
RESPONSE TO REVIEWER 3

General comments  

1) It would be helpful to explain more about the advantage of the Maxwell-EB rheology compared with 
the  traditional  elliptic  curve rheology.  The  authors  pointed  out  the  capability  to  represent  the 
extreme localization of  damage and deformation (P4L13).  However,  there is  a  possibility that it 
comes just from the horizontal resolution of the grid cell in the model. I mean that the traditional  
plastic rheology might be able to reproduce the phenomena if fner grid cells are used. Thus I want  
to know why they consider the continuum elasto-brittle rheology should be more appropriate than 
the  continuum viscous  plastic  rheology  for  this  phenomena,  and  whether  this  rheology  can  be 
applicable to the general sea ice conditions.

The difference between the VP and Maxwell-EB rheology is two-folds: it lies in the rheology itself (i.e., the viscous-elastic-brittle 
versus the viscous-plastic constitutive relationship) and in the prescribed damage (or yield) criterion. Of course, both aspects 
impact the simulated mechanical behaviour.

First, the goal in developing the Maxwell-EB framework was to suggest an alternative to the traditional Viscous-Plastic (VP) 
rheology that is more physically sound, as in recent years, the viscous hypothesis and other underlying physical assumptions of  
the VP model have been revisited and found to be inconsistent with the observed mechanical behaviour of sea ice in many 
aspects, e.g., with respect to the order of magnitude of the observed strain rates (Weiss et al., 2007; Rampal et al., 2008), the 
anisotropic distribution of ridges and leads and associated discontinuities in the velocity feld on scales both small and large ( > 
100 km) (Hibler, 2001; Schulson, 2004; Coon et al., 2007), the relation between stresses and strain-rates (Weiss et al., 2007), the 
strength of pack ice in tension (Weiss et al., 2007; Coon et al., 2007) and the normal fow rule (Weiss et al., 2007) . The aim in 
building this new continuum model was to represent accurately the deformation and drift of sea ice. In particular, we wished to 
developing a modelling framework that allows representing both the small deformations associated with brittle failure and the 
large deformations occurring within a fractured ice cover. In the paper, these points are introduced in the last paragraph of the  
introduction and in the frst paragraph of section 3 (which presents the model).  As they are discussed in the frst paper that  
presents the motivations for and the details of the Maxwell-EB rheology (Dansereau et al., 2016) and references to this paper 
are included both in the introduction and in section 3, we do not think repetition is needed in the present paper, which we 
wish to be relatively short and to focus on the implementation of the model on geophysical scales. 

One particularity of the Maxwell-EB model is that  the localization of deformation indeed  does not depend on the spatial 
resolution, in the sense that the tendency to localize damage and deformation at the smallest available scale, i.e., the scale of the model  
grid  cell, is  intrinsic  to  the  rheological  framework. In  other  words, no  matter  the  spatial  resolution, the  Maxwell-EB  model 
reproduces a localized deformation. This point is also discussed in more details in the paper that frst presents this new 
rheology (see  Dansereau et  al., 2016, section 6.1) hence, an in-depth discussion was not included here. The fact that the 
representation of  ice  bridges  and leads does not  depend on the choice  of  spatial  resolution (over  the range  of  spatial 
resolutions that allow resolving the fow of ice through the channel) is mentioned in the description of the simulation setup (p.  
12, line 18 and page 13, lines 1 and 2) and discussed in terms of the representation of the thickness redistribution (fgure 10b). 

We also discussed the issue of spatial resolution in our response to reviewer 2. As mentioned in section 4 and discussed in  
section 5.2, we analyzed lower resolution simulations. These simulations show that the model reproduces a stable ice bridge, a  
clearly defned ice front, arch-like and linear leads upstream of the ice bridge, and a distribution of ice thickness with a tail that  
follows an exponential function as in the higher resolution cases. Since we did not perform VP model simulations, in the paper  
we did not speculate on the fact that VP models at very high resolution can or cannot reproduce ice bridges in narrow 
passages. However, we believe that if a model can reproduce ice bridges and other important processes only at high to very 
high resolution it is not good news, as the physics represented by a model should not be resolution-dependant. 

Second, the main advantage of using a Mohr-Coulomb (MC) failure criterion instead of the elliptical yield curve for the damage  
criterion in the Maxwell-EB model is that the MC criterion appears in agreement with in-situ stress measurements (see fgure  
8 a). Also in agreement with observations, the current damage criterion allows accounting directly for some resistance of the  
ice in pure ( σ1<0 and σ2<0 ) tension.  As demonstrated in the present as well as in previous papers (ex., Dumont et  
al., 2009), resistance of the ice in tension is especially important for simulating stable ice bridges. This point is discussed in 
section 2.1. Another advantage of the MC damage criterion is that the cohesive strength of the ice (i.e., σt and σc ) 
can be set and adjusted directly by varying the cohesion parameter, C, rather than indirectly, by changing the ratio of the ellipse. 

