snow depth - soil temperature relationships in winter. In Sect. 4, we discuss the 1 

roles of atmospheric forcing and model processes. In Sect. 5, we investigate the relation of 2 

simulated snow insulation and permafrost area. We summarize our findings and present 3 

conclusions in Sect. 6. 4 

2  Data and Analysis 5 

2.1  Models 6 

We use data from nine LSMs participating in the PCN, including CLM4.5, CoLM, ISBA, 7 

JULES, LPJ-GUESS, MIROC-ESM, ORCHIDEE, UVic, and UW-VIC. For detailed 8 

information about the models and simulations we refer to Rawlins et al. (2015), Peng et al. 9 

(2015), and McGuire et al. (2016). The total soil depth for soil thermal calculations ranges 10 

from 3 m (divided into 8 layers) in LPJ-GUESS to 250 m (divided into 14 layers) in UVic. 11 

The soil physical properties differ among the models as well, and four of them (CLM4.5, 12 

ISBA, UVic, UW-VIC) include organic horizons. Three models (ISBA, LPJ-GUESS, UW-13 

VIC) do not archive soil sub-grid results and provide only area-weighted ground temperature 14 

(i.e. averaged over wetlands and vegetated areas, and in some cases lake fractions).  15 

 16 

Table 1 lists relevant snow model details. One model (UVic) uses an implicit snow scheme 17 

which replaces the upper soil column with snow-like properties, i.e. the near-surface soil layer 18 

takes the temperature of the air-snow interface. The other models use separate snow layers on 19 

top of the ground, either a single bucket (LPJ-GUESS, UW-VIC) or multi-layer snow 20 

schemes (CLM4.5, CoLM, ISBA, JULES, MIROC-ESM, ORCHIDEE). Snow insulation is 21 

explicitly considered in all models; increasing snow depth increases the insulation effect. 22 

Most models consider the effect of varying snow density on insulation (Table 1). This is 23 

parameterized by a snow conductivity-density relationship. Some of the models (LPJ-GUESS, 24 

MIROC-ESM, ORCHIDEE, UVic) use a fixed snow density, consider only dry snow and no 25 

compaction effects, while others represent liquid water in snow and different processes for 26 

snow densification such as mechanical compaction, and thermal and destructive 27 

metamorphism (Table 1). 28 

 29 

The simulations were generally run for the period 1960-2009, although some simulations 30 

were stopped a few years earlier. Each model team was free to choose appropriate driving 31 

data sets for weather and climate, atmospheric CO2, nitrogen deposition, disturbance, land 32 

cover, soil texture, etc. However, the climate forcing data (surface pressure, surface incident 33 
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longwave and shortwave radiation, near-surface air temperature, wind and specific humidity, 1 

rain and snowfall rates) are from gridded observational datasets (e.g. CRUNCEP, WATCH) 2 

(SI Table 1). The exception is MIROC-ESM, which was run as a fully-coupled model, forced 3 

by its own simulated climate. Mean annual air temperature simulated by MIROC-ESM for the 4 

permafrost region was within the range (-7.2 to 2.2°C) of the other forcing data sets used in 5 

this study and the trend in near-surface air temperature (+0.03°C yr-1) was the same for all 6 

forcing data sets. However, MIROC-ESM had both the highest annual precipitation (range 7 

433 to 686 mm) and the highest trend in annual precipitation (range -2.1 to +0.8 mm yr-1) 8 

among the forcing data sets. 9 

 10 

The spatial domain of interest is the Northern Hemisphere permafrost land regions. Our 11 

analysis is based on the 0.5o   0.5o resolution gridded driving and modeled data for winter 12 

(DJF) 1980-2000.  13 

2.2  Observations 14 

A quality-checked data set of monthly near-surface air temperature, 20 cm soil temperatures 15 

and snow depth from Russian meteorological stations have been provided by the All-Russian 16 

Research Institute of Hydrometeorological Information-World Data Centre (RIHMI-WDC; 17 

http://meteo.ru/). 579 stations report snow depth and 268 stations provide simultaneous data 18 

of all three variables. Ground surface temperature data are not available. A detailed 19 

description of dataset preparation is provided in Sherstiukov (2012a). Observing conditions at 20 

the Russian stations in all meteorological elements correspond with WMO standards. The 21 

observations presented have been included in other data sets, such as the Global Summary of 22 

the Day (GSOD) data set, HadSRUT4 etc., and are widely used in climate researches (e.g. 23 

Anisimov and Sherstiukov, 2016; Decharme et al. 2016; Park et al., 2014; Brun et al., 2013; 24 

Pavlov and Malkova, 2009; PaiMazumder et al., 2008). The soil temperature dataset was run 25 

through four independent methods of quality control (Sherstiukov, 2012b). However, some 26 

soil temperature observations could be disturbed by grass cutting during the warm season and 27 

the removal of organic materials, mainly at agricultural sites, which may affect the trend in 28 

warm season (Park et al., 2014), but this does not affect our results about the air - upper soil 29 

temperature relationship in winter.  30 

 31 

Precipitation station data have been compiled from GSOD data set produced by the National 32 

Climatic Data Center (NCDC; http://www.ncdc.noaa.gov) for all of the stations that are 33 

included in the RIHMI-WDC data set. In addition to the station’s ground snow depth 34 
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observations we use gridded snow water equivalent (SWE) data from the GlobSnow-2 1 

product (http://www.globsnow.info/swe/), which has been produced using a combination of 2 

passive microwave radiometer and ground-based weather station data (Takala et al., 2011). 3 

Orographic complexity, vegetation cover, and snow state (e.g. wet snow) affect the accuracy 4 

of this product. When compared with ground measurements in Eurasia, the GlobSnow 5 

product shows root-mean-square error (RMSE)  values of 30 to 40 mm for SWE values below 6 

