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Abstract. While the homogenization of snow elastic properties has been widely reported in the literature, homogeneous rate

dependent behavior responsible for the densification of the snowpack has hardly ever been upscaled from snow microscructure.

We therefore adapt homogenization techniques developed within the framework of elasticity to the study of snow visco-plastic

behavior. Based on the definition of kinematically uniform boundary conditions, homogenization problems are applied to 3D-

images obtained from X-ray tomography, and the mechanical response of snow samples is explored for several densities. We5

propose an original post-processing approach in terms of viscous dissipated powers in order to formulate snow macroscopic

behavior. Then, we show that Abouaf models are able to capture snow visco-plastic behavior and we formulate a homogenized

constitutive equation based on a density parametrization. Eventually, we demonstrate the ability of the proposed models to

account for the macroscopic mechanical response of snow for classical laboratory tests.

1 Introduction10

Accurately predicting the macroscopic behavior of snow in a wide range of loads, strain rates and temperatures is of a particu-

lar interest with respect to avalanche risk forecasting or to structural design of avalanche defense structures. The macroscopic

mechanical behavior of snow is however strongly influenced by many microscale parameters such as its density (Mellor, 1974),

its microstructure topology (Shapiro et al., 1997) or the mechanical behavior of its ice matrix (elastic, visco-plastic, brittle-

failure). Disregarding the influence of temperature (Schweizer and Camponovo, 2002), snow exhibits two very different types15

of mechanical behavior depending on the strain rate (Schulson et al., 2009). At high strain rate, large deformations are mainly

controlled by bond failures and grain rearrangements, whereas at very low strain rates (typically smaller than 10−5s−1), snow

exhibits a visco-plastic behavior (Narita, 1984; Salm, 1982) which plays an important role in the long-term densification of the

snowpack through the microscale deformation of the ice skeleton.

20

During the last decades, many experiments have been performed to explore the macroscopic behavior of different snow types

under various loading conditions and temperatures (Mellor, 1974; Salm, 1982; Desrues et al., 1980; Shapiro et al., 1997;

1



Bartelt and von Moos, 2000; Moos et al., 2003; Scopozza and Bartelt, 2003a). Within the framework of continuum mechanics,

several phenomenological models have then been proposed in order to account for these experimental data (Desrues et al.,

1980; Scopozza and Bartelt, 2003b; Cresseri and Jommi, 2005; Navarre et al., 2007; Cresseri et al., 2009). The fitted material

parameters arising in these models often only characterize the mean properties of a few types of snow in a restricted den-

sity range. Thanks to the recent application of X-ray tomography to snow (Brzoska et al., 1999; Schneebeli, 2004; Kaempfer5

et al., 2005; Flin and Brzoska, 2008; Chen and Baker, 2010; Srivastava et al., 2010; Pinzer et al., 2012; Wang and Baker,

2013; Adams and Walters, 2014; Calonne et al., 2015) good databases of 3D images for the main snow types reported in the

international classification (Fierz et al., 2009) are now available (Calonne et al., 2012; Löwe et al., 2013). Given these ex-

tensive geometrical descriptions of snow, its corresponding macroscopic behavior can be up-scaled in a more systematic way

thanks to the use of techniques derived from the homogenization theory (Dormieux and Bourgeois, 2002; Auriault et al., 2010).10

In recent numerical studies, discrete element (DEM) and finite element (FEM) methods are the main techniques used to bridge

the gap between the topology of the ice skeleton and snow macroscopic mechanical behavior.

- In DEM, the snow skeleton is viewed as an assembly of ice grains interacting with each other at contact points. This

method is well suited to model complex interfacial interactions between snow grains, possibly leading to grain rear-15

rangements such as elasto-viscoplastic contact deformation, grain sintering, bond breakage or grain sliding. It has been

already used on 3D idealized assemblies of ice grains to identify microstructural deformation mechanisms and to sim-

ulate creep densification processes (Johnson and Hopkins, 2005). Application of DEM directly on X-ray tomography

images is however not straightforward, since the ice skeleton must be segmented into ice grains approximated with sim-

ple geometrical shapes. Recently, DEM simulations taking into account cohesion and friction at the contact between20

grains have been performed on 3D assemblies of grains deduced from X-ray tomography and approximated by clumps

of spheres (Hagenmuller et al., 2015). In addition, at the scale of ice grains, the crystalline orientation is known to play a

role on the viscous deformation mechanisms at the contact between two grains (secondary creep), as it has been recently

reported by Burr et al. (2015b, a, 2017). The full granular structure of snow (grain shape and crystal orientations) can

be determined on real 3D images of snow by X-ray Diffraction Contrast Tomography (DCT) (Rolland du Roscoat et al.,25

2011) but the application of this technique is not straightforward and very few images are available.

- In FEM, the complex 3D snow skeleton observed by X-ray microtomography can be meshed without loosing any infor-

mation on the microstructure and different types of mechanical behavior can be assumed for polycrystalline ice. While

grain rearrangements cannot be considered without the use of mesh adaptation techniques, the deformation of the ice

skeleton is explicitly taken into account, which is of primary importance as long as the topology of the ice skeleton is30

preserved. In the last decade, many studies addressed in details the case of elasticity (Schneebeli, 2004; Pieritz et al.,

2004; Srivastava et al., 2010; Köchle and Schneebeli, 2014; Wautier et al., 2015; Srivastava et al., 2016), possibly up to a

brittle failure (Hagenmuller et al., 2014) whereas more complex types of constitutive behavior were hardly ever consid-

ered. To the best of our knowledge, no general visco-plastic constitutive equation for snow can be found in the literature.
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Such an equation would however be of particular interest to address the long term densification of the snowpack under

its own weight. During this process, snow deforms at a low strain rate and an important part of the densification results

from the viscous deformation (secondary creep) of the ice skeleton. Among the scarce microscale FEM modeling of

snow plasticity, Theile et al. (2011) proposed a beam network model based on 3D images to simulate uniaxial creep of

snow, Chandel et al. (2014) used an elasto-plastic constitutive law for ice in order to determine failure envelopes.5

In the following, we formulate a 3D macroscopic viscoplastic constitutive law for snow by performing FEM simulations on

3D images. As performed in Wautier et al. (2015) within the framework of elasticity, typical kinematically uniform boundary

conditions (KUBC) are applied to 3D images of snow, and finite element simulations are run in order to link the macroscopic

stress response of different snow samples to the imposed strain rates in an incremental form. For each numerical simulation,

only small strains are considered to avoid any important microstructure modification. Then, the macroscopic law is generalized10

to finite deformation problems thanks to the use of a collection of 3D snow images exhibiting different microstructures and

densities. In this upscaling process, the viscous behavior of ice is described by a power law of exponent n (secondary creep) as

in Theile et al. (2011). Due to the non-linear behavior under consideration, the homogenization does not provide the complete

structure of the macroscopic constitutive equation (Auriault et al., 1992, 2002; Geindreau and Auriault, 1999; Orgéas et al.,

2007). Nevertheless, it can be shown that the exponent n is preserved at the macroscopic scale and that the macroscopic dis-15

sipation power is the volume-averaged of the local one (Suquet, 1993). Using these properties, the macroscopic constitutive

equation of snow is formulated within the framework defined by the theory of representation of anisotropic tensor functions

(Smith, 1971; Liu, 1982) and by using macroscopic isodissipation surfaces (Green, 1972; Abouaf, 1985; Duva and Crow, 1992;

Sofronis and McMeeking, 1992; Geindreau et al., 1999b; Storakers et al., 1999; Sanchez et al., 2002; Orgéas et al., 2007).