To answer your last comment, the simulations performed here are indeed on a regional scale, and concern very specifc fow 
conditions. However, the results gives us no reasons to think that the model could not be applied to more general  conditions. 
On the contrary, the model proves to behave well in this “extreme” case, i.e., a case chosen especially to test the ability of the 
model  to  represent  (1)  the  complex mechanical  behaviour  associated  with  the formation  of  an  ice  bridge  and  (2)  the 



discontinuities in ice velocity, concentration, thickness, etc., associated with the presence of this bridge. 

2) Intuitively my feeling is that the foe size distribution of sea ice should also play an important role in 
the brittle ice rheology. Therefore, in the question at P17L7-8 it would be natural that the change in 
foe size distribution may also contribute to the phenomena. What do you think?
This is a good point.  The paper discussed in this section (Gimbert et al., 2012b) identifed a mechanical weakening of the ice 
cover that is independent of an ice thinning and suggested that this weakening is related to the degree of fragmentation of the  
ice cover. A more fragmented ice pack is indeed in agreement with an evolution towards smaller ice foes. We  now add a 
mention to this effect in section 5.1.3, paragraph 2. It is also consistent with a change in the shape (circularity) of the foes, a 
less cohesive state ice cover, an enhanced deformation and an increased ice drift (Rampal et al., 2009). 
Of course, continuum models by defnition, whether using a VP, EVP, EB or Maxwell-EB rheology, do not resolve ice foes per se 
nor the mechanical interactions between individual foes. Hence it would be interesting to explore this question further using a 
discrete element model (ex., Rabatel et al., 2015; Hopkins, 2004; Herman, 2011; Wilchinsky et al., 2011), that is, to try relating the 
foe size distribution to the cohesive strength of the ice cove in a quantitative manner. 

2) On the whole, I am somewhat concerned about why the authors did not pay so much attention to  
the horizontal scale. For example, the scales of ice bridges seem to be different depending on the 
straits.  Accordingly the mechanism might be different depending on the regions. Could you explain 
how the Maxwell-EB rheology infuence the results depending on the scales. 
We are sorry we might not understand this comment fully. 
The horizontal scale of ice bridges is the width of the constriction point across which it forms. In general, the limiting span that 
can support a stable arch between vertical walls or in a vertical tube depends on several properties of the material (its density,  
cohesion, internal friction) and the friction between the material and the walls (Richmond and Gardner, 1962). In the case of sea 
ice, the presence of a stable ice bridge should depend on the cohesion of the ice cover, its thickness, concentration, etc., the  
friction between the ice and the coast (here we prescribe a no-slip boundary condition), but also on the wind and ocean  
forcings. Rallabandi et al., 2017 for instance developed a one-dimensional theory for the wind-driven formation of ice bridges in 
narrow straits in a VP model and investigated the formation of a stable ice bridge at  a given wind stress, maximum and  
minimum channel width, ice thickness and compactness in this model. A study of the limiting span of ice bridges observed to 
form in the Arctic with a comparison to Maxwell-EB model simulations would indeed be interesting but is beyond the scope of  
the present paper. 
However, as mentioned on page 10, lines 6 to 8, simulations with different idealized domains (narrower, longer channels, smaller 
basins) were performed to verify that the dynamics described in the paper is not specifc to the shape and dimension of the  
idealized channel. Moreover, the use of a realistic domain allows investigating the formation of ice arches at different locations, 
hence with different spans, in the Maxwell-EB model.  

Although the description on the scale dependence (P19L17-25) is interesting, in general it seems that 
the localization of deformation depends on the grid cell size. Could you explain why this property is  
independent of resolution?
As mentioned in our response to your major comment (above), the tendency to localize the damage and deformation at the  
smallest available scale is intrinsic to the Maxwell-EB rheology. Hence there is no characteristic scale for the localization of  
damage and deformation in the model beyond the scale of the model element (see Dansereau et al., 2016, sections 6.1 and 6.2). 
Therefore, at all spatial resolutions, the simulated deformation is highly localized. In the present simulations, this translates into 
a localization of the mechanically redistributed, i.e., the “ridged” ice and an exponential tail of the ice thickness PDF at the  
spatial resolutions explored (2 km, 4 km and 8 km in the idealized channel case). This point is now made clearer in section 5.2.

Specifc points: 
*(P1L2)”on geophysical scales” I wonder if we can assume ice bridges and ridges to be on a geophysical scale.  
It would be preferable to describe the specifc phenomena like “ice bridges on a few tens of kilometers”. 
The model is used here to simulate the drift of sea ice through a channel that is 500 kilometres long and a few tens to hundreds of  
kilometres wide. Ice bridges and ridges are smaller-scale features resulting from the associated deformation of the ice cover. We believe  
it would have indeed been wrong to claim that  the model was used on  global scales, but the setup used here does qualifes this 
application as to apply on “geophysical” scales. 