150 mm, with retrieval uncertainty increases when SWE is above this threshold (e.g., Takala 7 

et al., 2011; Muskett, 2012; Klehemet et al., 2013). To compare with station data, snow depth 8 

was then calculated from SWE using a snow density of 250 kg m-3, which is a median 9 

observed value in winter. Zhong et al. (2013) report snow density values of 180-250 kg m-3 10 

for tundra/taiga and 156-193 kg m-3 for alpine snow classes. Woo et al. (1983) report snow 11 

density values of 250-400 kg m-3 for various terrain types. Choice of density does not 12 

materially affect the results. 13 

 14 

All these data have been compiled for winter (DJF) and the same time period of 1980-2000. 15 

This period was chosen because soil temperature data are sparse before 1980 and the JULES 16 

simulation stopped in the year 2000. Comparison of the simulations with the station data was 17 

done using a weighted bilinear interpolation from the 4 surrounding model grid points onto 18 

the station locations.  19 

2.3  Analysis Methods 20 

Our analysis is focused on the common winter (DJF) condition, although snow can begin in 21 

November or even earlier and end at the beginning of May, but we checked that a different 22 

winter definition (NDJFMA) does not qualitatively change any of the inter-variables 23 

relationships found. The focus in our study is on the evaluation of the simulated air-soil 24 

temperature relationships, modulated by snow depth. For this, we analyze the winter mean as 25 

well as the interannual variability (expressed as the standard deviation) of four key variables: 26 

near-surface air temperature (Tair), near-surface soil temperature (soil temperature at 20 cm 27 

depth; Tsoil), snow depth (dsnow), and the difference between Tsoil and Tair. This difference ΔT 28 

(ΔT = Tsoil - Tair) is called the air-soil temperature difference. By limiting our analysis to the 29 

winter only, we are able to attribute the across-model and model-to-observation differences in 30 

ΔT primarily to snow insulation effects. In winter, the effects of other factors (e.g. soil 31 

moisture, texture) on ΔT are much smaller than that of snow. Ground surface temperatures 32 

were not recorded in the Russian data set, but 20 cm soil depth temperatures were. To test 33 

how sensitive are results using 20 cm temperatures instead of ground surface, we also 34 
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analyzed model simulated temperature differences between ground surface and Tair, and found 1 

no qualitative differences, hence justifying use of 20 cm observations. 2 

 3 

We use the Pearson product-moment correlation coefficient and its significance (von Storch 4 

and Zwiers, 1999) to investigate the co-variability between ΔT and dsnow as well as between 5 

Tsoil and its two forcing factors (Tair and dsnow). Before we compute the correlations we 6 

detrended the data by removing a least squares regression line. The calculated correlation 7 

maps (i.e. spatial distributions of correlation coefficients) based on model and observation 8 

data, allow the comparison of the spatial patterns of these relationships.  9 

 10 

To further examine the functional behavior between the key variables, we present relation 11 

diagrams between pairs of variables (e.g. variation of ΔT with change of dsnow). To evaluate 12 

the performance of the individual LSMs we calculate the RMSE between the observed and 13 

modeled relationships. We illustrate the dependence of ΔT vs. dsnow and Tsoil vs. dsnow relations 14 

for three Tair ranges. To distinguish dry snow pack regimes from those where sporadic melt 15 

may occur even in winter, we split Tair into three regimes: the coldest conditions (Tair ≤ -25°C, 16 

representing 24% of observations), the intermediate temperature conditions (-25°C < Tair ≤ -17 

15°C, representing 42% of the observations), and the warmest conditions (-15°C < Tair ≤ -5°C, 18 

representing 34% of observations). Hence it is an indirect separation of temperature-gradient 19 

metamorphosis regimes and density-gradient metamorphosis snow pack regimes. 20 

Additionally, we present conditional probability density functions (PDFs) of ΔT for different 21 

snow depth and air temperature regimes and compare the simulated PDFs with those obtained 22 

from station observations.   23 

3  Results 24 

3.1  Relationship between air – soil temperature difference and snow depth 25 

The air-soil temperature difference (ΔT) - snow depth (dsnow) relationship in winter (Fig. 1) 26 

shows in the Russian station observations an increase of ΔT with increasing dsnow. The data 27 

exhibit a linear relation between ΔT and dsnow at relatively shallow snow depths with a trend 28 

towards asymptotic behavior at thicker snow, which is in agreement with earlier findings 29 

(Zhang, 2005; Ge and Gong, 2010; Morse et al., 2011). There is also significant scatter in the 30 

observation-based relationship indicated by the inter-quartile range in ΔT of 1.5-8.5 °C at 31 

specific snow depth and air temperature regimes, likely resulting from complicating factors 32 
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such as snow pack density and moisture content variability over the winter, as well as 1 

observational errors. 2 

 3 

All models reproduce the observed relationship, i.e. increasing ΔT with increasing dsnow. 4 

However, Fig. 1 also shows a wide across-model spread in the simulated relationships, and 5 

that some of the models are not consistent with the behavior in the observations. Only three 6 

models (CLM4.5, CoLM, JULES) reproduce reasonably well the observed ΔT vs. dsnow 7 

relationship using a benchmark of RMSE < 5 °C for all temperature regimes. In particular 8 

LPJ-GUESS, ORCHIDEE, UVic, UW-VIC, MIROC-ESM show large RMSE for cold air 9 

conditions. ISBA stands out overall, with a RMSE of 7-18 °C in all temperature ranges. We 10 

conclude that these models do not adequately represent the features of the observed ΔT vs. 11 

dsnow relationship. The scatter in the modeled relationships, indicated by the inter-quartile 12 

range, is of the same order as in the observations, except for ISBA and MIROC-ESM which 13 

produce noticeably smaller variations. 14 

 15 

Figure 2a views the ΔT vs. dsnow relationship in a complementary form using the PDFs of ΔT 16 

for different snow depth regimes. This analysis allows a detailed evaluation of the snow 17 

regime-dependent ΔT separation by quantifying and comparing the modal value and width of 18 

the different conditional PDFs. Since the Russian snow depths are clearly non-Normal in 19 

distribution (SI Fig. 1, with a median dsnow of 30 cm), we divide the data into "shallow" (dsnow 20 

≤ 20 cm) and "thick" (dsnow ≥ 45cm) regimes to separate two snow depth regimes. The modal 21 

value of the station-based ΔT PDF is 5 °C for "shallow" snow and 14 °C for "thick" snow - 22 

that is thick snow is a better insulator than thin snow. Based on the ΔT PDFs, five models 23 

