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Abstract. Physically based multilayer snowpack models suffer from various modelling errors. To represent these errors, we

built the new multi-physical ensemble system ESCROC (Ensemble System Crocus) by implementing new representations

of different physical processes in the deterministic coupled multi-layer ground/snowpack model SURFEX/ISBA/Crocus. This

ensemble was driven and evaluated at Col de Porte (1325 m a.s.l., French alps) over 18 years with a high quality meteorological

and snow dataset. 7776 simulations were evaluated separately accounting for the uncertainties of evaluation data. The ability5

of the ensemble to capture the uncertainty associated to modelling errors is assessed for snow depth, snow water equivalent,

bulk density, albedo and surface temperature. Different sub-ensembles of the ESCROC system were studied with probabilistic

tools to compare their performance. Results show that optimal members of the ESCROC system are able to explain more

than half of the total simulation errors. Integrating members with biases exceeding the range corresponding to observational

uncertainty is necessary to obtain an optimal dispersion, but this issue can also be a consequence of the fact that meterorological10

forcing uncertainties were not accounted for. ESCROC is a promising system to integrate numerical snow modelling errors

in ensemble forecasting and ensemble assimilation systems in support of avalanche hazard forecasting and other snowpack

modelling applications.

1 Introduction

Operational forecasting of avalanche hazard requires an analysis of current snowpack state and meteorological forecasts for15

the upcoming days, in order to estimate future snow conditions. Several organizations in different countries have implemented

snowpack modelling approaches for this purpose (Durand et al., 1999; Lehning et al., 1999; Vikhamar-Schuler et al., 2011;

Bellaire and Jamieson, 2013). The goal is to provide a description of the space and time variability of the current snowpack

which is out of reach using observations only and to anticipate its evolution according to the expected meteorological condi-

tions a few hours to days ahead. Meteo-France has been operating a deterministic snowpack forecasting system for about 2020

years. The current version is based on a chain of 3 models: SAFRAN-SURFEX/ISBA/Crocus-MEPRA (S2M, Durand et al.,

1999; Lafaysse et al., 2013). It simulates the snowpack evolution over all the French massifs for a large range of elevations,

slope values and aspects. The meteorological analysis and forecasting system SAFRAN (Durand et al., 1993) provides me-

teorological data at a 1000 km2 scale for a given elevation from the beginning of the season with a 2 day forecast lead time.

These data are used to force the SURFEX/ISBA/Crocus snowpack model (Vionnet et al., 2012) which simulates the detailed25

snowpack stratigraphy for the different elevations and slopes. The mechanical stability of each snow profile is assessed by the
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MEPRA expert system (Giraud, 1992). This system is supposed to help the forecasters in their decision process. However,

the large discrepancies between this simulation system and the observed or perceived conditions in the field limit its pratical

interest relative to empirical considerations based on snow stratigraphy, surface properties measurements and the outputs of

Numerical Weather Prediction (NWP) models. Similar issues are found by the other organizations operating systems based

either on SURFEX/ISBA/Crocus or on the SNOWPACK snow model of similar complexity (Bartelt and Lehning, 2002).5

Snowpack modelling systems suffer from various types of uncertainties. First, the estimated meteorological conditions since

the beginning of the season are uncertain because meteorological analysis systems such as SAFRAN only assimilate scattered

meteorological observations and suffer from the errors of their guess, usually analyses or forecasts of NWP models. NWP

models errors, due to both initial states approximations and simplifications in atmospheric modelling are also responsible for

significant errors of the meteorological forcing for the forecast period. In addition, uncertainties are associated with the spatial10

resolution of the systems which are much coarser than the spatial scale of the snowpack variability involved in avalanche

release mechanisms. Finally, snowpack modelling inherently contains simplifications and parameters uncertainties.

It is necessary to better quantify the uncertainties resulting from these different errors for two main reasons. First, an objective

quantification of uncertainties helps forecasters assess the confidence they may have in a specific model forecast on a specific

date. Second, a better knowledge of uncertainties is necessary to reduce model error by using data assimilation techniques15

to correct the simulated snowpack state with ground-based or remotely-sensed snow observations. In other disciplines such

as meteorology and hydrology, ensemble approaches are now generalized (Swinbank et al., 2016), especially for the furthest

prediction lead times when the uncertainty is increasing. Ensemble simulations also increase confidence in future climate sim-

ulations (IPCC, 2013). Several data assimilation techniques are also based on building ensembles to characterize guess errors.

Therefore, ensemble approaches are a natural candidate to quantify uncertainties in numerical snow modelling. Vernay et al.20

(2015) illustrated that the uncertainty of the meteorological forecast can be taken into account by forcing a snowpack model

by ensemble NWP systems and that it improves the robustness of the snowpack simulations compared to the deterministic

approach. Charrois et al. (2016) implemented an ensemble assimilation algorithm able to correct snowpack simulations using

remotely-sensed visible spectral reflectances of the surface if the ensemble captures all the possible states of the snowpack.

To generalize these methods, all the uncertainties involved in numerical snow modelling must be accounted for in ensemble25

systems. Accounting for all the main uncertainties (meteorological forecast, initial conditions, model structure) has been shown

to improve the overall skill of ensemble simulations for hydrology (Thiboult et al., 2016).

Concerning the uncertainty attached to the snowpack model, Essery et al. (2013) proposed the first attempt to build an

ensemble of snow simulations based on 1701 different combinations of physical options for various processes in a common

model structure called JIM (JULES Investigation Model). A reduced version of 32 members (FSM for Factorial Snow Model)30

was also published by Essery (2015). This system was designed to investigate the relative contribution of each main physical

process in the spread usually obtained in model intercomparison projects. Therefore, the JIM ensemble spread describes the

uncertainty resulting from currently available multi-layer snow models of different complexities. The authors identified mini-

mal requirements for a satisfactory snowpack model (e.g. prognostic representation of snow albedo and density), but they also

conclude that there is not a single best member for all criteria and seasons. Their results also demonstrate that evaluations35
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restricted to snow depth measurements only and/or to a small number of seasons can lead to misleading conclusions. Raleigh

et al. (2015) compared the spread of the JIM ensemble with ensemble simulations resulting from disturbed meteorological

scenarios and found that the uncertainty in meteorological data prevails in general applications of numerical snow modelling

except in very well instrumented observatories where snow model structure becomes the main source of uncertainty. The JIM

ensemble spread was not characterized from a probabilistic point of view (adequate dispersion for ensemble applications, i.e.5

representative of model errors) because it was not designed for that. Note also that the JIM ensemble is not appropriate for

avalanche hazard forecasting because it does not include a detailed description of snow stratigraphy and snow metamorphism,

and because some of the members include options which neglect processes known to be critical for mechanical stability such

as compaction or liquid water storage.

The goal of this paper is to investigate the uncertainty involved in the different processes of a detailed multilayer snowpack10

model (SURFEX/ISBA/Crocus) in order to explore the possibility of building an ensemble version of this model suited for

snowpack ensemble forecast and snowpack ensemble assimilation applications. Our aim differs from that of Essery et al.

(2013) because we expect this ensemble to consist of members with the same overall degree of complexity and type of output,

and to include a detailed stratigraphy of the snowpack allowing applications such as avalanche hazard forecasting, among

others. Ideally the skill of one given member should not be significantly poorer than another one in a general perspective (for15

various variables, sites, seasons and periods of the year). The spread of this ensemble should be of the same magnitude as

that of typical model errors (Fortin et al., 2015) on different evaluation variables. This should allow correct characterization

of the uncertainty in real time applications. Such a system would also allow accounting for the snowpack model error in snow

hydrology and in future snowpack projections driven by future climate scenarios.

The major difficulty in building such an ensemble is that it requires isolating the uncertainty originating from the snowpack20

model itself from the other uncertainty sources. Therefore, following the conclusions of Raleigh et al. (2015) and similarly to

Essery et al. (2013), our strategy is to build and evaluate our ensemble on one specific well instrumented site where we assume

that input meteorological errors are low compared to model errors. It also allows to follow Essery et al. (2013) recommendations

in terms of evaluation data because numerous snow variables are available over a long period. Sect. 2 summarizes the dataset

used to force and evaluate a new multi-physical version of the Crocus snowpack model called ESCROC (Ensemble System25

CROCus) and presented in Sect. 3. The evaluation methodology (Sect. 4) includes both a classical deterministic evaluation

member by member and a probabilistic evaluation of the ensemble skill. The results are presented in Sect. 5 for different sub-

ensembles. The limitations of the "perfect meteorological forcing" assumption are discussed in Sect. 6, as well as the impacts

of the other limitations of our methodology on the possible applications of ensemble numerical modelling of snow.

2 Dataset30

2.1 Forcing data

The 18-year long snow and meteorological dataset from the Col de Porte observatory (CDP, 1325 m altitude, 45.3oN, 5.77oS)

is used to force and evaluate ESCROC from 1993 to 2011. A complete description of the dataset is provided by Morin et al.
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(2012). The CDP site is a grassy meadow characterized by its mid-altitude and located in the Chartreuse massif in the French

Alps. Snow is usually present from December to April, but snow melt and rainfall events can occur any time in the snow

season. Wind is usually low, so that drifting events are unusual. The quality and completeness of this dataset have allowed to

drive and evaluate various snowpack models (e.g. Magnusson et al., 2015; Decharme et al., 2016, a complete list is available

at http://www.umr-cnrm.fr/spip.php?article533). All the forcing variables of the Crocus model are directly measured: incident5

shortwave and longwave radiations, 2 m air temperature and specific humidity, 10 m wind speed and precipitation rates.