20

The paper is organized as follows. In section 2, the numerical homogenization procedure used in Wautier et al. (2015) is

recalled and adapted to the study of non-linear constitutive equations. In section 3, the post-processing procedure used in order

to characterize the macroscopic viscous behavior of snow in terms of macroscopic isodissipation curves is presented. These

curves might be seen as the equivalent of yield surfaces in plasticity as they characterize the set of stress or strain rate states

leading to the same level of mechanical dissipation. Their shapes result from the strong coupling between the microstructure25

of the ice skeleton and the ice viscous behavior at the microscale. They characterize the 3D viscoplastic behavior of snow. In

section 4, we show that Abouaf models (Abouaf, 1985) are well suited to describe the macroscopic viscous behavior of snow

deduced from our numerical simulations. In the end of this section, we propose a macroscopic formulation of the viscoplastic

behavior of snow. Finally, in section 5, the mechanical responses of snow for classical experimental tests (uniaxial, oedometric

and triaxial compression tests) are modeled thanks to our upscaled law. This illustrates the potential applications of our 3D30

homogenized constitutive behavior.

3



2 Numerical homogenization procedure: from image to macroscopic mechanical response

Based on the homogenization theory, it is often possible to replace a heterogeneous material by an equivalent homogeneous

one provided that its microstructure is sufficiently small with respect to the macroscopic scale of interest. With respect to snow,

this separation of scale hypothesis is satisfied in most of the cases and its macroscopic mechanical behavior can be deduced

from mesovolumes obtained thanks to X-ray tomography. Previous studies showed that in most of the cases, samples of a few5

millimeters can be considered as representative elementary volumes (REV) for the study of the mechanical behavior of snow

(Wautier et al., 2015; Srivastava et al., 2016). In the following, in order to distinguish the two scales of interest, lowercase

letters are used for microscopic quantities while uppercase ones are used for their macroscopic counterparts.

Irrespective of the size of the sample considered, the boundary conditions used in a homogenization procedure introduce unde-10

sired boundary effects of varying thickness. Depending on the type of boundary conditions used, the size of the REV should be

adapted accordingly. Three particular types of boundary conditions are considered to give relatively small REV. In decreasing

order of REV (Kanit et al., 2003), these are statically uniform boundary conditions (SUBC), with a macroscopic homogeneous

stress imposed on the boundary, kinematically uniform boundary conditions (KUBC), with a macroscopic homogeneous strain

imposed on the boundary, and periodic boundary conditions (PBC), with a periodicity condition imposed on the displacement15

field and the normal stress across the sample boundaries. Although PBC are considered to give the best convergence with

respect to the size of the REV (Kanit et al., 2003), their application to a non-periodic highly porous microstructure is not

straightforward. It is necessary, for example, to enclose the sample by a virtual boundary or to assume that the pores are filled

by a soft material. In order to avoid the introduction of such artifacts, KUBC were retained. The KUBC numerical homogeniza-

tion procedure introduced in Wautier et al. (2015) is used in this paper and easily adapted to the study of the elasto-viscoplastic20

behavior of snow. It consists in the four steps recalled in Figure 1.

The first two steps remain unchanged and consist in: (i) meshing the 3D-microtomographic images (Step 1), (ii) defining the

kinematic relation u = E ·x between the homogeneous macroscopic strain E and the displacement field u on the boundary

(Step 2). Step 1 requires the use of the MATLAB open-source toolbox iso2mesh (Fang and Boas, 2009) while step 2 is achieved25

thanks to the use of the plug-in Homtools (Lejeunes et al., 2011). More details can be found in Wautier et al. (2015). The next

two steps (Step 3 and Step 4) are modified in order to take into account the change in the constitutive modeling of ice.

2.1 Elasto-viscoplastic behavior of ice (Step 3)

In the following, the mechanical behavior of the polycrystalline ice is supposed to be elasto-viscoplastic and isotropic. The

total strain rate tensor (ε̇) is decomposed as the sum of an elastic part (ε̇e) and a viscous part (ε̇v) as30

ε̇ = ε̇e + ε̇v. (1)

The elastic part can be expressed as, εe = (Cice)−1 : σ, where Cice is the elastic stiffness tensor, σ is the Cauchy stress tensor

and ":" the double contraction product. Due to isotropy, Cice is fully defined by a Young’s modulus E and a Poisson ratio ν.
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Figure 1. Four-step procedure used in order to transform 3-D microtomograph images of snow into finite element models and numerically

solve KUBC homogenization boundary value problems.

Concerning the viscous part, at low strain rates, the non linear mechanical behavior of ice is usually described by a power law

(Mellor, 1974; Schulson et al., 2009), i.e. the Norton Hoff in 3D (Lemaitre and Chaboche, 1985). Thus, we have

ε̇v =
3

2
Aσ(n−1)

eq σ, (2)

where A and n are two material parameters (which usually depend on the temperature), σ is the deviatoric stress tensor and

σeq(σ) is the equivalent stress defined as5

σeq(σ) =

√
3

2
σ : σ =

√
3

2
s̄2, σ = σ− 1

3
Tr(σ)I, (3)

where I is the second order identity tensor, Tr is the trace operator and s̄2 is the second invariant of σ. It can be shown

(Lemaitre and Chaboche, 1985) that the viscous strain rate tensor ε̇v derives from a viscous potential ω(σ) as

ε̇v =
∂ω

∂σ
=

dω

dσeq

∂σeq
∂σ

=
3

2

dω

dσeq

σ

σeq
, with ω(σ) =

A

n+ 1
σ(n+1)
eq . (4)
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From (2) and (4), one can define the equivalent strain rate ε̇eq(ε̇v) as the dual variable of the equivalent stress σeq such that

ε̇eq(ε̇v) =

√
2

3
ε̇v : ε̇v =

√
2

3
ē2, with ε̇eq =Aσneq, (5)

where ē2 is the second invariant of the deviatoric part of ε̇v . If pv stands for the volumetric mechanical dissipation, the

equivalent stress and the equivalent strain rate verify

pv = σ : ε̇v = s̄2.ē2 = ε̇eq.σeq =Aσ(n+1)
eq . (6)5

At the microscopic scale, the viscoplastic deformation of ice is incompressible. Consequently the equivalent stress (resp. the

equivalent strain rate) depends only on the second invariant s̄2 of σ (resp. the second invariant ē2 of ε̇v).

Overall, the ice matrix is thus modeled as an isotropic elasto-viscoplastic material in the finite element commercial software

Abaqus. The values of the material constants used in this constitutive modeling, namely A, n, E and ν, are given in Table 1.10

It should be underlined that even if the most common values used for E and n are E = 9 GPa and n= 3, the ice Young’s

modulus values found in the literature range from 0.2 to 9.5 GPa (Chandel et al., 2014) and the values for n vary between

1.8 and 4.6 under usual loading and temperature conditions (Scapozza and Bartelt, 2003; Schulson et al., 2009; Schleef et al.,

2014). As a result, different values for E and n are considered in this study to give more insight on their influence on the

homogenized viscoplastic behavior of snow.15

Table 1. Mechanical parameters used in the elasto-viscoplastic modeling of ice implemented in Abaqus.

