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Response to Anonymous Referee’s comments (RC1)
We gratefully acknowledge the anonymous reviewer for his comments to clarify some points
and improve the quality of our manuscript.
All the reviewers’ comments have been taken into account to provide a revised version of
our manuscript. The major modifications of the manuscript consist in:

- an enriched introduction containing an improved state of the art and a clearer statement
of the objectives and the scope of our manuscript.

- a more detailed assessment of both the elastic and viscous material parameters on the
homogenized viscous behavior of snow. A slight change in the postprocessing procedure
has been made by introducing a characteristic time.

Based on the review, we understand that the main criticisms made by the reviewer on the
content of our article are that:

- our model does not represent all the physical processes at stake at the microscale that
modify locally the microstructure

- the parameters of our macroscopic Abouaf’s model do not incorporate explicitly mi-
crostructure information

- the choice to use FEM instead of DEM is not well explained, as DEM is able to take
into account grain boundary sliding and particle rearrangement.

We would like to discuss on these three points and explain more in details the main contribu-
tions of our work. In the following, we recall the reviewer’s comments followed by our answer.

1. The authors indicate that the macroscopic mechanical behavior of snow strongly de-
pends on its microstructure, which is mainly characterized by its density, topology, external
loading (elastic, visco-plastic, brittle-failure) temperature and applied strain-rate. What is
missing from the list are the mechanical processes that occur at the microscale (e.g., grain
boundary sliding, bond breakage, bond sintering and re-sintering after breakage and particle
rearrangement; ignoring metamorphic changes) that are critical to define the evolution of
the snow under defined loading (or strain rate) conditions in the RVE. Knowledge of the
microstructure is only the starting point to define an evolution function. It is the explicit
microscale mechanical processes that determine how snow deformation evolves within the
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RVE and the model described in the current work does not, and cannot, accurately represent
the microscale mechanical processes necessary to develop and RVE evolution function.

Reply: We acknowledge the fact that our model does not take into account all the physical
phenomena acting at the microscale. In the present work, we propose to determine the 3D
macroscopic behavior of snow resulting from the viscous deformation (secondary creep) of
the ice skeleton only. Our main objective is to formulate a 3D macroscopic law by performing
3D FEM simulations on real 3D images of snow, in order to underline the microstructure
influence. This is a first step towards a more complete modeling of the snow behaviour from
3D images, by introducing more mechanisms and by simulating metamorphism changes.

2. The Abouaf (1985) viscoplastic model used in the current work appears to be primarily
porosity dependent and the authors do not provide a clear description of how the homoge-
nized snow microstructure is incorporated into the model. The free parameters of the model
include four parameters in two porosity dependent functions, neither of which appear to
incorporate microscale mechanical processes. There are continuum scale models specifically
developed to incorporate observed microscale measurement that might prove more suitable
to this effort, if an appropriate evolution function can be determined.

Reply: Thanks to the use of 3D images of different snow types, the particular topology of
the snow microstructure is taken into account in the snow mechanical response. Indeed, the
shape and size of iso-mechanical dissipation surfaces results from the strong coupling between
the microstructure and the non-linear behavior of the ice under consideration. In our case,
it appears that the viscous isodissipation curves can be fitted by ellipses in the plane of the
two first strain and stress invariants. As a result, an Abouaf model seems to be relevant to
account for snow visco-plasticity. In this model, for a given value of the exponent n, all the
microstructure information is encapsulated in the two parameters f and c which depends, at
the first order, on the porosity only. In the past, different expressions of the material functions
f(φ) and c(φ) have been proposed to describe the densification of granular materials or matrix
with spherical voids based on experimental data on metal powders [1, 2, 7], micromechanical
modelling (cell model) [6] or numerical simulations on simple microstructures [14]. All these
functions, which have been identified in a restricted range of porosity (typically φ < 0.4) on
materials with strongly evolving microstructures, point out that the porosity remains, at the
first order, the main microstructural parameter influencing their macroscopic viscoplastic
behavior. The results obtained in our manuscript are consistent with these observations,
however simulations on snow samples with very different microstructures and similar densities
(but still isotropic) would help validate this assumption. Finally, let us remark that due to
the strong coupling between the microstructure and the non-linear behavior of the ice under
consideration, these material functions are valid for a given value of n. In the revised version
of the paper, these functions have been identified for 3 values of n (2, 3 and 4.5) (see our
response to the comments of M. Montagnat). Probably, micromechanical approaches may
lead to more microscopic information on the definition of these functions, but this is not
straightfoward at this stage when the porosity is very large.