Precipitation phase is manually assessed using all possible ancillary information. The only modification applied to the original

published dataset is a bias correction of the incident longwave correction. Indeed, a break was identified in the time series in

December 2010, associated with a replacement of the sensor. A -10 Wm−2 homogeneous correction is applied before December

2010 and a +10 Wm−2 homogeneous correction is applied from December 2010 onwards. These values were estimated from10

the concomitant evolution of the monthly mean difference between these data and the longwave incident radiation simulated by

the Ritter and Geleyn (1992) radiative transfer scheme included in SAFRAN meteorological reanalyses (Durand et al., 2009).

Although this correction is lower than the manufacturer uncertainty of 10% (Morin et al., 2012), it has a significant impact on

snow simulations (not shown), consistent with the results of Raleigh et al. (2015) and Sauter and Obleitner (2015). The other

errors of the forcing data, described in Morin et al. (2012), are neglected in this study as previously mentioned.15

2.2 Evaluation data

Six variables were selected to evaluate ESCROC: snow depth (SD), snow water equivalent (SWE), bulk density (BD), surface

broadband albedo (A), snow surface temperature (SST) and ground temperature at 50 cm depth (GT50). To eliminate the

summer period without snow on the ground, the time series are limited to the period between October 1st and June 30th. The

0 values of SD and SWE between these two dates are kept for the evaluations to appropriately evaluate the formation and20

disappearance of the snowpack. BD, A, and SST are not defined when there is no snow on the ground. For the 6 variables, Fig.

1 shows histograms of differences between distinct observations of the same variable in the experimental plot, which are used

to quantify the uncertainty of each observed variable. Data observed at CDP since 2011 were sometimes used for observation

error analysis but not for model forcing and evaluation.

2.2.1 Snow depth (SD)25

Snow depth data from ultra-sound depth gauge span the whole winter from 1993 to 2010, and was completed by laser ranger

data for the 2010-2011 winter. The instrumental error of these sensors (about 1 cm) is low compared to the spatial variability

of snow depth in the meadow. The latter was estimated comparing ultra-sound sensor data with weekly snowpit measurements

at 3 different locations (Fig. 1a). The differences usually range between 0 and 20 cm.
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Figure 1. Distribution of differences between the reference observations and other sources of data: (a) Snow depth (SD) automatic measure-

ments vs the three snowpits (2001-2011); (b) Snow water equivalent (SWE) automatic measurements vs the snowpit SWE measurements

that are not used for sensor calibration (2001-2011); (c) Bulk density (BD) from the reference snowpit vs the other snowpits (2001-2011);

(d) daily reference albedo vs data from Dumont et al. (2016) (winter 2013-2014); (e) reference snow surface temperature (SST) vs SST from

the hemispheric pyrgeometer (1993-2010); (f) Reference ground temperature (GT) at -20 cm vs measurements of a new sensor at the same

depth (season 2013-2014).
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2.2.2 Snow water Equivalent (SWE)

Snow water equivalent is measured on a daily basis by cosmic rays sensors (NRC) that are linearly calibrated every year to

match weekly snowpit measurements (Gottardi et al., 2013). This time series is available since 2001. The sensor accuracy

(about 10%) is of the same magnitude as the spatial variability in the meadow that can be derived from snow pits data (Fig.

1b). A similar magnitude of uncertainty was found by Smith et al. (2016).5

2.2.3 Bulk density (BD)

Although both SD and SWE automatic measurements are available daily since 2001, their spatial variability in the meadow

and therefore between the two sensor locations is too high to compute a robust daily time series of snow density, especially

with shallow snow cover and during the melting season. For this reason, bulk density was computed from weekly snowpit

measurements of SWE and SD. Fig. 1c illustrates the uncertainty in this data resulting from its spatial variability (3 snow pits10

on each date). The instrumental error of the snow core sampling is not well known. Proksch et al. (2016) give a magnitude of 1

to 5% for average density measurements errors with smaller cutters and a small number of data. Conger and McClung (2009)

obtained an uncertainty range of 2-11% for individual layer density measurements and emphasized that their accuracy depends

on the cutter size. In the present study, the instrumental error of large cutters for bulk density is estimated to be roughly 10 kg

m−3.15

2.2.4 Snow Albedo (A)

Daily broadband albedo was calculated from daily averaged downwelling and upwelling broadband shortwave radiation fluxes

and is discarded during snowfall events, or when the measured fluxes are too low (Morin et al., 2012). Albedo data under

0.6 were also discarded in this work as it is an evidence of patchy snow cover. The resulting data are rather discontinous,

however spans the entire 1993-2011 period. It is difficult to quantify the uncertainty of these data directly from the pyranometer20

manufacturer values. The uncertainty was estimated by comparing the data with broadband albedo data obtained from spectral

measurements during the winter 2013-2014 (Dumont et al., 2016). The differences (Fig. 1d) originate from both the sensor

errors and the spatial variability in the plot. They are quite high relatively to the range of possible values for snow.

2.2.5 Snow Surface Temperature (SST)

Two values for the hourly mean snow surface temperature were derived separately from the upcoming longwave radiation and25

from an infrared sensor with a narrower angle of view, both assuming an emissivity of 1 for snow as described in Morin et al.

(2012). An additional data treatment was performed to discard artefacts due to patchy snow covers or to a heating of the metal

mast: temperatures exceeding the melting point of water, some outliers under 240 K and times where A < 0.6 or SD < 0.3m

were removed from the time series. As this variable exhibits a high diurnal cycle, we decided to keep 12:00 UTC and 24:00

UTC temperature measurements in order to balance between daytime and nighttime values. The availability of two distinct30
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long time series allows to quantify the uncertainty in SST measurements resulting from both instrumental errors and spatial

variability in the meadow (Fig. 1e).

2.2.6 Ground temperature at 50 cm (GT50)

Ground temperature is recorded at 3 different depths (-10, -20 and -50 cm). Without snow, the diurnal cycle is very high close

to the surface but it is not a key process to simulate later the heat flux at the interface with the snowpack, which is more affected5

by long-term biases. Therefore, we preferred to select the 50 cm depth for the evaluations. Only the October-December period

was used for this variable as it is the key period for snowpack simulations. Spring and summer errors are much less important

and ground temperature stays usually very close to 0◦C between January and the end of the season. No other sensor provides

temperature measurement at this depth. New sensors were however installed in October 2012 at few meters away at 5, 10 and

20 cm depth. We assume that the differences between the sensors at 20 cm (Fig. 1f) provide an estimate of the magnitude of10

the uncertainty resulting from spatial variability and instrumental accuracy. The distance between sensors is probably too low

but the spatial variability is expected to decrease with depth.

3 The ESCROC multiphysical snow model

The SURFEX/ISBA/Crocus unidimensional multi-layer physical snowpack model is extensively described in Vionnet et al.

(2012). It computes all terms of the energy and mass balance of the snowpack. In the standard version, the prognostic vari-15

ables of each snow layer are mass, density, temperature, liquid water content, semi-empirical variables describing the snow

microstructure, and the layer age (as a proxy for the amount of impurities). The lagrangian discretization rules are designed

to accurately reproduce the snowpack stratigraphy evolution, a key component for avalanche forecasting. The heat flux at the

ground-snow interface is simulated by a semi-implicit coupling with the multi-layer ground model ISBA-DIF (Decharme et al.,

2011).20

In NWP ensemble modelling, two options are usually employed to disturb the model physics: stochastic perturbations of

parameters (Palmer et al., 2009) or multiple combinations of several physical options, commonly called mutliphysics (Charron

et al., 2010; Descamps et al., 2014). In ESCROC, the multiphysics approach has been chosen. The ESCROC multiphysical

ensemble is built implementing new physical options inside the SURFEX/ISBA/Crocus source code for the main physical

processes, resulting in a "factorial" ensemble as in Essery et al. (2013). Several options implemented in the source code in25

previous studies (Carmagnola et al., 2014; Charrois et al., 2016) but not used in the standard version are incorporated in the

ensemble. New options extracted from the literature and existing snowpack models such as SNOWPACK or JIM were also

implemented for other physical processes. Modifications of especially uncertain and sensitive parameters are also introduced

for processes whose representations available in the literature seem to not cover sufficiently the uncertainty. The selected

options for each process are summarized in Fig. 2 and detailed below.30
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Figure 2. ESCROC physical options, blue cells correspond to the default Crocus configuration.

3.1 Fresh snow properties

Crocus computes density and microstructural properties of falling snow from air temperature and wind speed during snowfall.

Different laws are available in the literature for fresh snow density. All of them are empirical, relying on simultaneous mea-

surements of wind speed and air temperature followed by manual measurements of freshly fallen snow density. The Crocus

default option called V12 (Vionnet et al., 2012; Pahaut, 1975) computes density ρn from 2 m air temperature Ta (in ◦C) and5

10 m wind speed U (m s−1):

V12: ρn = max(ρmin,aρ + bρTa + cρU) (1)

The parametrization of density from SNOWPACK (Schmucki et al., 2014), here called S14, was also implemented. It

depends also on wind speed and air temperature:

S14:

log10(ρn) = eρ + fρTa + gρ +hρ sin−1(
√
iρ) + jρ log10(max[U,2]) if T ≥−14oC

log10(ρn) = eρ + fρTa +hρ sin−1(
√
iρ) + jρ log10(max[U,2]) otherwise

(2)10

Finally, we implemented the law from Anderson (1976) where the density only depends on air temperature:

A76: ρn = ρmin + max(kρ(Ta + lρ)
1.5,0) (3)
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Table 1. Parameter values of fresh snow density options

Option Parameters

V12 ρmin = 50 kg m−3 ; aρ = 109 kg m−3 ; bρ = 6 kg m−3K−1 ;

cρ = 26 kg m−7/2s−1/2 ; dρ = 8 kg m−3K−1

S14 eρ = 3.28 ; fρ = 0.03 K−1 ; gρ =−0.36; hρ =−0.75 ; iρ = 0.8 ; jρ = 0.3

A76 ρmin = 50 kg m−3 ; kρ = 1.7 K−1 ; lρ = 15 K
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Figure 3. Fresh snow density as a function of air temperature and wind for the 3 options included in ESCROC.

