
Response to comments of reviewer #1: 

 

General comments 
 

Snow and its insulation effects are critical for accurately simulating soil temperature and 

permafrost in high latitudes. This paper assessed the skills of nine land surface models 

based on the response patterns of Tsoil and the difference of Tsoil-Tair to snow depth in 

winter in high latitudes. The observed patterns at 268 climate stations in Russia were used 

as ground truth. Such an assessment is better than direct point-by-point comparison with 

station observations. It reveals some structural issues of the models in simulating snow 

depths and its insulation effects on soil temperature. The results from the observation 

stations are interesting as well. The data source is solid, the results and analysis are 

detailed and well presented in most parts. It is worthy to be published. 

 

We thank Reviewer 1 for the positive feedback on our paper and the useful specific comments 

that helped improving our manuscript. Please find the reviewers comments in bold, our point-

by-point answers without formatting, and changes to the initial manuscript in Italics. 

 

Specific comments 
 

1. The authors put several lines in abstract about near-surface permafrost. However 

permafrost results were not described in results and discussion sections, and it is only 

mentioned in summary and conclusion section. A somewhat proportional amount of 

description (in terms of length or importance) should be given in results and discussion 

sections so that it can be included in the summary and abstract. You need to add at least 

one paragraph about permafrost in the result (as suggested below) or in discussion 

sections. 

Done. We agree and accordingly we add an additional section “5. Permafrost area” in the 

results section in the paper which include a new table Table 4. This new table shows the 

simulated permafrost area for the nine models.  

The new section “5. Permafrost area” reads: “Snow cover plays an important role in 

modulating the variations of soil thermodynamics, and hence near-surface permafrost extent 

(e.g., Park et al., 2015).  Here we evaluate if there is a simple relationship between the 

simulated Northern hemisphere permafrost area and the sophistication and ability of the snow 

insulation component in the LSM to match observed snow packs. The simulated near-surface 

permafrost area varies greatly across the nine models in the hindcast simulation (1960-2009; 

Table 4). Some of the better performing snow insulation effect models (CLM4.5, JULES) 

simulate a near-surface permafrost area of 13.19 to 15.77 million km2, which is comparable 

with the IPA map estimate (16.2 million km2) (Brown et al., 1997; Slater and Lawrence, 2013). 

CoLM and ORCHIDEE, identified as reasonable models with respect to snow insulation, 

simulate much lower (7.62 million km2) and higher (20.01 million km2) areas, respectively. The 

main deficiency of CoLM is its too small soil depth (3.4 m) compared with CLM4.5 (45.1 m) 

despite having very similar snow modules (Table 1). However, ISBA, one of the two models that 

showed rather limited skill in representing snow insulation effects, also simulates the highest 

permafrost area (20.86 million km2). This is inconsistent with previous studies (e.g., Vavrus, 

2007; Koven et al., 2013) which concluded that the first-order control on modelled near-

surface permafrost distribution is the representation of the air-to-surface soil temperature 

difference. Table 4 shows that the situation is more complex and that snow insulation 

simulation is not the dominant factor in a good permafrost extent simulation. When the land 

surface models having poor snow models are eliminated, the remaining models’ simulated 



permafrost area show little or no relationship with the performance of the snow insulation 

component, because several other factors such as differences in the treatment of soil organic 

matter, soil hydrology, surface energy calculations, model soil depth, and vegetation also 

provide important controls on simulated permafrost distribution (e.g., Marchenko and 

Etzelmüller, 2013).” 

Accordingly, we shortened the permafrost part in the “6. Summary and conclusions” section. 

The according paragraph reads: “Snow and its insulation effects are critical for accurately 

simulating soil temperature and permafrost in high latitudes. The simulated near-surface 

permafrost area varies greatly across the nine models (from 7.62 to 20.86 million km2). 

However, it is hard to find a clear relationship between the performance of the snow insulation 

in the models and the simulated area of permafrost, because several other factors e.g. related 

to soil depth and properties and vegetation cover also provide important controls on simulated 

permafrost distribution.” 

 

2. P.9: Before analyzing the Tair-dsnow-Tsoil relationship, it would be interesting to 

briefly describe the modeled distribution and errors in snow depth and soil temperature 

comparing with observations in Russia. The section 4.1.2 about snow depth can be moved 

to here (table 3 in supplementary can be moved to here as well), and add something similar 

about the soil temperature. With the soil temperature results, you may add the results of 

permafrost extent and distribution as you mentioned in the summary and abstract. You 

may well aware and it is worthwhile to emphasize that the simulated snow depth and soil 

temperature could be influenced by inputs of the model, and the station observations have 

limitations in spatial coverage (covers only part of Russia, and may not well represent the 

grids). However, the response patterns of Tsoil   and Tsoil- Tair to dsnow should be 

consistent and can reveal deeper structural issues of the models. 

We appreciate the effort and thought of the referee to suggest some reorganization of the paper 

structure. However, we do want to keep it as is principally because the main scope of the paper 

is to evaluate the relationship between air and soil temperatures and its modulation by snow 

depth and climate regimes. Therefore, we present in the “Results” (section 3) the results for the 

relationships. This is then followed by the in-depth discussion of the indicated across-model 

differences in the relationships and its influencing factors (section 4). Here, snow depth comes 

into play and is discussed in detail (section 4.1.2). There we also discuss the relationship 

between the input precipitation/snowfall and simulated snow depth. We agree that snow depth 

is important for the snow insulation effect; therefore we followed your suggestion and show 

now for the snow depth both the spatial patterns (Fig. 6) and the station-based bias statistics. 

This means we moved earlier SI Tab. 3 into the new Table 3. In accordance with this, we 

moved also the ΔT bias statistics into the text (means we moved the whole earlier SI Tab. 3 to 

the new Tab. 3), because ΔT is also in detail discussed in section 4. We also followed your 

suggestion to present the permafrost extent (new section 5 and new Tab. 4); see our above 

answer to your related comment #1). We do present information about soil temperature biases. 

Actually, the presented bias statistics for both air temperature (SI Tab.2) and for ΔT (Tab.3) 

give the information about soil temperature bias. An additional table in the manuscript would 

be redundant information. For your convenience, we add here explicitly the Tsoil bias table: 

 

Tsoil bias statistics (n=479); StDevObs=1.5 K 

  BIAS 

(K) 

StDev 

(K) 

RMSE 

(K) 

CLM45 -2,4  1,2  3,5  

CoLM 1,8  1,0  2,9  

ISBA -9,4  1,8  9,9  



JULES -3,1  2,6  4,5  

LPJ-GUESS -1,0  0,9  3,2  

Miroc-ESM -2,5  2,1  4,8  

ORCHIDEE -6,1  1,8  6,6  

UVic -6,2  1,8  7,0  

UW-VIC -1,8  1,4  4,0  

 

Further, Figs. 4 and 5 present also information of the simulated Tsoil in comparison to station 

observations. For example, both figures clearly show the strongest underestimation of Tsoil in 

ISBA, as shown in the table above too. Finally, we emphasize that the focus of the paper is on 

the relationships or functional behaviors. Even if Tsoil is biased, the relationship between Tsoil 

and Tair can be well represented compared with observations. For example, CLM45 and JULES 

have a cold bias in Tsoil (too cold by ca. 3 K), but can represent the dependency of the Tsoil-Tair 

relationship on snow depth regime well (Fig.4; Tab. 2).     

Yes, the station data set covers the Russian Arctic. We focus on this because this data set was 

compiled within PCN project which initiated this model intercomparison study. However it is 

important to emphasize that the spatial coverage of the 579 stations reporting snow depth, 268 

stations reporting simultaneously air and soil temperatures and snow depth, and 518 stations 

reporting air temperature is quite good (see Figs. 3, 6, SI figures) to cover the model grid boxes 

of 0.5x0.5 deg. And indeed, the presented response patterns allow a much better assessment 

than direct point-by-point comparison with station observations. Therefore we have chosen this 

approach. We follow your suggestion and highlight this better by adding a sentence in the 

“Summary and conclusions” section: “The presented relation diagrams of Tsoil and the 

difference of Tsoil-Tair to snow depth allow a much better assessment to reveal structural issues 

of the models than a direct point-by-point comparison with station observations.” 

 

3. P.8, L.11-13: “We assume that …in winter”. I feel such an assumption is not necessary. 

The effects of soil moisture and texture do have effects but is much smaller than that of 

snow. You may revise it to “The effects of other factors on ∆T are much smaller than that 

of snow” or delete the sentence. 

We agree and have revised this to: “In winter, the effects of other factors (e.g. soil moisture, 

texture) on ∆T are much smaller than that of snow.”  

 

4. P.12, L.2-5: This sentence does not connect well with the previous one (why LPJ-

GUESS produces very low correlation coefficients). In addition, the meaning of the 

sentence is problematic. The correlation between the snowfall and its simulated snow depth 

and soil temperature should be somewhat consistent. As you indicated in section 4, the 

effects of inputs are limited. 

We agree and deleted this sentence. 

 

P.12, L.21-24: “the average … of Fig. 4.” 1) The authors seem like to provide a single 

criterion (one ratio) to assess the behavior of the models. Observations show clearly the 

difference between deep and shallow snow conditions. It would be better to assess the 

models for both deep and snow conditions, and Fig. 4 already show such results. 2 ) In this 

paragraph, the “stronger relationship” means “higher correlation coefficient” or “larger 

slope in the regression equations”? The term “gradient” used in the abstract and here 

actually means the slope of the regression between Tsoil and Tair. Gradient between Tsoil 

and Tair  can be misunderstood as changes of temperature from soil to air. Probably it is 

better to indicate its true meaning (slope of the regression, or the ratio between Tsoil and 



Tair in winter). 3) It is very similar to the freezing season n-factor used in permafrost 

modeling. You may compare to the winter n-factors used by others. 

 

1) It seems to us that there is probably a misunderstanding. Indeed, this whole second 

paragraph in section 3.2 evaluates the behavior of the model’s Tair vs.Tsoil relation under both 

thick and thin snow conditions. And, we assess the simulated relationships by different 

measures. First, we compare the simulated slopes of the Tair vs.Tsoi relationship under thin and 

thick snow with the according slopes from the observed relationships. This quantification is 

given in Table 2. Second, we calculate the RMSE between the observed and modeled 

relationship. These numbers are given in each model panel in Fig. 4 for both thin and thick 

snow. And third, we calculate the ratio of the slopes under these two snow regimes (ratio of 

slope under shallow snow divided by that of thick snow). All three criteria give a solid 

evaluation of the models relationships and they quantitatively confirm each other by arriving at 

the same conclusion: some specific model’s behavior under thick and thin snow is in 

agreement, other models cannot reproduce the observation. 

It seems we were not enough clear and improved this paragraph accordingly. It reads now: 

Figure 4 clearly shows that some models (CoLM, CLM45, JULES) can capture this 

modification of the Tair-Tsoil relation by snow depth regime well. Their regression slopes for 

thick and thin snow are well separated and in agreement with those from the observed 

relationship (Table 2). The RMSE of their modeled Tsoil vs. Tair relationships from 

observations is smaller than 4°C. These models better reproduce the observed ΔT vs. dsnow 

relationship. Other models (LPJ-GUESS, MIROC-ESM, ORCHIDEE) strongly underestimate 

the increase of the Tsoil vs. Tair regression slope for decreasing snow depth. They also 

produce a regression slope for thick snow more than twice as large as observations. Two 

models (ISBA, UVic) fail here and do not show any sensitivity in the Tair-Tsoil relation to snow 

conditions (Fig.4, Tab.2). Another measure quantitatively confirms the same models behavior: 

The observed average dsnow in the shallow snow regime is 13.7 cm and that for the thick snow 

regime is 58.5 cm, so we would expect, if near-surface air temperature and conductivities were 

equal in both snow depth classes, a ratio between the slopes for shallow and thick snow of 4.3. 

CLM4.5, CoLM, and JULES reproduce this observed variation in the Tsoil vs Tair relation better 

than others (Table2). JULES and CoLM indicate a factor of 4 change, while CLM4.5 indicates 

a factor of 2 change. Other models (LPJ-GUESS, MIROC-ESM, ORCHIDEE) strongly 

underestimate the increase of the regression slope for decreasing snow depth; they simulate 

only a factor change of about 1.5. The two models that had also unrealistic ΔT vs dsnow 

relationships (ISBA, UVic) also fail in this evaluation of their Tsoil vs Tair relationship. They 

simulate a too strong sensitivity of Tsoil to Tair  (regression slopes larger than 0.9°C/°C, R2>0.7; 

Table 2) that are almost completely independent of the snow depth regimes, particularly in 

ISBA, which is not consistent with observations. These models' spatial correlation patterns 

between Tsoil and Tair also differ greatly from the observations and the other models (SI Fig. 3) 

and show very high positive correlation (r > 0.8) in most regions, as may be expected from the 

large regression slope shown in Fig. 4. The RMSE of their modeled Tsoil vs Tair relationships 

from observations reaches ca. 10°C. 

 

2) We agree and we changed the wording through all the manuscript. We use either “larger 

slope in the regression between Tsoil and Tair” or “larger regression slope”, or “stronger 

sensitivity of Tsoil to Tair”.  

 

3) Yes, we agree and included one paragraph “This is consistent with observations that the 

mean freezing n-factor (the ratio of freezing degree days at the ground surface to air freezing 

degree days) is high at sites where the snow cover is thin or absent, and low at sites where the 

snow cover is thick (e.g., for Yukon Territory in Canada; Karunaratne and Burn, 2003).” 



 

 

Minor points 
 

P.3, L.2: revise “modelling” to “modeling” 

Done. 

 

P.3, L.6: replace “as expressed by” to “in the”, delete the two commas around “(∆T)”. 

Done. 

 

P.4, L.14: references are needed at the end of “… soil temperature” to support the 

treatment.  

Done. This has been clarified; this sentence is related to the sentence and references before. 

 

P.5, L.24-25: “these simulated relationships”: it is not clear what do you mean about 

“these relationships” without read the entire paper. 

Done. We revised it to: “What is the range of the simulated air-soil temperature relationship 

across the model ensemble?” 

 

P.6, L.10: “divided in 14 layers”, revise “in” to “into” 

Done. 

 

P.8, L.31-33: “the sentences “We illustrate … 3 regimes.” seems can be simplified as “We 

illustrate the dependence of Tsoil on Tair for three Tair ranges”. 

Done. It reads now “We illustrate the dependence of ΔT and Tsoil on dsnow for three Tair ranges.” 

 

You used “Larger snow depth”, “higher snow depth”. Probably can be revised as “thicker 

snow”, or “when the snow is deep”, or “with increase in snow depth” etc. 

Done. 

 

P.9, L.10: You do not need to redefine the symbols of ∆T and dsnow here. Actually, I 

feel you can replace the word descriptions by the symbols in many places, at least do not 

need to mention both the word description and symbols. 

We would like to keep it here at the beginning of the “Results” section, just for reminder the 

reader. We also keep it in first paragraph of “Summary and conclusions”. But, except this, we 

followed your suggestion and replaced the word descriptions by the symbols in the manuscript.  

 

P.9, L.29, L.31: ∆T/dsnow do mean a ratio as shown in Table 2. Revise “∆T/dsnow 

relationship”, to “∆T-dsnow relationship” here and many other places. 

Done. We do agree. We replaced “/” by “vs.” at all the respective places in the whole 

manuscript. 

 

P.9, L.31: “Figure 2 views the ∆T/dsnow relationship in the complementary form of the 

PDFS of …”, revised as “Figure 2 shows the ∆T-dsnow relationship in a complementary 

form using the PDFS of ……” 

Done. We also change “∆T-dsnow” to “∆T vs. dsnow”. See above answer. 