Parameters Value

A 1.5 10−3 MPa−n.s−1

n 2, 3, 4.5

E 325 MPa, 9 GPa

ν 0.3
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2.2 Macro-strain paths definition (Step 4)

Given a time dependent macroscopic strain loading E(t), the KUBC homogenization problem to be solved reads as



divσ = 0 for x ∈ V

u = E(t) ·x for x ∈ ∂V

ε =
1

2
(∇ u + t∇ u) for x ∈ V

ε = εe + εv for x ∈ V

ε̇v =
3

2
A(x)σn−1

eq σ for x ∈ V

σ =
E(x)

1 + ν

(
εe +

ν

1− 2ν
Tr(εe)1

)
for x ∈ V

, (7)

where V stands for the domain occupied by the whole snow sample and ∂V its boundary. The spatial heterogeneity of the

mechanical properties of snow is captured thanks to the functions A(x) and E(x) defined as5

A(x) =

 A if x ∈ Vi
0 if x ∈ V \Vi

and E(x) =

 E ifx ∈ Vi
0 ifx ∈ V \Vi

. (8)

where Vi ⊂ V is the domain occupied by the ice matrix. Similarly to the elastic case (Wautier et al., 2015), the macroscopic

stress tensor Σ is deduced from the knowledge of its microscopic counterpart thanks to the volume averaging

Σ =
1

|V |

∫
V

σdV = 〈σ〉 (9)

As a result, for a given macroscopic strain loading E(t), the macroscopic stress response Σ(t) is recovered. The implicit10

function linking these two second order tensors characterizes the homogeneous behavior of the snow sample considered and

can be put in the form:

Ė = Ėe + Ėv = F(Σ) (10)

where Ėe is the macroscopic elastic strain rate tensor and Ėv is the macroscopic viscous strain rate tensor. The elastic part can

be expressed as, Ee = (Chom)−1 : Σ, where Chom is the homogenized stiffness tensor (Wautier et al., 2015). This tensor can15

be obtained by performing only six simulations on Representative Elementary Volumes extracted from 3D images. A single

simulation is required if the snow microstructure is isotropic. By contrast, the homogenization of the visco-plastic behavior

requires a priori an infinite number of numerical simulations. However, this number of simulations can be reduced by taking

into account some theoretical results (Auriault et al., 1992; Suquet, 1993; Orgéas et al., 2007). Indeed, it can be shown that:

– The homogeneity of degree n of the microscopic viscous constitutive equation (2) is preserved in the homogenization20

process. In other words, the macroscopic viscous strain rate Ėv is a homogeneous function of degree n of the macroscopic

7



stress Σ, and the macroscopic volumetric mechanical dissipation Pv = Ėv : Σ is an homogeneous function of degree

n+ 1 of Σ Ėv(λΣ) = λn Ėv(Σ)

Pv(λΣ) = λΣ : Ėv(λΣ) = λn+1Pv(Σ)
, ∀λ ∈ R. (11)

As a result, the choice in the macroscopic strain rate Ėv can be reduced to the unit sphere in the second order tensor

space, i.e. to strain rate tensors of norm
√

Ėv : Ėv = 1.5

– The macroscopic dissipation potential Ω(Σ) is the volume-average of the local dissipation potential ω

Ω(Σ) =
1

|V |

∫
V

ω(σ)dV = 〈ω(σ)〉 (12)

and consequently, as at the microscopic scale (see equation (4)), we have

Ėv =
∂Ω

∂Σ
=

dΩ

dΣeq

∂Σeq

∂Σ
, with Ω(Σ) =

A

n+ 1
Σn+1

eq (13)

where Σeq(Σ) is the macroscopic equivalent stress.10

Σeq(Σ) verifies

Pv = Σ : Ėv = Ėeq.Σeq =AΣn+1
eq (14)

with Ėeq(Ėv) the macroscopic equivalent strain rate defined by duality.

As a result, the macroscopic viscoplastic law (13) is perfectly defined if the macroscopic equivalent stress Σeq is known.

The latter equation (14) shows that this macroscopic equivalent stress Σeq can be fitted on iso-mechanical dissipation15

surfaces in the space associated with Σ. Let us remark that the shape and size of such iso-mechanical dissipation surfaces

result from the strong coupling between the microstructure and the non-linear behavior of the ice under consideration.

The relation (14) also shows the equivalent stress can be obtained whatever the chosen A value. In the case of general

anisotropy, the form of Σeq can be formulated within the framework defined by the theory of representation of anisotropic

tensor functions (Smith, 1971; Liu, 1982). It is also important to mention that for the ice matrix, the overall response20

of snow is insensitive to the sign of Σ as a consequence of definition (4). This condition may be expressed as Ω(Σ) =

Ω(−Σ). Finally, let us remark that by definition (see (13) and (14)), the macroscopic strain rate Ėv is normal to iso-

mechanical dissipation surfaces (normality rule).

In the following, for the sake of simplicity, we will suppose that the macroscopic viscoplastic behavior of snow is isotropic. In

this particular case, for a given value of n, it can be shown (Abouaf, 1985; Geindreau et al., 1999b; Danas et al., 2008) that the25

macroscopic equivalent stress is written:

Σeq(Σ) = Σeq(S1, S̄2, S̄3,φ) (15)
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where φ is the snow porosity and (S1, S̄2, S̄3) are the three invariants of the macroscopic stress tensor Σ defined as:

S1 = Tr(Σ), S̄2 =
√

Σ : Σ, S̄3 = det(Σ), with Σ = Σ− S1

3
I. (16)

Similarly, the macroscopic equivalent strain rate Ėeq takes the form

Ėeq(Ėv) = Ėeq(E1, Ē2, Ē3,φ) (17)

where (E1, Ē2, Ē3) are the invariants of the strain rate tensor Ėv defined as5

E1 = Tr(Ėv), Ē2 =

√
Ėv : Ėv, Ē3 = det(Ėv), with Ėv = Ėv −

E1

3
I. (18)

In contrast with the microscopic scale (see equation (3)), the macroscopic equivalent stress (15) depends on the three invariants

(S1, S̄2, S̄3) of the macroscopic stress tensor Σ. Indeed, at the macroscopic scale, the viscoplastic snow deformation is com-

pressible. This compressibility, characterized by E1, depends on the level of the mean pressure (S1/3) applied on the snow

sample, as well as the mean shear stress (S̄2). The third invariant S̄3 characterizes the loading type and is linked to the Lode10

angle θ in the stress space (Lemaitre and Chaboche, 1985; Danas et al., 2008)

cos(3θ) =
27

2

S̄3

Σ3
eq

. (19)

As a first approximation, it seems reasonable to assume that the influence of the third invariant S̄3 is negligible (Green, 1972;

Abouaf, 1985; Geindreau et al., 1999b; Fritzen et al., 2012). Consequently, the macroscopic volumetric mechanical dissipation

Pv depends on the first and second stress and strain invariants and not only on the second ones as at the microscale (6).15

Pv = Σ : Ėv = Eeq.Σeq =AΣn+1
eq =

1

3
E1.S1 + Ē2.S̄2. (20)

The relation (20) shows that, for a given snow porosity, the equivalent macroscopic stress Σeq can be fitted on iso-volumetric

mechanical dissipation curves in the plane (S1/3, S̄2). These isodissipation curves can be obtained by plotting the values

(S1/3, S̄2) corresponding to different loading conditions defined by (E1, Ē2). Therefore, the choice was made to run numerical

simulations for seven diagonal strain rate tensors defined such that the loading direction in the plane (E1, Ē2) varies from 0◦20

to 90◦. More explicitly, Ė applied on the sample is taken as

Ė = Ėref


1 0 0

0 η 0

0 0 η

 , (21)

with Ėref = 10−7 s−1 and η ≤ 1 such that
Ē2

E1
=

√
2

3

1− η
1 + 2η

= tanθ, θ ∈ {0◦,9◦,18◦,30◦,45◦,65◦,90◦}.