The parameters of the three laws are given in Table 1 and their behaviour is summarized in Fig. 3.

The uncertainty associated with the initial microstructural properties is not included in ESCROC because the sensitivity of

albedo (and in turn of the energy balance) to the snow specific surface area (SSA) is low for typical values of fresh snow SSA

usually above 40 m2kg−1 (Gallet et al., 2009).

3.2 Snow metamorphism5

The default Crocus representation of snow metamorphism (B92) describes the snow microstructure by a semi-quantitative

formalism with dendricity, sphericity and size (Brun et al., 1992). The time evolution of these continous parameters follows

empirical laws whose parameters were adjusted through experimental investigations. In the case of dry snow, these laws depend

mostly on temperature and temperature gradient. For wet snow metamorphism, evolution laws only depend on liquid water

content (Brun et al., 1989). An alternative formalism was introduced by Carmagnola et al. (2014) who replaced dendricity10

and size by the optical diameter, which is measurable in the field. However, as the formalism is a translation of B92 laws

with new prognostic variables, using both formulations is almost equivalent and not able to describe the uncertainty associated

with this process. Therefore, only the C13 option is included in ESCROC. We also included the time evolution law of the
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optical diameter from Flanner and Zender (2006) which fits the model outputs of a snow microstructure model representing

the diffusive vapour fluxes among the grains (F06). This law was also implemented by Carmagnola et al. (2014) who found

that its skill was similar to the C13 formulation. Note that this option does not affect wet metamorphism, which still follows

the original formulation of Brun et al. (1989).

We also implemented the formulation of Schleef et al. (2014) who focused on the 48 first hours after snowfall and proposed5

the following law experimentally calibrated under isothermal conditions:

dSSA

dt
= (a+ bT )SSAm (4)

with a= 1.1E− 6, b= 3.1E− 8 and m= 3.1

As this formulation only applies to the first 48 hours, we chose to associate this option with the F06 evolution law for older

snow (option S-F).10

3.3 Blowing snow and associated sublimation

Wind-induced snow transport drift is a complex phenomenon known to be a key factor for slab avalanches as it creates local

snow accumulation and has an effect on metamorphism reducing the grain size, compacting the top layers and increasing their

cohesion. Sublimation of snow particles in turbulent suspension is frequent during blowing snow events. A scheme to represent

erosion and accumulation on the different aspects of idealized slopes can be activated in Crocus (Durand et al., 2001). For more15

general applications where erosion and accumulation cannot be simulated by a unidimensional model, Vionnet et al. (2012)

introduced a parameterization to modify surface layers snow properties during blowing snow events and to optionally simulate

mass loss due to blowing snow drift. Although these options can be very sensitive in windy environments (Libois et al., 2015),

we decided to deactivate it for the first version of ESCROC because it is not possible to evaluate the uncertainty of this process

at CDP where blowing snow is almost never observed.20

3.4 Solar radiation absorption

The original formulation of radiative transfer in the snowpack (Brun et al., 1992) consists in computing solar radiation ab-

sorption and reflexion in three spectral bands (0.3-0.8; 0.8-1.5 and 1.5-2.8 µm) and is partly inspired from the work of Warren

(1982). Only the grains characteristics of the uppermost 2 numerical layers are used to compute the albedo of each spectral

band. A parameterization reduces the albedo in the visible band as a function of the age of the layer and the altitude of the site25

to mimic the effect of light-absorbing impurities. This parameterization relies on a time constant τa usually taken as 60 days at

mid-latitudes (option B60). At CDP, this value is suspected of partially explaining a positive bias in Crocus simulated albedo.

Therefore, we define the B10 option by using a 10-day value.

The radiative transfert scheme TARTES (Two-streAm Radiative TransfEr in Snow, Libois, 2014) has recently been imple-

mented in Crocus (and used by Libois et al. (2015) and Charrois et al. (2016)). It simulates the absorption of solar radiation30

within the stratified snowpack using the δ-Eddington approximation and with a spectral resolution of 20 nm. This scheme

10



Table 2. Parameter values for solar radiation absorption options

Option Parameters

B60 τa = 60 days

B10 τa = 10 days

TAR c0 = 5 ng g−1 ; τ0 = 4 ng g−1 day−1 ; lf = 0.05 m

TA+ c0 = 50 ng g−1; τ0 = 200 ng g−1 day−1 ; lf = 0.05 m

explicitely accounts for the spectral and angular characteristics of the incident radiance (e.g. the solar zenith angle and the

presence of a cloud cover) and uses an explicit impurity content for each layer (equivalent black carbon content). The impurity

content c is initialized to a constant concentration c0 during snowfall. A dry deposition term τdd is added to the layer at depth

D at each time step:

τdd = τ0e
−D/lf (5)5

This formulation and its parameters are rather uncertain as it has not been specifically evaluated against observations. While

the simulations are weakly sensitive to the e-folding depth lf , the simulated albedo highly depends on the velocity of impu-

rities deposition. The typical magnitude of the parameters for black carbon only would be of c0 = 5 ng g−1 and τ0 = 4 ng

g−1 according to Doherty et al. (2013) or Sterle et al. (2013) (option TAR), but values 20 times as high were sometimes ob-

served. Furthermore, as other impurities such as dust and vegetal debris are not explicitely accounted for, higher values of the10

parameters are possible to indirectly simulate the effect of these species with their black-carbon equivalent concentrations. We

included in ESCROC two different sets of parameters for this physical scheme (TAR and TA+). The 4 resulting options for

solar radiation absorption are summarized in Table 2.

3.5 Turbulent Fluxes

As detailed in Vionnet et al. (2012), Crocus surface turbulent fluxes (latent heat flux LE and sensible heat flux H ) are15

proportional to the turbulent exchange coefficient or drag coefficient CH . CH depends on the Richardson number Ri, which

quantifies the stability of the atmosphere directly above the snow surface, and on the effective roughness length for momentum

z0 and for heat z0h (Louis, 1979; Noilhan and Mahfouf, 1996). In particular CH decreases when Ri increases (Fig. 4), and

the rougher the surface, the higher the fluxes. The Louis parameterization tends to minimize surface heat fluxes under stable

conditions (Ri > 0) but in mountainous terrain with complex topography, mechanical or orographic-induced turbulence is20

suspected of producing exchange rates higher than in this theory. For this reason, Martin and Lejeune (1998) proposed to apply

in Crocus a threshold Ril = 0.026 on the Richardson number to maintain a minimal level of turbulence in stable conditions:

CH(Ri≥Ril) = CH(Ril) (6)
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Table 3. Parameter values for turbulent surface fluxes options

Option Parameters

RIL Ril = 0.2 ; z0 = 10−3m ; z0h = 10−4m

RI1 Ril = 0.1 ; z0 = 10−3m ; z0h = 10−4m

RI2 Ril = 0.026 ; z0 = 10−3m ; z0h = 10−4m

M98 Ril = 0.026 ; z0 = 10−3m ; z0h = 10−3m

0.6 0.4 0.2 0.0 0.2 0.4 0.6
Ri

0.000

0.001

0.002
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0.004

C
H

RIL
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Figure 4. CH as a function of Ri for the 4 turbulent fluxes options included in ESCROC (RIL, RI1, RI2, M98) as summarized in table 3.

They also applied an effective roughness length for heat supposed to be closer to the roughness length for momentum than

usual values for snow (option M98).

In the current default version of the model (RIL), Vionnet et al. (2012) chose the formulation of the ISBA-ES snow scheme

(Boone and Etchevers, 2001), already included in the SURFEX platform, where Ril is taken as 0.2 and z0h as 10−4 m. As

preliminary studies showed that both configurations simulate turbulent fluxes of different magnitude, we address the uncertainty5

in ESCROC using also two intermediate configurations (RI1 and RI2) as summarized in Table 3 and Fig. 4.

3.6 Thermal conductivity

Snow thermal conductivity λ mostly depends on snow density ρs (kg m−3) (Calonne et al., 2011). Two different options were

already implemented in Crocus. The default option follows Yen (1981) (Y81):

Y81: λ= max

[
aλ(

ρs
ρw

)1.88 ; λmin

]
(7)10

ρw is the liquid water density (kg m−3). This formulation is very close to the experimental law proposed by Calonne et al.

(2011) based on tomographic images of snow (Fig. 5).
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Table 4. Parameter values for thermal conductivity options

Option Parameters

Y81 aλ = 2.22 W m−1K−1 ; λmin = 4× 10−2 Wm−1K−1

I02 eλ = 2.0× 10−2 W m−1K−1 ; fλ = 2.5× 10−6 W m5K−1kg−2

gλ =−6.023× 10−2 W m−1K−1 ; hλ =−2.5425 W m−1

iλ =−289.99 K ; P 0 = 105 Pa
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ρsnow (kg m−3 )
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C11

I02, T=0°C

I02, T=-5°C

I02, T=-10°C

Figure 5. Snow thermal conductivity as a function of density for the 2 options included in ESCROC (Y81, I02), and for the experimental

law proposed by Calonne et al. (2011) (C11).