 

P.10, L.6: “the better models”, revise to “the five successful models” 

Done. 

 



P.10, L.11: “that affect the air soil temperature difference”, revise to “that affect the 

thermal conductivity of the snow”. 

Done. 

 

P.11, L.25: “reasonable pattern correlation coefficient with observations”, probably means 

“reasonable spatial pattern of correlation coefficient comparing to that of the 

observations”.  

Done. Actually, here we refer to the similarity between the simulated spatial patterns and the 

spatial pattern from observations. For this, we calculated the spatial pattern correlation 

coefficient. To be more precise, we improved this sentence to “… show a reasonable spatial 

pattern correlation coefficient …”. 

 

P.11, L.34: “a reverse pattern correlation than observations” revise to “a reverse spatial 

pattern comparing to that of the observations” 

 Done. 

 

 P.12, L.6: “emphasizing the weakening role of snow depth for Tsoil under thick snow 

 conditions”. Probably should be “emphasizing the reduced sensitivity of T soil to snow 

 depth under thick snow conditions” 

Done. 

 

Figures: revise “AirT” to “Tair” 

Done.  
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Response to comments of reviewer #2: 

We thank Reviewer 2 for providing valuable comments on our paper that helped 

improving our manuscript. Please find the reviewers comments in bold, our 

point-by-point answers without formatting, and changes to the initial manuscript in 

Italics. 

 

Comments: 

 

1. P5 L22-24: Most of the analysis is based on using the meteostation data across 

the Russian territory from 1980-1990. Unfortunately, there is no in-depth 

analysis of the observations and why these data can be used. Observations at 

many meteostations are performed at the disturbed conditions and thus only a 

small subset of this data could be used in the direct comparison. The authors 

simply assume that just all data could be used. The meaningful comparison of 

the model to observations at the disturbed sites could be done if the model also 

simulates the disturbed conditions. One of the major problems in this paper is 

that many observations were taken at the disturbed sites near meteostations, 

while models simulate typical ground conditions. To do the comparison correctly 

it is either necessary to model disturbed conditions in the models or remove 

'corrupted' observations from the analysis. 

This data set is quality checked and officially released by the All-Russian Research 

Institute of Hydrometeorological Information-World Data Centre (RIHMI-WDC; 

http://meteo.ru/). They provide quality controlled soil temperature at depths to 320 cm 

from meteorological stations of the Russian Federation. The data was subject to 

quality control by using four methods of statistical control (histograms, standard 

deviation check, check for connectedness of values that are neighboring in time).  

Meteorological sites are located in an open and typical place within the surrounding 

terrain. They are located far from the major obstacles and water bodies that may have 

a direct effect on the quality of measurements. To keep the surface of the 

meteorological site in its natural state, it is permitted to walk only on the specially laid 

tracks, a width not exceeding 40 cm, within the site territory. In the warm season grass 

on the site is regularly mowed and trimmed. The height of the grass on the site is not 

more than 20 cm. In the winter, the natural state of the snow cover is not broken. 

Observing conditions at the Russian stations in all meteorological elements 

correspond with WMO standards. The observations presented have been included in 

data sets, such as GSOD, HadSRUT4 etc. and are widely used in climate research. 

Soil temperature measurements are carried out simultaneously with the measurements 

of the whole complex of meteorological observations (temperature, characteristics and 

dynamics of snow cover and precipitation and so on). The soil temperature 

observations are under the original surface (from draw-out thermometer data). All 

meteorological observations, including soil temperature, are produced exclusively 

within the same site area (26 by 26 meters in size), and under constant careful control 

of workers who are caring for a site. This prevents any accidental violations of the 

integrity of the site and guarantees the quality of observations. A detailed history of 

http://meteo.ru/
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the development of methodology for soil temperature measurements was provided by 

Bykhovets et al. (2007). A detailed description of dataset preparation is provided in 

Sherstiukov (2007). The archived soil temperature dataset was run through four 

independent methods of quality control (Sherstiukov, 2012). 

Thus, the data of meteorological observations at the Russian stations for soil 

temperature can be effectively used in the evaluation of thermal changes in the upper 

layers of permafrost zone, as well as in the analysis of processes of thermal 

interaction between the atmosphere and soil. Similar conclusions were obtained by 

leading Russian scientists in this area (Anisimov and Sherstiukov, 2016; Pavlov and 

Malkova, 2009) and internationally (Park et al., 2014; Brun et al., 2013; Decharme et 

al. 2016; PaiMazumder et al., 2008). 

However, as Park et al. (2014) pointed out, the observations at some locations could 

have been unavoidably disturbed by grass cutting during the warm season and the 

removal of organic materials, mainly at agricultural sites. These disturbances may 

cause increased warming of the soil over time. Therefore, long-term soil temperature 

trends in could potentially include this non-climatic component (Frauenfeld et al 

2004).  

Thus, we agree that we have to be careful which and how we use the observation data. 

But we can argue that our study results are solid. First, and most important is that we 

do not present either direct point-by-point comparison with station observations nor 

trends, but we investigate variables relationships. We evaluate the models functional 

behaviors (inter-variable scatter plots, Figs. 1, 4, 5 and PDFs, Fig. 2). The 

inter-variable scatter plots (which show medians and the 25th and 75th percentiles) as 

well as the PDFs present the overall functional behavior of snow insulation effects, 

and not the individual station’s representation. Therefore, this kind of benchmark to 

evaluate the models skill is a solid approach using the station data, which include 

uncertainties (by showing the percentiles). This approach, as the other reviewer points 

out, reveals some structural issues of the models in simulating snow depths and its 

insulation effects on soil temperature. Secondly as we are only looking at upper soil 

temperatures, any change due to changes in soil column temperature gradient 

resulting from grass removal are negligible. Thirdly, the agriculture sites concerns are 

not an issue for our permafrost area focused study.  

According to the reviewer’s comment, we include in section 2.2 two references for 

more details of the data set: “A detailed description of dataset preparation is provided 

in Sherstiukov (2012a). Observing conditions at the Russian stations in all 

meteorological elements correspond with WMO standards. The observations 

presented have been included in data sets, such as GSOD, HadSRUT4 etc. and are 

widely used in climate research (e.g. Anisimov and Sherstiukov, 2016; Decharme et al. 

2016; Park et al., 2014; Brun et al., 2013; Pavlov and Malkova, 2009; PaiMazumder 

et al., 2008).The soil temperature dataset was run through four independent methods 

of quality control (Sherstiukov, 2012b).”  

Further, we emphazise the point that possible disturbances do not affect our results:  

“However, some soil temperature observations could be disturbed by grass cutting 

during the warm season and the removal of organic materials, mainly at agricultural 
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site, which may affect the trend in warm season (Park et al., 2014), but this does not 

affect our results about the air- upper soil temperature relationship in winter.”  

Finally, we cannot compare the model results and observation over only bare ground 

(or short grass) in the PCN simulations. Only the grid-cell average results were kept 

(and not the value for each vegetation and bare ground tile). 

References: 

Anisimov, O.A., Sherstiukov A.B. Evaluating the effect of environmental factors on 

permafrost factors in Russia, Earth’s Cryosphere, XX(2), 90-99, 2016. 

Brun, E., Vionnet, V., Boone, A., Decharme, B., Peings, Y., Valette, R., Karbou, F. and 

Morin, S.: Simulation of northern Eurasian local snow depth, mass and density using 

a detailed snowpack model and meteorological reanalysis, J. Hydrometeorol., 14, 

203–214, doi:10.1175/jhm-d-12-012.1, 2013. 

Bykhovets, S. S., Sorokovikov, V. A., Martuganov, R. A., Mamykin, V. G., and 

Gilichinsky, D. A. History of soil temperature measurements at the network of 

meteorological stations in Russia, Earth’s Cryosphere, XI(1), 7-20, 2007. 

Decharme, B., Brun, E., Boone, A., Delire, C., Le Moigne, P. and Morin, S.: Impacts 

of snow and organic soils parameterization on North-Eurasian soil temperature 

profiles simulated by the ISBA land surface model, The Cryosphere, 10, 853–877, doi: 

10.5194/tc-10-853-2016, 2016. 

Frauenfeld O W, Zhang T, Barry R G and Gilichinsky D.: Interdecadal changes in 

seasonal freeze and thaw depths in Russi,a J. Geophys. Res. 109 D05101, 2004 

Park, H., Sherstiukov, A.B., Fedorov, A.N., Polyakov, I. V., Walsh, J.E.: An 

observation-based assessment of the influences of air temperature and snow depth on 

soil temperature in Russia, Environmental Research Letters, Vol. 9, 2014, 

http://iopscience.iop.org/1748-9326/9/6/064026 

PaiMazumder, D., Miller, J., Li, Z., Walsh, J. E., Etringer, A., McCreight, J., Zhang, 

T., Mölders, N. Evaluation of Community Climate System Model soil temperatures 

using observations from Russia, Theoretical and Applied Climatology , 94(3),187-213, 

2008. 

Pavlov, A.V., Malkova, G.V.  Small-scale mapping of trends of the contemporary 

ground temperature changes in the Russian North, Earth’s Cryosphere, XIII(4), 32-39, 

2009. 

Sherstiukov, A. Dataset of daily soil temperature up to 320 cm depth based on 

meteorological stations of Russian Federation, RIHMI-WDC, 176, 224-232, 2012a. 

Sherstiukov, A. Statistical quality control of soil temperature dataset, RIHMI-WDC, 

176, 224-232, 2012b. 

 

2. P5 L29: “comprehensive Russian station data set”. Please describe this 

comprehensive dataset. Provide a reference and in-depth discussion about the 

site conditions, disturbances of the ground cover, what stations are not qualified 

for the comparison. 

This comment is related to the comment above. Please see our answer above. 

 

3. P7 L26: “Snow depth was then calculated from SWE using a snow density of 
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250 kg m-3.” What was the rational to use 250 kg/m3. Please provide references. 

How would the results change is 300 kg/m3 is used? Why not to use the SWE 

instead of the snow depth in all other further comparisons. It looks like 

converting to the snow height can add additional uncertainties to the consecutive 

analysis. 

The stations only give the snow depth (and not SWE). In addition to the station’s 

ground snow observations we also use the gridded SWE data from the GlobSnow-2 

product to support the station data results. Thus, to compare the GlobSnow data with 

the station data, we must convert one data set. No way has a preference. We decided 

to convert SWE from GlobSnow to snow depth, and for this we need an assumption 

about snow density. We use 250 kg m-3 because it is a mean observed value. Zhong et 

al. (2013) report snow density values of 180-250 kg m-3 for tundra/taiga and 156-193 

kg m-3 for alpine snow classes in winter. Woo et al. (1983) report snow density values 

of 250-400 kg m-3 for various terrain types. Thus we use the mid-value of 250 kg m-3. 

We added a paragraph in section 2.2: “Snow depth was then calculated from SWE 

using a snow density of 250 kg m-3, which is a median observed value in winter. 

Zhong et al. (2013) report snow density values of 180-250 kg m-3 for tundra/taiga 

and 156-193 kg m-3 for alpine snow classes. Woo et al. (1983) report snow density 

values of 250-400 kg m-3 for various terrain types. Choice of density does not 

materially affect the results.”  

To show you that this parameter choice does not affect our results, Fig. X1 is the 

comparison with snow depth from GlobSnow using a density of 300 kg m-3. This 

figure confirms that the pattern does not change and shows that the differences in 

snow depth are small (less than 10 cm). 

 

Figure X1: Snow depth (cm) derived from GlobSnow SWE using different 

assumptions of snow density, winter 1980-2000. 

 

Further, our calculations show that the model biases in snow depth are quite similar 

using either the station or the GlobSnow data (see earlier SI Tab.3, now moved to 

Table 3). Also, if we re-calculate the model biases with respect to GlobSnow derived 
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with a density of 300 kg m-3, the biases change only slightly and the model ranking is 

unaltered. For your convenience, we list here the comparison of the RMSE for snow 

depth (cm): 

 

 

4. P7 L29: “the GlobSnow product can show regional differences (of ca. 0.5-5 cm) 

with biases increasing with increasing SWE” Is it a systematic bias in conversion 

of the SWE to snow height? If so, why not to take it into the account. Please 

specify where the regional differences are the largest, what areas have smallest. 

How many stations are located in the areas where differences are largest. Also, 

please list differences in % not the absolute values, since in some locations 5cm 

could be 25% of error vs 10% of error. 

We do not aim to evaluate the GlobSnow data. There are quite a lot of papers about 

details of GlobSnow validation and uncertainties. The given sentences are from the 

references. The paper is already rather long and we do not feel a digression into this 

data set is of interest to most readers. Again we emphasize that all the relationship 

analysis we do is based on the station data (Figs. 1-5). We use GlobSnow only for the 

evaluation of the simulated spatial maps of snow depth (Fig.6). This has been done to 

support the station data results, and to arrive at a more solid comparison with the 

models. And indeed, we show that the calculated model biases in snow depth are quite 

similar using either the station or the GlobSnow data (see earlier SI Tab.3; now Table 

3). To make this clearer in the text, we now directly cite the sentence from the 

references and also include a reference related to our considered Russian Arctic or 

Eurasia region. We improved the according part in section 2.2: “…GlobSnow-2 

product (http://www.globsnow.info/swe/), which has been produced using a 

combination of passive microwave radiometer and ground-based weather station data 

(Takala et al., 2011). Orographic complexity, vegetation cover, and snow state (e.g. 

wet snow) affect the accuracy of this product. When compared with ground 

measurements in Eurasia, the GlobSnow product can show root-mean-square error 

(RMSE) values of 30 to 40 mm for SWE values below 150 mm, with retrieval 

uncertainty increases when SWE is above this threshold (e.g., Takala et al., 2011; 

Muskett, 2012; Khelemet et al., 2013).” 

RMSE of snow depth (cm) 

 

GlobSnow 
Stations 

Density=250 kg/m3 Density=300 kg/m3 

CLM4.5 18.1 20.5 18.1 

CoLM 22.1 24.9 21.4 

ISBA 19.8 22.9 18.8 

JULES 12.8 11.5 14.1 

LPJ-GUESS 16.0 13.7 17.3 

MIROC-ESM 14.0 13.7 17.9 

ORCHIDEE 15.3 12.4 16.5 

UVic 16.8 16.5 18.9 

UW-VIC 20.0 22.6 19.8 
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5. P8 L11-13: “We assume that there is relatively little impact due to soil 

moisture and texture between surface and 20 cm depth in winter.” This is 

probably true for the cold climate conditions, while in the warm climate the 

surface might freeze, but 0.20m could stay thawed. 

Yes, we consider here cold climate winter conditions. We follow the other 

reviewer’s suggestion to formulate it “In winter, the effects of other factors (e.g. soil 

moisture, texture) on ∆T are much smaller than that of snow.” 

 

6. P8 L13-14: “Although we recognize the difference between ground surface and 

20 cm soil temperatures and that soil organic layer could play a role in certain 

locations”. What certain locations? In warm climate? Please be specific. 

We do agree that the snow effect is the key in winter cold climate. You (and the other 

reviewer) also emphasize, other factors like soil moisture, texture, organic matter are 

of secondary importance, and we agree on this. Therefore, we deleted this sentence to 

avoid confusion.  

 

7. P8 L17: “However, we find that the results do not significantly change when 

the model simulated temperature differences between ground surface 

temperature (GST) and near-surface air temperature (Tair) are used instead of 

between 20 cm soil (T20cm) and near-surface air temperatures.” Again please be 

specific. How much is not significant? 