Finally, to be consistent with the isotropy hypothesis, numerical simulations have been performed on the most isotropic snow25

samples with respect to their elastic behavior from the snow database used in Wautier et al. (2015). With reference to the
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supporting information of the cited paper (Wautier et al., 2015), the name and the principal characteristics of each sample are

recalled in Table 2. The porosities of the selected samples vary from 0.43 to 0.87, which covers almost the entire range of

porosity of seasonal snow. Each sample presents similar correlation lengths (`1, `2, `3) (Löwe et al., 2013; Calonne et al., 2014)

in the three space directions. All the simulations have been performed on volumes extracted from the 3D images sufficiently

large to be considered as REV, as in Wautier et al. (2015).5

Table 2. Names and principal characteristics of the six snow images of Wautier et al. (2015) used in this study.

Sample name Snow Dim Dim Resolution Snow density Porosity Correlation lengths

type (px) (mm) (µm/px) (kg/m3) (`1, `2, `3) (µm)

PP_123kg_600 PP 600 2.95 4.91 123.31 0.87 (64, 64, 65)

RG_172kg_600 RG 600 2.95 4.91 172.74 0.81 (92, 94, 97)

RG_256kg_512 RG 512 2.51 4.91 256.28 0.72 (113, 111, 110)

RG_1600 RG 600 4.46 7.43 330.13 0.64 (117, 111, 108)

RG_430kg_651 RG 651 5.61 8.61 430.59 0.53 (83, 82, 81)

MF_522kg_542 MF 542 5.42 10.00 522.31 0.43 (138, 134, 133)

3 Post-processing procedure: from macroscopic stress response to a homogenized model for snow visco-plasticity

From the homogenization procedure presented in the previous section, the time response of a given isotropic snow sample is

recovered for the seven loading directions in the plane of the strain invariants (E1, Ē2) given by the equation (21). The strain

rate is applied on each sample during less than 40,000 s, corresponding to a volumetric strain smaller than 1.2 %. The overall

viscous behavior of the snow samples is deduced thanks to a post-processing procedure consisting in the three steps described10

in this section (steps a to c) and summarized in Figure 2.

3.1 Extracting the viscous response (step a)

Because snow is locally modeled as an elasto-visco-plastic material in Abaqus (see subsection 2.1), the macroscopic time

response Σ(t) =
1

|V |
∫
V
σ(x)dV deduced from numerical simulations does not involve only viscoplasticity. In the case where

the ice viscosity is activated everywhere in the ice skeleton, the macroscopic stress Σ(t) corresponding to a constant strain rate15

should stabilize around a constant value according to equation (2). However, due to the complex geometry of the ice skeleton,

the ice viscosity is not uniformly activated and the time response of Σ(t) is influenced by the ice elastic behavior even in the

long term. Based on the material parameters A, n, and E, and the typical imposed strain rate Ėref , a characteristic time τ can

be introduced as the ratio between the ice viscosity η(Ėref) = (Ėref/A)1/n/Ėref and the Young modulus E

τ =
η(Ėref)

E
=

1

E

(
A− 1

n Ė
1−n
n

ref

)
. (22)20
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Step a: - Compute the mechanical response    

.                   for a given constant 

strain rate 

 

- Determine the viscous response               

associated with the strain state  

Step b: - For each loading given in Eq. (21), 

compute the associated viscous 

dissipated power with Eq. (22) 

 

- Rescale the numerical points on an 

isodissipation curve thanks to Eq. (23) 

 

Step c: - Fit an Abouaf’s model thanks 

to Eq. (24) and (27) 

 

Figure 2. Three-step post-processing procedure used in order to formulate a homogenized viscous constitutive equation.

The typical stress response of a snow sample under a constant given strain rate versus the dimensionless time (t/τ ) is illustrated

in Figure 3 for the snow sample RG_1600 (Table 2) for different values of n and E. In all the cases, the mechanical response

is characterized by a transient regime driven by the elastic properties followed by a permanent regime dominated by the vis-

coplastic behavior. As illustrated by the comparison between the cases (n, E) = (4.5, 325 MPa) and (n, E) = (4.5, 9 GPa),

the responses S1(t/τ) and S̄2(t/τ) are independent of the Young’s modulus value chosen. On the contrary, the mechanical5

response is influenced by the n value.

As a result, for a given value of n and whatever the Young’s modulus, the viscoplastic behavior of snow can be characterized

by computing the intersection point between initial and final asymptotes of the curves S1(t/τ) and S̄2(t/τ) in Figure 3. The

obtained values for the two stress invariants are noted Sv1 and S̄v2 and are systematically used in the rest of this paper as the10

snow viscous homogeneous response to a given imposed constant macroscopic strain rate. The top graph in Figure 2 illustrates

this step of the post-processing procedure.
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Figure 3. Imposed strain rate (top) and stress response (bottom) versus dimensionless time (t/τ ) for the sample RG_1600 (see Table 2). The

loading strain rate is characterized by θ = 65◦ in equation (21). Two Young’s moduli and three values of n are considered.

3.2 Computing isodissipation curves (step b)

For a given snow sample of porosity φ and for each applied loading path (21), the macroscopic volumetric mechanical dissi-

pation Pv (20) is computed as

Pv =
1

3
E1.S

v
1 + Ē2.S̄

v
2 , (23)

where Sv1 and S̄v2 are the characteristic stress invariants obtained in the first step of the post-processing process (Figure 2).5

Each loading path leads to different values of Pv. However, iso-mechanical dissipation points in the plane (S1/3, S̄2) can be

recovered thanks to the homogeneity property (11). Given an arbitrary value ofP◦
v = 1 Pa.s−1, the corresponding macroscopic

strain and stress invariants are computed as

(E◦
1 , Ē

◦
2 ) =

(
P◦
v

Pv

)n/(n+1)

(E1, Ē2), and (S◦
1 , S̄

◦
2 ) =

(
P◦
v

Pv

)1/(n+1)

(Sv1 , S̄
v
2 ). (24)
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Thanks to this rescaling, the seven homogenization tests (21) enable the description of an isodissipation curve in the plane of

the stress invariants (S1/3, S̄2) as illustrated in Figure 2 (step b). For each point (S◦
1/3, S̄

◦
2 ) on this graph, the associated flow

vector (E◦
1 , Ē

◦
2 ) is plotted. The viscous dissipated power is thus simply equivalent to the scalar product

(
S◦
1/3, S̄

◦
2

)
·
(
E◦

1 , Ē
◦
2

)
.