3. The finite element method applied in the paper is not capable of accurately simulating
the important micro-scale mechanical processes involved in the RVE deformation (primarily,
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grain boundary sliding and particle rearrangement). The only techniques that have demon-
strated the ability to represent the micro-scale processes in snow to-date are the discrete
element method (DEM) (Johnson and Hopkins, 2005; Hagenmuller et al., 2015) and the de-
formable DEM (Johnson, 1998). The authors mistakenly indicate that DEM models are only
useful for simulating grain breakage and grain rearrangement. With appropriate interaction
rules at the grain level the DEM is capable of modeling pretty much any physical process
limited only by computational capability, which continue to improve at a rapid rate.

Reply: We are aware that DEM is also a powerful tool to bridge the gap between micro
and macro scale, and in the revised version of our manuscript the relative pros and cons of
DEM and FEM applied on X-ray tomography images are discussed more in details (see the
introduction). This analysis governed our choice to use a FEM approach.

- In the FEM method, the complex 3D snow skeleton observed by X-ray microtomography
can be meshed without loosing any information on the microstructure and different
mechanical behavior of the polycrystalline ice can be considered. In the last decade,
most of the studies were dedicated to the elastic behavior of snow [13, 11, 15, 10, 18,
16], possibly up to a brittle failure [8]. Concerning the modeling of more complex
snow constitutive behaviors, the proposed approaches mainly focus on the modeling of
uniaxial compression tests. For instance, [17] has proposed a beam network model based
on 3D images to simulate creep of snow whereas [5] used an elasto-plastic constitutive
law for ice in order to determine the failure envelope.

- In the DEM method, the snow skeleton is viewed as an assemblage of ice grains in-
teracting between each other through contact points. As mentioned by the reviewer,
this method is well suited to model complex interactions taking place at the interface
between snow grains such as elasto-viscoplastic contact deformation, grain sintering
and bond breakage or sliding possibly leading to grains rearrangement. This method
has been already used on 3D idealized assemblages of ice grains [9] to identify mi-
crostructural deformation mechanisms of snow and to simulate creep densification pro-
cess. However, the application of the DEM directly on 3D images obtained by X-ray
tomography is not straightforward, since every ice grain constituting the skeleton must
be identified. Recently, DEM simulations taking into account cohesion and friction at
the contact between grains have been performed on more realistic 3D assemblages of
grains deduced from X-ray tomography. However the shape of each ice grain is approx-
imated by a clump of spheres. Moreover, all these simulations have been performed
without taking into account the crystalline orientation of each ice grain. These orien-
tations can play an important role on the viscous deformation mechanisms (secondary
creep) at the contact between two grains as it has been recently shown by [4, 3]. The
granular structure of the snow (grain shape and crystal orientations) can be determined
on real 3D images of snow by X-ray Diffraction Contrast Tomography (DCT) images
[12]. However, the application of this technique is not straightforward and very few
images are now available.

Both methods applied on X-ray tomography present some advantages and limitations, but
we believe that these two approaches can still bring some interesting and complementary
results in snow mechanics. Finally, we would like to mention that the proposed methodology
(based on isodissipation curves) to identify and formulate the 3D viscoplastic behavior of
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snow can be also applied by performing DEM simulations or by using a micromechanical
approach.
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Response to Anonymous Referee’s comments (RC2)
We gratefully acknowledge the anonymous reviewer for his comments to clarify some points
and improve the quality of our manuscript. Based on the reviewer comment, we understand
that the aim of our paper is not outlined clearly enough neither in the abstract, the intro-
duction nor the conclusion. We took this remark into consideration and provided a revised
version of our paper making this goal easier to understand without any required mechanical
background.

All the reviewers’s comments have been taken into account to provide a revised version of
our manuscript. The major modifications of the manuscript consist in:

- an enriched introduction containing an improved state of the art and a clearer statement
of the objectives and the scope of our manuscript.