This sentence is to confirm that our results of the functional behavior (Figs. 1-4) do 

not qualitatively change if we use either the ΔT=Tsoil-Tair or ΔT=GST-Tair. It is to 

tell the reader that we checked this. To make it clear, we do not have GST 

observations! Therefore, we have to use Tsoil. The question is how sensitive the 

results would be when using GST instead of upper soil-layer temperature (Tsoil at 20 

cm depth). This would give an indication if/how soil characteristics are important for 

our presented relationships. The only thing we can do for this is to look into the model 

results. For your convenience, we show here one example plot (Fig. X2). The 

comparison of the red (ΔT=Tsoil-Tair) and green (ΔT=GST-Tair) clearly show that the 

regression does not materially change. “To test how sensitive are results using 20 cm 

temperatures instead of ground surface, we also analysed model simulated 

temperature differences between ground surface and Tair, and found not qualitative 

differences, hence justifying use of 20 cm observations.” 
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Figure X2: Variation of ΔT (K) with snow depth (cm) under cold conditions (Tair ≤ 

-25°C) for winter 1980-2000. The dots represent the medians of 5 cm snow depth bins, 

calculated from all Russian station grid points (n=268) and 21 individual winters. Red: 

ΔT is the difference between soil temperature at 20 cm depth and Tair, winter (DJF); 

Green: ΔT is the difference between ground surface temperature and Tair, winter (DJF); 

Orange: ΔT is the difference between soil temperature at 20 cm depth and Tair, winter 

(NDJFMA). 

 

8. P8 L4: “we checked that a different winter definition (NDJFMA) does not 

substantially change the results” What is substantial, please be specific. 

This sentence is to confirm that our results of the functional behavior (Figs. 1-4) do 

not change if we use another definition for the winter season. It is to tell the reader 

that we checked this. The question is how sensitive the results would be when using a 

different winter definition, because we know that snow can begin in November and 

end at the beginning of May. For your convenience, we show here one example plot 
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(Fig. X2). The comparison of the red (winter-DJF) and orange (winter-NDJFM) 

clearly show that the regression does not materially change. We deleted “substantially” 

and substitute “qualitatively”. “Our analysis is focused on the common winter (DJF) 

condition, although snow can begin in November and end at the beginning of May, 

but we checked that a different winter definition (NDJFMA) does not qualitative 

change any of the inter-variables relationships found.” 

 

P3 L5-6: delete “as expressed by simulated differences” 

Done. 

 

P4 L5: Please try to avoid parentheses, usually it is possible to write the 

manuscript without them. 

Done.  

 

P4 L7-8: delete “quality” and parentheses. 

Done.  

 

P4 L14, “soil temperature”, reference is missing. 

The reference is provided just in the former sentence. 

 

P4 L22-23: Please rewrite without parentheses. 

Done.  

 

P8 L21: “We use correlation analysis to investigate the co-variability…”. Please 

provide formulae or references to this analysis 

Done. “We use the Pearson product-moment correlation coefficient and its 

significance (von Storch and Zwiers, 1999)… “ 

 

P8 L22: “The input consists of detrended time series of winter means at each 

grid point.” How did you compute detrended time series? You may add details to 

the appendix. 

Done. “Before we compute the correlations we detrended the data by removing a least 

squares regression line.“ 

 

P8 L26: “Student t-test” Reference? 

Done. “… coefficients is estimated by the Student’s t-test (von Storch and Zwiers, 

1999).” 

 

P8 L28: “To further examine the functional behavior between different variables, 

we present relationship…”. What variables? Please be specific. 

Done. We introduce the key variables in the paragraph above. “… 4 key variables: 

near-surface air temperature (Tair), near-surface soil temperature (soil temperature at 

20 cm depth; Tsoil), snow depth (dsnow), and the difference between Tsoil and Tair.” 
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P8 L31: “We illustrate the dependence on air temperatures by evaluating”. 

Dependence of what? What variable? Please be specific 

Done. “We illustrate the dependence of ΔT vs. dsnow and Tsoil vs. dsnow relations for 

three Tair ranges.” 

 

P9 L2-3: “The principal motivation for such classifications is to distinguish dry 

snow pack regimes from those where sporadic melt may occur even in winter.” 

Usually, the motivation or idea to do something goes first. The next sentence 

describes how this motivation is implemented. Please re-write this paragraph 

such that the motivation is at the beginning. 

Done. We revised this according to your suggestion. We start with “To distinguish dry 

snow pack regimes from those where sporadic melt may occur even in winter, we split 

Tair into 3 regimes: the coldest conditions… “ 

 

P9 L11: “observations and all models produce a clear relationship” I do not see 

this "clear relationship" at the first glance in Figure 1. Please be specific. 

Describe what the reader may find on this figure and then state the relationship. 

Done. Fig. 1 clearly indicates that the observations as well as all models show an 

increase of ΔT with increasing dsnow. We improved this paragraph. First we start with 

the observations “The air-soil temperature difference (ΔT) - snow depth (dsnow) 

relationship in winter (Fig. 1) shows in the Russian station observations an increase 

of ΔT with increasing dsnow. The data exhibit a linear relation between ΔT and dsnow at 

relatively shallow snow depths with a trend towards asymptotic behavior at thicker 

snow, which is in agreement with earlier findings (Zhang, 2005; Ge and Gong, 2010; 

Morse et al., 2011)…“. Then we continue with the models behavior “All models 

reproduce the observed relationship, i.e. increasing ΔT with increasing dsnow. However, 

Fig. 1 also shows a wide across-model spread in the simulated relationships, and that 

some of the models are not consistent with the behavior in the observations…” 

 

P9 L14: “that some of the models are not consistent with the behavior in the 

observations. There is also significant scatter in the observation-based 

relationship, the inter-quartile range…”. Observations are just plotted on the 

last panel in figure 1. It takes time to find the observations on figure 1. Please try 

to re-design Figure 1 and all other figures such that observations stand out and 

could be easily noted. And please point out/circle this scatter on the figure. 

Sorry, we do not agree that it is hard to recognize the observations in the figures, 

though obviously this a personal issue. However, we consistently show observations 

in the bottom subpanel of our figures. To highlight the scatter in addition to the 

median (which is presented by the dots) we plot therefore upper and lower bars on 

these dots, indicating the 25th and 75th percentiles. 

 

P9 L21-24: “The Russian station data and some model results exhibit a linear 

relation...larger snow depths (Fig. 1), which is in agreement with earlier findings 

(Zhang, 2005; Ge and Gong, 2010; Morse et al., 2011).” Move this sentence up to 
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the beginning of the above paragraph. 

Done. We largely revised the discussion in Section 3.1, such that we discuss 

observations first, and then followed by the model representation.  

 

P9 L31-32: “Figure 2 views the…relationship in the complementary form of the 

PDFs …different snow depth and air temperature regimes”. Before showing the 

PDF, please explain what you plan to analyze and how the PDF can help you to 

achieve this goal. It is really confusing for a reader to understand why PDF are 

now considered and plotted.  

Done. We revised the introduction part of this analysis: “Figure 2 views the ΔT vs. 

dsnow relationship in a complementary form using the PDFs of ΔT for different snow 

depth regimes. This analysis allows a detailed evaluation of the snow 

regime-dependent ΔT separation by quantifying and comparing the modal value and 

width of the different conditional PDFs.” 

 

P10 L1: “we divide the data into “shallow” (dsnow≤20cm) and “thick” 

(dsnow≥45cm) regimes”. Why do you choose these thresholds to characterize 

shallow and deep snow? 

Done. We explain that the Russian snow depth data show a non-normal distribution 

with a median value of 30 cm (SI Fig. 1). Therefore, we have chosen two classes, one 

with a threshold below (dsnow≤20cm) and one with a threshold above (dsnow≥45cm) of 

this median value. “Since the Russian snow depths are clearly non-Normal in 

distribution (SI Fig. 1, with a median dsnow of 30 cm), we divide the data into 

"shallow" (dsnow ≤ 20 cm) and "thick" (dsnow ≥ 45cm) regimes to separate two snow 

depth regimes.” 

 

P10 L3: “Based on the ∆T PDFs”. There are lots of line of figure 2. Maybe a 

revision to figure 2 is necessary. Could you please be specific how these five 

models separate the regimes, while others do not? 

Done. We agree that Fig. 2 was too busy. We improved the readability of Fig.2 by 

splitting it into two figures Fig.2a and Fig.2b. Fig.2a shows the PDFs for snow depth 

classes, while Fig.2b shows the PDFs for different air temperature regimes. We also 

use now the same colors for the different snow classes as in Fig. 4 to be consistent. 

The color of the different Tair classes is consistent in all relevant figures (Figs. 1, 2, 5). 

We improved the discussion of the separation of the PDFs: “Based on the ΔT PDFs, 

five models (CoLM, CLM4.5, JULES, ORCHIDEE, MIROC-ESM) successfully 

separate the ΔT regimes under different snow depth conditions. Their simulated ΔT 

PDFs have a smaller modal value for thin snow than for thick snow, as in the 

observations. The other models clearly fail in separating the ΔT PDFs for the two 

different snow depth regimes.” 

 

P10 L9-17: This is mainly a description of observations. I would suggest to fold 

in this paragraph into the text right after the introduction of figure 1. 

Thanks, but we disagree because: First we discuss the general functional behavior of 
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ΔT vs. dsnow relationship, i.e. increasing ΔT with increasing dsnow (Fig.1). Here we 

start with observations, followed by model evaluation. This is then further supported 

and discussed by Fig.2a. Next we discuss then the impact of Tair on the ΔT vs. dsnow 

relationship (different colored curves in Fig. 1 and Fig.2b). Therefore, we keep this 

paragraph there at its place, because this is the introduction/motivating paragraph, 

why we expect and look at the impact of Tair on the the ΔT vs. dsnow relationship. To 

make this clearer, we add at the end of this paragraph “Therefore, we can expect that the 

same thickness of snow in colder climates will provide greater insulation than it would 

in warmer climates.” 

 

P10 L19-20: “The observations in Figs. 1 and 2 indicate that snow under colder 

climates have greater insulation than under warmer climates.” Please add an 

opening sentence to this paragraph. It would be great to give a reader a small 

hint about what is going to follow in the text below. This seems to be very typical 

for this manuscript, starting from the details and then reveal a motivation 

behind all of this. 

Actually, we do have an opening paragraph above these lines, which gives the 

motivation looking at the impact of Tair on the the ΔT vs. dsnow relationship. There 

we explain the hypothesis that snow under colder climates have greater insulation 

than under warmer conditions, based on known facts: ”Both Figs. 1 and 2 further 

indicate that air-soil temperature differences are related to air temperature conditions. 

This is expected due to snow pack properties, particularly its density and moisture 

content, that affect the thermal conductivity of the snow. For example, the density of 

fresh fallen snow tends to be much lower under cold air temperatures than warm 

(Anderson, 1976), leading to increased insulation (larger ΔT). Snow densification is 

also a function of air temperature, for example, depth hoar metamorphosis of the 

snow pack, which produces more insulation (loosely packed depth-hoar crystals have 

very low thermal conductivity), is promoted by strong thermal gradients in the snow 

pack, and is typical of continental climates (e.g., Zhang et al., 1996). Therefore, we 

can expect that the same thickness of snow in colder climates will provide greater 

insulation than it would in warmer climates.” This paragraph gives the motivation and 

hypothesis. Then, with the next paragraph we discuss that indeed our observational 

analysis confirm this expected impact of Tair on the ΔT vs. dsnow relationship. 

According to this comments, we improved the connection between the two paragraphs. 

The first paragraph is followed by “Indeed, our observational analysis (Figs. 1 and 2) 

confirm this. This is shown by a larger ΔT for colder Tair than for warmer Tair (for a 

certain snow depth) and a greater sensitivity of ΔT to changes in dsnow (Fig. 1), and by 

the larger modal value of the ΔT PDF for colder Tair than for warmer Tair (21 K for 

Tair ≤ -25°C and 9 K for -15°C < Tair ≤ -5°C; Fig. 2b). This is consistent with colder 

climates having lower density snow packs, and the differences are in line with 

measurements of snow density variability (Zhong et al., 2013).” 

 

P10 L32: “∆T/ dsnow”. On page 9, Line 25 there was a different notation for this 

relationship. I would suggest to make uniform notations. The sign "/" means 
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division and maybe there is a better choice, e.g. \Delta{T}(d_snow) P12 L16: 

“Tsoil /Tair” Maybe it is possible to find a better notation. The sign / means 

division. Could you use T_obs(T_air) 

Done. We agree with you. We changed all the “/” with “vs.” throughout the paper. 

 

P11 L5-7: “Our analysis (Fig. 1) indicates that some models (CLM4.5, CoLM, 

JULES) are better able to…”. Please move this section of the text close to figure 1, 

the reader now needs to go back in text. Everything related to figure 1 needs to 

stay close to figure 1. 

Thanks for the suggestion, but the structure as it stands seems clearer to us. First we 

discuss the general functional behavior of ΔT vs. dsnow relationship, i.e. increasing 

ΔT with increasing dsnow (Fig.1). Here we start with observations, followed by 

model evaluation. This is then further supported and discussed by Fig.2a. Next we 

discuss the impact of Tair on the ΔT vs. dsnow relationship (different colored curves 

in Fig. 1 and Fig.2b). Again, we start with observations, followed by model evaluation. 

Here we discuss in detail that part of Fig.1 which shows the snow-dependence on ΔT 

vs. dsnow relation (colored curves in Fig.1). To make this structure even more clear, 

we add one opening sentence before this model evaluation part starts. “If we evaluate 

the models with respect to this observed impact of Tair to the ΔT vs. dsnow relationship, 

we demonstrate that some models (CLM4.5, CoLM, JULES) are better able to 

replicate the effect than others (LPJ-GUESS, MIROC-ESM, ORCHIDEE, UW-VIC) 

(Fig. 1)…” 

 

P11 L22: “strong”. I also see lots of green and blue. I guess this is an indicator of 

weak correlation. 

Sorry, we think this is a misunderstanding; we were not clear enough. Here “strong 

spatial variability” refers to the pronounced spatial variability in the correlation. We 

see in Fig.3 in some regions redish color (high correlation) or in other regions 

greenish color (low correlation). We revised this sentence “The maps of the ΔT vs 

dsnow correlations in winter (Fig. 3) demonstrate a pronounced spatial variability in 

the ΔT vs dsnow relationship.” And, we re-ordered some text such that this sentence is 

then directly followed by the description of the details of regional variation in the 

correlation. 

 

P11 L23: “but indicate that most models agree on the general large-scale pattern.” 

Please describe what you see on the generated maps and only then state your 

conclusion. The first sentence is to describe what is going to happen in the rest of 

paragraph. It appears that the conclusions/details are always are beginning of 

many paragraphs. of course, there is a style to present a material this way, but it 

is only good for press-conferences when it is not enough time to describe 

assumptions, hypothesis, etc. 

Done. We improved this paragraph to make it clearer. We start with the most obvious 

finding that the maps of the ΔT vs. dsnow correlations show a pronounced spatial 

variability in this correlation. Then, we describe the details of the observed spatial 
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variation. This is then followed by the model evaluation. Thus, we do have a clear and 

consistent presentation structure. 

 

P12 L9: delete “Previous authors” and parentheses. 

Done. We re-arranged this sentence. “Previous studies have noted that the strength of 

relationship between Tsoil and Tair is modulated by dsnow and the snow insulation effect 

increases only up to a limiting depth beyond which extra snow makes little difference 

to soil temperatures (Smith and Riseborough, 2002; Sokratov and Barry, 2002; Zhang, 

2005; Lawrence and Slater, 2010).” 