3.3 Abouaf’s model (step c)

Within the framework presented in section 2.2, Abouaf (1985) has suggested to use the macroscopic equivalent stress initially5

proposed by Green (1972) to describe the viscoplastic behavior of metal powders at high temperatures. This macroscopic

equivalent stress Σeq(Σ), is written

Σeq(Σ) = Σeq(S1, S̄2,φ) =

√
f(φ)S2

1 +
3

2
c(φ) S̄2

2 , (25)

where f(φ) and c(φ) are two material functions which depend on snow porosity only for a given exponent n of the constitutive

equation (2). When φ= 0, we have f(φ) = 0 and c(φ) = 1 in order to recover the equivalent viscous stress of the ice matrix10

(3): Σeq(Σ,φ= 0) = σeq(σ). From the definition of the viscous strain in (13) together with the previous definition of the

equivalent stress in (25), it can be shown that

Ėv =AΣn−1
eq

(
f(φ)S1I +

3

2
c(φ)Σ

)
. (26)

As a result, the corresponding macroscopic equivalent strain rate introduced in equation (20) reads

Ėeq(Ėv) = Ėeq(E1, Ē2,φ) =

√
E2

1

9f(φ)
+

2

3

Ē2
2

c(φ)
. (27)15

For a given porosity φ, the combination of (25) and (20) provides an implicit definition of f(φ) and c(φ) such that, for all

(S1, S̄2)

Σeq(S1, S̄2,φ) =

√
f(φ)S2

1 +
3

2
c(φ) S̄2

2 =

(
P◦
v

A

)1/(n+1)

. (28)

In the present work, optimal values for f(φ) and c(φ) were obtained in the range φ ∈ [0.43,0.87], by minimizing the quadratic

error between the model (28) and the numerical points (S◦
1 (θ)/3, S̄◦

2 (θ)).20

4 Results and discussion

The homogenization and the post-processing procedure presented in the previous sections are applied to six isotropic snow

samples of various densities chosen in the same database as Wautier et al. (2015) and already introduced in Table 2. In Figure

4, the seven points (S◦
1/3, S̄

◦
2 ) corresponding to the strain rates of equation (21) are represented for these six snow samples

in the plane of the two first stress invariants for n= 4.5. Similar results have been obtained for the other values of n, as25

shown on the Figure 5. The corresponding strain flow vectors (E◦
1 , Ē

◦
2 ) are shown by solid arrows and isodissipation curves

corresponding to fitted Abouaf models are represented by solid lines. Optimal values for f and c obtained for each snow type

are presented on Figure 4 and reported in Table 3 for n ∈ {2,3,4.5}. It should be underlined here that each isodissipation curve

is typical of a given snow characterized by its density and thus each curve is also an iso-density curve.
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Figure 4. Isodissipation curves in the plane of the stress invariants (S1, S̄2) corresponding to n= 4.5 and to an arbitrary dissipated power

P◦
v for the six snow samples of Table 2 in increasing density order. The associated strain flow vectors (E◦

1 , Ē
◦
2 ) are represented by solid

arrows. Abouaf models are fitted to the numerical points (solid lines) and theoretical values of strain flow vectors are shown (dashed arrows).

Parameters f and c of the fits are shown on the graphs and summarized in Table 3.
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4.1 Isodissipation curves for various snow samples

The comparison between simulated points and fitted Abouaf models shows overall good agreement even if a systematic slight

deviation is observed for the highest S1 values. It should also be noticed that the stress state corresponding to an isotropic strain

rate (Ē2 = 0) is not completely isotropic (S̄2 6= 0). This feature cannot be captured by Abouaf models, which assumes a perfect

isotropic behavior of the material. Even if the snow samples used in this study were selected as isotropic as possible, a slight5

anisotropy should account for the observed residual deviatoric stress component existing under an isotropic strain loading.

As already mentioned in section 2.2, the viscous behavior of snow should be insensitive to the sign of Σ as the ice matrix

behave exactly the same in tension and in compression. In the stress space (S1/3, S̄2), this results in the symmetry of the

isodissipation curves with respect to the axis S1/3 = 0. Provided that the isodissipation curves are smooth, their tangent

for S1/3 = 0 is horizontal, which is fulfilled in Figure 4. It must be mentioned that when snow is subjected to large strain10

levels, geometrical effects will introduce non linear effects and the mechanical response in tension will differ from the one in

compression. These effects can also be investigated using the same homogenization procedure.

The overall viscoplastic response of snow is of course sensitive to the n exponent of the Norton Hoff’s law (2) used for the

ice (see section 3.1). As for example, in Figure 5, the influence of n onto the isodissipation curves is shown for the snow

sample MF_522. Similar results have been obtained on the other samples. As expected, for a given value P◦
v , the size of the15

isodissipation curves increases with n (since the ice viscosity η(Ėref) increases) but their shape remains unchanged. They can

be deduced from each other by simple dilation.

4.2 Density dependence of the isodissipation curves

As snow density increases, isodissipation curves tend to expand, and conversely flow vectors tend to get smaller. In terms of

physics, this means that the denser the snow, the smaller the applied strain rate in order to dissipate the same level of viscous20

power. In the meantime the applied stress should be increased. This is consistent with the fact that fresh snow tends to get

denser more rapidly than already compacted snow under the same imposed loading.

Table 3. Optimal values for the parameters f and c of the Abouaf’s equivalent stress (25) for three n values.

n= 2 n= 3 n= 4.5

Sample name Porosity f c f c f c

PP_123kg_600 0.87 36.0 150 79.7 336 146 628

RG_172kg_600 0.81 16.3 75.7 33.5 156 58.3 277.4

RG_256kg_512 0.72 4.05 20.5 6.98 34.7 10.5 52.3

RG_1600 0.64 2.07 11.0 3.32 17.0 4.70 24.0

RG_430kg_651 0.53 0.915 6.38 1.40 9.12 1.89 12.1

MF_522kg_542 0.43 0.354 3.32 0.503 4.26 0.630 5.07
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Figure 5. Influence of the exponent n onto the isodissipation curves (Pv = P◦
v ) for the particular snow sample MF_522. The associated

strain flow vectors (E◦
1 , Ē

◦
2 ) are represented by solid arrows. Abouaf models are fitted to the numerical points (solid lines) and theoretical

values of strain flow vectors are shown (dashed arrows).

The density dependence of snow viscous behavior is fully described by the evolution of f(φ) and c(φ) with respect to snow

compacity (ρsnow/ρice = 1−φ) represented in Figure 6 for n ∈ {2,3,4.5}. As snow density increases in Figure 6, parameter

values decrease, which is consistent with the implicit definition of the isodissipation curves in equation (25). For a given

equivalent stress Σeq, higher values for f and c will result in lower stress invariants S1 and S̄2 as observed in Figure 4.

Concerning the influence of n, the observed increase in f and c is consistent with the dilation of the isodissipation curves5

observed in Figure 5.