(CoLM, CLM4.5, JULES, ORCHIDEE, MIROC-ESM) successfully separate the ΔT regimes 24 

under different snow depth conditions. Their simulated ΔT PDFs have a smaller modal value 25 

for thin snow than for thick snow, like in the observations. The other models clearly fail in 26 

separating the ΔT PDFs for the two different snow depth regimes. However, even for the five 27 

successful models, both the shapes and the modal values of the simulated PDFs differ from 28 

the observed PDF. 29 

 30 

Both Figs. 1 and 2b further indicate that ΔT are related to Tair conditions. This is expected due 31 

to the effects of Tair on snow pack properties, particularly its density and moisture content that 32 

affect the thermal conductivity of the snow. For example, the density of fresh fallen snow 33 

tends to be much lower under cold Tair than warm (Anderson, 1976), leading to increased 34 
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insulation (larger ΔT). Snow densification is also a function of Tair, for example, depth hoar 1 

metamorphosis of the snow pack, which produces more insulation (loosely packed depth-hoar 2 

crystals have very low thermal conductivity), is promoted by strong thermal gradients in the 3 

snow pack, and is typical of continental climates (e.g., Zhang et al., 1996). Therefore, we can 4 

expect that the same thickness of snow in colder climates will provide greater insulation than 5 

it would in warmer climates. 6 

 7 

Our analysis of observations (Figs. 1 and 2b) confirms i) a larger ΔT for colder Tair than for 8 

warmer Tair (for a given snow depth), ii) a greater sensitivity of ΔT to changes in dsnow in 9 

colder Tair (Fig. 1), and iii) larger modal value of the ΔT PDF for colder Tair than for warmer 10 

Tair (21 °C for Tair ≤ -25°C and 9 °C for -15°C < Tair ≤ -5°C; Fig. 2b). These effects are 11 

consistent with colder climates having lower density snow packs, and the differences are in 12 

line with measurements of snow density variability (Zhong et al., 2013). Additionally, both 13 

the inter-quartile range in Fig. 1 and the width of the PDFs in Fig. 2b become larger as Tair 14 

cool. This may be related to the formation of depth hoar, which is a very good insulator and 15 

its varying presence in the snow pack decouples ΔT from dsnow. Cold, thin snow packs tend to 16 

contain much more low density depth hoar than warmer snow packs (e.g., Zhang et al., 1996; 17 

Singh et al., 2011). Continental regions have large annual temperature cycles, with greater 18 

interannual variability and thinner snow packs, than maritime ones. This variability leads to 19 

greater scatter and greater sensitivity of the ΔT vs. dsnow relationship in the cold winter regions. 20 

An additional cause of scatter is that the density of fresh-fallen snow decreases with the 21 

decrease of temperature. Accordingly, we find in the cold Tair regime (Tair ≤ -25°C) a larger 22 

ΔT in early winter (November-December) when the snow pack is composed of thin, low 23 

density fresh snow (and depth hoar) than in late winter (January-February) (SI Fig. 2). Under 24 

warm conditions (-15°C < Tair ≤ -5°C) such a separation is not observed. 25 

 26 

If we evaluate the models with respect to this observed impact of Tair on the ΔT vs. dsnow 27 

relationship, we demonstrate that some models (CLM4.5, CoLM, JULES) are better able to 28 

replicate the effect than others (LPJ-GUESS, MIROC-ESM, ORCHIDEE, UW-VIC) (Fig. 1). 29 

The latter do not fully replicate the larger ΔT under cold Tair conditions. CLM4.5, CoLM and 30 

JULES capture a larger ΔT for colder Tair for a given dsnow in agreement with the observations. 31 

However, for shallow snow JULES simulates an increase of ΔT with increasing dsnow for all 32 

temperature ranges that is twice as large as observations. Two models (ISBA, UVic) clearly 33 

fail in this evaluation. Poor model performance in reflecting Tair influence on the ΔT vs. dsnow 34 
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also manifests itself in regime separation of the PDFs (Fig. 2b). Some models do not separate 1 

the ΔT regimes under different Tair conditions well or at all (ISBA, LPJ-GUESS, MIROC-2 

ESM, UVic), while others cannot capture the observed cold temperature regime features (i.e., 3 

too broad PDFs and shifts towards smaller modal values; ORCHIDEE, UW-VIC). The three 4 

models with reasonable inter-variable relations (CLM4.5, CoLM, JULES) also capture the 5 

regime separation in the PDFs. These three models as well as LPJ-GUESS and ORCHIDEE 6 

also represent the observed greater insulation of early winter snow packs under cold 7 

conditions (SI Fig. 2). 8 

 9 

The maps of the ΔT vs. dsnow correlations in winter (Fig. 3) demonstrates a pronounced spatial 10 

variability in the ΔT vs. dsnow relationship. Highest positive correlation occurs in the region of 11 

the East Siberian Plain and Siberian High Lands. In other regions, namely in Scandinavia, 12 

West Russian Arctic, West and Central Siberian Plains, the correlation is much weaker and 13 

often not statistically significant. These regions have snow (Sect. 4.1.2) influenced by North 14 

Atlantic cyclonic activity which brings relatively warm moist air and heavy precipitation in 15 

winter (and a positive correlation between dsnow and Tair), leading to relatively small mean ΔT.  16 

 17 

Some models (CLM4.5, CoLM, ORCHIDEE, UW-VIC) show a reasonable spatial pattern of 18 

correlation coefficient (r ≥ 0.4) comparing to that of the observations, while the others do not 19 

(Fig. 3). Obvious outliers are the LPJ-GUESS and UVic models, which do not reproduce the 20 

observed pattern of correlation. UVic calculates a reverse spatial pattern comparing to that of 21 

the observations (e.g. significant positive correlation in West Siberian Plain and Central 22 

Siberian Highlands). LPJ-GUESS produces very few statistically significant correlations.  23 