 

P13 L18: “SI Fig.3”. L24: “SI Fig.4”. Bring this figure from the appendix to the 

text and describe how this figure is obtained. P15 L32: “SI Table 3”. There is no 

reason to move table and figures to SI when they are cited so often. Ideally, it 

should be no mentioning of figure from the SI. 

We moved SI Table 3 to the main text; it is Table 3 now. Both figures (SI Fig.3, SI 

Fig.4) are cited only once now and are supplementary information. 

 

P13 L20-21: “Obvious outliers in the Tsoil /Tair correlation maps (SI Fig. 3) are 

ISBA and UVic, which strongly overestimate the correlation (r > 0.9)”. What 

does it physically mean? 

Done. We improved this discussion. “Obvious outliers in the Tsoil vs Tair correlation 

maps are ISBA and UVic, which strongly overestimate the correlation (r > 0.9) over 

most of the Arctic. This indicates an underestimated snow insulation effect, and 

confirms the weak insulation in both models, which has been initially discussed based 

on the underestimated ΔT (Fig. 1) and weak correlation between ∆T and dsnow (Fig. 

3).” 

 

P14 L10: “the biases range from -0.8 K to -4.7 K (SI Table 2)”. Please state that 

this is for winter months in the text. 

Done. “The biases of winter mean air temperature ranges…” 

 

P14 L25-26: “underestimate” and “overestimate”. Does it depend on the values 

of 250 kg/m3 used to convert the satellite measured SWE to snow depth. 

No, this is not the case. Please see our answer to the related comment #3. Furthermore, 

we show in Table 3 (earlier SI Tab.3) that the model biases are consistent regardless of 

which observations are used for the model evaluation. The model biases with respect 

to the station data are consistent with those with respect to the GlobSnow data; the 

model ranking is not affected. 

 

P14 L28-29: “The evaluation of the model performance for SWE compared to 

GlobSnow indicates the same bias characteristics as described here for snow 

depth (not shown).” This is really confusing... please re-write 

Done. We deleted this sentence.  
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P15 L5-9: “Across-model differences in the interannual variability of winter 

precipitation do not translate simply to corresponding differences in the 

interannual dsnow variability (not shown).” This is another conclusion before the 

supporting statement. “For example, UVic calculates the (unrealistically) largest 

interannual dsnow variability in the boreal Europe permafrost region which is 

not reflected in the precipitation variability.” This is the supporting statement. 

This is a subjective criticism of style rather than substance. There are countless 

examples in the scientific literature of similar styles as we adopt here, that is a general 

point followed by a specific example. We do think this paragraph is clear.  

 

P15 L13: “We have shown that the across-model spread in the representation of 

snow insulation effects”. How did you show that? I think I lost something while 

reading Sections 3.1 and 3.2 

This done in Figs.1-5 as well as in Table2. 

 

P15 L15-16: “By considering the relationship plots and the conditional PDFs 

(Figs. 1, 2, 4, and 5)”. Add figure #s here after “plots” and not all the figures in 

parentheses are related to PDFs. 

Done. “By considering the relationship plots (Figs. 1, 4 and 5), and the conditional 

PDFs (Fig. 2) we were able to classify the models…” 

 

P15 L17: “sort the models in terms of their snow insulation performance.” Here 

“sort” means “classify”? 

Done. Yes, this is what was meant. For clarity, we replace “sort” by “classify”. 

 

P15 L20-29: It is better to move this paragraph to the introduction, where the 

employed models are described. 

Sorry, we do not agree with you. Here we describe those specific model 

characteristics and processes which explain why these models show a better 

performance than the others. It makes no sense to list which models have performed 

better in the introduction before the analysis is done. 

 

P17 L1-2: “The results are further improved by updating the snow albedo and 

snow densification parameterization”. References? 

Done. “Decharme et al. (2016) still showed that the ISBA results are further improved 

by updating the snow albedo and snow densification parameterization.” 

 

P17 L20-32: Move this paragraph into the above sections. 

Sorry, we think this is a misunderstanding. This paragraph clearly belongs to the 

summary and conclusion. In this paragraph, we summarize the main findings.  

 

P18 L1: “The primary aim of this study was to …”. I thought that "the aim" is 

stated on line 14, page 17. Please clarify. 

Done. We revised this sentence to “This study uses the ensemble of models to 
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document model performance with respect to Tsoil versus Tair relationships...” 

 

P18 L9: “Those models which show limited skill in snow insulation 

representation …have some deficiencies”. Maybe over simplifications? 

Done. We revised this to “… have some deficiencies or oversimplifications...” 

 

P18 L24-30: The manuscript has not discussed the modeled area of permafrost 

prior to this paragraph. The conclusions are to summarize primary findings. 

Please move this paragraph into the main part of this manuscript. 

Done. We agree with you and the other reviewer and we added an additional section 

“5. Permafrost area” in the results section in the paper with the additional new Tab.4, 

which presents the simulated permafrost area. “Snow cover plays an important role in 

modulating the variations of soil thermodynamics, and hence near-surface permafrost 

extent (e.g., Park et al., 2015).  Here we evaluate if there is a simple relationship 

between the simulated Northern hemisphere permafrost area and the sophistication 

and ability of the snow insulation component in the LSM to match observed snow 

packs. The simulated near-surface permafrost area varies greatly across the nine 

models in the hindcast simulation (1960-2009; Table 4). Some of the better 

performing snow insulation effect models (CLM4.5, JULES) simulate a near-surface 

permafrost area of 13.19 to 15.77 million km2, which is comparable with the IPA map 

estimate (16.2 million km2) (Brown et al., 1997; Slater and Lawrence, 2013). CoLM 

and ORCHIDEE, identified as reasonable models with respect to snow insulation, 

simulate much lower (7.62 million km2) and higher (20.01 million km2) areas, 

respectively. The main deficiency of CoLM is its too small soil depth (3.4 m) 

compared with CLM4.5 (45.1 m) despite having very similar snow modules (Table 1). 

However, ISBA, one of the two models that showed rather limited skill in representing 

snow insulation effects, also simulates the highest permafrost area (20.86 million km2). 

This is inconsistent with previous studies (e.g., Vavrus, 2007; Koven et al., 2013) 

which concluded that the first-order control on modelled near-surface permafrost 

distribution is the representation of the air-to-surface soil temperature difference. 

Table 4 shows that the situation is more complex and that snow insulation simulation 

is not the dominant factor in a good permafrost extent simulation. When the land 

surface models having poor snow models are eliminated, the remaining models’ 

simulated permafrost area show little or no relationship with the performance of the 

snow insulation component, because several other factors such as differences in the 

treatment of soil organic matter, soil hydrology, surface energy calculations, model 

soil depth, and vegetation also provide important controls on simulated permafrost 

distribution (e.g., Marchenko and Etzelmüller, 2013).” 

Accordingly, we shortened the permafrost part in the “6. Summary and conclusions” 

section. The according paragraph reads: “Snow and its insulation effects are critical 

for accurately simulating soil temperature and permafrost in high latitudes. The 

simulated near-surface permafrost area varies greatly across the nine models (from 

7.62 to 20.86 million km2). However, it is hard to find a clear relationship between 

the performance of the snow insulation in the models and the simulated area of 
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permafrost, because several other factors e.g. related to soil depth and properties and 

vegetation cover also provide important controls on simulated permafrost 

distribution.” 

 

P26 L3: “Table 1. PCN snow model details.” Please specify how the upper 20cm 

of the soil column are resolved in each model. How is the heat capacity is 

calculated, may add another column. 

According to our analysis, and as also noted by Referee #1, it is the snow layer in 

winter that is the key here, not the soil conditions (moisture, organic layer). Therefore, 

we think the current table contains enough information for the discussion in this paper, 

with its emphasis on snow above the soil. The general structure and some key 

parameterizations of snow processes can explain the main deficiencies in the 

simulated results. The interested reader may find such soil details in 3 papers we cite 

in the introduction on the model general characteristics. 

 

P28 L4: “The dots represent the medians of…”. Please use different symbols. If 

this is printed black&white or someone is color blind, it might be hard to 

differentiate the results. P29 L3: “Conditional probability density functions…”. 

Why are they conditional? “color”. Same comments as for the above figure. 

Please think how to make this plots available to color-blind people. P30 L3: 

“Spatial maps of the correlation…”  Same comment as above P31 L4: “The 

dots represent the medians…” Same comment as above. Maybe use different 

symbols for dots. P32 L4: “The dots represent the medians…”  

We do indeed sympathize with colour-blind readers. Personally journal should do 

more to encourage such consideration in their publications, but this is clearly an issue 

at the journal publisher level, not at the author or editor level. Our figure presentation 

is consistent with what is common in TC and other journals. 

“Conditional probability” is a completely standard term in statistics. The “conditional” 

means the ∆T PDFs are PDFs for specific different conditions, namely for different 

conditions of air temperatures and snow depths.  
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Abstract. A realistic simulation of snow cover and its thermal properties are important for 1 

accurate modelling of permafrost. We analyze simulated relationships between air and near-2 

surface (20 cm) soil temperatures in the Northern Hemisphere permafrost region during winter, 3 

with a particular focus on snow insulation effects in nine land surface models and compare 4 

them with observations from 268 Russian stations. There are large across-model differences in 5 

theas expressed by simulated differences between near-surface soil and air temperatures, (ΔT), 6 

of 3 to 14 K, in the sensitivity of soil to air temperaturegradients between soil and air 7 

temperatures (0.13 to 0.96°C/°C), and in the relationship between ΔT and snow depth. The 8 

observed relationship between ΔT and snow depth can be used as a metric to evaluate the 9 

effects of each model’s representation of snow insulation, and hence guide improvements to the 10 

model’s conceptual structure and process parameterizations. Models with better performance 11 

apply multi-layer snow schemes and consider complex snow processes. Some models show 12 

poor performance in representing snow insulation due to underestimation of snow depth and/or 13 

overestimation of snow conductivity. Generally, models identified as most acceptable with 14 

respect to snow insulation simulate reasonable areas of near-surface permafrost (13.19 to 15 

15.7712-16 million km2). However, there is not a simple relationship between the 16 

sophisticationquality of the snow insulation in the acceptable models and the simulated area of 17 

Northern Hemisphere near-surface permafrost, likely because several other factors such as soil 18 

depth, the treatment of soil organic content and hydrology, and vegetation cover differences in 19 

the treatment of soil organic matter, soil hydrology, surface energy calculations, and vegetation 20 

also provide important controls on simulated permafrost distribution. 21 
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1  Introduction 1 

Present-day permafrost simulations by global climate models are limited and future 2 

projections contain high, model-induced uncertainty (e.g., Slater and Lawrence, 2013; Koven 3 

et al., 2013). Most of the model biases and across-model differences in simulating permafrost 4 

area are due to biased atmospheric simulation e.g. of air temperature and  precipitation, biased 5 

simulation of snow and soil temperature, and the coupling between atmosphere and land-6 

surface.simulations of the atmosphere (air temperature, precipitation), land (snow, soil 7 

temperature) and their coupling. In winter, the snow insulation effect is a key process for the 8 

air-soil temperature coupling. Its strength depends on both the snow depth, areal coverage, 9 

snow density and conductivityquantity (depth, areal coverage) and snow quality (density, 10 

conductivity) (see overview by Zhang, 2005). Many individual model studies have shown the 11 

strong impact of a few snow parameters on soil temperature simulations (e.g., recently, 12 

Langer et al., 2013; Dutra et al., 2012; Gouttevin et al., 2012; Essery et al., 2013; Wang et al., 13 

2013; Jafarov et al., 2014). Most importantly, these studies showed that the consideration of 14 

wet snow metamorphism and snow compaction, improved snow thermal conductivity and 15 

multi-layer snow schemes can improve the simulation of snow dynamics and soil temperature. 16 

Parameterizations that take into account snow compaction (e.g. related to overburden pressure, 17 

thermal metamorphism and liquid water) work better than simpler schemes such as an 18 

exponential increase of density with time (Dutra et al., 2010). The influence of snow thermal 19 

conductivity on soil regime has been demonstrated by many model studies (e.g., Bartlett et al., 20 

2006; Saha et al., 2006; Vavrus, 2007; Nicolsky et al., 2007; Dankers et al., 2011; Gouttevin 21 

et al., 2012). Winter soil temperature can change by up to 20 K simply by varying the snow 22 

thermal conductivity by 0.1-0.5 W m-1 K-1 (Cook et al., 2008). The snow insulation effect also 23 

plays an important role for the Arctic soil temperature response to climate change and 24 

therefore for future near-surface permafrost thawing and soil carbon vulnerability (e.g., 25 

Schuur et al., 2008). Shallower snow can reduce soil warming while shorter snow season can 26 

enhance soil warming (Lawrence and Slater, 2010). (e.g., reduced soil warming due to 27 

shallower snow versus enhanced soil warming due to shorter snow season) (e.g., Lawrence 28 

and Slater, 2010), and therefore for future near-surface permafrost thawing and soil carbon 29 

vulnerability (e.g., Schuur et al., 2008). The model skill in atmosphere-soil coupling with the 30 

concomitant snow cover in the Arctic is an important factor in the assessment of limitations 31 

and uncertainty of carbon mobility estimates (Schaefer et al., 2011). 32 

 33 
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The Snow Model Intercomparison Project (Snow MIP) (Essery et al., 2009) and the Project 1 

for Intercomparison of Land-Surface Parameterization Schemes (PILPS) Phase 2e (Slater et 2 

al., 2001) examined the snow simulations of an ensemble of land-surface schemes for the 3 

mid-latitudes. However, until now there has been no attempt to evaluate the air-soil 4 

temperature relationship in the Northern Hemisphere permafrost region and the detailed role 5 

of snow depth therein across an ensemble of models. In such an investigation, a first suitable 6 

approach is the evaluation of stand-alone (off-line) land surface models (LSMs). The 7 

retrospective (1960-2009) simulations from the model integration group of the Permafrost 8 

Carbon Network ("PCN"; http://www.permafrostcarbon.org) provide an opportunity to 9 

evaluate an ensemble of nine state-of-the-art LSMs. Here, the LSMs are run with observation-10 

based atmospheric forcing, meaning that snow depth is not influenced by biases in the 11 

atmospheric forcing in a coupled model set-up. The evaluation of the offline modeled air 12 

temperature - snow depth - near-surface soil temperature relationship in winter is therefore 13 

important for revealing a model’s skill in representing the effects of snow insulation. 14 

 15 

Most of the LSMs participating in PCN are the land-surface modules of Earth System Models 16 

(ESMs) participating in the Coupled Model Intercomparison Project (CMIP5; http://cmip-17 

pcmdi.llnl.gov/cmip5/) although in some cases different versions were used for PCN and 18 

CMIP5 simulations. Thus, the results we present can guide the corresponding evaluation of 19 

these ESMs, though analysis of coupled model results requires consideration of couplings 20 

between model components and is necessarily more complex. 21 

 22 

The scope of the present study is to analyze the extent to which the ensemble of PCN models 23 

can reproduce the observed relationship between air and near-surface soil temperatures in the 24 