*(Figure 1) The red dotted line in Fig.1b is hard to see. Please make it more prominent. In Fig.1c there are  
two red dotted lines. I guess the northern one should be deleted. 
Yes, thank you for catching this. 

*(P5L17) Please insert “Hibler” 

*(P8L9, Eq.3) I think “A” is not needed. 
The air and water drag terms in the momentum equation are indeed both multiplied by the ice concentration. This approach was  
suggested by Gray and Morland, 1994 and Connolley et al., 2004, to account for the contribution of the ice-free and ice-covered fraction of 
a grid cell to the wind and water stress. Connolley et al., 2004, explains the necessity of introducing this weighting to maintain physical  
consistency in the free-drift limit. Without it, the free-drift solution of the momentum equation (when including the Coriolis term)  



depends  on ice  concentration, i.e., ice  foes  with  the  same thickness  would  not  be drifting  at  the  same velocity  based on their  
concentration, even in  the  limit  of  negligible  mechanical  interactions. Here, this  “correction”  is  included for  the  sake  of  physical  
consistency, even if not strictly necessary since the Coriolis term is neglected in the present implementation of the model. We now add a 
reference to the work of Connolley et al., 2004 when introducing the form of the momentum equation solved here (Eq. A1).

This weighting approach is quite standard and was used for instance in the sea ice models of Tremblay and Mysak, 1997, Lieataer et al.,  
2009, Danilov et al., 2015 (FESIM), and others. Interestingly, in the present model, it has effectively little effect on the simulation results, a 
point also noted by Connolley el al., 2004 and Tremblay and Mysak, 1997. 

*(P17L4) Please replace “than” by “that”. 
Yes, thank you.

*(P19L10) I agree, but there are some discrepancies in the slope of the thickness pdf around 1 m. Is that a  
negligible problem? 
This discrepancy is explained by the fact that a uniform thickness of h = 1.0 m is prescribed as the initial condition in all simulations  
presented here. Hence we naturally expect a mode to stand out at h = 1.0 m. The tail of the PDF, which represents the ridged ice, is 
therefore the part of the distribution with h > 1.0 m.  Here, the PDF was effectively ftted with an exponential function for all values of h 
> 1.0 m. The presence of the mode indeed results in a systematic misft near h = 1.0 and ftting the distribution for larger values of h 
only gives a somewhat better ft. Nevertheless, the values of the coeffcient for the goodness of the ft obtained here vary between 90% 
and 98% in the idealized and are > 95% in the realistic case. 

*(P19L18) In the equation, h cdot nabla u should be h nabla cdot u. 
Yes, thank you for catching this.

*(P21L11-12) “prescribing a cut-off  for biaxial compressive strength. . . appears unnecessary” I could not 
understand this. Can you add some additional explanation? 
As suggested both by in-situ stress measurements (see fgure 8a) and the realistic numerical simulations performed here (see fgure 8b),  
large biaxial compressive stresses seldom occur in the sea ice cover. This is an interesting result, since the fow conditions here are  
convergent over a large part  of the domain. The stress states measured and reproduced by the model indicates that  the ice fails  
frequently under pure tensile and biaxial tensile-compressive (i.e., shear) stresses (which is also illustrated in fgure 5c). This point is 
further discussed in the response to reviewer 2. 
Because large biaxial compressive stresses and pure biaxial compressive stresses, i.e., compressive states of stress involving little shear (
σ1∼σ2 ), are marginal, imposing a biaxial compression damage criterion, would not signifcantly affect the number of damage events 

and propagation of damage in the Maxwell-EB model. The addition of such a cutoff is not supported (and not well constrained) by the 
observations. Instead, in-situ stress measurements suggest that the uniaxial (unconfned) compressive strength, σc and maximum tensile 
strength (or σt) are more relevant parameters to describe the failure strength of the ice cover. 

To make this point clearer, we modify this paragraph as follow:
“Besides numerical  effciency, other advantages of using a simple redistribution scheme such as the one employed here is  that no  
thickness redistribution function needs to be assumed and the redistribution is not directly tied to the prescribed failure strength of the 
ice. In the Maxwell-EB model, the prescribed strength is instead based on in-situ stress measurements, which point to a Mohr-Coulomb 
failure criterion and directly provide information on the order of magnitude of the shear strength and tensile strength. In particular, both  
the observations and numerical simulations here suggest that prescribing a cut-off for biaxial compressive strength (equivalent to the  
pressure, P, in VP models) is unnecessary. Instead, the uniaxial  (unconfned) compressive strength, or sigma_c and maximum tensile  
strength, sigma_t appear to be more relevant to represent adequately the strength of the ice cover. The Maxwell-EB model presents the 
advantage that both these quantities are set through a single parameter, the cohesion C.“

*(P23L10) “Hibler” is missing.