- a more detailed assessment of both the elastic and viscous material parameters on the
homogenized viscous behavior of snow. A slight change in the postprocessing procedure
has been made by introducing a characteristic time.

Below, we recall the reviewer’s comments and provide some explanations.

1. After reading the abstract, introduction and conclusion, looking at the various figures,
and skimming the somewhat ”over my head” mathematical development, I am still quite
confused about what this paper is about and what it is trying to do. I take it that there
is an ultimate goal of providing a simple rule (or demonstration of a rule?) known as ”ho-
mogenization” that, when applied to snow, allows the treatment of the tortuously complex
micro-structure of the snow grain assemblage to be done as if the whole mess were a single
homogeneous fluid. I struggled to see where the paper demonstrates either success or failure
(and by what criteria?) in achieving this overall goal.

Reply: The reviewer mostly get what ”homogenization” is. The idea is to replace a
heterogeneous material by an equivalent homogeneous one whose macroscopic behavior take
into account the complex heterogeneities existing at the microscale. This procedure is of
particular interest when the scale of study (typically the scale of the snowpack in our case)
is too big compared to the scale of the heterogeneities (typically here the grain scale) to
model these heterogeneities extensively.
Based on the use of snow volumes large enough to be representative of the overall mechanical
behavior, our paper provides a systematic method to derive the macroscopic homogeneous
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visco-plastic behavior of snow. The main goal of the article is to provide a macroscopic
formulation of the snow visco-plastic behavior of snow, valid for any type of isotropic snow.
To this respect, our goal is reached and the obtained formulation is summarized in the
beginning of section 5. This formulation can be implemented quite easily in finite element
codes to compute the densification of the snowpack induced by any kind of mechanical
loading and resulting from the secondary creep of the ice skeleton at microscale.

2. I also found the paper to be very loosely tied to a snow phenomena that I am familiar
with. Of course, not being a specific snow scientist, but rather a generalist in glaciology, I
could be simply too unaware of what is specific to the field. But usually, I get hints from
reading the gist of the introduction and abstract as to what the specific phenomena to be
illuminated is. I did not get such a hint in this paper.

Reply: The specific phenomena dealt with in this paper is the study of the visco-plastic
mechanical behavior of snow resulting from the secondary creep of the ice skeleton at the
microscale.

3. Finally, I don’t understand why viscoelasticity is being examined. Aren’t the two
end member rheological treatments (pure viscous for long-term creeping problems, or pure
elasticity for short term shock events) good enough for practical snow problems? What is
the motivation for developing a viscoelastic treatment? What problem needs it?

Reply: The objective of the paper is to characterize the visco-plastic behavior of snow.
However, from a numerical point of view, the computation of the visco-plastic response of
ice cannot be achieved without also modeling its elastic behavior. This is the reason why ice
is modeled as an elasto-visco-plastic material.

4. The demonstration is also somewhat opaque due to the fact that a black-box software
tool (ABAQUS) is used for much of the computation... Some of this computation is non
trivial...

Reply: Even if ABAQUS is a commercial software, it is flexible enough to be widely used
for research purpose. We chose to use this software because:

- the ABAQUS plugin HomTools developed by researchers at the LMA (acoustic and me-
chanics laboratory at Marseille, France) enables an easy implementation of the KUBC
boundary value problem;

- the constitutive behavior for ice used in this paper is one of the standard constitutive
law already implemented in ABAQUS.

5. The paper reads very much like a textbook; and I wonder how much of the mathematical
development is simply boilerplate that is also published elsewhere.

Reply: The references for the mathematical development are given in the paper. The math-
ematical formulations are recalled for the sake of clarity and to justify the homogenization
approach carried out in the paper. They are a mean to derive rigorously the 3D macroscopic
visco-plastic behavior of snow which is, to our knowledge a new and original contribution to
snow mechanics.
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Response to Andrew Hansen’s comments (RC3)
We gratefully acknowledge the reviewer, Andrew Hansen, for his comments to clarify some
points and improve the quality of our manuscript.

All the reviewers’ comments have been taken into account to provide a revised version of
our manuscript. The major modifications of the manuscript consist in:

- an enriched introduction containing an improved state of the art and a clearer statement
of the objectives and the scope of our manuscript.