Northern Hemisphere permafrost region during winter, with a particular focus on the snow 25 

insulation effect. For the latter we analyze the impact of snow depth on the difference 26 

between near-surface soil and air temperatures. Our related key questions are: How well do 27 

the models represent the observed spatial pattern of the air-soil temperature difference in 28 

winter and its control by the snow depth? What is the range of the simulated air-soil 29 

temperature relationship across the model ensemble? How well do the models represent the 30 

observed magnitude and spatial pattern of the snow depth control over the air-soil temperature 31 

difference in winter? What is the range of these simulated relationships across the model 32 

ensemble? To the extent possible, we try to relate the performance level to the model’s snow 33 

schemes. With this aim in mind, a simultaneous analysis of simulated air and near-surface soil 34 

http://cmip-pcmdi.llnl.gov/cmip5/
http://cmip-pcmdi.llnl.gov/cmip5/
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temperatures, and snow depth is presented and compared with those from a novel set of 1 

Russian station observations. We focus here on a comprehensive Russian station data set 2 

because this has been compiled within PCN, and it is hard to find other station data sets which 3 

provide simultaneous observations of  both air and soil temperatures as well as snow depth 4 

over a long period.  5 

 6 

In Sect. 2, we describe the model simulations, the station observations used for evaluation, 7 

and the analysis methods. In Sect. 3, we present a detailed analysis of near-surface air 8 

temperature - snow depth - soil temperature relationships in winter. In Sect. 4, we discuss the 9 

roles of atmospheric forcing and model processes. In Sect. 5, we investigate the relation of 10 

simulated snow insulation and permafrost area. We summarize our findings and present 11 

conclusions in Sect. 65. 12 

2  Data and Analysis 13 

2.1  Models 14 

We use data from nine LSMs participating in the PCN, including CLM4.5, CoLM, ISBA, 15 

JULES, LPJ-GUESS, MIROC-ESM, ORCHIDEE, UVic, and UW-VIC. For detailed 16 

information about the models and simulations we refer to Rawlins et al. (2015) and, Peng et al. 17 

(2015), and Mc Guire et al. (2016). The total soil depth for soil thermal calculations ranges 18 

from 3 m (divided in 8 layers) in LPJ-GUESS to 250 m (divided into 14 layers) in UVic. The 19 

soil physical properties differ among the models as well, and four of them (CLM4.5, ISBA, 20 

UVic, UW-VIC) include organic horizons. Three models (ISBA, LPJ-GUESS, UW-VIC) did 21 

not archive soil sub-grid results and provide area-weighted ground temperature (i.e. averaged 22 

over wetlands and vegetated areas, and in some cases lake fractions).  23 

 24 

Table 1 lists relevant snow model details. One model (UVic) uses an implicit snow scheme 25 

which replaces the upper soil column with snow-like properties, i.e. the near-surface soil layer 26 

takes the temperature of the air-snow interface. The other models use separate snow layers on 27 

top of the ground, either a single bucket (LPJ-GUESS, UW-VIC) or multi-layer snow 28 

schemes (CLM4.5, CoLM, ISBA, JULES, MIROC-ESM, ORCHIDEE). Snow insulation is 29 

explicitly considered in all models; increasing snow depth increases the insulation effect. 30 

Many models consider the effect of varying snow density on insulation (Table 1). This is 31 

parameterized by a snow conductivity-density relationship that describes how, as snow 32 

density increases, thermal conductivity increases, thereby reducing the snow insulation. Some 33 
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of the models (LPJ-GUESS, MIROC-ESM, ORCHIDEE, UVic) use a fixed snow density, 1 

consider only dry snow and no compaction effects, while others represent liquid water in 2 

snow and different processes for snow densification such as mechanical compaction, and 3 

thermal and destructive metamorphism (Table 1). 4 

 5 

The simulations were generally run for the period 1960-2009, although some simulations 6 

were stopped a few years earlier. Each model team was free to choose appropriate driving 7 

data sets for weather and climate, atmospheric CO2, nitrogen deposition, disturbance, land 8 

cover, soil texture, etc. However, the climate forcing data (surface pressure, surface incident 9 

longwave and shortwave radiation, near-surface air temperature, wind and specific humidity, 10 

rain and snowfall rates) are from gridded observational datasets (e.g. CRUNCEP, WATCH) 11 

(SI Table 1). The exception is MIROC-ESM, which was run as a fully-coupled model, forced 12 

by its own simulated climate. Mean annual temperature of the MIROC-ESM simulations for 13 

the permafrost region were within the range (-7.2 to 2.2°C) of the other forcing data sets used 14 

in this study and the trend in near-surface air temperature (+0.03°C yr-1) was the same for all 15 

forcing data sets. However, MIROC-ESM had both the highest annual precipitation (range 16 

433 to 686 mm) and the highest trend in annual precipitation (range -2.1 to +0.8 mm yr-1) 17 

among the forcing data sets. 18 

 19 

The spatial domain of interest is the Northern Hemisphere permafrost land regions. Our 20 

analysis is based on the 0.5o   0.5o resolution gridded driving and modeled data for winter 21 

(DJF) 1980-2000.  22 

2.2  Observations 23 

A quality-checked data set of monthly near-surface air temperature, 20 cm soil temperatures 24 

and snow depth from Russian meteorological stations have been provided by the All-Russian 25 

Research Institute of Hydrometeorological Information-World Data Centre (RIHMI-WDC; 26 

http://meteo.ru/) (Sherstyukov, 2008). 579 stations report snow depth and 268 stations provide 27 

simultaneous data of all three variables. Ground surface temperature data are not available. A 28 

detailed description of dataset preparation is provided in Sherstiukov (2012a). Observing 29 

conditions at the Russian stations in all meteorological elements correspond with WMO 30 

standards. The observations presented have been included in data sets, such as GSOD, 31 

HadSRUT4 etc. and are widely used in climate research (e.g. Anisimov and Sherstiukov, 32 

2016; Decharme et al. 2016; Park et al., 2014; Brun et al., 2013; Pavlov and Malkova, 2009; 33 

PaiMazumder et al., 2008). The soil temperature dataset was run through four independent 34 



8 
 

 8 

methods of quality control (Sherstiukov, 2012b). However, some soil temperature 1 

observations could be disturbed by grass cutting during the warm season and the removal of 2 

organic materials, mainly at agricultural sites, which may affect the trend in warm season 3 

(Park et al., 2014), but this does not affect our results about the air - upper soil temperature 4 

relationship in winter.  5 

 6 

Precipitation station data have been compiled from the Global Summary of the Day (GSOD) 7 

data set produced by the National Climatic Data Center (NCDC; http://www.ncdc.noaa.gov) 8 

for all of the stations that are included in the RIHMI-WDC data set. In addition to the 9 

station’s ground snow depth observations wWe also use gridded snow water equivalent (SWE) 10 

data from the GlobSnow-2 product (http://www.globsnow.info/swe/), which has been 11 

produced using a combination of passive microwave radiometer and ground-based weather 12 

station data (Takala et al., 2011). Snow depth was then calculated from SWE using a snow 13 

density of 250 kg m-3. Orographic complexity, vegetation cover, and snow state (e.g. wet 14 

snow) affect the accuracy of this product. When compared with ground measurements in 15 

Eurasia, the GlobSnow product can shows root-mean-square error (RMSE)  values of 30 to 40 16 

mm for SWE values below 150 mm, with retrieval uncertainty increases when SWE is above 17 

this threshold (e.g., Takala et al., 2011; Muskett, 2012; Klehemet et al., 2013).regional 18 

differences (of ca. 0.5-5 cm) with biases increasing with increasing SWE (e.g., Takala et al., 19 

2011; Muskett, 2012). To compare with station data, snow depth was then calculated from 20 

SWE using a snow density of 250 kg m-3, which is a median observed value in winter. Zhong 21 

et al. (2013) report snow density values of 180-250 kg m-3 for tundra/taiga and 156-193 kg m-22 

3 for alpine snow classes. Woo et al. (1983) report snow density values of 250-400 kg m-3 for 23 

various terrain types. Choice of density does not materially affect the results. 24 

 25 

All these data have been compiled for winter (DJF) and the same time period of 1980-2000. 26 

This period was chosen because soil temperature data are sparse before 1980 and the JULES 27 

simulation stopped in the year 2000. Comparison of the simulations with the station data was 28 

done using a weighted bilinear interpolation from the 4 surrounding model grid points onto 29 

the station locations.  30 

2.3  Analysis Methods 31 

Our analysis is focused on the common winter (DJF) condition, although snow can begin in 32 

November and end at the beginning of May, but we checked that a different winter definition 33 

(NDJFMA) does not qualitativelysubstantially change any of the inter-variables relationships 34 
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found.the results. The focus in our study is on the evaluation of the simulated air-soil 1 

temperature relationships, modulated by snow depth. For this, we analyze the winter mean as 2 

well as the interannual variability (expressed as the standard deviation) of 4 key variables: 3 

near-surface air temperature (Tair), near-surface soil temperature (soil temperature at 20 cm 4 

depth; Tsoil), snow depth (dsnow), and the difference between Tsoil and Tair. This difference ΔT 5 

(ΔT = Tsoil - Tair) is called the air-soil temperature difference. By limiting our analysis to the 6 

winter only, we are able to attribute the across-model and model-to-observation differences in 7 

ΔT primarily to snow insulation effects. In winter, the effects of other factors (e.g. soil 8 

moisture, texture) on ΔT are much smaller than that of snow. Ground surface temperatures 9 

were not recorded in the Russian data set, but 20 cm soil depth temperatures were. To test 10 

how sensitive are results using 20 cm temperatures instead of ground surface, we also 11 

analyzed model simulated temperature differences between ground surface and Tair, and found 12 

no qualitative differences, hence justifying use of 20 cm observations.We assume that there is 13 

relatively little impact due to soil moisture and texture between surface and 20 cm depth in 14 

winter. Although we recognize the difference between ground surface and 20 cm soil 15 

temperatures and that soil organic layer could play a role in certain locations (e.g., 16 

Romanovsky and Osterkamp, 1995), ground surface temperatures are not recorded in the 17 

Russian data set, while 20 cm soil depth temperatures are, hence our choice. However, we 18 

find that the results do not significantly change when the model simulated temperature 19 

differences between ground surface and near-surface air temperature are used instead of 20 

between 20 cm soil and near-surface air temperatures. 21 

 22 

We use the Pearson product-moment correlation coefficient and its significance (von Storch 23 

and Zwiers, 1999) to investigate the co-variability between ΔT and dsnow as well as between 24 

Tsoil and its two forcing factors (Tair and dsnow). Before we compute the correlations we 25 

detrended the data by removing a least squares regression line. The calculated correlation 26 

maps (i.e. spatial distributions of correlation coefficients) based on model and observation 27 

data, allow the comparison of the spatial patterns of these relationships. We use correlation 28 

analysis to investigate the co-variability between ΔT and dsnow as well as between Tsoil and its 29 

two forcing factors (Tair and dsnow). The input consists of detrended time series of winter 30 

means at each grid point. The calculated correlation maps (i.e. spatial distributions of 31 

correlation coefficients) based on model and observation data, allow the comparison of the 32 

spatial patterns of these relationships. Significance of correlation coefficients is estimated by 33 

the Student t-test. 34 
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 1 

To further examine the functional behavior between the keydifferent variables, we present 2 

relation diagrams between pairs of variables (e.g. variation of ΔT with change of dsnow). To 3 

evaluate the performance of the individual LSMs we calculate the root-mean-square error 4 

(RMSE)RMSE between the observed and modeled relationships. We illustrate the 5 

dependence of ΔT vs. dsnow and Tsoil vs. dsnow relations for three Tair ranges. To distinguish dry 6 

snow pack regimes from those where sporadic melt may occur even in winter, we split Tair 7 

into 3 regimesWe illustrate the dependence on air temperatures by evaluating the models and 8 

observations for several different near-surface air temperature ranges. We split the data into 3 9 

regimes: the coldest conditions (Tair ≤ -25°C) represent 24% of observations, the intermediate 10 

temperature conditions (-25°C < Tair ≤ -15°C) represent 42% of the observations, and the 11 

warmest conditions (-15°C < Tair ≤ -5°C) represent 34% of observations. The principal 12 

motivation for such classifications is to distinguish dry snow pack regimes from those where 13 

sporadic melt may occur even in winter. Hence it is an indirect separation of temperature-14 

gradient metamorphosis regimes and density-gradient metamorphosis snow pack regimes. 15 

Additionally, we present conditional probability density functions (PDFs) of ΔT for different 16 

snow depth and air temperature regimes and compare the simulated PDFs with those obtained 17 

from station observations.   18 

3  Results 19 

3.1  Relationship between air – soil temperature difference and snow depth 20 

The air-soil temperature difference (ΔT) - snow depth (dsnow) relationship in winter (Fig. 1) 21 

shows in the Russian station observations an increase of ΔT with increasing dsnow. The data 22 

exhibit a linear relation between ΔT and dsnow at relatively shallow snow depths with a trend 23 

towards asymptotic behavior at thicker snow, which is in agreement with earlier findings 24 

(Zhang, 2005; Ge and Gong, 2010; Morse et al., 2011). There is also significant scatter in the 25 

observation-based relationship indicated by the inter-quartile range in ΔT of 1.5-8.5 K at 26 

specific snow depth and air temperature regimes, likely resulting from complicating factors 27 

such as snow pack density and moisture content variability over the winter, as well as 28 

observational errors. 29 

 30 

All models reproduce the observed relationship, i.e. increasing ΔT with increasing dsnow. 31 

However, Fig. 1 also shows a wide across-model spread in the simulated relationships, and 32 

that some of the models are not consistent with the behavior in the observations. Only three 33 
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models (CLM4.5, CoLM, JULES) reproduce reasonably well the observed ΔT vs. dsnow 1 

relationship using a benchmark of RMSE < 5 K for all temperature regimes. In particular LPJ-2 

GUESS, ORCHIDEE, UVic, UW-VIC, MIROC-ESM show large RMSE for cold air 3 

conditions. ISBA stands out overall, with a RMSE of 7-18 K in all temperature ranges. We 4 

conclude that these models do not adequately represent the features of the observed ΔT vs. 5 

dsnow relationship. The scatter in the modeled relationships, indicated by the inter-quartile 6 

range, is of the same order as in the observations, except for ISBA and MIROC-ESM which 7 

produce noticeably smaller variations. 8 

 9 

Figure 2a views the ΔT vs. dsnow relationship in a complementary form using the PDFs of ΔT 10 

for different snow depth regimes. This analysis allows a detailed evaluation of the snow 11 

regime-dependent ΔT separation by quantifying and comparing the modal value and width of 12 

the different conditional PDFs. Since the Russian snow depths are clearly non-Normal in 13 

distribution (SI Fig. 1, with a median dsnow of 30 cm), we divide the data into "shallow" (dsnow 14 

≤ 20 cm) and "thick" (dsnow ≥ 45cm) regimes to separate two snow depth regimes. The modal 15 

value of the station data ΔT PDF is 5 K for "shallow" snow and 14 K for "thick" snow - that is 16 

thick snow is a better insulator than thin snow. Based on the ΔT PDFs, five models (CoLM, 17 

CLM4.5, JULES, ORCHIDEE, MIROC-ESM) successfully separate the ΔT regimes under 18 

different snow depth conditions. Their simulated ΔT PDFs have a smaller modal value for thin 19 

snow than for thick snow, like in the observations. The other models clearly fail in separating 20 

the ΔT PDFs for the two different snow depth regimes. However, even for the five successful 21 

models, both the shapes and the modal values of the simulated PDFs differ from the observed 22 

PDF. 23 

 24 

Both Figs. 1 and 2b further indicate that ΔT are related to Tair conditions. This is expected due 25 

to snow pack properties, particularly its density and moisture content, that affect the thermal 26 

conductivity of the snow. For example, the density of fresh fallen snow tends to be much 27 

lower under cold Tair than warm (Anderson, 1976), leading to increased insulation (larger ΔT). 28 

