Supplement to "Rockglaciers on the move – Understanding rockglacier landform evolution and recent change from numerical flow modeling

Johann Müller¹, Andreas Vieli¹, Isabelle Gärtner-Roer¹

5 Correspondence to: Johann Müller (johann.mueller@geo.uzh.ch)

Supplement

S1 Perturbation Experiments

12 scenarios for each rockglacier were developed assuming three different initial thermal states of each rockglacier (-2°C, -0 1.5°C and -1°C). A potential warming of 1°C was combined with four different scenarios concerning the material input resulting from the suggested temperature increase:

Model run		Creep Rate change	Accumulation change
1.4*A and	0*Acc	1.4*A	$0*a_r$
1.4*A and 0.4*Acc		1.4*A	$0.4*a_r$
1.4*A and	1*Acc	1.4*A	1^*a_r
1.4*A and	2*Acc	1.4*A	$2*a_r$
1.7*A and	0*Acc	1.7*A	$0*a_r$
1.7*A and	0.4*Acc	1.7*A	$0.4*a_r$
1.7*A and	1*Acc	1.7*A	1^*a_r
1.7*A and	2*Acc	1.7*A	2^*a_r
2.7*A and	0*Acc	2.7*A	$0*a_r$
2.7*A and 0.4*Acc		2.7*A	$0.4*a_r$
2.7*A and	1*Acc	2.7*A	1^*a_r
2.7*A and	2*Acc	2.7*A	2^*a_r

The following presents the evolution of surface along central flow line, thickness, thickness change and horizontal velocities of all experiments for the modelled time and both rockglaciers.

¹Department of Geography, University of Zurich, Zurich, 8004, Switzerland

S1.1 Murtèl perturbation experiments

S1.1.1 Initial rockglacier temperature -2°C, therefore 1.4*rate factor A for a 1°C warming.

Figure S1: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (6000 years runtime / black line) and complex perturbation experiment (temperature increase of 1°C for a -2°C rockglacier and no material input after 6000 years). The lines are plotted in 100yr steps. Colour scale applies to all following Figures.

Figure S2: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (6000 years runtime / black line) and complex perturbation experiment (temperature increase of 1° C for a -2°C rockglacier and reduced material input (40%) after 6000 years). The lines are plotted in 100yr steps. Colour scale applies to all following Figures

Figure S3: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (6000 years runtime / black line) and complex perturbation experiment (temperature increase of 1° C for a -2°C rockglacier and no change in material input after 6000 years). The lines are plotted in 100yr steps.

Figure S4: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (6000 years runtime / black line) and complex perturbation experiment (temperature increase of 1° C for a -2°C rockglacier and doubled material input after 6000 years). The lines are plotted in 100yr steps.

S1.1.2 Initial rockglacier temperature -1.5°C, therefore 1.7*rate factor A for a 1°C warming.

Figure S5: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (6000 years runtime / black line) and complex perturbation experiment (temperature increase of 1° C for a -1.5°C rockglacier and no material input after 6000 years). The lines are plotted in 100yr steps.

Figure S6: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (6000 years runtime / black line) and complex perturbation experiment (temperature increase of 1°C for a -1.5°C rockglacier and reduced material input (40%) after 6000 years). The lines are plotted in 100yr steps. Colour scale applies to all following Figures

Figure S7: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (6000 years runtime / black line) and complex perturbation experiment (temperature increase of 1° C for a -1.5°C rockglacier and no change in material input after 6000 years). The lines are plotted in 100yr steps.

Figure S8: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (6000 years runtime / black line) and complex perturbation experiment (temperature increase of 1° C for a -1.5°C rockglacier and doubled material input after 6000 years). The lines are plotted in 100yr steps.

S1.1.3 Initial rockglacier temperature -1°C, therefore 2.7*rate factor A for a 1°C warming.

Figre S9: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (6000 years runtime / black line) and complex perturbation experiment (temperature increase of 1° C for a - 1° C rockglacier and no material input after 6000 years). The lines are plotted in 100yr steps

Figure S10: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (6000 years runtime / black line) and complex perturbation experiment (temperature increase of 1° C for a -1° C rockglacier and reduced material input (40%) after 6000 years). The lines are plotted in 100yr steps. Colour scale applies to all following Figures

Figure S11: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (6000 years runtime / black line) and complex perturbation experiment (temperature increase of 1° C for a -1°C rockglacier and no change in material input after 6000 years). The lines are plotted in 100yr steps.

Figure S12: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (6000 years runtime / black line) and complex perturbation experiment (temperature increase of 1° C for a -1°C rockglacier and doubled material input after 6000 years). The lines are plotted in 100yr steps.

S1.2 Huhh1 perturbation experiments

S1.2.1 Initial rockglacier temperature -2°C, therefore 1.4*rate factor A for a 1°C warming.

Figure S13: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (600 years runtime) and complex perturbation experiment (temperature increase of 1° C for a -2°C rockglacier and no material input after 600 years). The lines are plotted in 10yr steps. Colour scale applies to all following Figures.

Figure S14: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (600 years runtime) and complex perturbation experiment (temperature increase of 1° C for a -2°C rockglacier and reduced material input (40%) after 600 years). The lines are plotted in 10yr steps.

Figure S15: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (600 years runtime) and complex perturbation experiment (temperature increase of 1°C for a -2°C rockglacier and no change in material input after 600 years). The lines are plotted in 10yr steps.

Figure S16: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (600 years runtime) and complex perturbation experiment (temperature increase of 1° C for a -2°C rockglacier and doubled material input after 600 years). The lines are plotted in 10yr steps.

S1.2.2 Initial rockglacier temperature -1.5°C, therefore 1.7*rate factor A for a 1°C warming.

Figure S17: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (600 years runtime) and complex perturbation experiment (temperature increase of 1° C for a -1.5°C rockglacier and no material input after 600 years). The lines are plotted in 10yr steps. Colour scale applies to all following Figures.

Figure S18: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (600 years runtime) and complex perturbation experiment (temperature increase of 1° C for a -1.5°C rockglacier and reduced material input (40%) after 600 years). The lines are plotted in 10yr steps.

Figure S19: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (600 years runtime) and complex perturbation experiment (temperature increase of 1° C for a -1.5°C rockglacier and no change in material input after 600 years). The lines are plotted in 10yr steps.

Figure S20: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (600 years runtime) and complex perturbation experiment (temperature increase of 1°C for a -1.5°C rockglacier and doubled material input after 600 years). The lines are plotted in 10yr steps.

S1.2.3 Initial rockglacier temperature -2°C, therefore 2.4*rate factor A for a 1°C warming.

Figure S21: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (600 years runtime) and complex perturbation experiment (temperature increase of 1° C for a -1° C rockglacier and no material input after 600 years). The lines are plotted in 10yr steps. Colour scale applies to all following Figures.

Figure S22: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (600 years runtime) and complex perturbation experiment (temperature increase of 1° C for a -1°C rockglacier and reduced material input (40%) after 600 years). The lines are plotted in 10yr steps.

Figure S23: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (600 years runtime) and complex perturbation experiment (temperature increase of 1° C for a -1° C rockglacier and no change in material input after 600 years). The lines are plotted in 10yr steps.

Figure S24: The evolution of surface geometry, thickness change (dhdt) absolute thickness in m horizontal velocity along the central flow line for rockglacier built-up (600 years runtime) and complex perturbation experiment (temperature increase of 1° C for a -1° C rockglacier and doubled material input after 600 years). The lines are plotted in 10yr steps.