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Comment by Adam L. Atchley, Dylan R. Harp, Ethan T. Coon, Cathy J. Wilson

The authors present an impressive modeling effort investigating 3D water and energy
simulations of polygonal tundra. Their research is of interest to the community as it
undoubtedly yields insight into the thermal hydrology of polygonal tundra. Furthermore,
a modeling effort informed by extensive field measurements provides a unique
opportunity to validate and properly shape the process rich models currently being
developed for terrestrial Arctic applications. It is for this particular reason, that we are
first interested in this manuscript and second concerned with the message in section 5.1.
In particular, we refer to line 2-3 on page 25, “At our study sites, while calibration may
compensate for lack of data, it does not improve our understanding of the system.”

In section 5.1 the authors provide reasons for not calibrating the model to the observed
data available at the study site, specifically that process rich models have high degrees
of freedom and therefore are plagued with non-uniqueness (equifinality). In other words,
there are multiple combinations of parameters, or more generally model structures
(Beven, 2006) that can produce optimized results which fit observed data equally well.
While the authors do not quantitatively demonstrate the existence of equifinality here,
non-unique parameter combinations certainty exist in this situation, as has been
systematically identified for thermal hydrological models at the same site by Atchley et
al. (2015) using multi-try calibration and rigorously quantified by Harp et al., (2016) using
Null-Space Monte Carlo. However, it is our understanding that the literature addressing
equifinalty does not argue for giving up calibration as a lost cause, but rather strongly
suggests that additional efforts are required to account for a set or distribution of
parameter combinations consistent with observations (e.g. Vrugt et al., 2009, Vrugt and
Ter Braak, 2011; Bardossy, 2007; Tonkin, 2009) and model structural error (Beven, 2005;
Clark et al., 2008; Fenicia et al., 2011; Larson et al., 2014).

The research behind calibration and model optimization has long since evolved from
simple parameter fits to more strategic calibration methods (Hill, 1998). Therefore, we
believe that equifinality does not provide a justification to avoid calibration, especially if
the objective of the modeling exercise is to improve understanding of system and model
behavior. On the contrary, it has been our experience that, while difficult,
time-consuming, and computationally expensive, extensive, systematic multi-try
calibration can yield important system understanding and identify model capabilities and
limitations. The work presented in Atchley et al., (2015) at the same site at the Barrow
Environmental Observatory, shows that systematic multi-try calibration can be used as a
tool to reduce model structural error and achieve system understanding. For example,
calibration efforts led to the recognition of the importance of the representation of snow
distribution and depth hoar formation in our models. These insights are not simply better
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model parameters, but are physical representations of system components; this effort
led to better system understanding. Furthermore, quantifying the equifinality of the
combined model and represented system then allows for quantification of model
uncertainty, where for example the projected ALT uncertainty attributed to parameter
uncertainty can be measured and compared to meteorological and/or climate model
uncertainty (Harp et al., 2016). Moreover, the parameter sensitivity quantified by such
exercises has, in our opinion, provided valuable information for reducing model
uncertainty. Porosity and material thermal conductivity measurements are shown to have
the greatest potential to reduce projected ALT uncertainty (Harp et al., 2016), thereby
directing which additional field data and process understanding are necessary to reduce
uncertainty.

In the context of the model presented in this manuscript, we realize that exhaustive
model calibration may be computationally infeasible, and we also do not over look the
valuable contribution presented here as the 3D representation of energy and water fluxes
in freeze-thaw polygonal tundra indeed pushes the boundaries of process-rich
mechanistic modeling. Therefore, it is not our wish to force model calibration and
parameter sensitivity analysis on the current manuscript. However, we strongly
encourage the authors to reconsider the stated view of model calibration and to discuss
how calibration and parameter sensitivity may provide insight into model performance as
well as system understanding in polygonal tundra.

We thank Atchley et al. for their interest in our work and insightful comments. We
completely agree with the comments above. Model calibration has since long been used
a powerful and insightful tool in hydrology and it was certainly not our intention to
overlook its power, usefulness and validity. Objective of our presented study was to
apply the modeling framework to the study site and synthesize and use available
observational data sets for the presented case studies. Work by Atchley et al. 2015 and
Harp et al. 2016 provides methodology for calibration, insights in parameter sensitivity
and calibrated parameters for three phase thermal hydrology model similar to ours and
would certainly complement and guide our future modeling studies. We have updated
our manuscript to add a reference to Atchley et al. 2015, Harp et al. 2016 and relevance of
their work for our study (Page 24 Lines 16-18).
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