Different expressions of the material functions f(φ) and c(φ) have been proposed in the past based on experimental data on

metal powders (Abouaf, 1985; Abouaf and Chenot, 1988; Geindreau et al., 1999b), micromechanical modeling (cell model -

Duva and Crow (1992)) or numerical simulations on simple microstructures (Sofronis and McMeeking, 1992). These functions

have been identified in a restricted range of porosity (dense materials with φ < 0.4). We propose to fit our numerical results10

using the expressions proposed by Geindreau et al. (1999b). In order to account for the change in the porosity range between

metal powders and snow, the compacity limit value of 0.57 is set equal to zero. As a result, the proposed functions are written
f(φ) = a

(
φ

1−φ

)p
c(φ) = 1 + b

(
φ

1−φ

)q , (a,b,p,q) ∈ R4. (29)
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Figure 6. Evolution of the Abouaf coefficients f and c (numerical results as diamond points, functions (29) as solid lines) with respect to

snow compacity for different n values.

Table 4. Optimal parameters chosen for the expressions (29) for different n values.

n= 2 n= 3 n= 4.5

a 0.68 1.0 1.5

p 2.1 2.3 2.5

b 4.0 6.1 8.9

q 2.0 2.2 2.3

The above fits respect the theoretical values f(0) = 0 and c(0) = 1 already mentioned in section 3.3. For highly porous snow

(φ→ 1), an infinitely small stress level would be needed in order to produce a high viscous dissipation. This is consistent with

the infinitely high values for f and c proposed by the above functions (29). These functions allow a good description of the

numerical points resulting from the homogenization of the six snow samples (Table 3) and are represented by solid lines in

Figure 6 for n ∈ {2,3,4.5}. As a result, they may stand for a general formulation for the viscous isotropic behavior of snow5

according to its porosity through the four n-dependent parameters (a,b,p,q) given in Table 4. For the sake of illustration, the

evolution of the coefficients a, p, b and q with respect to n is shown in Figure 7. Let us remark that the parameters a and b

are close to the ones obtained for metal powders by Geindreau et al. (1999b). However, the exponents corresponding to the

snow case are approximately twice bigger, which is linked to a more pronounced dependence on the porosity for very porous

materials.10
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Figure 7. Evolution of the fitted coefficients a, p, b and q with respect to the exponent n of the ice Norton Hoff constitutive behavior.

Another interesting feature which can be highlighted in Figure 4 is the fact that the isodissipation curves are closed for all the

snow samples under consideration. This contrasts with the shape of ice isodissipation curves in the plane (S1/3, S̄2) which are

represented by horizontal straight lines. Indeed, the corresponding viscous power doesn’t depend on S1 since the constitutive

equation (2) for ice only involves the deviatoric stress σ. The ability of snow to dissipate significant energy even under an

isotropic loading (S̄2 = 0) is due to its porosity. Indeed, even under this type of macroscopic loading conditions, some regions5

of the microstructure experience a non zero deviatoric loading, which activates locally the ice viscous behavior. Even if this

deviatoric loading vanishes on average, the mean viscous dissipated power only piles up, which results in closed isodissipation

curves. Their shapes provide information about the ability of an isotropic macroscopic loading to locally activate the ice viscous

behavior. Based on the Abouaf formulation (25), the ratio between the maximum isotropic stress Smax
1 /3 and the maximum

deviatoric stress S̄2
max can be expressed for each sample as10

(Smax
1 /3)

S̄2
max =

√
c

6f
. (30)

As snow is always submitted to a mechanical loading which can be decomposed into a deviatoric part and an isotropic part, this

ratio provides a measure of the relative contribution of the isotropic part of the mechanical loading in the activation of the ice

viscosity. The bigger this ratio, the smaller the activation degree. The evolution of this ratio is plotted in Figure 8 as a function

of snow compacity for n ∈ {2,3,4.5}. The diamond points are computed using the values for f and c presented in Table 315

and the solid line is computed using the two functions (29) with the parameters presented in Table 4. The increase in this ratio

with snow density highlights the fact that deviatoric fluctuations get smaller under isotropic loading conditions as snow gets

denser. In other words, the ice viscosity is more difficult to activate for dense snow than for fresh snow under isotropic loading

conditions. The divergence of the solid line around 1 corresponds to the limit case of ice where Smax
1 becomes infinite as

predicted by (3). On this Figure, the dependence on the n value is very limited, which highlights the fact that n doesn’t have20

18



0.0 0.2 0.4 0.6 0.8 1.0

ρsnow/ρice

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
m

ax
1

/3

S̄
2
m

a
x

n= 2. 0

n= 3. 0

n= 4. 5

0.1 0.2 0.3 0.4 0.5 0.6

ρsnow/ρice

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

S
m

a
x

1
/3

S̄
2
m

ax
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1 /3)/S2

max of the Abouaf models with respect to snow compacity. Numerical results are represented with

diamond points, results computed using functions (29) with solid lines.

any influence on the shape of the isodissipation curves but only on the stress level leading to a given isodissipation as already

seen in Figure 5.

4.3 Normality rule

The proposed macroscopic modeling is formulated within the framework of associated viscoplasticity. In other words, the flow

direction Ė is by construction supposed to be orthogonal to the isodissipation curves (see equation (13)). In the space composed5

of the two first stress and strain invariant planes, for an isodissipation curve corresponding to Σeq, this normality is writtenE1

Ē2

∝
3∂Σeq

∂S1
∂Σeq

∂S̄2

 . (31)

In the case of Abouaf models (see equation (25)), theoretical strain flow vectors associated to the seven points in Figure 4 are

given asE1

Ē2

 = AΣn−1
eq

3f(φ)S1

3
2c(φ) S̄2

 . (32)10

In Figures 4 and 5, theoretical strain flow vectors are represented by dashed arrows for the radial projections of the numerical

points on Abouaf fits. The overall comparison with their numerical counterparts represented by solid arrows is quite satisfac-

tory, especially for the densest snows. However, concerning the flow direction, the Abouaf’s model tends to over-predict the
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strain deviatoric component for high deviatoric stresses S̄2 and to under-predict the strain deviatoric component for low devi-

atoric stresses except for the direction θ = 0◦. In terms of magnitude, the Abouaf’s model tends to under-predict the intensity

of the flow for deviatoric loading.

The observed difference between theoretical and numerical flow vectors actually results from the slight misfit between the

Abouaf models and the numerical points, which is amplified by the radial projection procedure used in order to compute the5

theoretical flow vectors. Moreover, the validity of normality rule tends to get less accurate as the porosity of the material

increases. A similar trend has been already observed in the case of power law fluid flow through porous media (Orgéas et al.,

2007). Overall, the Abouaf’s model presented in section 3.3 provides a satisfactory modeling of snow viscous behavior on the

whole range of investigated densities.

5 Application to classical laboratory tests10

In the case of isotropic snow microstructures, the homogenized constitutive viscous behavior developed in this paper can be

summarized as

Ėv = Ėeq
∂Σeq

∂Σ
= AΣn−1

eq

(
f(φ)S1I +

3

2
c(φ)Σ

)
(33)

with

Σeq(S1, S̄2,φ) =

√
f(φ)S2

1 +
3

2
c(φ) S̄2

2 , Ėeq(E1, Ē2,φ) =

√
E2

1

9f(φ)
+

2

3

Ē2
2

c(φ)
, (34)15

and

f(φ) = a

(
φ

1−φ

)p
, c(φ) = 1 + b

(
φ

1−φ

)q
(35)

where n and A account for the ice viscosity (Table 1) and a, p, b and q account for snow porosity (Table 4).