Snow densification is also a function of Tair, for example, depth hoar metamorphosis of the 29 

snow pack, which produces more insulation (loosely packed depth-hoar crystals have very 30 

low thermal conductivity), is promoted by strong thermal gradients in the snow pack, and is 31 

typical of continental climates (e.g., Zhang et al., 1996). Therefore, we can expect that the 32 

same thickness of snow in colder climates will provide greater insulation than it would in 33 

warmer climates. 34 
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 1 

Our analysis of observations (Figs. 1 and 2b) confirms i) a larger ΔT for colder Tair than for 2 

warmer Tair (for a given snow depth), ii) a greater sensitivity of ΔT to changes in dsnow (Fig. 1), 3 

and iii) larger modal value of the ΔT PDF for colder Tair than for warmer Tair (21 K for Tair ≤ -4 

25°C and 9 K for -15°C < Tair ≤ -5°C; Fig. 2b). These effects are consistent with colder 5 

climates having lower density snow packs, and the differences are in line with measurements 6 

of snow density variability (Zhong et al., 2013). Additionally, both the inter-quartile range in 7 

Fig. 1 and the width of the PDFs in Fig. 2b become larger as Tair cool. This may be related to 8 

the formation of depth hoar, which is a very good insulator and its varying presence in the 9 

snow pack decouples ΔT from dsnow. Cold, thin snow packs tend to contain much more low 10 

density depth hoar than warmer snow packs (e.g., Zhang et al., 1996; Singh et al., 2011). 11 

Continental regions have large annual temperature cycles, with greater interannual variability 12 

and thinner snow packs, than maritime ones. This variability leads to greater scatter and 13 

greater sensitivity of the ΔT vs. dsnow relationship in the cold winter regions. An additional 14 

cause of scatter is that the density of fresh-fallen snow decreases with falling temperature. 15 

Accordingly, we find in the cold Tair regime (Tair ≤ -25°C) a larger ΔT in early winter 16 

(November-December) when the snow pack is composed of thin, low density fresh snow (and 17 

depth hoar) than in late winter (January-February) (SI Fig. 2). Under warm conditions (-15°C 18 

< Tair ≤ -5°C) such a separation is not observed. 19 

 20 

If we evaluate the models with respect to this observed impact of Tair to the ΔT vs. dsnow 21 

relationship, we demonstrate that some models (CLM4.5, CoLM, JULES) are better able to 22 

replicate the effect than others (LPJ-GUESS, MIROC-ESM, ORCHIDEE, UW-VIC) (Fig. 1). 23 

The latter do not fully replicate the larger ΔT under cold Tair conditions. CLM4.5, CoLM and 24 

JULES capture a larger ΔT for colder Tair for a given dsnow in agreement with the observations. 25 

However, for shallow snow JULES simulates an increase of ΔT with increasing dsnow  for all 26 

temperature ranges that is twice as large as observations. Two models (ISBA, UVic) clearly 27 

fail in this evaluation. Poor model performance in reflecting Tair influence on the ΔT vs. dsnow 28 

also manifests itself in regime separation of the PDFs (Fig. 2b). Some models do not separate 29 

the ΔT regimes under different Tair conditions well or at all (ISBA, LPJ-GUESS, MIROC-30 

ESM, UVic), while others cannot capture the observed cold temperature regime features (i.e., 31 

too broad PDFs and shifts towards smaller modal values; ORCHIDEE, UW-VIC). The three 32 

models with reasonable inter-variable relations (CLM4.5, CoLM, JULES) also capture the 33 

regime separation in the PDFs. These three models as well as LPJ-GUESS and ORCHIDEE 34 
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also represent the observed greater insulation of early winter snow packs under cold 1 

conditions (SI Fig. 2). 2 

 3 

The maps of the ΔT vs. dsnow correlations in winter (Fig. 3) demonstrates a pronounced spatial 4 

variability in the ΔT vs. dsnow relationship. Highest positive correlation occurs in the region of 5 

the East Siberian Plain and Siberian High lands. In other regions, namely in Scandinavia, 6 

West Russian Arctic, West and Central Siberian Plains, the correlation is much weaker and 7 

often not statistically significant. These are the regions of large winter snow depth (Sect. 4.1.2) 8 

which are influenced by North Atlantic cyclonic activity which brings relatively warm moist 9 

air and heavy precipitation in winter (and a positive correlation between dsnow and Tair), 10 

leading to relatively small mean ΔT.  11 

 12 

Some models (CLM4.5, CoLM, ORCHIDEE, UW-VIC) show a reasonable spatial pattern 13 

correlation coefficient (r ≥ 0.4) with observations, while the others do not (Fig. 3). Obvious 14 

outliers are the LPJ-GUESS and UVic models, which do not reproduce the observed pattern 15 

of correlation. UVic calculates a reverse spatial pattern comparing to that of the observations 16 

(e.g. significant positive correlation in West Siberian Plain and Central Siberian Highlands). 17 

LPJ-GUESS produces very few statistically significant correlations.  18 

The air-soil temperature difference (ΔT) - snow depth (dsnow) relationship in winter (Fig. 1) 19 

shows that observations and all models produce a clear relationship between increase of ΔT 20 

and increases of dsnow. However, Fig. 1 also shows a wide across-model spread in the 21 

simulated relationships, and that some of the models are not consistent with the behavior in 22 

the observations. There is also significant scatter in the observation-based relationship, the 23 

inter-quartile range of ΔT is 1.5-8.5 K at specific snow depth and air temperature regimes, 24 

likely resulting from complicating factors such as snow pack density and moisture content 25 

variability over the winter, as well as observational errors. Similar ranges of variability are 26 

produced by several models (such as CLM4.5, CoLM and JULES), but other models (such as 27 

ISBA and MIROC-ESM) produce noticeably smaller variations. 28 

 29 

 The Russian station data and some model results exhibit a linear relation between winter ΔT 30 

and dsnow at relatively shallow snow depths with a trend towards asymptotic behavior at larger 31 

snow depths (Fig. 1), which is in agreement with earlier findings (Zhang, 2005; Ge and Gong, 32 

2010; Morse et al., 2011).  However, only three models (CLM4.5, CoLM, JULES) reproduce 33 

reasonably well the ΔT - dsnow relationship seen in the observational station data (Fig. 1) using 34 
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a benchmark of RMSE < 5 K for all temperature regimes. In particular LPJ-GUESS, 1 

ORCHIDEE, UVic, UW-VIC, MIROC-ESM show large RMSE for cold air conditions. ISBA 2 

stands out overall, with a RMSE of 7-18 K in all temperature ranges. We conclude that these 3 

models do not adequately represent the features of the observed ΔT /dsnow relationship.  4 

 5 

Figure 2 views the ΔT /dsnow relationship in the complementary form of the PDFs of ΔT for 6 

different snow depth and air temperature regimes. Since the Russian snow depths are clearly 7 

non-Normal in distribution (SI Fig. 1, with a median dsnow of 30 cm), we divide the data into 8 

"shallow" (dsnow ≤ 20 cm) and "thick" (dsnow ≥ 45cm) regimes. The modal value of the station 9 

data ΔT PDF is 5 K for "shallow" snow and 14 K for "thick" snow - that is thick snow is a 10 

better insulator than thin snow. Based on the ΔT PDFs, five models (CoLM, CLM4.5, JULES, 11 

ORCHIDEE, MIROC-ESM) successfully separate the ΔT regimes under different snow depth 12 

conditions, while the other models clearly fail for at least one of these snow depth regimes. 13 

However, even for the better models, both the shapes and the modal values of the simulated 14 

PDFs differ from the observed PDF. 15 

 16 

Both Figs. 1 and 2 indicate that air-soil temperature differences are related to air temperature 17 

conditions. This is due to snow pack properties, particularly its density and moisture content, 18 

that affect the air-soil temperature difference. For example, the density of fresh fallen snow 19 

tends to be much lower under cold air temperatures than warm (Anderson, 1976), leading to 20 

increased insulation (larger ΔT). Snow densification is also a function of air temperature, for 21 

example, depth hoar metamorphosis of the snow pack, which produces more insulation 22 

(loosely packed depth-hoar crystals have very low thermal conductivity), is promoted by 23 

strong thermal gradients in the snow pack, and is typical of continental climates (e.g., Zhang 24 

et al., 1996).     25 

 26 

The observations in Figs. 1 and 2 indicate that snow under colder climates have greater 27 

insulation than under warmer climates. This is shown by a larger ΔT for colder Tair than for 28 

warmer Tair (for a certain snow depth) and a greater sensitivity of ΔT to changes in dsnow (Fig. 29 

1), and by the larger modal value of the ΔT PDF for colder Tair than for warmer Tair (21 K for 30 

Tair ≤ -25°C and 9 K for -15°C < Tair ≤ -5°C; Fig. 2). This is consistent with colder climates 31 

having lower density snow packs, and the differences are in line with measurements of snow 32 

density variability (Zhong et al., 2013). Additionally, both the inter-quartile range in Fig. 1 33 

and the width of the PDFs in Fig. 2 become larger as air temperatures cool. This may be 34 
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related to the formation of depth hoar, which is a very good insulator and its varying presence 1 

in the snow pack decouples ΔT from dsnow. Cold, thin snow packs tend to contain much more 2 

low density depth hoar than warmer snow packs (e.g., Zhang et al., 1996; Singh et al., 2011). 3 

Continental regions have large annual temperature cycles, with greater interannual variability 4 

and thinner snow packs, than maritime ones. This variability leads to greater scatter and 5 

greater sensitivity of the ΔT /dsnow relationship in the cold winter regions. An additional cause 6 

of scatter is that the density of fresh-fallen snow decreases with falling temperature. 7 

Accordingly, we find in the cold air temperature regime (Tair ≤ -25°C) a larger ΔT in early 8 

winter (November-December) when the snow pack is composed of thin, low density fresh 9 

snow (and depth hoar) than in late winter (January-February) (SI Fig. 2). Under warm 10 

conditions (-15°C < Tair ≤ -5°C) such a separation is not observed. 11 

 12 

Our analysis (Fig. 1) indicates that some models (CLM4.5, CoLM, JULES) are better able to 13 

replicate the observed effect of air temperature on the ΔT /dsnow relationship than others (LPJ-14 

GUESS, MIROC-ESM, ORCHIDEE, UW-VIC). The latter do not fully replicate the larger 15 

ΔT under cold air temperature conditions. CLM4.5, CoLM and JULES capture a larger ΔT for 16 

colder air temperatures for a given dsnow in agreement with the observations. However, for 17 

shallow snow JULES  simulates twice as large increase of ΔT with increasing dsnow  for all 18 

temperature ranges, compared with observations. Two models (ISBA, UVic) clearly fail in 19 

this evaluation. Poor model performance in reflecting air temperature influence on the ΔT 20 

/dsnow also manifests itself in regime separation of the PDFs (Fig. 2). Some models do not 21 

separate the ΔT regimes under different air temperature conditions well or at all (ISBA, LPJ-22 

GUESS, MIROC-ESM, UVic), while others cannot capture the observed cold temperature 23 

regime features (i.e., too broad PDFs and shifts towards smaller modal values; ORCHIDEE, 24 

UW-VIC). The three models with reasonable inter-variable relations (CLM4.5, CoLM, 25 

JULES) also capture the regime separation in the PDFs. These three models as well as LPJ-26 

GUESS and ORCHIDEE also represent the observed greater insulation of early winter snow 27 

packs  under cold conditions (SI Fig. 2). 28 

 29 

The maps of the ΔT /dsnow correlations in winter (Fig. 3) demonstrate the strong spatial 30 

variability in the ΔT /dsnow relationship, but indicate that most models agree on the general 31 

large-scale pattern. Some models (CLM4.5, CoLM, ORCHIDEE, UW-VIC) show a 32 

reasonable pattern correlation coefficient (r ≥ 0.4) with observations, while the others do not. 33 

Most models simulate the highest positive correlation in the region of the East Siberian Plain 34 
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and Siberian High lands. In some regions, namely in Scandinavia, West Russian Arctic, West 1 

and Central Siberian Plains, the correlation is much weaker and often not statistically 2 

significant. These are the regions of large winter snow depth (Sect. 4.1.2) which are 3 

influenced by North Atlantic cyclonic activity which brings relatively warm moist air and 4 

heavy precipitation in winter (and a positive correlation between snow depth and air 5 

temperature), leading to relatively small mean ΔT. Obvious outliers in the ΔT /dsnow correlation 6 

map are the LPJ-GUESS and UVic models, which do not reproduce the observed pattern of 7 

correlation. UVic calculates a reverse pattern correlation than observations for many regions 8 

(e.g. significant positive correlation in West Siberian Plain and Central Siberian Highlands). 9 

LPJ-GUESS produces very few statistically significant correlations. The model correlations 10 

are likely highly sensitive to the quality of the snowfall forcing data, which is uncertain across 11 

much of the region due to limited station data that go into most global snowfall products 12 

(Hancock et al., 2014; Drobot et al., 2006). 13 

3. 2  Variability of soil temperature with air temperature and snow depth 14 

Next we assess whether or not the models can correctly reproduce the interannual near-15 

surface soil temperature (Tsoil) variability in relation to snow depth (dsnow) and near-surface air 16 

temperature (Tair) variability. Previous studies have notedPrevious authors (Smith and 17 

Riseborough, 2002; Sokratov and Barry, 2002; Zhang, 2005; Lawrence and Slater, 2010) have 18 

noted that the strength of relationship between Tsoil and Tair is modulated by dsnow and the snow 19 

insulation effect increases only up to a limiting depth beyond which extra snow makes little 20 

difference to soil temperatures (Smith and Riseborough, 2002; Sokratov and Barry, 2002; 21 

Zhang, 2005; Lawrence and Slater, 2010). Zhang (2005) reportedreports that the limiting 22 

snow depth is approximately 40 cm. 23 

 24 

To inspect the difference of the insulation effects on both sides of such a limiting snow depth, 25 

we investigate the Tsoil vs. TairTsoil /Tair relationship under shallow (dsnow ≤ 20 cm) and thick 26 

(dsnow ≥ 45 cm) snow conditions. Observations showed that the slope of this relationship is 27 

higher when the snow cover is thin, compared with thicker snow conditions (e.g., for Yukon 28 

Territory in Canada; Karunaratne and Burn, 2003). Indeed, theOur Russian observation 29 

analysis (Fig. 4, Table 2) indicate a three times higher regression slope between Tsoil and 30 

Tairstronger Tsoil /Tair relationship (0.62°C/°C, R2=0.8) under shallow snow pack than thicker 31 

snow conditions (0.21°C/°C, R2=0.4). This is consistent with observations that the mean 32 

freezing n-factor (the ratio of freezing degree days at the ground surface to air freezing degree 33 
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days) is high at sites where the snow cover is thin or absent, and low at sites where the snow 1 

cover is thick (e.g., for Yukon Territory in Canada; Karunaratne and Burn, 2003). 2 

 3 

Figure 4 clearly shows that some models (CoLM, CLM45, JULES) can capture this 4 

modification of the Tsoil vs. Tair relation by snow depth regime well. Their regression slopes 5 

for thick and thin snow are well separated and in agreement with those from the observed 6 

relationship (Table 2). The RMSE of their modeled Tsoil vs. Tair relationships from 7 

observations is smaller than 4°C. These models better reproduce the observed ΔT vs. dsnow 8 

relationship. Other models (LPJ-GUESS, MIROC-ESM, ORCHIDEE) strongly 9 

underestimate the increase of the Tsoil vs. Tair regression slope for decreasing snow depth. 10 