.

The other implemented option, I02, is the default formulation of the ISBA-ES snow model (Boone, 2002; Sun et al., 1999):

I02: λ= eλ + fλρ
2
s +

(
gλ +

hλ
T + iλ

)
P 0

P
(8)

P is the atmospheric pressure (Pa) and parameter values are given in Table 4. The I02 law depends not only on density but

also on snow temperature and it has a higher conductivity than experimental values (Fig. 5) to indirectly compensate for the

fact that latent heat fluxes due to vapor fluxes are not represented in Crocus. This is expected to increase vertical heat transfer5

as temperature increases.

3.7 Liquid water content

Liquid water content is an important variable for its role in metamorphism, thermal exchanges due to phase changes, com-

paction, and mechanical stability. However, it is especially challenging to both observe and simulate liquid water percolation

in the snowpack particularly because its horizontal variability is very high at macroscopic scale. Work is in progress to include10

in Crocus a formulation solving Richards equations in snow as in Wever et al. (2014). However, the only formulation currently
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available for the liquid water percolation in the snowpack follows a simple and conceptual bucket approach where the layers are

seen as superposed water reservoirs with a homogeneous volumetric liquid water content wliq in kg m−3. When wliq exceeds

the maximum liquid water holding capacity wliq max, the excess water drains to the underlying layer.

In the default version of Crocus (B92 option), the volumetric liquid water holding capacity is defined by a fixed maximal

percentage of the pores’ volume (Pahaut, 1975):5

B92: wliq max = 0.05ρwφ (9)

where φ= 1− ρ−wliq
ρi

is the snow porosity and ρi the pure ice density (kg m−3) (10)

Equations 9 and 10 should replace the formulas with typos given in Vionnet et al. (2012) and in Gascon et al. (2014). As a

result, the higher the density the lower the maximal volumetric liquid water content.

The experiments of Coléou and Lesaffre (1998) give water holding capacities about 40% higher than B92 formulation as10

shown in Fig. 6. There was also a typo in the equation of that paper, corrected in equation 11.

C98: wliq max = ρ ∗
(

0.057
φ

1−φ
+ 0.017

)
(11)

Based on this finding, a similar formulation was chosen for the bucket version of the SNOWPACK model. Equation 12

replaces equation 1 of Wever et al. (2014) where there is a typo in the conditions:

SPK:

wliq max = ρw ∗ (0.08− 0.1023(0.97−φ)) if φ≥ 0.77

wliq max = ρw ∗
(

0.0264 + 0.0099 φ
1−φ

)
otherwise

(12)15

This option was also included in ESCROC (SPK).

In several other models (Essery et al., 2013), the water retention capacity is defined by a maximal liquid water mass fraction.

We included in ESCROC the ISBA-ES formulation (B02, Boone, 2002) for which this threshold is set to rmin = 0.03 for snow

densities above ρr = 200 kg m−3 and to higher values up to 0.05 for very low density following:

B02: wliq max =
ρ

ρw

(
rmin + (rmax− rmin)max

(
0,
ρr − ρ
ρr

))
(13)20

where rmax = 0.1

This formulation has an opposite behaviour: the higher the density, the higher the maximal volumetric liquid water content

(Fig. 6). The discrepancies between B02 and B92/SPK options increase for low densities. Although such a behaviour is not

consistent with laboratory experiments of Coléou and Lesaffre (1998), including this formulation in ESCROC allows to very

indirectly account for the uncertainty linked to the heterogeneous percolation of liquid water which result in the presence25

of wet layers below layers that are not homogeneously saturated, increasing the percolation velocity. Note that liquid water
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Figure 6. Volumetric liquid water holding capacity as a function of the layer density for the 3 options included in ESCROC (B92, SPK, B02)

and for the experimental law proposed by Coléou and Lesaffre (1998) (C98).

percolation is also affected by capillary effects and by a high dependence of snow permeability on the pores’ structure as

reported by Jordan et al. (1999) or Calonne et al. (2012). As these processes cannot be described by the bucket approach

used in Crocus, it is reasonable to include in ESCROC a wide uncertainty for low densities by the use of these 3 different

formulations.

3.8 Compaction5

For a given layer of thickness D the settling under the over burden σ is expressed as (Anderson, 1976; Navarre, 1975) :

dD

D
=
−σ
η

dt (14)

The viscosity η is expressed as a function of density ρ and temperature T (◦C) by:

B92: η = f1(wliq)f2(gs)η0
ρ

cη
eaη(−T )+bηρ (15)

where η0 = 7.62237106 kg s−1m−1, aη = 0.1 K−1, bη = 0.023 m3 kg−1 and cη = 250 kg m−3. Two multiplicative functions10

f1 and f2 allow representing respectively the faster settlement of wet snow as a function of the volumetric liquid water content

wliq, and the reduced settlement of layers consisting of faceted snow types especially depth hoar as a function of grain size gs

(Vionnet et al., 2012).
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However, the temperature and density dependence of snow viscosity in the general case have various forms in the literature

as reviewed by Teufelsbauer (2011) who proposed a new law fitting the data of separate experimental works. If this law is

combined with Crocus parameterization for wet snow and depth hoar, we can formulate a new option T11 as:

T11: η = f1(wliq)f2(gs) ∗ 0.05ρ−0.0371T+4.4(10−4e0.018ρ + 1) (16)

The compaction velocity however has a complex dependence to snow microstructure (Lehning et al., 2002) which cannot be5

described by the representation of snow microstructure in Crocus. We account for this source of uncertainty by implementing

the S14 option where we apply a non-linear relationship between settlement, the stress σ (Pa) and the SSA decrease from

Schleef et al. (2014) for the 48 first hours after snowfall:

S14:
dρ

dt
=Bρ

dSSA

dt
σk (17)

with B =−6.6×10−3 and k = 0.18. The current Crocus parameterization is applied when the snow layer age exceeds 2 days.10

3.9 Soil scheme

The conductive heat flux at the soil-snow interface depends on the temperature gradient between the snow bottom and the upper

soil layer. It is explicitly modeled by a semi-implicit soil-snow coupling with one of the ISBA soil scheme options. Although

several options are available in the SURFEX platform (Masson et al., 2013), the multi-layer diffusive approach [ISBA-DIF]

(Decharme et al., 2011, 2013) is preferred to force-restore options (Noilhan and Mahfouf, 1996) which are not able to represent15

the seasonal heat storage in the deep soil and therefore a realistic heat flux at the soil-snow interface (Habets et al., 2003). In the

general case, the uncertainties in soil modelling come from both the representation of physical processes and the soil texture

and vegetation parameters. Their comprehensive exploration would represent a full extended new work beyond the scope of

this paper. Sensitivy tests suggested that one of the most sensitive parameters on snow simulations is the surface heat capacity

cT (J m−2 K−1) used in the soil surface temperature TS prognostic equation:20

∂TS
∂t

=
1

cT
G− 1

cG1

λ1
∆z1

(TS −T2) (18)

where G is the sum of radiative and turbulent energy fluxes at the surface (Wm−2), λ1 the thermal conductivity of the first

soil layer (W m−1K−1), ∆z1 its thickness (0.01 m), cG1 its heat capacity (J m−2 K−1) depending on its water content, and

T2 the temperature of the second soil layer. Equation 18 corresponds to the case without soil freezing or thawing which are

also represented in the model (Decharme et al., 2016). For the CDP grassy meadow, the surface heat capacity is equal to the25

vegetation heat capacity cV . The default value of cV has been set to 5×104 J m−2 K−1 since the 1990s for numerical stability

reasons in the coupling with NWP models but this is unrealistic when compared with values from the literature (Dupont et al.,

2014). In the v8.0 SURFEX release (http://www.umr-cnrm.fr/surfex//spip.php?rubrique148), the current default value has been

set to 104 J m−2 K−1 for low lying vegetation. Although more realistic, at Col de Porte this value gives a significant cold bias

in autumn, regardless of the snow scheme used, as illustrated by Fig. 5 of Decharme et al. (2016). In ESCROC, we account30
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for the uncertainty in the soil-snow heat flux by including 3 different values of the vegetation heat capacity: 104, 3× 104 and

5× 104 J m−2 K−1. However, we must keep in mind that this unrealistic range probably compensates other model errors.

4 Evaluation methodology

4.1 Members scores

Although all ESCROC options are supposed to represent the corresponding physical processes with an equivalent complexity5

and reliability, it is necessary to check if each combination of options has a satisfactory overall skill or if some of them should

be eliminated. The skill of each singular member is evaluated by deterministic scores comparing Ni simulated values mki by

member i to the corresponding Ni observations ok. Note that Ni depends on the observations availability which is specific

to each evaluation variable (Sect. 2.2). Furthermore, for variables which are not defined when there is no snow on the ground

(BD, SST, A), Ni is specific to each member i due to the variable duration of the snow season between members. We compute10

the bias estimator B̂i and the Root Mean Square Error estimator R̂MSEi:

B̂i =
1

Ni

Ni∑
k=1

(mki − ok) (19)

R̂MSEi =

√√√√ 1

Ni

Ni∑
k=1

(mki − ok)2 (20)

These scores are called estimators because they give an uncertain description of the true model skill for several reasons.