In the following, the mechanical responses of the proposed model are analyzed and compared in the case of classical laboratory

tests. In Figure 9, situation (a) corresponds to an oedometric compression test in which the radial deformation Err of the snow20

sample is prevented. Snow mechanical response is then characterized by the relationship between the axial stress Σzz and the

axial strain rate Ėzz . Situation (b) corresponds to a general triaxial compression test in which the radial stress Σrr is prescribed

and kept constant. From this general setting, two particular cases can be studied: a uniaxial compression test when Σrr = 0

and an isotropic compression test when Σzz = Σrr. In all this section, classical soil mechanics convention is adopted, i.e.

compression stresses are positive, and snow elasticity is neglected.25
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Figure 9. Oedometric compression test (a) and triaxial compression test (b).

5.1 Oedometric compression test

As the snow samples are often extracted from the snowpack thanks to hollow cylinders, the oedometric compression test is one

of the most convenient mechanical laboratory test to perform on snow. Under the lateral constraint Err = 0, we have

Ė =


0 0 0

0 0 0

0 0 Ėzz

 . (36)

The quasi-static equilibrium divΣ = 0 implies that Σθθ = Σrr. Consequently, the macroscopic stress tensor is written5

Σ =


Σrr 0 0

0 Σrr 0

0 0 Σzz

 . (37)

As a result, the two first strain rates and stress invariants are written

E1 = Ėzz, Ē2 =

√
2

3
Ėzz, S1 = 2Σrr + Σzz, S̄2 =

√
2

3
(Σzz −Σrr), with Σzz ≥ Σrr. (38)

In this particular case, from (33) and (34), it can be shown that the lateral constraint Err = 0 implies that

Σrr
Σzz

=
c(φ)− 2f(φ)

c(φ) + 4f(φ)
, (39)10

and consequently,

Σeq =

√
9c(φ)f(φ)

4f(φ) + c(φ)
Σzz, and Ėzz = A

(
9f(φ)c(φ)

4f(φ) + c(φ)

)n+1
2

Σnzz. (40)

In oedometric experimental tests, the lateral pressure Σrr is not easily accessible and it is often tempting to neglect this pressure

and interpret any oedometric compression test as a uniaxial compression test. The relation (39) can be used to assess the relative

importance of the confining pressure with respect to the vertical stress. The evolution of this ratio with respect to snow density15
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Figure 10. Evolution of the ratio between the lateral and axial stresses with respect to snow compacity during any oedometric compression

test for different values of the exponent n (numerical points as diamond points, results computed using functions (29) as solid lines). The

compacity range for typical snow samples is materialized by the gray zone.

is shown in Figure 10 for n ∈ {2,3,4.5}. It should be noticed that this ratio does not depend on the axial strain rate Ėzz . As

expected, this ratio increases with increasing snow density, and tends towards one for φ= 0, due to the incompressiblity of

the ice skeleton. In the whole range of snow compacities under consideration (materialized by the gray zone in Figure 10) the

lateral pressure represents 30 to 50 % of the vertical stress and cannot be neglected in practice. Finally, let us remark that the

evolution of this ratio is similar to the one measured by Geindreau et al. (1999a) and Viot and Stutz (2002) on metallic powders.5

Figure 10 also shows that this ratio is almost independent of the exponent n, which is consistent with the experimental results

of Viot and Stutz (2002).
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5.2 Triaxial compression test

During a triaxial test, a cylindric snow sample is submitted simultaneaously to an axial stress Σzz and a lateral confining

pressure Σrr. The static equilbrium divΣ = 0 implies that Σθθ = Σrr, consequently the macroscopic stress tensor is written

Σ =


Σrr 0 0

0 Σrr 0

0 0 Σzz

 . (41)

In these conditions, the constitutive equation (33) implies that Ėθθ = Ėrr, and thus5

Ė =


Ėrr 0 0

0 Ėrr 0

0 0 Ėzz

 . (42)

As a result, the two first strain rate and stress invariants are written

E1 = 2Ėrr + Ėzz, Ē2 =

√
2

3
(Ėzz − Ėrr), S1 = 2Σrr + Σzz, S̄2 =

√
2

3
|Σzz −Σrr|. (43)

In this particular case, from (33) and (34) it can be shown that:

Σeq =
√
f(φ)(2Σrr + Σzz)2 + c(φ)(Σzz −Σrr)2. (44)10

and Ėrr = AΣn−1
eq

[(
2f(φ) + 1

2c(φ)
)

Σrr +
(
f(φ)− 1

2c(φ)
)

Σzz
]

Ėzz = AΣn−1
eq [(2f(φ)− c(φ)) Σrr + (f(φ) + c(φ)) Σzz]

. (45)

In the case of a uniaxial compression test, Σrr must be set to 0 in the above equations.

In order to compare the mechanical response of snow under various loadings (uniaxial, oedometric, isotropic and triaxial

tests), Figure 11 presents the evolution of the snow densification rate (for n= 4.5 and A= 1.5 10−3 MPa−n.s−1) given by15

E1 = ρ̇snow/ρsnow with respect to snow compacity when constant stresses are applied on the sample. As expected, this figure

shows that:

– whatever the loading, the densification rate strongly decreases with increasing snow density. In the investigated range,

i.e. ρsnow/ρice ∈ [0.1,0.6], the densification rate decreases by 9 orders of magnitude from 10−1s−1 to 10−10s−1.

– for a given snow density, the loading conditions influence strongly the densification rate. Typically, when Σzz = 1020

kPa the densification rate decreases by nearly one order of magnitude if the confining pressure Σrr is reduced from

10 kPa (isotropic compression) to 0 kPa (uniaxial compression). On the contrary, when Σrr = 10 kPa, the densification

rate increases by nearly one order of magnitude if the axial stress Σzz increases from 10 kPa (isotropic compression)
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Figure 11. Predicted densification rate (for n= 4.5 and A= 1.5 10−3 MPa−n.s−1) with respect to snow compacity for four classical

laboratory tests: an oedometric compression test (dash-dotted line), a uniaxial compression test (solid line), a triaxial compression test

(dashed line) and an isotropic compression test (dotted line). The inset plot provides a zoom on the classical range of snow densities observed

experimentally (gray background).

to 20 kPa (triaxial compression). As expected, this last result shows the increase in the densification rate with the

increase in the deviatoric stress (i.e. S̄2). Even if the lateral confining pressure cannot be neglected during oedometric

test as highlighted in Figure 10, the oedometric compression test results in a similar densification rate as the uniaxial

compression test for the same axial stress Σzz . Indeed, the vertical strain rate is lower for an oedometric compression

than for a uniaxial one but the geometrical constraint imposed in the oedometric compression test prevents the snow5

sample from dilating, which is not the case for the uniaxial compression test. Overall the two effects cancel out each

other. Finally, above the classical snow compacity range (ρsnow/ρice ≥ 0.6), the densification rate dramatically decreases

for the oedometric and isotropic compression tests due to the ice incompressibility. As already underlined in Figure 10

for this limit case, the oedometric compression test is equivalent to the isotropic compression one.