- a more detailed assessment of both the elastic and viscous material parameters on the
homogenized viscous behavior of snow. A slight change in the postprocessing procedure
has been made by introducing a characteristic time.

1. I was misled by the title. When I first read it, I thought of a finite (large) strain vis-
coplastic constitutive model for snow where the important deformation mechanisms include
such things as bond fracture, intergranular glide, neck growth, etc. That is clearly not the
topic of the article. Perhaps the title could be modified to reflect this point by simply adding
words such as small strains or some other appropriate descriptor. I’ll note that this point is
a recurring theme in my review.

Reply: We agree that the domain of application of our formulation of the snow viscoplastic
behavior was not obvious. This point has been clarified in the introduction of our revised
manuscript. Indeed, as our model is formulated in terms of strain rate, there is no need
to specify whether it is valid in small strain or finite strain. However, in order to avoid
any influence resulting from the change in density of the samples during the numerical
simulations, the simulated time was limited to 40, 000 s corresponding to a volumetric
strain of roughly 1.2 % under the considered strain rate. Then, the macroscopic law is
generalized to finite deformation problems thanks to the use of a collection of 3D snow
images exhibiting different microstructures and densities. At the macroscopic scale, the
change in density resulting from large deformations is accounted for by the change in the
f and c values. It is clear that it supposes that the density changes are sufficient, at the
first order, to capture the influence of the complex modifications of the snow microstructure
on its macroscopic behavior. This approximation has been extensively used in the past
to described the complete densification (large deformation) of granular materials (metallic
powders), in the porosity range [0 , 0.4] [1]. In the future, simulations on snow samples
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with very different microstructures but with similar density would help better evaluate this
assumption.

2. Page 1 lines 15-18 Echoing the point above, lines 15-18 contain a sentence: In practice, a
good knowledge of the macroscopic mechanical behavior of snow in a wide range of applied
loads, strain rates, and temperatures is of particular interest with respect to avalanche risk
forecasting or to determine the forces on avalanche defense structures.
This sentence led to further confusion, for me, in that I again immediately thought of finite
deformation (large strain) problems where constitutive modeling is an enormous and impor-
tant challenge.
In reality, this paper is concerned with very small strains, and perhaps small strain rates,
where bond fracture and intergranular glide do not occur. More specifically, the original ice
microstructure must be intact. I believe this constraint is pretty severe for low density snow
where bond fracture will surely initiate at very low strains.
I think the reader would be well served if the authors clarify this point by adding a paragraph
in the introduction describing the range of applicable strains where they believe the theory
is valid. Quantifying such strain levels may be hard to do so an alternate approach would be
to simply state that the microstructure is assumed unaltered by bond fracture and further
describe the types of problems one might address with the theory. For example, density
consolidation under the external body force of gravity seems to me to be the topic of most
relevance.

Reply: We agree with the reviewer’s comment and we added some precisions in the revised
version of the manuscript to stress the fact that the strain levels considered in the homoge-
nization procedure should remain small in order to avoid any bond fracture and intergranular
glide and to keep the volumetric strain small.
As pointed out by the reviewer, the main application of the work carried out lies in a better
description of the densification of the snowpack under its own weight.

3. Page 3 line 3 It would be helpful, at least to me, to provide a brief description of
isodissipation curves and how they will be utilized. Are these curves analogous to a yield
surface in rate-independent plasticity? This is an area of the manuscript where I was a bit
lost and I suspect others will suffer a similar plight.

Reply: Yes, isodissipation curves can be seen as an equivalent of a yield surface. Indeed,
if the yield function is replaced by the mechanical dissipation P , an isodissipation curve
corresponding to a mechanical dissipation P◦ is described by the implicit equation P(Σ) −
P◦ = 0 in the stress space. Details have been added in the introduction of the revised version
of the manuscript.

4. Page 3 line 30. It would be useful to point out here that E is the small strain tensor at
the macroscale. Again, I was initially confused as in finite strain theory, E often refers to
the Lagrangian finite strain measure. Moreover, finite strain problems are commonplace in
snow mechanics.