First, the reference observations ok represent an uncertain description of the site-scale snow conditions due to both instru-15

mental errors and spatial variability at the site. Then, the skill of a member with respect to observations has a significant

variability from one season to another so that uncertainty is associated with the limited available evaluation period. To account

for these uncertainties, we model a member score Si as a random variable following a Normal distribution N (Ŝi, σ̂i), where

the total variance is decomposed by σ̂2
i = σ2

o +σ2
pi . To quantify the σpi component corresponding to the evaluation period

uncertainty, we applied bootstrapping (Efron, 1979) over annual time series on each variable: for each member, instead of20

computing only one score on the available years (1993-1994,1994-1995,1995-1996,...,2010-2011), 1000 different score esti-

mators were computed from 1000 18-year long bootstrap samples obtained by draw with replacement of the available years

such as (1998-1999,1994-1995,1994-1995,...,2003-2004). σpi is the standard deviation of these estimators. In the general case,

the observation uncertainty σo is difficult to quantify without a large range of sensors measuring instrumental uncertainty and

spatial uncertainty and it is often necessary to choose a priori values. In this study, for SD, SWE, albedo, SST and GT the mean25

and the standard deviation of the differences between the reference observation and other data from another instrument located

at another place in the plot (Sect. 2.2, Fig. 1) allow to give an estimate of σo for the bias and the RMSE. For BD, the estimated

instrumental error has to be added to the spatial uncertainty shown in Fig. 1c. The values of σo are summarized in Table 5.
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Table 5. Values of σo for the bias and the RMSE resulting from Sect. 2.2

Variable σo for bias σo for RMSE

SD (cm) 9.0 12.2

SWE (kg m−2) 16 38

BD (kg m−3) 10 26.5

Albedo 0.040 0.069

SST (K) 1.07 1.44

GT50 (K) 0.42 0.50

With the assumption of a Gaussian distribution of the score, it is possible to compute its 90% confidence interval and to test

the significance of the difference between two different members by a Student test. Note that this Gaussian approximation is

not realistic for RMSE but the high uncertainty of σo estimates do not justify proposing a more sophisticated error modelling.

This methodology is applied for each evaluated variable listed in Sect. 2.2. For SD, it is also applied separately for early snow

depth (October-January) and late snow depth (from the date of observed maximum SWE to the end of the season) because the5

absence of bias in any part of the snow season is also required to consider a member as satisfactory.

4.2 Ensemble scores

The skill of the ensemble of population n can be assessed both by deterministic scores applied to the ensemble mean Ē and

by probalistic scores describing the spread and the ability of the ensemble to compute reliable probabilities. Ē is defined for

each date k as the mean of the pk ≤ n available members (mki)i∈[1,pk] (Eq. 21). This restriction is necessary when computing10

scores on model variables that are not defined when there is no snow on the ground (BD, SST, A). For example, at the end of

the snow season, when not all members have melted yet, the BD ensemble mean will be considered as the BD mean of the

members that still have snow.

Ēk =
1

pk

pk∑
i=1

mki (21)

The RMSE of an ensemble corresponds to the RMSE of the ensemble mean Ē over the N dates where observations are15

available and at least 1 member is defined.

RMSE(Ē) =

√√√√ 1

N

N∑
k=1

(Ēk − ok)2 (22)

The ensemble spread or dispersion σE is the standard deviation of members, relatively to the ensemble average:

σE =

√√√√ 1

N

N∑
k=1

1

pk

pk∑
i=1

(mki − Ēk)2 (23)
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The spread-skill SS of the ensemble E of mean Ē is then defined as :

SS =
σE

RMSE(Ē)
(24)

The ensemble dispersion is optimal if SS = 1 (Fortin et al., 2015). In that case, the spread of the ensemble is representative

of the error of the mean, and for an unbiased system, observations will be most of the time inside the ensemble envelope.

The Continous Ranked Probability Score (CRPS) is one of the most common probabilistic tool to evaluate the ensemble5

skill both in terms of reliability (unbiased probabilities) and resolution (ability to separate the probability classes) (Candille

and Talagrand, 2005):

CRPS =
1

N

N∑
k=1

∫
R

(Fk(x)−H(x− ok))2dx (25)

where Fk(x) is the cumulative distribution function of the ensemble simulation at time k and H(y) is the Heaviside function

(H(y) = 0 if y ≤ 0;H(y) = 1 if y > 0). CRPS value has the same unit as the evaluted variable and tends towards 0 for a perfect10

system. It is mainly useful to compare the overall skill of several ensembles. A skill score (CRPSS) can be defined to compare

the CRPS of an ensemble E to a reference R:

CRPSS(E) = 1− CRPS(E)

CRPS(R)
(26)

To compare the skill of a multiphysics ensemble simulation to the more classical deterministic snow modelling, we choose

a single member for the reference R. In such a case, the CRPS reduces to the Mean Absolute Error of the deterministic15

simulation. As the standard Crocus configuration (blue options in Fig. 2) is not optimal at Col de Porte, we choose the member

with CV30000 surface heat capacity option and default other options as reference. This configuration has a better overall skill.

We also used rank histograms (Hamill, 2001) which illustrate the occurrence frequency of the different possible ranks of

the observations ok among the sorted ensemble members. The flatness of this histogram is a condition of the system reliability

(if the simulated probabilities are unbiased regardless of the probability level, the different ranks should have a uniform oc-20

currence frequency). It is also an indicator of the spread-skill as underdispersion will result in a U-shaped rank histogram and

overdispersion in a bell-shaped rank histogram.

Note that SS, CRPS, and rank histograms are also affected by observations uncertainties similarly to deterministic scores. As

a first step, this uncertainty is not modelled here but this lack should be kept in mind in the comparison of different ensembles.

4.3 Members selection methods25

As equiprobability of members is prefered in ensemble forecasting and ensemble assimilation applications, we extracted a sub-

ensemble of n equiprobable members, i.e. without a significantly lower skill than other members on any of the 8 evaluation

variables. We first selected this sub-ensemble E1 based on the deterministic evaluation of all ESCROC members described in

Sect. 4.1, and evaluted its ensemble skill as described in Sect. 4.2 for 5 evaluation variables (SD, SWE, BD, A, SST). GT50
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Table 6. Summary of the 4 sub-ensembles.

E1 E2 E3 E4

Restriction to the best members (determistic scores) yes yes yes no

Restriction to n′ = 35 members no yes yes yes

Optimization criteria SS on SD CRPS on SD SS on SD

is not included for this evaluation step because ESCROC does not include a comprehensive description of uncertainty in soil

modelling.

Then, among these equiprobable members, it is useful to limit the number of members n′ to keep reasonable computing-

times in larger scale applications, and it may be possible to improve the spread-skill by selecting only some members since

many configurations are highly correlated. We consider here that the value of n′ is prescribed as a technical constraint. For5

illustration, we take n′ = 35 as in Vernay et al. (2015). Many possible criteria can be defined to select these n′ members. Here,

we chose to present two selections based respectively on the optimization of the spread-skill for snow depth (ensemble E2) and

of the CRPS for snow depth (ensemble E3). Other criteria might be better suited for specific applications and it would also be

possible to define a multivariate criteria. In any case, the number of possible combinations Cn
′

n = n!
n′!(n−n′)! can be huge when

n >> n′ and testing all the possible ensembles can become unrealistic. In such a case, we propose to test the optimization10

criteria (SS or CRPS here) randomly among 10000 combinations, and to evalute the obtained sub-ensembles E2 and E3. The

solution will obviously be neither absolute nor unique. If the dispersion of the E1 full ensemble of equiprobable members

is not sufficient to obtain a satisfactory sub-ensemble E2 in terms of dispersion, it is possible to include members with an

individual lower skill among the initial candidates, but in such a case all members would not be equiprobable anymore. We

define ensemble E4 by applying the selection method based on snow depth SS optimization in the specific case where all the15

7776 ESCROC members are candidates. The selection methods of the 4 sub-ensembles are summarized in Table 6.

5 Results

5.1 Deterministic evaluation of the members and definition of the sub-ensemble of equiprobable members E1

Fig. 7 shows the couple of scores (B̂i, R̂MSEi) of each ESCROC member and their confidence interval for the different

evaluation variables. For each evaluation variable, the members cover a continous range of bias and RMSE values. For snow20

surface properties (albedo, SST), this range is lower than the width of the confidence intervals of the scores of the best members.

Very few members can be excluded from the ensemble on this criterion. However, for integrated variables (early, late, and full-

season snow depth, snow water equivalent, bulk density) and for the ground temperature, the range of the scores is larger than

the confidence intervals of the best members. A significant number of members (30 to 80% depending on the variable) exhibit

scores included in the confidence interval (i.e. the skills of these members are not significantly different from a statistical point25
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Figure 7. Scores of each member of the ESCROC ensemble for the different evaluation variables, 1993-2011. Black points represent the

couple (B̂i, R̂MSEi) for each member. Gray crosses represent the 90% confidence interval of each score. The violet rectangle represents the

90% confidence interval associated to the best member according to its RMSE.

of view). Only 575 members (about 7%) exhibit, for all variables simultaneously, scores not significantly different from the

best member. These members constitute the sub-ensemble E1 as defined in Sect. 4.3.