In practice, the strain rate is often imposed on the sample. The Figure 12 presents the evolution of the stress Σzz versus10

snow compacity ρsnow/ρice = 1−φ for two different values of strain rates Ėzz ∈ {10−7;10−5} s−1 and the different loading

conditions (uniaxial, oedometric, isotropic and triaxial tests). This figure suggests the following comments:
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Figure 12. Predicted axial stress level (for n= 4.5 and A= 1.5 10−3 MPa−n.s−1) with respect to snow compacity for two imposed strain

rates (line thickness) and for four classical laboratory tests: an oedometric compression test (dash-dotted line), a uniaxial compression test

(solid line), a triaxial compression test (dashed line) and an isotropic compression test (dotted line). The inset plot provides a zoom on the

classical range of snow densities observed experimentally (gray background).

– as expected, for a given strain rate, the stress Σzz increases with increasing snow density.

– for a given strain rate and a given density, the stress Σzz increases with increasing the lateral pressure Σrr around the

sample.

– for a given snow density, the stress Σzz strongly increases with increasing strain rate, which is in accordance with the

power law relationship.5

– the ice viscoplastic behavior is recovered when ρsnow/ρice tends towards 1. For a given strain rate, the axial stress for a

uniaxial or triaxial compression test tends towards a maximum value. By contrast, due to ice incompressibility, the axial

oedometer stress Σzz tends towards +∞.
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In order to quantitatively compare the predictions of our model against the experimental results of Bartelt and von Moos (2000),

we consider a snow of density ρsnow = 255 kg.m−3 (corresponding to ρsnow/ρice = 0.27) subjected to a confining pressure

Σrr = 2.5 kPa and a strain rate Ėzz = 2.2×10−5 s−1. In this case, the axial stress predicted by our model is Σzz = 22.8 kPa,

which is consistent with the experimental values obtained by Bartelt and von Moos (2000) around 30 kPa.

Further comparison with Bartelt and von Moos (2000) can be achieved in the case of a uniaxial compression test (Σrr = 0). In5

this case, the axial stress simply reads

Σzz(Ėzz,φ) =

(
Ėzz

A(f(φ) + c(φ))
n+1
2

) 1
n

. (46)

For a given strain rate, the mechanical response of snow can be compared to the one of ice as in Bartelt and von Moos (2000)

by using the following parameter:

αη(φ) =
Σsnow
zz

(1−φ)Σice
zz

=
Σzz(Ėzz,φ)

(1−φ)Σzz(Ėzz,0)
=

1

1−φ

(
1

f(φ) + c(φ)

)n+1
2n

. (47)10

This parameter compares the axial stress that a given snow sample can transmit (Σsnow
zz ) to a rough estimate of this stress

given as a fraction of the axial stress transmitted in the case of ice ((1−φ)Σice
zz ). In Figure 13, the above theoretical expression

of αη(φ) is compared with the experimental fit αη = 0.0028 exp(0.008 ρice (1−φ)) proposed by Bartelt and von Moos

(2000). As expected, αη(φ) increases with increasing snow density. By definition, αη(φ) should vary between 0 and 1. We

can observe that the theoretical expression of αη(φ) is strictly greater than 1 for ρsnow/ρice ∈ [0.8,1], which is not physically15

reasonable. This feature results from the independent choices of the parameters a, b, p and q in the fitting procedure used in

subsection 4.2. An implicit relation between these parameters could help in order to ensure that αη(φ) remains lower than 1

in the whole compacity range. Nevertheless, in the range of snow densities under consideration (ρsnow/ρice ∈ [0.1,0.6]), αη

increases monotonously between roughly 0.1 and 0.6. This prediction is higher than the experimental fit proposed by Bartelt

and von Moos (2000) (see Figure 13). However, during this experiment, the macroscopic mechanical response probably results20

from both viscous deformation of ice skeleton and ruptures of ice bridges between snow grains. Even if our model is able to

account for some microstructure modifications through the porosity dependence of the parameters f and c, the changes induced

by the experimental testing conditions might exceed the scope of application of our model.

6 Conclusions

Despite the non-linearity of the ice viscous constitutive equation, the image-based homogenization approach introduced by25

Wautier et al. (2015) was successfully adapted to the numerical homogenization of snow viscous behavior. It allows the vis-

coplastic response of any snow sample being computed from its X-ray tomographic image. By contrast to the elastic case, the

macroscopic stress response is not a linear function of the imposed macroscopic strain anymore. As a result, snow macroscopic

response was investigated in terms of isodissipation curves in the planes of the two first strain rate and stress invariants. The

shape and size of these curves characterize the strong coupling between the snow microstructure and the ice viscous behavior at30
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Figure 13. Comparison between our theoretical prediction for αη (47) and the experimental fit proposed by Bartelt and von Moos (2000).

The points computed directly from the values for f and c reported in Table 3 are shown as diamond points. The compacity range for snow

samples under consideration is materialized by the gray zone.

the microscopic scale (power law with an exponent n). Different values for n were considered in this study to give some insight

on their influence on the homogenized viscoplastic behavior of snow. Thanks to a few selected loading paths, an Abouaf model

was fitted onto numerical simulation results. This formulation seems to be relevant to describe the snow viscoplastic behavior

in the whole range of snow density under consideration (0.43< φ < 0.87), provided that snow microstructure is isotropic. For

a given value of n, the influence of the snow microstructure on its viscoplastic response is described at the first order through5

two material functions f(φ) and c(φ) (see (29)) depending on the porosity only.

The robustness of this Abouaf formulation was tested for several isotropic snow samples covering the whole range of accessible

densities. The fitted models proved to be able to account for the stress and strain rate levels as well as the viscous flow directions.

In particular and contrary to the case of ice, the ability of snow to exhibit a viscous behavior even under isotropic strain loading

is recovered. The scope of application of the presented unified formulation is quite promising and could help improve the10

modeling of the densification of the snowpack in avalanche forecasting models.

The proposed homogenization model can be easily used to predict the viscous behavior of snow in classical laboratory tests

as illustrated in the last section of this paper. However, the uncertainties made on our model parameters should be quantified
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through a sensitivity analysis, in order to reckon the ability of our homogenized law for snow viscosity to quantitatively

recover the experimental results of Desrues et al. (1980); Bartelt and von Moos (2000); Moos et al. (2003); Scopozza and

Bartelt (2003b).

Even though the porosity is known to have a very strong influence on the resulting homogenized properties of snow, it is

also acknowledged that the very strong anisotropy of some snow microstructures cannot be neglected. The importance of5

this anisotropy was quantified within the framework of elasticity (Srivastava et al., 2010, 2016; Wautier et al., 2015) but the

extension of our homogenized visco-plastic formulation to anisotropic snow types is quite challenging as the dimension of the

invariant space will increase dramatically (Boehler, 1978; Liu, 1982; Hansen et al., 1991).

Finally, in the present work based on FEM simulations, the ice skeleton is viewed as a continuous polycrystalline material.

The proposed methodology to identify and formulate the 3D viscoplastic behavior of snow could be also applied to DEM10

simulations. For that purpose, the identification of the shape and crystalline orientations of every ice grain (Rolland du Roscoat

et al., 2011) as well as the knowledge of the viscoplastic contact laws (Burr et al., 2015b, a) would be of primary interest.
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