3. 2  Variability of soil temperature with air temperature and snow depth 24 

Next we assess whether or not the models can correctly reproduce the interannual near-25 

surface soil temperature (Tsoil) variability in relation to snow depth (dsnow) and near-surface air 26 

temperature (Tair) variability. Previous studies have noted that the strength of relationship 27 

between Tsoil and Tair is modulated by dsnow and the snow insulation effect increases only up to 28 

a limiting depth beyond which extra snow makes little difference to soil temperatures (Smith 29 

and Riseborough, 2002; Sokratov and Barry, 2002; Zhang, 2005; Lawrence and Slater, 2010). 30 

Zhang (2005) reported that the limiting snow depth is approximately 40 cm. 31 

 32 

To inspect the difference of the insulation capacity for shallow and thick snow, we investigate 33 

the Tsoil vs. Tair relationship under shallow (dsnow ≤ 20 cm) and thick (dsnow ≥ 45 cm) snow 34 
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conditions. Our Russian observation analysis (Fig. 4, Table 2) indicate a three times higher 1 

regression slope between Tsoil and Tair (0.62°C/°C, R2=0.8) under shallow snow pack than 2 

thicker snow conditions (0.21°C/°C, R2=0.4). This is consistent with observations that the 3 

mean freezing n-factor (the ratio of freezing degree days at the ground surface to air freezing 4 

degree days) is high at sites where the snow cover is thin or absent, and low at sites where the 5 

snow cover is thick (e.g., for Yukon Territory in Canada; Karunaratne and Burn, 2003). 6 

 7 

Figure 4 clearly shows that some models (CoLM, CLM45, JULES) can well capture this 8 

difference. Their regression slopes for thick and thin snow are well separated and in 9 

agreement with those from the observed relationship (Table 2). The RMSE of their modeled 10 

Tsoil vs. Tair relationships from observations is smaller than 4°C. These models better 11 

reproduce the observed ΔT vs. dsnow relationship. Other models (LPJ-GUESS, MIROC-ESM, 12 

ORCHIDEE) do not reproduce the much greater regression slope between Tsoil vs. Tair for 13 

shallow snow than for thick snow as the observations show. They also produce a regression 14 

slope for thick snow more than twice as large as observations. Two models (ISBA, UVic) do 15 

not show any sensitivity in the Tsoil vs. Tair relation to snow conditions (Fig.4, Table 2). 16 

Another measure quantitatively confirms the same models behavior: The observed average 17 

dsnow in the shallow snow regime is 13.7 cm and that for the thick snow regime is 58.5 cm, so 18 

we would expect, if near-surface Tair and conductivities were equal in both snow depth 19 

classes, a ratio between the slopes for shallow and thick snow would be 4.3. CLM4.5, CoLM, 20 

and JULES reproduce this observed variation in the Tsoil vs. Tair relation better than others 21 

(Table 2). JULES and CoLM indicate a factor of 4 change, while CLM4.5 indicates a factor 22 

of 2 change. Other models (LPJ-GUESS, MIROC-ESM, ORCHIDEE) underestimate the 23 

increase of the regression slope for decreasing snow depth; they simulate only a factor 24 

change of about 1.5. The two models with unrealistic ΔT vs. dsnow relationships (ISBA, UVic) 25 

also fail in this evaluation of their Tsoil vs. Tair relationship. They simulate a too strong 26 

sensitivity of Tsoil to Tair (regression slopes larger than 0.9°C/°C, R2>0.7; Table 2) that are 27 

almost completely independent of the snow depth regimes, particularly in ISBA, which is not 28 

consistent with observations. These models' spatial correlation patterns between Tsoil and Tair 29 

also differ greatly from the observations and the other models (SI Fig. 3) and show very high 30 

positive correlation (r > 0.8) in most regions, as may be expected from the large regression 31 

slope shown in Fig. 4. The RMSE of their modeled Tsoil vs. Tair relationships from 32 

observations reaches ca. 10°C . 33 

 34 
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The Tsoil vs. dsnow relationship (Fig. 5) displays the variation of Tsoil with changing snow depth 1 

and emphasizes the reduced sensitivity of Tsoil to snow depth under thick snow conditions. 2 

With increasing dsnow, Tsoil asymptotically converges towards a value of around 0°C. Overall, 3 

the Russian observations indicate that snow depth above about 80-90 cm has very little 4 

additional insulation effect on Tsoil. Most models show consistent results with regard to this 5 

aspect, although the inter-quartile range of Tsoil for specific snow depths  is quite large in some 6 

models (ISBA, ORCHIDEE, UVic, UW-VIC) (Fig. 5). The figure further points to the air 7 

temperature dependency of the relation. On average, for a given dsnow, a colder Tsoil is 8 

observed for colder near-surface air temperatures, compared with warmer air temperatures. 9 

Most models can replicate this effect of air temperatures on the Tsoil vs. dsnow relationship, 10 

though with differing accuracy. The RMSE between the observed and modeled relationships 11 

can reach ca. 10°C or more (in ISBA, UVic, UW-VIC), particularly under cold conditions. 12 

 13 

The spatial patterns of the correlation coefficients between Tsoil and Tair (SI Fig. 3) and 14 

between Tsoil and dsnow (SI Fig. 4) show a relatively large across-model scatter in many regions. 15 

Obvious outliers in the Tsoil vs. Tair correlation maps are ISBA and UVic which strongly 16 

overestimate the correlation (r > 0.9) over most of the Arctic. This indicates an 17 

underestimated snow insulation effect, and confirms the weak insulation in both models, 18 

which we already discussed based on their underestimated ΔT (Fig. 1) and weak correlation 19 

between ΔT and dsnow (Fig. 3). Other models (LPJ-GUESS, ORCHIDEE, UW-VIC) also 20 

overestimate the correlation in some regions (e.g. western Russian Arctic, r > 0.7). Most of 21 

the simulated maps of Tsoil vs. dsnow correlation agree with the observations on a strong 22 

positive correlation in East Siberia. This is a region of relatively shallow snow (10-40 cm; Fig. 23 

6) and there Tsoil is very sensitive to variations in snow depth (e.g., Romanovsky et al., 2007). 24 

Comparing both simulated correlation maps, it is obvious that in this region, Tsoil correlates 25 

more strongly with dsnow than with Tair, in agreement with the Russian data and earlier studies 26 