5.2 Probabilistic evaluation of the different sub-ensembles

The sub-ensemble E1 of N1 = 575 optimal and equiprobable members is evaluated in terms of spread-skill and CRPS for the

different evaluation variables. For all the variables, the magnitude of the spread ranges between 40 and 60% of the RMSE5

of the ensemble mean (Table 7, first column). This means that about half of the total uncertainty is unexplained by this sub-

ensemble. As a result, the observation is frequently not included in the ensemble as illustrated by the over-representation of the

extreme ranks in rank diagrams for all variables (Fig. 8, first column), especially for albedo consistently with the lower SS of

this variable. This behaviour is also illustrated in the temporal plots: in Fig. 9, first column, the observed time series of snow

depth is more than 10% of the time outside the 90% interval confidence of the ensemble (occurrences above the ensemble in10

2003-2004 and 2010-2011 and conversely below the ensemble in 2006-2007 and 2007-2008). Several occurrences outside the

ensemble can also be seen for bulk density and albedo during the season 2007-2008 (Fig. 10). Despite this underdispersion,

the positive CRPSS (Table 8) demonstrate that sub-ensemble E1 exhibits a better skill than the deterministic approach from

a probabilistic point of view. The interest of the ensemble framework is also illustrated in Fig. 9 and 10 where observations

are usually not superposed with the ensemble median but are found inside the ensemble spread with varying positions from15

one date to another. However, it is important to consider that the uncertainty in the evaluation data is not taken into account in
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Table 7. Spread-skill (Dispersion / RMSE) of ESCROC sub-ensembles for the different evaluation variables, 1993-2011.

Variable E1 E2 E3 E4

SD (cm) 51% (8.5 / 16.5) 65% (10.0 / 15.3) 56% (8.0 / 14.3) 100% (14.8 / 14.8)

SWE (kg m−2) 51% (38.6 / 75.2) 69% (48.6 / 70.2) 57% (38.1 / 66.9) 131% (82.9 / 63.2)

BD (kg m−3) 60% (21.5 / 35.8) 62% (22.0 / 35.5) 62% (22.3 / 36.0) 132% (45.7 / 34.7)

Albedo 42% (0.034 / 0.081) 46% (0.035 / 0.076) 46% (0.035 / 0.076) 52% (0.039 / 0.075)

SST (K) 59% (1.03 / 1.74) 61% (1.08 / 1.78) 63% (0.98 / 1.54) 70% (1.05 / 1.50)

this ensemble evaluation although it can impact the results. Thus, the unbalance between the first and last ranks frequencies in

snow depth and SWE rank diagrams might suggest a positive bias of snow depth in E1, but it is inconsistent with the negative

bias of SWE and no significant bias of BD. This behaviour can only be explained by the uncertainty in the reference data.

Among these 575 optimal members, the sub-ensembles E2 and E3 of N2 = 35 members optimized in terms of spread-skill

or CRPS of snow depth are selected following the methodology of Sect. 4.3. The members are listed in Tables A1 and A2.5

The improved spread-skill of E2, and even of E3 (Table 7) illustrate that a much lower number of members is sufficient to

represent model uncertainty if they are appropriately selected, and that including too many correlated members tends to reduce

the dispersion. However, despite the SS optimization, the sub-ensemble E2 remains underdispersive for all variables. This is

also the case for ensemble E3, a fortiori. The U-shape of rank diagrams is only slightly smoothed (Fig. 8) and the simulated

time series feature the same main issues between E1, E2 and E3 (Fig. 9 and 10). It can also be noticed that the optimization of10

either snow depth SS or snow depth CRPS degrades neither SS nor the CRPS for the other evaluation variables (Tab 7 and 8).

The only exception is the CRPS of bulk density which is poorer for ensemble E3 than for ensemble E1.

To increase the dispersion, it is possible to relax the constraint of optimal skill in terms of bias and RMSE for some (or all)

evaluation variables for the candidate members. EnsembleE4 corresponds to the extreme case: we selected 35 members within

all the 7776 ESCROC members by snow depth SS optimization (list of members in Table A3). We can see that the spread-skill15

can be fully optimized for a chosen variable (perfect SS of snow depth in Table 7, much more flatter rank diagram in Fig. 8, and

significant broadening of the Q5-Q95 interquantile interval in Fig. 9 allowing the inclusion of the observed time series most

of the time). However, it does not allow to simultaneously optimize the dispersion of the other variables: albedo and SST are

still underdispersive whereas SWE and BD become overdispersive (see also the bell-shaped rank diagrams). It can be noticed

that although members with a lower individual skill are included, the CRPS are still enhanced for all variables compared to20

other sub-ensembles even without any weighting of the less probable members. However, the significance of CRPS differences

among the different sub-ensembles was not tested here.
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Table 8. CRPS (CRPSS in parenthesis) of ESCROC sub-ensembles for the different evaluation variables, 1993-2011.

Variable E1 E2 E3 E4

SD (cm) 7.2 (0.41) 6.6 (0.46) 6.3 (0.48) 6.1 (0.49)

SWE (kg m−2) 40.2 (0.30) 36.8 (0.36) 36.9 (0.36) 32.8 (0.43)

BD (kg m−3) 19.4 (0.26) 19.5 (0.25) 22.3 (0.15) 18.5 (0.29)

Albedo 0.056 (0.09) 0.052 (0.16) 0.052 (0.16) 0.050 (0.19)

SST (K) 0.89 (0.47) 0.92 (0.45) 0.78 (0.53) 0.76 (0.55)
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Figure 8. Rank diagrams for the different sub-ensembles (E1, E2, E3, E4, by column) and evalution variables (SD, SWE, BD, A, SST, by

line), 1993-2011.
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Figure 9. Simulated snow depth time series (median, 5th and 95th percentiles) for the different sub-ensembles (E1, E2, E3, E4, by column),

2003-2011. Black line: observed snow depth.
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Figure 10. Simulated time series (median, 5th and 95th percentiles) of the different evaluation variables (by line), for the different sub-

ensembles (E1, E2, E3, E4, by column), season 2007-2008. Black line or black points: observations.
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Figure 11. Same as Fig. 7 with different colors according to the option of surface heat capacity. The black triangles correspond to the default

options of snow processes (blue cells in Fig. 2) and the three options of surface heat capacity.
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Figure 12. Number of occurrences of each physical option in the E1 ensemble of 575 equiprobable members. Blue cells correspond to the

default Crocus configuration.

5.3 Model sensitivity to physical options
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Figure 13. Same as Fig. 7 with different colors according to the option of solar radiation absorption. As in Fig. 11, the black triangles

correspond to the default options of snow processes (blue cells in Fig. 2) and the three options of solar radiation absorption.

It is useful to know if some physical options exhibit a significantly lower skill regardless of the options of the other processes.

This is only the case for the default option of 10000 J m−2 K−1 for the soil surface heat capacity which leads to a systematic

cold bias of ground temperature in autumn as illustrated in Fig. 11, and in Decharme et al. (2016). As this option exhibits also

a high sensitivity on integrated variables such as SD, SWE and BD, further investigations are necessary to better understand

why this realistic value of surface heat capacity leads to a systematic bias at Col de Porte and if this issue also exists in other5

places in the Alps. For all the other options, their ability to provide optimal simulations depend on the choice of options for

the other processes. Fig. 12 represents the frequency of each physical option in the sub-ensemble E1 of 575 optimal members.

Regardless of the process, there is no option which is highly prevailing in this sub-ensemble population. Some options are less

frequently represented than the others (for instance options TA+ for solar radiation absorption, B02 for liquid water holding,

T11 for snow compaction) but when combined with specific options for the other processes, they are still able to exhibit10

realistic simulations for all evaluation variables. Regarding the solar radiation absorption representation, it must be noticed

that the TA+ and B10 do not exhibit any negative bias in albedo or snow depth evaluations (Fig. 13), their lower frequency in

ensemble E1 is mainly explained by the scores of SWE and late snow depth. The B60 option (blue points) could be associated

with a positive bias of snow depth in the default Crocus version with a 10000 J m−2 K−1 surface heat capacity (down-facing

triangle in Fig. 11 and 13), and the B10 or TA+ options preferred (left and right-facing triangles in Fig. 13). However, an15

opposite conclusion is obtained if the surface heat capacity option is changed: the positive bias of B60 disappears (right and

up-facing triangles in Fig. 11) and a negative late snow depth bias appears in spring for B10 and TA+ (not shown). Numerous
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similar dependences of the skill of a given option to the choice of other processes were found, with interactions between water

holding capacity, compaction, and snowfall density options (not shown) or between turbulent surface fluxes and solar radiation

absorption options, among others.

To illustrate how the different options create dispersion in the optimal sub-ensembles, we compare in Fig. 14 for one par-

ticular season (2003-2004) the energy fluxes of 2 different members of the E1 sub-ensemble of optimal members. These two5

members were selected because they have different options for solar radiation absorption and turbulent fluxes (B60/M98 and

TA+/RIL) but the same options for all other processes. The absorbed solar radiation is significantly higher in member with the

TA+/RIL options than in member with the B60/M98 options, especially in February and March, whereas the turbulent heat

fluxes are significantly lower in member with the TA+/RIL options than in member with the B60/M98 options. As a result,

the temporal variations of the energy balance differs between the two members, with a higher positive balance for member10

B60/M98 during some windy and mild events in winter and conversely a higher positive balance during some spring sunny

days for member TA+/RIL. Therefore, there is a slightly different chronology of melting in these members although the final

melt-out date difference is only 2 days. These differences are lower than model errors and lower than the uncertainty range of

observations. This illustrates that very different contributions of energy fluxes to the energy equilibrium can result in a similar

and optimal skill for all evaluated variables (both members are included in E1 sub-ensemble). This equifinality also exists15

between the other physical processes and options, with some more complex interactions involving more than two processes. It

explains (i) the difficulty to select a single-model and (ii) the dispersion obtained at a given point in time by several members

seen as equivalent and optimal from a deterministic statistical evaluation.