They also produce a regression slope for thick snow more than twice as large as observations. 11 

Two models (ISBA, UVic) fail here and do not show any sensitivity in the Tsoil vs. Tair 12 

relation to snow conditions (Fig.4, Table 2). Another measure quantitatively confirms the 13 

same models behavior: The observed average dsnow in the shallow snow regime is 13.7 cm 14 

and that for the thick snow regime is 58.5 cm, so we would expect, if near-surface Tair and 15 

conductivities were equal in both snow depth classes, a ratio between the slopes for shallow 16 

and thick snow of 4.3. CLM4.5, CoLM, and JULES reproduce this observed variation in the 17 

Tsoil vs. Tair relation better than others (Table 2).The average dsnow in the shallow snow regime 18 

is 13.7 cm and that for the thick snow regime is 58.5 cm, so we would expect, if near-surface 19 

air temperature and conductivities were equal in both snow depth classes, a ratio of 4.3 in the 20 

slopes of Fig. 4. The models that better reproduce the observed ΔT /dsnow relationship 21 

(CLM4.5, CoLM, JULES) reproduce the observed variation in the Tsoil /Tair relation better than 22 

others. JULES and CoLM indicate a factor of 4 change, while CLM4.5 indicates a factor of 2 23 

change. Other models (LPJ-GUESS, MIROC-ESM, ORCHIDEE) strongly underestimate the 24 

increase of the regression slope for decreasing snow depth;  (they simulate only a factor 25 

change of about 1.5). The two models with unrealistic ΔT vs. dsnow relationships (ISBA, UVic) 26 

also fail in this evaluation of their Tsoil vs. Tair relationship. They simulate a too strong 27 

sensitivity of Tsoil to Tair  (regression slopes largerThe two models that had unrealistic ΔT 28 

/dsnow relationships (ISBA, UVic) also fail in this evaluation of their Tsoil /Tair relationship. 29 

They simulate too strong Tsoil /Tair relationships (gradients larger than 0.9°C/°C, R2>0.7; Table 30 

2) that are almost completely independent of the snow depth regimes, particularly in ISBA, 31 

which is not consistent with observations. These models' spatial correlation patterns between 32 

Tsoil and Tair also differ greatly from the observations and the other models (SI Fig. 3) and 33 

show very high positive correlation (r > 0.8) in most regions, as may be expected from the 34 
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large regression slopestrong relationship shown in Fig. 4. The RMSE of their modeled Tsoil vs. 1 

TairTsoil /Tair relationships from observations reaches ca. 10°C . 2 

 3 

The Tsoil vs. dsnowTsoil /dsnow relationship (Fig. 5) displays the variation of Tsoil with changing 4 

snow depth and emphasizes the reduced sensitivity of Tsoil to snow depth weakening role of 5 

snow depth for Tsoil under thick snow conditions. With increasing dsnow, Tsoilsoil temperatures 6 

asymptotically converges towards a value of around 0°C. Overall, the Russian observations 7 

indicate that snow depth above about 80-90 cm has very little additional insulation effect on 8 

Tsoil. Most of the models show consistent results with regard to this aspect, although the inter-9 

quartile range of Tsoil for specifica certain snow depths  is quite large in some models (ISBA, 10 

ORCHIDEE, UVic, UW-VIC) (Fig. 5). The figure further points to the air temperature 11 

dependency of the relation. On average, for a given dsnow, a colder Tsoil is observed for colder 12 

near-surface air temperatures, compared with warmer air temperatures. Most models can 13 

replicate this effect of air temperatures Tair on the Tsoil vs. dsnowTsoil /dsnow relationship, though 14 

with differing accuracy. The RMSE between the observed and modeled relationships can 15 

reach ca. 10°C and more (in ISBA, UVic, UW-VIC), particularly under cold conditions. 16 

 17 

The spatial patterns of the correlation coefficients between Tsoil and Tair (SI Fig. 3) and 18 

between Tsoil and dsnow (SI Fig. 4) show a relatively large across-model scatter in the 19 

specificmany regions. Obvious outliers in the Tsoil vs. TairTsoil /Tair correlation maps (SI Fig. 3) 20 

are ISBA and UVic which strongly overestimate the correlation (r > 0.9) over most of the 21 

Arctic. This indicates an underestimated snow insulation effect, and confirms the weak 22 

insulation in both models, which we already discussed based on their underestimated ΔT (Fig. 23 

1) and weak correlation between ΔT and dsnow (Fig. 3). Other models (LPJ-GUESS, 24 

ORCHIDEE, UW-VIC) also overestimate the correlation in some regions (e.g. western 25 

Russian Arctic, r > 0.7). Most of the simulated maps of Tsoil vs. dsnowTsoil /dsnow correlation (SI 26 

Fig. 4) agree with the observations on a strong positive correlation in East Siberia. This is a 27 

region of relatively shallow snow (10-40 cm; Fig. 6) and there Tsoil is very sensitive to 28 

variations in snow depth (e.g., Romanovsky et al., 2007). Comparing both simulated 29 

correlation maps, it is obvious that in this region, Tsoil correlates more strongly with dsnow than 30 

with Tair, in agreement with the Russian data and earlier studies (Romanovsky et al., 2007; 31 

Sherstyukov, 2008).  32 
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4  Roles of atmospheric forcing and model processes 1 

The across-model differences in the snow insulation effect, presented by the air temperature - 2 

snow depth - soil temperature relationships described above, are partially due to differences in 3 

the atmospheric forcing data and also due to differences in the snow and soil physics used in 4 

the LSMs. However, because the climate forcing data sets utilized with each model are 5 

observation-based (except for MIROC-ESM), obvious outliers in individual model 6 

performance likely mainly indicate poor or deficient physical descriptions of the air/snow/soil 7 

relations in that specific LSM. 8 

4.1  Atmospheric forcing and snow depth 9 

4.1.1  Air temperature and precipitation 10 

Both near-surface air temperature (Tair) and precipitation are given by the climate forcing data 11 

sets (SI Table 1) for all models, except for MIROC-ESM which simulates both. The across-12 

model differences in forcing Tairair temperature used are relatively small and the simulated 13 

spatial patterns of temperature are very similar (SI Fig. 5). All forcing datasets are somewhat 14 

colder than Russian station data in their grid cells. The biases of winter mean Tair ranges from 15 

-0.8 K to -4.7 K (SI Table 2), reflecting biases in the climate forcing data used by the models. 16 

In contrast, MIROC-ESM has a positive (mean) Tairair temperatures bias of +2.7 K. 17 

 18 

The large-scale patterns of precipitation are similar across the models, but regional differences 19 

can be large (SI Fig. 6). The individual differences in winter precipitation range from  -0.2 20 

mm/day to +0.5 mm/day (SI Table 2) relative to the average of the Russian station data. 21 

Unfortunately, snowfall was archived in only a few models, however large-scale spatial 22 

patterns are similar across these models (SI Fig. 7). 23 

4.1.2  Snow depth 24 

The broad-scale spatial snow depth (dsnow) patterns are similar across the models and show 25 

general agreement with the observed patterns (Fig. 6). The well-pronounced areas of 26 

maximum winter dsnow (50-100 cm) are in Scandinavia, the Urals, the West Siberian Plain, 27 

Central Siberian Highlands, the Far East, Alaskan Rocky mountains, and Labrador Peninsula 28 

and isle of Newfoundland. However, large regional across-model variability is obvious. Some 29 

models (JULES, LPJ-GUESS, ORCHIDEE, UVic) underestimate dsnow, while others 30 

(CLM4.5, CoLM, ISBA, UW-VIC) overestimate it (Fig. 6; SI Table 3). The model biases are 31 

quite similar with respect to station observations and GlobSnow data. The evaluation of the 32 
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model performance for SWE compared to GlobSnow indicates the same bias characteristics 1 

as described here for snow depth (not shown). It should be noted, that the models do not 2 

account for snowdrift. However, redistribution of snow due to wind is an important aspect, 3 

which makes comparison between in-situ measured and modeled snow depths difficult (e.g., 4 

Vionnet et al., 2013; Sturm and Stuefer, 2013; Gisnas et al., 2014). 5 

 6 

Precipitation/snowfall across-model differences cannot be the primary explanation of these 7 

dsnow differences since some models (JULES, MIROC-ESM, ORCHIDEE) have positive bias 8 

in precipitation (> 0.2 mm/d, SI Table 2) but simulate much lower dsnow compared to other 9 

models (Fig. 6, SI Figs. 6, 7, SI Table 3). Across-model differences in the interannual 10 

variability of winter precipitation do not translate simply to corresponding differences in the 11 

interannual dsnow variability (not shown). For example, UVic calculates the (unrealistically) 12 

largest interannual dsnow variability in the boreal Europe permafrost region which is not 13 

reflected in the precipitation variability. These results indicate that the simulated snow depth 14 

is a function of both, the prescribed winter precipitation, and the model’s snow energy and 15 

water balance. 16 

4.2  Model processes 17 

We have shown that the across-model spread in the representation of snow insulation effects 18 

(Sects. 3.1, 3.2) can not predominantly be explained by differences in the forcing data (Sect. 19 

4.1), but to a large extent is due to the representation of snow processes in the models. By 20 

considering the relationship plots (Figs. 1, 4 and 5), and the conditional PDFs (Fig. 2) we 21 

were able to classifyBy considering the relationship plots and the conditional PDFs (Figs. 1, 2, 22 

4,  and 5) we were able to sort the models in terms of their snow insulation performance. In 23 

this section we discuss the influence of the different snow parameterizations in the models. 24 

 25 

Models with better performance (CLM4.5, CoLM, JULES) apply multi-layer snow schemes. 26 

This allows them to simulate more realistic (stronger) insulation because they consider the 27 

snowpack’s vertical structure and variability. They calculate the energy and mass balance in 28 

each snow layer, are able to capture nonlinear profiles of snow temperature, and can also 29 

account for thermal insulation within the snowpack such as when the upper layer thermally 30 

insulates the lower layers (e.g., Dutra et al., 2012). These models also incorporate storage and 31 

refreezing of liquid water within the snow, parameterize wet snow metamorphism, snow 32 

compaction, and snow thermal conductivity (Table 1), which have been found to be among 33 
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the most important processes for good snow depth and surface soil temperature simulation 1 

(e.g., Wang et al., 2013).  2 

 3 

An underestimated snow depth directly leads to insulation that is too weak in JULES, LPJ-4 

GUESS, ORCHIDEE, and UVic (Fig. 6, SI Table 3). However only in ORCHIDEE and UVic 5 

does this lead to a significant underestimation of ΔT (SI Table 3, SI Fig. 8) indicating bias 6 

compensation in the two other models. Thus, compensating error effects occur due to snow 7 

density and conductivity (SI Fig. 9, Table 1), which impact snow thermal insulation.  8 

 9 

Our analysis showed that two models (ISBA, UVic) have Tsoil vs. TairTsoil /Tair correlation that 10 

are too high indicating that they do not represent the modulation of the Tsoil vs. TairTsoil /Tair 11 

relationship by snow depth (Fig. 4). This is consistent with their underestimation of ΔT (Figs. 12 

1 and 2, SI Fig. 8, SI Table 3). In UVic, the snowpack is treated not as a separate layer but as 13 

an extension of the top soil layer and a combined surface-to-soil thermal conductivity is 14 

calculated (Table 1). Such a scheme largely negates or reduces the insulating capacity of snow 15 

(Slater et al., 2001). Koven et al. (2013) noted that such a scheme simulates very little 16 

warming of soil, and sometimes even cooling. The slightly underestimated snow depth (SI 17 

Table 3, Fig. 6) contributes (but not as the primary factor) to reduced snow insulation, as 18 

reported for UVic (Avis, 2012). 19 

 20 

ISBA strongly underestimates ΔT, while strongly overestimating dsnow, compared with 21 

observations (SI Table 3, Fig. 6). However, ISBA uses the same atmospheric forcing data as 22 

JULES (accordingly the air temperature and precipitation are quite similar; SI Table 2). Also, 23 

the model's snow density (150-250 kg m-3) is similar to other models (CLM45, CoLM, 24 

JULES) (SI Fig. 9) and in agreement with Zhong et al. (2013) who report snow density values 25 

of on 180-250 kg m-3 for tundra/taiga and 156-193 kg m-3 for alpine snow classes in winter. 26 

This apparent contradiction comes from the parameterization of snow cover fraction within 27 

each grid cell (SCF). The version of ISBA used here calculates a unique superficial soil 28 

temperature whether or not the soil is covered by snow and all the energy and radiative fluxes 29 

are area-weighted by SCF (equations 7 and 20 in Douville et al., 1995). In order to get 30 

reasonable albedos in snow-covered forests, as is necessary when ISBA is coupled to the 31 

CNRM-CM climate model, the parameterization gives very low SCF in the boreal forest 32 

(between 0.2 and 0.5). Hence, snow insulates only 20% to 50% of the grid cell, despite fairly 33 

high snow depths. The heat fluxes from the snow-covered fraction are averaged with the 34 
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fluxes from the snow-free surface, strongly concealing the actual insulating effect of snow 1 

and underestimating it over the grid cell. Using the detailed snow model Crocus (Brun et al., 2 

1992; Vionnet et al., 2012) with a SCF equal to 100% leads to an almost perfect simulation of 3 

near-surface soil temperature over Northern Eurasia (Brun et al., 2013). A similar experiment 4 

with ISBA and a SCF equal to 100% (Decharme et al., 20152016) leads to good performances 5 

showing that the low ΔT in ISBA despite high snow depth in the present study is mostly due 6 

to this sub-grid snow fraction. Decharme et al. (2016) still showed that the ISBA The results 7 

are further improved by updating the snow albedo and snow densification parameterization. 8 

 9 

Interestingly, the ORCHIDEE performance in simulating snow depth and ΔT is similar to 10 

UVic (underestimation of dsnow and ΔT; SI Table 3). However, ORCHIDEE can better 11 

represent the observed Tsoil vs. TairTsoil /Tair relationship and its modulation due to snow pack. 12 

ORCHIDEE employs, similarly to UVic, a fixed snow density and thermal conductivity. 13 

However, in contrast with UVic, ORCHIDEE applies a multi-layer scheme and simulates heat 14 

diffusion in the snowpack in up to 7 discrete layers (Table 1; Koven et al., 2009). This helps 15 

resolving the snow thermal gradients between the top and the base of the snow cover, and 16 

might explain how some of the snow insulation effects are reasonably represented in 17 

ORCHIDEE, despite the simpler treatment of temperature diffusion.  18 

5 Permafrost area  19 

Snow cover plays an important role in modulating the variations of soil thermodynamics, and 20 

hence near-surface permafrost extent (e.g., Park et al., 2015).  Here we evaluate if there is a 21 

simple relationship between the simulated Northern hemisphere permafrost area and the 22 

sophistication and ability of the snow insulation component in the LSM to match observed 23 

snow packs. The simulated near-surface permafrost area varies greatly across the nine models 24 

in the hindcast simulation (1960-2009; Table 4). Some of the better performing snow 25 

insulation effect models (CLM4.5, JULES) simulate a near-surface permafrost area of 13.19 26 

to 15.77 million km2, which is comparable with the IPA map estimate (16.2 million km2) 27 