(Romanovsky et al., 2007; Sherstyukov, 2008).  27 

4  Roles of atmospheric forcing and model processes 28 

The across-model differences in the snow insulation effect, presented by the air temperature - 29 

snow depth - soil temperature relationships described above, are partially due to the 30 

differences in the atmospheric forcing data and also due to differences in the snow and soil 31 

physics used in the LSMs. However, because the climate forcing data sets utilized with each 32 

model are observation-based (except for MIROC-ESM), obvious outliers in individual model 33 
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performance likely indicate poor or deficient physical descriptions of the air/snow/soil 1 

relations in that specific LSM. 2 

4.1  Atmospheric forcing and snow depth 3 

4.1.1  Air temperature and precipitation 4 

Both near-surface air temperature (Tair) and precipitation are given by the climate forcing data 5 

sets (SI Table 1) for all models, except for MIROC-ESM which simulates both. The across-6 

model differences in forcing Tair used are relatively small and the simulated spatial patterns of 7 

temperature are very similar (SI Fig. 5). All forcing datasets are somewhat colder than 8 

Russian station data in their grid cells. The biases of winter mean Tair ranges from -0.8 °C to -9 

4.7 °C (SI Table 2), reflecting biases in the climate forcing data used by the models. In 10 

contrast, MIROC-ESM has a positive (mean) Tair bias of +2.7 °C. 11 

 12 

The large-scale patterns of precipitation are similar across the models, but regional differences 13 

can be large (SI Fig. 6). The individual differences in winter precipitation range from -0.2 14 

mm/day to +0.5 mm/day (SI Table 2) relative to the average of the Russian station data. 15 

Unfortunately, snowfall was archived in only a few models, however large-scale spatial 16 

patterns are similar across these models (SI Fig. 7). 17 

4.1.2  Snow depth 18 

The broad-scale spatial snow depth (dsnow) patterns are similar across the models and show 19 

general agreement with the observed patterns (Fig. 6). The well-pronounced areas of 20 

maximum winter dsnow (50-100 cm) are in Scandinavia, the Urals, the West Siberian Plain, 21 

Central Siberian Highlands, the Far East, Alaskan Rocky mountains, and Labrador Peninsula 22 

and isle of Newfoundland. However, large regional across-model variability is obvious. Some 23 

models (JULES, LPJ-GUESS, ORCHIDEE, UVic) underestimate dsnow, while others 24 

(CLM4.5, CoLM, ISBA, UW-VIC) overestimate it (Fig. 6; Table 3). The model biases are 25 

quite similar with respect to station observations and GlobSnow data. It should be noted, that 26 

the models do not account for snowdrift. However, redistribution of snow due to wind is an 27 

important aspect, which makes comparison between in-situ measured and modeled snow 28 

depths difficult (e.g., Vionnet et al., 2013; Sturm and Stuefer, 2013; Gisnas et al., 2014). 29 

 30 

Precipitation/snowfall across-model differences cannot be the primary explanation of these 31 

dsnow differences since some models (JULES, MIROC-ESM, ORCHIDEE) have positive bias 32 
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in precipitation (> 0.2 mm/d, SI Table 2) but simulate much lower dsnow compared to other 1 

models (Fig. 6, SI Figs. 6, 7, Table 3). Across-model differences in the interannual variability 2 

of winter precipitation do not translate simply to corresponding differences in the interannual 3 

dsnow variability (not shown). For example, UVic calculates the (unrealistically) largest 4 

interannual dsnow variability in the boreal Europe permafrost region which is not reflected in 5 

the precipitation variability. These results indicate that the simulated snow depth is a function 6 

of both the prescribed winter precipitation, and the model’s snow energy and water balance. 7 

4.2  Model processes 8 

We have shown that the across-model spread in the representation of snow insulation effects 9 

(Sects. 3.1, 3.2) can not predominantly be explained by differences in the forcing data (Sect. 10 

4.1), but to a large extent is due to the representation of snow processes in the models. By 11 

considering the relationship plots (Figs. 1, 4 and 5), and the conditional PDFs (Fig. 2) we 12 

were able to categorize the models in terms of their snow insulation performance. In this 13 

section we discuss the influence of the different snow parameterizations in the models. 14 

 15 

Models with better performance (CLM4.5, CoLM, JULES) apply multi-layer snow schemes. 16 

This allows them to simulate more realistic (stronger) insulation because they consider the 17 

snowpack’s vertical structure and variability. They calculate the energy and mass balance in 18 

each snow layer, are able to capture nonlinear profiles of snow temperature, and can also 19 

account for thermal insulation within the snowpack such as when the upper layer thermally 20 

insulates the lower layers (e.g., Dutra et al., 2012). These models also incorporate storage and 21 

refreezing of liquid water within the snow, parameterize wet snow metamorphism, snow 22 

compaction, and snow thermal conductivity (Table 1), which have been found to be among 23 

the most important processes for good snow depth and surface soil temperature simulation 24 

(e.g., Wang et al., 2013).  25 

 26 

An underestimated snow depth directly leads to insulation that is too weak in JULES, LPJ-27 

GUESS, ORCHIDEE, and UVic (Fig. 6, Table 3). However only in ORCHIDEE and UVic 28 

does this lead to a significant underestimation of ΔT (Table 3, SI Fig. 8) indicating bias 29 

compensation in the two other models. Thus, compensating error effects occur due to snow 30 

density and conductivity (SI Fig. 9, Table 1), which impact snow thermal insulation.  31 

 32 

Our analysis showed that two models (ISBA, UVic) have Tsoil vs. Tair correlation that are too 33 

high indicating that they do not represent the modulation of the Tsoil vs. Tair relationship by 34 
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snow depth (Fig. 4). This is consistent with their underestimation of ΔT (Figs. 1 and 2, SI Fig. 1 

8, Table 3). In UVic, the snowpack is treated not as a separate layer but as an extension of the 2 

top soil layer and a combined surface-to-soil thermal conductivity is calculated (Table 1). 3 

Such a scheme largely negates or reduces the insulating capacity of snow (Slater et al., 2001). 4 

