

Interactive comment on “On measuring snow ablation rates in alpine terrain with a mobile GPR device” by Nena Griessinger et al.

Anonymous Referee #1

Received and published: 14 April 2017

Dear Editor, I have read carefully the paper from Griessinger et al., untitled "On measuring snow ablation rates in alpine terrain with a mobile GPR device", overall the paper is well written and easily understandable. The topic is very interesting and definitely have a strong interest for the scientific community. However some more precision needs to be added to this work, especially in term of GPR radargram quality, and snow density retrieved from GPR measurement. I would consider this paper for publication after major revision. I will be happy to re-read the corrected version.

General comments: Very interested study, very good experimental setup, very ingenious way to take measurement without affecting the snow compaction. My only concerns are related to your radargram quality and your way of retrieving the snow density/snow water equivalent from GPR:

[Printer-friendly version](#)

[Discussion paper](#)

- I think it would greatly ameliorate the paper by adding a radargram, and the picking of your reflection of interest.

- I think it would greatly ameliorate the paper by explaining a bit more, how you did calibrated your GPR to infer SWE and Snow density, the paper of Gustafsson is a good example.

Other comments:

Page 2 Line 5: "Many applications of GPR to measure spatially distributed snow properties are generally conducted when dry snow conditions are present" Would that be helpful to the reader to define a bit dry snow conditions?

"The sled was towed by two persons, one to the left and one to the right, so that it was not required to step on the transects." Very good

Page 4 line 4 "This way, the antennas were placed approximately 2 cm above the snow surface" Taking into account during the processing?

Page 4 line 7 "Traces were sampled at a frequency of 42 GHz, whereby individual traces were recorded every 5 cm along the transects." It would be helpful to know what was your time windows to have as well your time sampling, since you are looking at very fine velocity variations.

Page 4 line 8 "We used a MALA odometer to achieve the required high relative positioning accuracy" The wheel you have in your picture is made from Mala or handmade? Did you re-calibrate the odometer before each of your survey? Since the snow conditions can be different, the slipping of the wheel can be different.

Page 4 line 12 "Overpasses of exactly the same transects with the GPR were repeated several times during snowmelt periods without precipitation in between the measurements" From what I understand, you are passing on the same transect every time, what could you say about the impact of your repeated transect on the snow density?

[Printer-friendly version](#)

[Discussion paper](#)

Page 4 line 21 " This required a snow pit which was dug sideways towards the center of the transect to minimize disturbances" Did you make a new one every-time you surveyed?

Page 4 line 25 " First, a DC-shift was applied. This is a filter that removes an existing constant offset on each trace. Second, a gain filter was applied to amplify the signal as it attenuates within increasing travel time." Maybe would it be simpler to just say that you removed the lower frequency from the data, or "de-wowed" them? Could you precise what was you gain applied? AGC, exponential ? And once again as already mentionned would be nice to see radargrams, before and after processing, and your picked reflection too?

Page 4 line 27, " A Kirchhoff migration was further applied to all radargrams " You determined the velocity by the direct wave? from which Tx and Rx, the long or short spacing?

Page 5 Line 8, "Even if the two-way travel time is insensitive to potential errors in the direct wave velocity due to variable effects from the snow surface" Please could you rephrase, you are saying that it as no effect but since you are making a TWT calculation based on the direct wave it as effect, maybe you are implying that the impact of the near surface snow has no effect on the direct wave Travel Time, in this case, could you re-phrase in agreement with Line 5 and 6 of the same page?

Page 5 line 12, "Dielectric properties were estimated based on Tiuri et al. (1984)." Could you give a little bit more information on why you decided to use the model of Tiuri et al. ? In addition I think the paper is missing as little more complete explanation on the way you retrieved the SWE. I guess you used what was done in Gustavson et al., however the paper is missing your calibration parameter for the snow density (In Gustavson, page 4).

Figure 4 -Can you please edits what are the points in the caption of the Figure.

Printer-friendly version

Discussion paper

Interactive
comment

[Printer-friendly version](#)

[Discussion paper](#)