(Brown et al., 1997; Slater and Lawrence, 2013). CoLM and ORCHIDEE, identified as 28 

reasonable models with respect to snow insulation, simulate much lower (7.62 million km2) 29 

and higher (20.01 million km2) areas, respectively. The main deficiency of CoLM is its too 30 

small soil depth (3.4 m) compared with CLM4.5 (45.1 m) despite having very similar snow 31 

modules (Table 1). However, ISBA, one of the two models that showed rather limited skill in 32 

representing snow insulation effects, also simulates the highest permafrost area (20.86 million 33 
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km2). This is inconsistent with previous studies (e.g., Vavrus, 2007; Koven et al., 2013) which 1 

concluded that the first-order control on modelled near-surface permafrost distribution is the 2 

representation of the air-to-surface soil temperature difference. Table 4 shows that the 3 

situation is more complex and that snow insulation simulation is not the dominant factor in a 4 

good permafrost extent simulation. When the land surface models having poor snow models 5 

are eliminated, the remaining models’ simulated permafrost area show little or no relationship 6 

with the performance of the snow insulation component, because several other factors such as 7 

differences in the treatment of soil organic matter, soil hydrology, surface energy calculations, 8 

model soil depth, and vegetation also provide important controls on simulated permafrost 9 

distribution (e.g., Marchenko and Etzelmüller, 2013). 10 

6  Summary and conclusions 11 

The aim of this work was to evaluate how state-of-the-art LSMs capture the observed 12 

relationship between winter near-surface soil and air temperatures (Tsoil, Tair) and their 13 

modulation by snow depth (dsnow) and climate regime. We presented some benchmarks to 14 

evaluate model performance. The results are based on the comparison of LSMs with a novel 15 

comprehensive Russian station data set. The presented relation diagrams of Tsoil and the 16 

difference of Tsoil-Tair to snow depth allow a much better assessment to reveal structural issues 17 

of the models than a direct point-by-point comparison with station observations. The results 18 

are based on the comparison of LSMs with a comprehensive Russian station data set. 19 

 20 

We see large differences across the models in their mean air-soil temperature difference (ΔT) 21 

of 3 to 14 K, in the sensitivity of  near-surface soil temperature to and air temperature (Tsoil vs. 22 

Tair) in the gradient between near-surface soil and air temperatures (Tsoil /Tair) (0.49 to 23 

0.96°C/°C for shallow snow, 0.13 to 0.93°C/°C for thick snow), and in the increase of ΔT 24 

with increasing snow depth (modal value of ΔT PDF: 0 to 10 K for shallow snow, 5 to 21 K 25 

for thick snow). Most of the nine models compare to the observations reasonably well 26 

(observations: ΔT = 12 K, modal ΔT values of 5 K for shallow snow and of 14 K for thick 27 

snow, Tsoil vs. TairTsoil /Tair = 0.62°C/°C for shallow snow, Tsoil vs. Tair Tsoil /Tair= 0.21°C/°C for 28 

thick snow). Several models also capture the modulation by air temperature condition (larger 29 

increase in ΔT with increasing dsnow under colder conditions) and display the control of snow 30 

depth on Tsoil (weaker Tsoil vs. TairTsoil /Tair relationship under thicker snow).  However, while 31 

they generally capture these observed relationships, their strength can differ in the individual 32 

models. Two models (ISBA, UVic) show the largest deficits in snow insulation effects and 33 
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 24 

cannot separate the ΔT regimes neither for different snow depths nor for different air 1 

temperature conditions.  2 

 3 

This study uses theThe primary aim of this study was to use this ensemble of models to 4 

document model performance with respect to Tsoil versus Tair relationships, and to identify 5 

those with better performance, rather than to quantify the best model. We were able to 6 

attribute performance strength/weakness to snow model features and complexity. Models with 7 

better performance apply multi-layer snow schemes and consider complex snow processes 8 

(e.g. storage and refreezing of liquid water within the snow, wet snow metamorphism, snow 9 

compaction). Those models which show limited skill in snow insulation representation 10 

(underestimated ΔT, very weak dependency of ΔT on dsnow, almost unity ratio of Tsoil vs. 11 

TairTsoil /Tair) have some deficiencies or over simplification in the simulation of heat transfer 12 

in snow and soil layer, particularly in the representation of snow depth and density 13 

(conductivity). We also emphasize that compensating errors in snow depth and conductivity 14 

can occur. For example, an excessive correlation between Tsoil and Tair can be attributed to 15 

excessively high thermal conductivity even when the snow depth is correctly (or over) 16 

simulated. This finding underscores the need for detailed model evaluations using multiple, 17 

independent performance metrics to establish that the models get the right functionality for 18 

the right reason. It should be noted that the treatment of ground properties, particularly soil 19 

organic matter and soil moisture/ice content, also affect the simulated winter ground 20 

temperatures. The specific evaluation of these individual processes is more robustly 21 

investigated with experiments conducted for individual models (e.g. recently, Wang et al., 22 

2013; Gubler et al., 2013; Decharme et al., 2015). 23 

 24 

Snow and its insulation effects are critical for accurately simulating soil temperature and 25 

permafrost in high latitudes. The simulated near-surface permafrost area varies greatly across 26 

the nine models (from 7.62 to 20.86 million km2). However, it is hard to find a clear 27 

relationship between the performance of the snow insulation in the models and the simulated 28 

area of permafrost, because several other factors e.g. related to soil depth and properties and 29 

vegetation cover also provide important controls on simulated permafrost distribution.  30 

A realistic simulation of the snow is a key pre-requisite for accurate modeling of the soil 31 

thermal dynamics across the permafrost region. The areal cover of Northern Hemisphere near-32 

surface permafrost varies greatly across the nine models in the hindcast simulation (1960-33 

2009). Some of the better performing snow insulation effect models (CLM4.5, JULES) 34 
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 25 

simulate a near-surface permafrost area of 12 to 16 million km2, which is comparable with the 1 

IPA map estimate (16 million km2) (Brown et al., 1997; Slater and Lawrence, 2013). CoLM 2 

and ORCHIDEE, identified as reasonable models with respect to snow insulation, simulate 3 

much lower (7 million km2) and higher (20 million km2) areas, respectively. However, ISBA, 4 

one of the two models that showed rather limited skill in representing snow insulation effects, 5 

also simulates the highest permafrost area (20 million km2). This is consistent with previous 6 

studies (e.g., Vavrus, 2007; Koven et al., 2013) which concluded that first-order control on 7 

modeled near-surface permafrost distribution is the representation of the air-to-surface soil 8 

temperature difference. When the models with poor snow models are eliminated, there is no 9 

clear relationship between the quality of the snow insulation in the models and the simulated 10 

area of permafrost, likely because several other factors such as differences in the treatment of 11 

soil organic matter, soil hydrology, surface energy calculations, model soil column depth, and 12 

vegetation also provide important controls on simulated permafrost distribution (Marchenko 13 

and Etzelmüller, 2013). 14 
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Tables 1 

 2 

Table 1. PCN snow model details. 3 

Model 

Reference for snow 

scheme 

Snow 

scheme1 
Snow  

layers 

Water 

phases 
Liquid water 

treatment2 
Snow density3 
 

Snow thermal 

conductivity4 

CLM4.5 

Swenson and 

Lawrence, 2012 

Oleson et al., 2013 

ML Dynamic 

(max. 5) 

Liquid, 

Ice 

Bucket-type 

prognostic in 

each layer 

depends on 

snow depth; 

compaction 
3) a,b,c 

quadratic 

equation on ρ 

 

CoLM 

Dai et al., 2003 

Ji et al. 2014 

ML Dynamic 

(max. 5) 

Liquid, 

Ice 

Bucket-type 

prognostic in 

each layer 

depends on 

snow depth; 

compaction 
3) a,b,c 

quadratic 

equation on ρ 

 

ISBA 

Boone and Etchevers, 

2001 

ML Static 

(3) 

Liquid, 

Ice, 

Vapor 

Diagnosed 

from snow 

temperature, 

mass, density  

compaction 
3) a,b 

quadratic 

equation on ρ,  

contribution due 

to vapor transfer 

JULES 

Best et al., 2011 

ML Dynamic 

(max. 3) 

Liquid, 

Ice, 

Vapor 

Bucket-type 

prognostic in 

each layer 

compaction 
3) a 

 

power equation 

on ρ 

LPJ-GUESS 

Gerten et al., 2004 

Wania et al., 2009 

BL Static 

(1) 

Ice Not 

represented  

fixed  

362 kg m-3 

fixed  

0.196 Wm-1K-1 

MIROC-ESM 

Takata et al., 2003 

ML Dynamic 

(max. 3) 

Ice Not 

represented  

fixed  

300 kg m-3 

fixed  

0.3 Wm-1K-1 

ORCHIDEE 

Gouttevin et al.,2012 

ML Dynamic 

(max. 7) 

Ice Not 

represented  

fixed  

330 kg m-3 

fixed 

0.25 Wm-1K-1 

for tundra, 

0.042 Wm-1K-1 

for taiga 

UVic 

Meissner et al., 2003 

Avis, 2012 

I Static 

(1) 

Ice Not 

represented  

fixed  

330 kg m-3 

bulk 

conductivity 

UW-VIC 

Andreadis et al., 2009 

 

BL Dynamic 

(max. 2) 

Liquid, 

Ice, 

Vapor 

Constant 

liquid water 

holding 

capacity 

compaction 
3) a,b 

 

fixed 

0.7 Wm-1K-1 

1 ML: Multi-layer, BL: Bulk-layer, I: Implicit; according to Slater et al. (2001) 4 
2 Not represented means dry snow 5 
3 Processes for densification of the snow: a) mechanical compaction (due to the weight of the overburden), b) 6 

thermal metamorphosis (via the melting–refreezing process), c) destructive metamorphism (crystal breakdown 7 

due to wind, thermodynamic stress); Anderson (1976), Jordan (1991), Kojima (1967) 8 
4 quadratic equation on ρ according to Jordan (1991), Anderson (1976); contribution due to vapor transfer 9 

according to Sun et al.(1999) 10 

 11 

12 
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Table 2. Sensitivity of near-surface soil temperature (Tsoil) to air temperature (Tair) in winter 1 

(DJF) calculated by the slopes of the linear regression between Tsoil (°C) and Tair (°C) for 2 

different regimes of snow depth (dsnow), using data from all Russian station grid points and  21 3 

individual winter 1980-2000. All relationships are statistically significant at p ≤ 0.01.  4 

 5 

 Snow depth regimes 

 
Shallow 

dsnow ≤ 20 cm 

Thick 

dsnow ≥ 45 cm 

 Tsoil vs. 

TairTsoil/Tair 

(°C/°C) 

R2 

Tsoil vs. 

TairTsoil/Tair 

(°C/°C) 

R2 

Observation 0.62 0.79 0.21 0.41 

CLM4.5 0.69 0.89 0.33 0.56 

CoLM 0.49 0.73 0.13 0.44 

ISBA 0.93 0.98 0.93 0.94 

JULES 0.68 0.77 0.19 0.46 

LPJ-GUESS 0.73 0.89 0.52 0.75 

MIROC-ESM 0.78 0.98 0.49 0.67 

ORCHIDEE 0.86 0.83 0.56 0.64 

UVic 0.96 0.97 0.81 0.68 

UW-VIC 0.54 0.74 0.76 0.65 

 6 

7 
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Table 3. Russian-station-location averaged error statistics for snow depth (cm) and 1 

temperature difference between 20 cm soil and air temperature (ΔT; K) for winter 1980-2000. 2 

For each variable, the maximum available number of observations (n) is used. MeanSt,GS and 3 

stdevSt,GS are the observed mean and interannual variability (standard deviation), while stdev is 4 

the standard deviations of each model. Bias is the mean error ‘simulation minus observation’ 5 

and rmse is the root-mean-square error. The statistics for snow depth is given based on both 6 

station observation (St) and GlobSnow (GS) data.  7 

 8 

 Snow depth (n=579) 

meanSt= 26.4 cm, meanGS=23.4 cm 

stdevSt= 9.0 cm, stdevGS= 6.5 cm 

ΔT (n=268) 

meanSt= 11.9 K 

stdevSt= 2.3 K 

  biasSt rmseSt biasGS rmseGS stdev biasSt rmseSt stdev 

CLM4.5 11.5 18.1 14.3 18.1 5.8 2.3 4.1 2.2 

CoLM 15.6 21.4 17.8 22.1 9.8 2.7 3.7 2.4 

ISBA 13.0 18.8 15.7 19.8 9.5 -8.4 9.1 0.9 

JULES -4.1 14.1 -1.3 12.8 7.7 -0.8 4.2 3.2 

LPJ-GUESS -5.3 17.3 -2.5 16.0 5.0 -0.7 3.7 1.7 

MIROC-ESM -0.4 17.9 1.9 14.0 6.3 -4.9 6.7 2.0 

ORCHIDEE -8.7 16.5 -5.3 15.3 6.9 -5.2 6.0 1.9 

UVic -3.7 18.9 -0.5 16.8 9.4 -5.1 6.5 1.4 

UW-VIC 12.5 19.8 15.0 20.0 10.4 -1.3 4.8 2.1 

 9 

 10 
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Table 4. Permafrost area, defined as maximum seasonal active layer thickness < 3 m in 1960 1 

(Mc Guire et al., 2016). The IPA map estimate is 16 million km2 (Brown et al., 1997; Slater 2 

and Lawrence, 2013). 3 

 4 

 5 

Land Surface Model Snow Insulation skill Permafrost Area (106 km2) 

CLM4.5 High 15.77 

CoLM High 7.62 

ISBA Low 20.86 

JULES High 13.19 

LPJ-GUESS Medium 17.41 

MIROC-ESM Medium 13.02 

ORCHIDEE Medium 20.01 

UVic Low 16.47 

UW-VIC Medium 17.56 

 6 

 7 

 8 
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 1 

Figure 1. Variation of ΔT (K), the difference between soil temperature at 20 cm depth and air 2 

temperature) with snow depth (cm) for winter 1980-2000. The dots represent the medians of 5 3 

cm snow depth bins and the upper and lower bars indicate the 25th and 75th percentiles, 4 

calculated from all Russian station grid points (n=268) and 21 individual winters. The 5 

numbers in each model panel indicate the RMSE between the observed and modeled 6 

relationship. Color represents different air temperature regimes.  7 
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 1 

Figure 2. Conditional probability density functions (PDFs) of ΔT (K), the difference between 2 

soil temperature at 20 cm depth and air temperature for (a) different snow depth classes and (b) 3 

air temperature regimes, for winter 1980-2000.for different snow depth and air temperature 4 

regimes (color) for winter 1980-2000.  5 
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 1 

 2 

Figure 3. Spatial maps of the correlation coefficients between snow depth and ΔT, the 3 

difference between soil temperature at 20 cm depth and air temperature for winter 1980-2000. 4 

Regions with greater than 95% significance are hashed.  5 
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 1 

Figure 4. Variation of soil temperature at 20 cm depth (°C) with air temperature (°C) for 2 

winter 1980-2000. The dots represent the medians of 5°C air temperature bins and the upper 3 

and lower bars indicate the 25th and 75th percentiles, calculated from all Russian station grid 4 

points (n=268) and 21 individual winters. The numbers in each model panel indicate the 5 

RMSE between the observed and modeled relationship. Color represents different snow depth 6 

regimes.  7 
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 1 

Figure 5. Variation of soil temperature at 20 cm depth (°C; y axis) with snow depth (cm) for 2 

winter 1980-2000. The dots represent the medians of 5 cm snow depth bins and the upper and 3 

lower bars indicate the 25th and 75th percentiles, calculated from all Russian station grid points 4 

(n=268) and 21 individual winters. The numbers in each model panel indicate the RMSE 5 

between the observed and modeled relationship. Color represents different air temperature 6 

regimes.  7 



48 
 

 48 

 1 

 2 

Figure 6. Spatial maps of snow depth (cm) for winter 1980-2000.  3 
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