Koven et al. (2013) noted that such a scheme simulates very little warming of soil, and 5 

sometimes even cooling. The slightly underestimated snow depth (Table 3, Fig. 6) contributes 6 

(but not as the primary factor) to reduced snow insulation, as reported for UVic (Avis, 2012). 7 

 8 

ISBA strongly underestimates ΔT, while strongly overestimating dsnow, compared with 9 

observations (Table 3, Fig. 6). However, ISBA uses the same atmospheric forcing data as 10 

JULES (accordingly the air temperature and precipitation are quite similar; SI Table 2). Also, 11 

the model's snow density (150-250 kg m-3) is similar to other models (CLM45, CoLM, 12 

JULES) (SI Fig. 9) and in agreement with Zhong et al. (2013) who report snow density values 13 

of on 180-250 kg m-3 for tundra/taiga and 156-193 kg m-3 for alpine snow classes in winter. 14 

This apparent contradiction comes from the parameterization of snow cover fraction within 15 

each grid cell (SCF). The version of ISBA used here calculates a unique superficial soil 16 

temperature whether or not the soil is covered by snow and all the energy and radiative fluxes 17 

are area-weighted by SCF (equations 7 and 20 in Douville et al., 1995). In order to get 18 

reasonable albedos in snow-covered forests, as is necessary when ISBA is coupled to the 19 

CNRM-CM climate model, the parameterization gives very low SCF in the boreal forest 20 

(between 0.2 and 0.5). Hence, snow insulates only 20% to 50% of the grid cell, despite fairly 21 

high snow depths. The heat fluxes from the snow-covered fraction are averaged with the 22 

fluxes from the snow-free surface, strongly concealing the actual insulating effect of snow 23 

and underestimating it over the grid cell. Using the detailed snow model Crocus (Brun et al., 24 

1992; Vionnet et al., 2012) with a SCF equal to 100% leads to an almost perfect simulation of 25 

near-surface soil temperature over Northern Eurasia (Brun et al., 2013). A similar experiment 26 

with ISBA and a SCF equal to 100% (Decharme et al., 2016) leads to good performances 27 

showing that the low ΔT in ISBA despite high snow depth in the present study is mostly due 28 

to this sub-grid snow fraction. Decharme et al. (2016) still showed that the ISBA results are 29 

further improved by updating the snow albedo and snow densification parameterization. 30 

 31 

Interestingly, the ORCHIDEE performance in simulating snow depth and ΔT is similar to 32 

UVic (underestimation of dsnow and ΔT; Table 3). However, ORCHIDEE can better represent 33 

the observed Tsoil vs. Tair relationship and its modulation due to snow pack. ORCHIDEE 34 
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employs, similarly to UVic, a fixed snow density and thermal conductivity. However, in 1 

contrast with UVic, ORCHIDEE applies a multi-layer scheme and simulates heat diffusion in 2 

the snowpack in up to 7 discrete layers (Table 1; Koven et al., 2009). This helps resolving the 3 

snow thermal gradients between the top and the base of the snow cover, and might explain 4 

how some of the snow insulation effects are reasonably represented in ORCHIDEE, despite 5 

the simpler treatment of temperature diffusion.  6 

5 Permafrost area  7 

Snow cover plays an important role in modulating the variations of soil thermodynamics, and 8 

hence near-surface permafrost extent (e.g., Park et al., 2015).  Here we evaluate if there is a 9 

simple relationship between the simulated Northern hemisphere permafrost area and the 10 

sophistication and ability of the snow insulation component in the LSM to match observed 11 

snow packs. The simulated near-surface permafrost area varies greatly across the nine models 12 

in the hind cast simulation (1960-2009; Table 4). Some of the better performing snow 13 

insulation effect models (CLM4.5, JULES) simulate a near-surface permafrost area of 13.19 14 

to 15.77 million km2, which is comparable with the IPA map estimate (16.2 million km2) 15 

(Brown et al., 1997; Slater and Lawrence, 2013). CoLM and ORCHIDEE, identified as 16 

reasonable models with respect to snow insulation, simulate much lower (7.62 million km2) 17 

and higher (20.01 million km2) areas, respectively. The main deficiency of CoLM is its too 18 

shallow soil depth (3.4 m) compared with CLM4.5 (45.1 m) despite having very similar snow 19 

modules (Table 1). However, ISBA, one of the two models that showed rather limited skill in 20 

representing snow insulation effects, also significantly over-estimate permafrost area (20.86 21 

million km2). This is inconsistent with previous studies (e.g., Vavrus, 2007; Koven et al., 22 

2013) which concluded that the first-order control on modelled near-surface permafrost 23 

distribution is the representation of the air-to-surface soil temperature difference. Table 4 24 

shows that the situation is more complex and that snow insulation simulation is not the 25 

dominant factor in a good permafrost extent simulation. When the land surface models having 26 

poor snow models are eliminated, the remaining models’ simulated permafrost area show 27 

little or no relationship with the performance of the snow insulation component, because 28 

several other factors such as differences in the treatment of soil organic matter, soil hydrology, 29 

surface energy calculations, model soil depth, and vegetation also provide important controls 30 

on the simulated permafrost distribution (e.g., Marchenko and Etzelmüller, 2013). 31 
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6  Summary and conclusions 1 

The aim of this work was to evaluate how state-of-the-art LSMs capture the observed 2 

relationship between winter near-surface soil and air temperatures (Tsoil, Tair) and their 3 

modulation by snow depth (dsnow) and climate regime. We presented some benchmarks to 4 

evaluate model performance. The presented relation diagrams of Tsoil and the difference of 5 

Tsoil-Tair to snow depth allow a much better assessment to reveal structural issues of the 6 

models than a direct point-by-point comparison with station observations. The results are 7 

based on the comparison of LSMs with a comprehensive Russian station data set. 8 

 9 

We see large differences across the models in their mean air-soil temperature difference (ΔT) 10 

of 3 to 14 °C, in the sensitivity of  near-surface soil temperature to air temperature (Tsoil vs. 11 