6 Discussion

The ability of ESCROC to explain a significant part of modelling errors at Col de Porte and its improved skill in terms of20

CRPS relatively to deterministic modelling is very promising to contribute to the development of a full ensemble numerical

system including ensemble meteorological forcing and ensemble data assimilation techniques in support of avalanche hazard

forecasting. However, this work also has several limitations discussed in this section.

6.1 Implications of forcing data uncertainty

The assumption that meteorological input errors are low compared to model errors is the main limitation of our study be-25

cause even at well instrumented sites, recent studies illustrate that model outputs can be significantly affected by input errors

especially by long-term biases (Raleigh et al., 2015) and by errors in longwave incident radiation and precipitation amount

(Sauter and Obleitner, 2015). The quantification of the impact of meteorological uncertainties in snow modelling by Raleigh

et al. (2015) is highly dependent on the choice of the error types (bias vs random errors), and of the error distributions (form

and parameters) whereas the accuracy specified by the manufacturers is difficult to interpret. Furthermore, additional errors30

can be encountered due to environment specific issues. As a consequence, it is difficult to quantify an absolute contribution

of forcing errors in the total uncertainty from manufacturers information, and new investigations to document the meterolog-
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ical uncertainty in experimental sites must be supported, as recently done for precipitation amounts during the WMO Solid

Precipitation Intercomparison Experiment (SPICE, e.g. Kochendorfer et al., 2016) which included the Col de Porte site. Nev-

ertheless, Raleigh et al. (2015) calculated that the contribution of forcing errors specified from manufacturers may be as high

as 40% of the total uncertainty for the most sensitive variables. This suggests that the underdispersion of the sub-ensembles

E1, E2 and E3 of equiprobable members might be partly or totally explained by forcing uncertainty and not by an insufficient5

coverage of the uncertainty of physical processes in ESCROC. This suggests that including lower skill members to optimize

the dispersion could be an artificial compensation of not accounting for forcing errors in the simulations. Therefore, despite

the slight enhancement of probabilistic scores, we recommend considering this method with caution. Furthermore, losing the

equiprobability of members can be a disadvantage in practical applications.

6.2 Implications of a single site application only10

The second limitation of this study is that all evaluations and selections of sub-ensembles were based on a single exper-

imental site. Applications on increasingly large scales of the ESCROC system will be affected by much more significant

errors in the meteorological forcing, preventing a large scale calibration of multiphysics sub-ensembles. However, applica-

tions of the model in different environments, for instance at higher elevations or higher latitudes, might be affected by dif-

ferent error levels associated with the physical processes than at Col de Porte, and the spread of the proposed sub-ensembles15

might be insufficient to quantify this higher uncertainty. This is especially the case over areas affected by significant snow-

drift. To reduce this issue, a next important step will be to evaluate ESCROC in contrasted environments using other well-

instrumented sites around the world often used for snow models evaluation, e.g. Sodankylä, Finland (Essery et al., 2016)

or Weissfluhjoch, Switzerland (WSL, 2015). Forcing and evaluation data gathered by the ESM-SnowMIP initiative (http:

//www.climate-cryosphere.org/activities/targeted/esm-snowmip) will be used for this purpose.20

6.3 Limitations of scores and selection methods

Our results illustrate that a realistic number of members can be sufficient to explain the uncertainty range. Nevertheless, the

selection of optimal members presented here is affected by an uncertain characterization of evaluation data errors (Sect. 4).

The selection is not unique as only a limited number of possible combinations were randomly tested and it can be objective-

dependent. This paper presents a framework which may be adapted for a specific application. For instance, ensemble as-25

similation of remotely-sensed spectral visible reflectances as in Charrois et al. (2016) would probably require selecting a

sub-ensemble by albedo spread-skill optimization. Because the uncertainty of albedo measurements is high, it would probably

benefit from a better modelling of observations errors in both deterministic and probabilistic scores. In a more general context

of a full ensemble system of snowpack modelling with various applications, the selection of members might be improved by

defining multi-objective probabilistic criteria combining several evaluation variables, or even several evaluation sites. Recent30

investigations on that topic for the purpose of ensemble meteorological forecasting proposed generalizations of the classical

univariate probabilistic tools (Gneiting et al., 2008; Scheuerer and Hamill, 2015; Thorarinsdottir et al., 2016) which could be

tested in ensemble snow modelling. Special care should be taken in the future to deal with the covariance of errors among the
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different evaluation variables. Increasing the number of dimensions in the evaluation framework by incorporating new sites or

new variables such as vertical profiles of temperature, density or microstructure properties, is also likely to result in an empty

ensemble in the first selection of members with an optimal deterministic skill over all these variables. This would also require

defining multivariate deterministic evaluation criteria as in Essery et al. (2013).

6.4 Lessons for numerical snowpack modelling5

Our results also illustrate the fact that all evaluations of numerical snow modelling are highly impacted by the choice of

evaluation variables, the uncertainty of evaluation data and the physical options chosen for all physical processes even if they

are beyond the scope of a particular study. As a result, a sensitivity test to choose the best physical representation of a given

physical process can be misleading if the sensitivity to other processes is not explored or if the chosen evaluated variables

do not constrain the model sufficiently. These conclusions are fully in accordance with Essery et al. (2013) and should be10

considered for the evaluation of any parameterization of a physical-based snow model. It was unfortunately rarely done in past

evaluations of most snow models.

ESCROC could be seen as a potential tool to quantify the relative contribution of each physical process to the overall uncer-

tainty in snowpack modelling, e.g. using variance analysis methods as in Sauter and Obleitner (2015). This would provide a

useful characterization of the system itself but without any guarantee that these contributions are fully representative of snow-15

pack modelling in a general context. Indeed, the results would be totally dependent on the choices made to define the different

options. The latter may not accurately quantify the uncertainty process by process and it would be especially challenging to

objectively verify the dispersion for each process.

Our results also illustrate the fact that looking for a perfect deterministic snowpack model might never be sufficient and that

finding ways to deal with model errors may be as promising as improving the physics description. In the Crocus snowpack20

model, recent attempts to introduce more sophisticated physics (e.g. metamorphism by Carmagnola et al. (2014) or imple-

mentation of the TARTES optical scheme) did not necessary lead to a significant overall skill improvement, as shown here.

However, efforts to improve the physics is also in some cases expected to improve the details of the simulated snowpack

vertical structure. For instance, solving Richards equations for the liquid water percolation would allow simulating the pond-

ing of liquid water on capillary barriers and crusts with expected positive impacts on the detailed snow stratigraphy (Wever25

et al., 2015). Including water vapor transfers in snow modelling might also correct the unrealistic density profiles usually

obtained in polar regions where this process is significant (Domine et al., 2013). Nevertheless, the modelling of these com-

plex processes are bound to introduce new uncertainties. Therefore, progress in snow physics understanding and in ensemble

modelling techniques have to be complementary to generally improve the reliability and the usefulness of snow simulations in

various applications (e.g. avalanche hazard forecasting, hydrology, glaciers mass balance, climate change impact studies).30
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7 Conclusions

Numerical snow modelling is affected by various sources of errors which reduce its current reliability and utility in operational

applications. Following the progress achieved in meteorology and hydrology, we suggest that three directions in snowpack

modelling should be explored at the same time:

– improving the quality of the meteorological forcing and the modelling of the physical processes;5

– predicting the uncertainties of the simulations using ensemble frameworks covering all the errors sources;

– assimilating remotely-sensed or conventional snowpack observations to reduce the errors.

While the first point has been the central topic of investigations in the last 30 years, the other two are only emergent. They are

also highly linked as the concept of data assimilation relies on an accurate quantification of modelling errors. In this paper,

we contribute to both these innovative topics by proposing a new multiphysics ensemble system of snowpack modelling,10

ESCROC, based on the implementation in the SURFEX/ISBA/Crocus snowpack model of various options for 8 key processes

in the evolution of mid-latitude snowpacks. This system was evaluated with both deterministic and probabilistic tools at the

Col de Porte well-instrumented site to reduce meteorological forcing errors as much as possible.

The deterministic skill of the ESCROC members cover a wider range than the uncertainty range of evaluation data for snow

depth, snow water equivalent, bulk density and ground temperature. It is not the case for albedo and snow surface temperature15

whose measurements feature higher uncertainty. The results confirm several conclusions of Essery et al. (2013), including the

high equifinality between various processes in snow modelling which cannot be eliminated with standard evaluation methods

and should therefore be carefully considered in future work intending to improve snow physics.