Tair)  (0.49 to 0.96°C/°C for shallow snow, 0.13 to 0.93°C/°C for thick snow), and in the 12 

increase of ΔT with increasing snow depth (modal value of ΔT PDF: 0 to 10 °C for shallow 13 

snow, 5 to 21 °C for thick snow). Most of the nine models compare to the observations 14 

reasonably well (observations: ΔT = 12 °C, modal ΔT values of 5 °C for shallow snow and of 15 

14 °C for thick snow, Tsoil vs. Tair = 0.62°C/°C for shallow snow, Tsoil vs. Tair = 0.21°C/°C for 16 

thick snow). Several models also capture the modulation by air temperature condition (larger 17 

increase in ΔT with increasing dsnow under colder conditions) and display the control of snow 18 

depth on Tsoil (weaker Tsoil vs. Tair relationship under thicker snow). However, while they 19 

generally capture these observed relationships, their strength can differ in the individual 20 

models. Two models (ISBA, UVic) show the largest deficits in snow insulation effects and 21 

cannot separate the ΔT regimes neither for different snow depths nor for different air 22 

temperature conditions.  23 

 24 

This study uses the ensemble of models to document model performance with respect to Tsoil 25 

versus Tair relationships, and to identify those with better performance, rather than to quantify 26 

the best model. We were able to attribute performance strength/weakness to snow model 27 

features and complexity. Models with better performance apply multi-layer snow schemes 28 

and consider complex snow processes (e.g. storage and refreezing of liquid water within the 29 

snow, wet snow metamorphism, snow compaction). Those models which show limited skill in 30 

snow insulation representation (underestimated ΔT, very weak dependency of ΔT on dsnow, 31 

almost unity ratio of Tsoil vs. Tair) have some deficiencies or over simplification in the 32 

simulation of heat transfer in snow and soil layer, particularly in the representation of snow 33 

depth and density (conductivity). We also emphasize that compensating errors in snow depth 34 
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and conductivity can occur. For example, an excessive correlation between Tsoil and Tair can 1 

be attributed to excessively high thermal conductivity even when the snow depth is correctly 2 

(or over) simulated. This finding underscores the need for detailed model evaluations using 3 

multiple, independent performance metrics to establish that the models get the right 4 

functionality for the right reason. It should be noted that the treatment of ground properties, 5 

particularly soil organic matter and soil moisture/ice content, also affect the simulated winter 6 

ground temperatures. The specific evaluation of these individual processes is more robustly 7 

investigated with experiments conducted for individual models (e.g. recently, Wang et al., 8 

2013; Gubler et al., 2013; Decharme et al., 2015). 9 

 10 

Snow and its insulation effects are critical for accurately simulating soil temperature and 11 

permafrost in high latitudes. The simulated near-surface permafrost area varies greatly across 12 

the nine models (from 7.62 to 20.86 million km2). However, it is hard to find a clear 13 

relationship between the performance of the snow insulation in the models and the simulated 14 

area of permafrost, because several other factors e.g. related to soil depth and properties and 15 

vegetation cover also provide important controls on the simulated permafrost distribution.  16 
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Tables 1 

 2 

Table 1. PCN snow model details. 3 

Model 

Reference for snow 

scheme 

Snow 

scheme1 
Snow  

layers 

Water 

phases 
Liquid water 

treatment2 
Snow density3 
 

Snow thermal 

conductivity4 

CLM4.5 

Swenson and 

Lawrence, 2012 

Oleson et al., 2013 

ML Dynamic 

(max. 5) 

Liquid, 

Ice 

Bucket-type 

prognostic in 

each layer 

depends on 

snow depth; 

compaction 
3) a,b,c 

quadratic 

equation on ρ 

 

CoLM 

Dai et al., 2003 

Ji et al. 2014 

ML Dynamic 

(max. 5) 

Liquid, 

Ice 

Bucket-type 

prognostic in 

each layer 

depends on 

snow depth; 

compaction 
3) a,b,c 

quadratic 

equation on ρ 

 

ISBA 

Boone and Etchevers, 

2001 

ML Static 

(3) 

Liquid, 

Ice, 

Vapor 

Diagnosed 

from snow 

temperature, 

mass, density  

compaction 
3) a,b 

quadratic 

equation on ρ,  

contribution due 

to vapor transfer 

JULES 

Best et al., 2011 

ML Dynamic 

(max. 3) 

Liquid, 

Ice, 

Vapor 

Bucket-type 

prognostic in 

each layer 

compaction 
3) a 

 

power equation 

on ρ 

LPJ-GUESS 

Gerten et al., 2004 

Wania et al., 2009 

BL Static 

(1) 

Ice Not 

represented  

fixed  

362 kg m-3 

fixed  

0.196 Wm-1K-1 

MIROC-ESM 

Takata et al., 2003 

ML Dynamic 

(max. 3) 

Ice Not 

represented  

fixed  

300 kg m-3 

fixed  

0.3 Wm-1K-1 

ORCHIDEE 

Gouttevin et al.,2012 

ML Dynamic 

(max. 7) 

Ice Not 

represented  

fixed  

330 kg m-3 

fixed 

0.25 Wm-1K-1 

for tundra, 

0.042 Wm-1K-1 

for taiga 

UVic 

Meissner et al., 2003 

Avis, 2012 

I Static 

(1) 

Ice Not 

represented  

fixed  

330 kg m-3 

bulk 

conductivity 

UW-VIC 

Andreadis et al., 2009 

 

BL Dynamic 

(max. 2) 

Liquid, 

Ice, 

Vapor 

Constant 

liquid water 

holding 

capacity 

compaction 
3) a,b 

 

fixed 

0.7 Wm-1K-1 

1 ML: Multi-layer, BL: Bulk-layer, I: Implicit; according to Slater et al. (2001) 4 
2 Not represented means dry snow 5 
3 Processes for densification of the snow: a) mechanical compaction (due to the weight of the overburden), b) 6 

thermal metamorphosis (via the melting–refreezing process), c) destructive metamorphism (crystal breakdown 7 

due to wind, thermodynamic stress); Anderson (1976), Jordan (1991), Kojima (1967) 8 
4 quadratic equation on ρ according to Jordan (1991), Anderson (1976); contribution due to vapor transfer 9 

according to Sun et al.(1999) 10 

 11 

12 
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Table 2. Sensitivity of near-surface soil temperature (Tsoil) to air temperature (Tair) in winter 1 

(DJF) calculated by the slopes of the linear regression between Tsoil (°C) and Tair (°C) for 2 

different regimes of snow depth (dsnow), using data from all Russian station grid points and  21 3 

individual winter 1980-2000. All relationships are statistically significant at p ≤ 0.01.  4 

 5 

 Snow depth regimes 

 
Shallow 

dsnow ≤ 20 cm 

Thick 

dsnow ≥ 45 cm 

 Tsoil vs. Tair 

(°C/°C) 
R2 

Tsoil vs. Tair 

(°C/°C) 
R2 

Observation 0.62 0.79 0.21 0.41 

CLM4.5 0.69 0.89 0.33 0.56 

CoLM 0.49 0.73 0.13 0.44 

ISBA 0.93 0.98 0.93 0.94 

JULES 0.68 0.77 0.19 0.46 

LPJ-GUESS 0.73 0.89 0.52 0.75 

MIROC-ESM 0.78 0.98 0.49 0.67 

ORCHIDEE 0.86 0.83 0.56 0.64 

UVic 0.96 0.97 0.81 0.68 

UW-VIC 0.54 0.74 0.76 0.65 

 6 

7 
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 30 

Table 3. Russian-station-location averaged error statistics for snow depth (cm) and 1 

temperature difference between 20 cm soil and air temperature (ΔT; °C) for winter 1980-2000. 2 

For each variable, the maximum available number of observations (n) is used. MeanSt,GS and 3 

stdevSt,GS are the observed mean and interannual variability (standard deviation), while stdev is 4 

the standard deviations of each model. Bias is the mean error ‘simulation minus observation’ 5 

and rmse is the root-mean-square error. The statistics for snow depth is given based on both 6 

station observation (St) and GlobSnow (GS) data.  7 

 8 

 Snow depth (n=579) 

meanSt= 26.4 cm, meanGS=23.4 cm 

stdevSt= 9.0 cm, stdevGS= 6.5 cm 

ΔT (n=268) 

meanSt= 11.9 °C 

stdevSt= 2.3 °C 

  biasSt rmseSt biasGS rmseGS stdev biasSt rmseSt stdev 

CLM4.5 11.5 18.1 14.3 18.1 5.8 2.3 4.1 2.2 

CoLM 15.6 21.4 17.8 22.1 9.8 2.7 3.7 2.4 

ISBA 13.0 18.8 15.7 19.8 9.5 -8.4 9.1 0.9 

JULES -4.1 14.1 -1.3 12.8 7.7 -0.8 4.2 3.2 

LPJ-GUESS -5.3 17.3 -2.5 16.0 5.0 -0.7 3.7 1.7 

MIROC-ESM -0.4 17.9 1.9 14.0 6.3 -4.9 6.7 2.0 

ORCHIDEE -8.7 16.5 -5.3 15.3 6.9 -5.2 6.0 1.9 

UVic -3.7 18.9 -0.5 16.8 9.4 -5.1 6.5 1.4 

UW-VIC 12.5 19.8 15.0 20.0 10.4 -1.3 4.8 2.1 

 9 

 10 

11 
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Table 4. Permafrost area, defined as maximum seasonal active layer thickness < 3 m in 1960 1 

(Mc Guire et al., 2016). The IPA map estimate is 16 million km2 (Brown et al., 1997; Slater 2 

and Lawrence, 2013). 3 

 4 

 5 

Land Surface Model Snow Insulation skill Permafrost Area (106 km2) 

CLM4.5 High 15.77 

CoLM High 7.62 

ISBA Low 20.86 

JULES High 13.19 

LPJ-GUESS Medium 17.41 

MIROC-ESM Medium 13.02 

ORCHIDEE Medium 20.01 

UVic Low 16.47 

UW-VIC Medium 17.56 

 6 

 7 

 8 

 9 

 10 
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 1 

Figure 1. Variation of ΔT (°C), the difference between soil temperature at 20 cm depth and 2 

air temperature) with snow depth (cm) for winter 1980-2000. The dots represent the medians 3 

of 5 cm snow depth bins and the upper and lower bars indicate the 25th and 75th percentiles, 4 

calculated from all Russian station grid points (n=268) and 21 individual winters. The 5 

numbers in each model panel indicate the RMSE between the observed and modeled 6 

relationship. Color represents different air temperature regimes.  7 

 8 

 9 

 10 

 11 
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 1 

Figure 2. Conditional probability density functions (PDFs) of ΔT (°C), the difference 2 

between soil temperature at 20 cm depth and air temperature for (a) different snow depth 3 

classes and (b) air temperature regimes, for winter 1980-2000.  4 
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 1 

 2 

Figure 3. Spatial maps of the correlation coefficients between snow depth and ΔT, the 3 

difference between soil temperature at 20 cm depth and air temperature for winter 1980-2000. 4 

Regions with greater than 95% significance are hashed.  5 

 6 
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 1 

Figure 4. Variation of soil temperature at 20 cm depth (°C) with air temperature (°C) for 2 

winter 1980-2000. The dots represent the medians of 5°C air temperature bins and the upper 3 

and lower bars indicate the 25th and 75th percentiles, calculated from all Russian station grid 4 

points (n=268) and 21 individual winters. The numbers in each model panel indicate the 5 

RMSE between the observed and modeled relationship. Color represents different snow depth 6 

regimes.  7 

 8 
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 1 

Figure 5. Variation of soil temperature at 20 cm depth (°C; y axis) with snow depth (cm) for 2 

winter 1980-2000. The dots represent the medians of 5 cm snow depth bins and the upper and 3 

lower bars indicate the 25th and 75th percentiles, calculated from all Russian station grid points 4 

(n=268) and 21 individual winters. The numbers in each model panel indicate the RMSE 5 

between the observed and modeled relationship. Color represents different air temperature 6 

regimes.  7 
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 2 

Figure 6. Spatial maps of snow depth (cm) for winter 1980-2000.  3 