To define an ensemble of equiprobable members suited for ensemble forecasting and ensemble assimilation applications, a

sub-ensemble of best members for all evaluation variables was selected and a methodological framework to select a reduced20

number of members was presented. Thus, sub-ensembles of only 35 members are able to explain between 50% and 70% of the

total simulation errors. They have a significantly better predictive power than the classical deterministic approach. It is possible

to optimize the ensemble spread-skill by including members with a lower deterministic skill, but we do not recommend it

because it could be an artificial compensation of not accounting for forcing errors and because it would make the practical use

of the ensemble in operational applications more complicated. Several perspectives are listed for future works including the25

extension of evaluations to a multi-sites and multivariate analysis. Another important perspective will be to test the combination

of this multiphysics system with ensemble meterological forecasts suited to snowpack simulations (Vernay et al., 2015). The

development of ensemble meteorological analyses instead of current deterministic systems (Durand et al., 1993) will also be a

challenge, especially in the context of the increased resolution of NWP models (Vionnet et al., 2016). The most appropriate way

to propagate and reduce both uncertainties will also have to be investigated when this full ensemble system is combined with30

an ensemble data assimilation algorithm. Last but not least, the development of synthesis diagnostics of ensemble simulations

is essential to assist the avalanche hazard forecasters to take advantage of an increasing amount of available data.
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8 Code availability

ESCROC is developed inside the opensource SURFEX project (http://www.umr-cnrm.fr/surfex). While it is not implemented

in an official SURFEX release, the code can be downloaded from the specific branch of the svn repository maintained by

Centre d’Études de la Neige. The full procedure and documentation can be found at https://opensource.cnrm-game-meteo.fr/

projects/snowtools/wiki/Procedure_for_new_users. For reproductibility of results, the version used in this work is tagged as5

http://svn.cnrm-game-meteo.fr/projets/surfex/tags/ESCROC-1.0.

9 Data availability

The CDP dataset is placed on the PANGAEA repository (doi:10.1594/PANGAEA.774249) as well as on the public ftp server

ftp://ftp-cnrm.meteo.fr/pub-cencdp.

Appendix A: List of members of sub-ensembles E2, E3 and E410
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Table A1. List of equiprobable members of sub-ensemble E2 (optimized in terms of snow depth dispersion)

SD M SR TSF TC LWH C SHC

1 V12 C13 B60 RI1 Y81 SPK B92 CV30000

2 V12 C13 B60 RI1 I02 B92 S14 CV30000

3 V12 C13 B60 RI2 Y81 B92 S14 CV30000

4 V12 C13 B10 RIL Y81 B92 B92 CV30000

5 V12 C13 TAR RI1 I02 SPK T11 CV50000

6 V12 C13 TAR RI2 I02 SPK S14 CV50000

7 V12 C13 TA+ RI1 I02 SPK B92 CV30000

8 V12 F06 B60 RIL Y81 B92 S14 CV30000

9 V12 F06 B60 RIL Y81 SPK S14 CV50000

10 V12 F06 TAR RIL I02 B92 T11 CV50000

11 V12 S-F B60 RI1 I02 B92 S14 CV30000

12 V12 S-F B10 RI2 I02 SPK B92 CV30000

13 V12 S-F TAR RIL Y81 SPK S14 CV50000

14 V12 S-F TAR RIL Y81 SPK S14 CV30000

15 V12 S-F TAR M98 Y81 SPK B92 CV30000

16 V12 S-F TA+ RIL I02 SPK B92 CV30000

17 S14 C13 B60 M98 Y81 B92 S14 CV30000

18 S14 C13 TA+ RI1 I02 B92 B92 CV30000

19 S14 F06 B60 RIL Y81 B92 S14 CV50000

20 S14 F06 B60 M98 I02 B92 B92 CV30000

21 S14 F06 B60 M98 I02 SPK B92 CV30000

22 S14 F06 TAR RI1 Y81 SPK B92 CV30000

23 S14 F06 TA+ RIL I02 SPK B92 CV30000

24 S14 F06 TA+ RI1 I02 SPK B92 CV30000

25 S14 S-F B60 RIL I02 B92 B92 CV50000

26 S14 S-F B60 RIL I02 SPK S14 CV50000

27 S14 S-F B60 RI1 I02 SPK B92 CV30000

28 S14 S-F TAR RIL I02 SPK S14 CV50000

29 A76 F06 B60 M98 I02 B02 S14 CV30000

30 A76 F06 TAR M98 I02 SPK B92 CV30000

31 A76 F06 TA+ RIL I02 B92 B92 CV30000

32 A76 S-F B10 RIL Y81 B92 B92 CV30000

33 A76 S-F B10 RI2 I02 B92 B92 CV30000

34 A76 S-F TAR RIL Y81 SPK S14 CV50000

35 A76 S-F TAR RI1 Y81 SPK B92 CV30000
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Table A2. List of equiprobable members of sub-ensemble E3 (optimized in terms of snow depth CRPS)

SD M SR TSF TC LWH C SHC

1 V12 C13 B60 RIL I02 B92 T11 CV50000

2 V12 C13 B60 RI2 Y81 B92 B92 CV30000

3 V12 C13 B60 RI2 I02 SPK B92 CV30000

4 V12 C13 B60 M98 I02 SPK B92 CV30000

5 V12 C13 B10 RIL Y81 SPK B92 CV30000

6 V12 C13 B10 RI1 I02 B92 B92 CV30000

7 V12 C13 TAR RI2 Y81 B92 S14 CV30000

8 V12 F06 B60 RI2 Y81 SPK B92 CV30000

9 V12 F06 TAR RI1 I02 SPK T11 CV50000

10 V12 S-F B60 RI1 I02 SPK B92 CV50000

11 V12 S-F B10 RIL Y81 B92 B92 CV30000

12 V12 S-F TAR M98 Y81 SPK S14 CV30000

13 V12 S-F TA+ RI1 I02 SPK B92 CV30000

14 S14 C13 B60 RIL I02 SPK B92 CV50000

15 S14 C13 TAR RI2 I02 SPK S14 CV50000

16 S14 C13 TAR M98 Y81 B92 S14 CV30000

17 S14 F06 B60 M98 Y81 B92 S14 CV30000

18 S14 F06 TAR RIL Y81 SPK S14 CV50000

19 S14 F06 TA+ RI1 I02 SPK B92 CV30000

20 S14 S-F B60 RIL Y81 B92 S14 CV30000

21 S14 S-F B60 RI1 I02 B92 S14 CV50000

22 S14 S-F B60 M98 I02 B92 B92 CV30000

23 S14 S-F B60 M98 I02 B92 S14 CV30000

24 S14 S-F TAR RI2 I02 B92 B92 CV30000

25 S14 S-F TAR M98 I02 SPK B92 CV30000

26 S14 S-F TA+ RI1 I02 SPK B92 CV30000

27 A76 C13 B60 RI2 I02 B92 B92 CV30000

28 A76 C13 B60 M98 I02 B02 S14 CV30000

29 A76 C13 B10 RI2 I02 B92 B92 CV30000

30 A76 C13 TAR RI1 Y81 B92 S14 CV50000

31 A76 F06 B60 RI1 Y81 B92 B92 CV30000

32 A76 F06 B60 M98 Y81 B02 S14 CV30000

33 A76 F06 B10 RIL Y81 B92 B92 CV30000

34 A76 F06 TAR RI2 I02 B92 B92 CV30000

35 A76 S-F TA+ RI1 I02 B92 B92 CV30000
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Table A3. List of non-equiprobable members of sub-ensemble E4 (optimized in terms of snow depth dispersion)

SD M SR TSF TC LWH C SHC

1 V12 C13 B60 RI2 I02 SPK B92 CV50000

2 V12 C13 B10 M98 Y81 B02 B92 CV30000

3 V12 C13 TAR RIL Y81 B92 B92 CV50000

4 V12 C13 TA+ RI1 Y81 B92 B92 CV50000

5 V12 C13 TA+ RI2 I02 SPK T11 CV50000

6 V12 F06 B60 RIL I02 SPK T11 CV10000

7 V12 F06 B60 RI2 I02 B92 S14 CV50000

8 V12 F06 TAR RIL I02 SPK S14 CV50000

9 V12 S-F B60 RI2 Y81 B92 S14 CV50000

10 V12 S-F B60 RI2 I02 B02 S14 CV50000

11 V12 S-F B10 RI1 I02 SPK B92 CV30000

12 V12 S-F B10 M98 I02 B02 S14 CV10000

13 V12 S-F TAR M98 Y81 B92 B92 CV10000

14 S14 C13 B60 RIL I02 SPK S14 CV30000

15 S14 C13 B10 RIL Y81 B92 B92 CV10000

16 S14 C13 TAR RI1 I02 B92 B92 CV30000

17 S14 F06 B60 RI2 I02 SPK S14 CV50000

18 S14 F06 B10 RIL I02 B02 S14 CV30000

19 S14 F06 B10 RI1 I02 B92 B92 CV30000

20 S14 F06 TAR RI2 I02 SPK B92 CV30000

21 S14 S-F B60 RI2 Y81 B92 T11 CV30000

22 S14 S-F B60 RI2 I02 SPK S14 CV30000

23 S14 S-F B10 M98 Y81 B92 B92 CV10000

24 S14 S-F TAR RI2 I02 B02 B92 CV30000

25 S14 S-F TAR M98 Y81 B92 S14 CV50000

26 A76 C13 TAR RI2 Y81 SPK S14 CV10000

27 A76 C13 TAR RI2 Y81 B02 S14 CV50000

28 A76 C13 TA+ RIL I02 SPK T11 CV10000

29 A76 F06 B60 M98 Y81 B02 S14 CV10000

30 A76 F06 TAR RI2 I02 B92 S14 CV30000

31 A76 F06 TA+ M98 I02 B92 B92 CV30000

32 A76 S-F B60 RI1 Y81 SPK B92 CV10000

33 A76 S-F B10 RIL Y81 B92 B92 CV30000

34 A76 S-F B10 M98 I02 B02 B92 CV30000

35 A76 S-F TA+ RI2 I02 SPK B92 CV10000
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