Reply: The reviewer is right and the precision was added in the revised manuscript. We
also underlined the fact that uppercase letters systematically refer to macroscale quantities
whereas lowercase letters are used for their microscale counterparts.
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5. Page 3 lines 16-27. The discussion of the various types of boundary conditions is excellent
and I completely agree with the authors. I suspect a formal study of the differences between
periodic boundary conditions and kinematically uniform boundary conditions would show
very little difference in a homogenization process. The volume averaging process is very
forgiving.

Reply: Thank you for pointing this out! Whatever the boundary conditions used, they
introduce errors in the volume averaging process. But they eventually vanish in the volume
averaging process as the resulting errors are proportional to the boundary surface.

6. Page 7 line 3. The focus of this paper is on assumed isotropic behavior (I believe
that is a good thing!). Indeed, on line 1 of page 8 this is explicitly stated. Hence, on
page 7, line 3 it might be useful to state that, for an isotropic material, the stiffness tensor
can be obtained with a single simulation of an REV. Six simulations are sufficient to fully
characterize orthotropic behavior.

Reply: We totally agree with this comment. Considering anisotropic behavior will increase
significantly the number of invariants required to formulate the macroscopic behavior. How-
ever, before page 8, this assumption is not needed in the theoretical development presented.

7. Page 7 lines 12-13. I was completely lost by the phrase unit sphere in the second order
tensor space.

Reply: In the vector space composed of the second order tensors, it is possible to define
a norm (for instance ||E|| =

√
E : E). Because of the homogeneity property written in

equation (11), the mechanical response Σ(E) can be deduced from the mechanical response
associated with E/||E||, which is a second order tensor belonging to the unit sphere. Details
have been added in the revised version of the manuscript.

8. Page 9, lines 16-17. I don’t believe this sentence is properly expressed. While there is
certainly an elastic strain and a viscous strain, there is only one stress. That is, we do not
have an elastic stress and a viscous stress. The equation for stress is correct in these lines,
the wording is not.

Reply: We agree with the reviewer and we modified the sentence accordingly.

9. Page 15 line 8. The ability of snow to dissipate some energy . Perhaps it would be
better to say: The ability of snow to dissipate significant energy . A minor point perhaps
but a reflection of my background.

Reply: We agree with the reviewer and we modified the sentence accordingly.

10. Page 18 lines 11-14. I agree with the components identified in the strain tensor, all
zero except Ezz. However, I am confused by the stress tensor. Specifically, the authors show
Σθθ = Σrr. While this may be correct, it is not readily apparent to me. Perhaps the authors
could show this point, at least in their review response if not the manuscript.
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Reply: This is due to the mechanical equilibrium div(Σ) = 0. The explanation has been
added in the revised version of the manuscript.

11. Page 20 lines 1-4. Similar comments to the previous point. In the case of stress,
it is unclear why Σθθ = Σrr. For example in a thick walled pressure vessel Σθθ is vastly
different than Σrr. Moreover, why is Eθθ = Err? My instincts tell me that this problem is
over-constrained and that these two conditions involving stress and strain cannot be met
simultaneously. Again, perhaps I am wrong but additional clarity is needed.

Reply: For the stress components, the answer is the same as above while the condition for
the strain comes from the constitutive equation (32). The explanation has been added in
the revised version of the manuscript.

12. Page 23 lines 16-18. This comment is important and follows back to my earliest
comments about limitations of the theory to very small strains. The authors use the phrase
few percents of deformation. I’m guessing even strains of this low magnitude may be too
high to preclude bond breaking, particularly at low densities.

Reply: The homogenization approach proposed in our paper relies upon an incremental
approach. Indeed, given a snow sample, the incremental visco-plastic behavior is computed
thanks to numerical simulations using very small strain increments (indeed 4.10−3) while
the finite strain problem can be addressed by changing the reference tomography image
according to the density evolution. This comes back to our response to your first comment
about the title of our manuscript. However, as far as the mechanical of Bartelt and von
Moos is concerned, we agree with the reviewer: the microstructure evolutions might exceed
the implicit changes in the microstructure taken into account in our model.

13. Page 24 lines 8-11 I respectfully disagree with the authors as to the importance of
this study being extended to anisotropic snow types. In my view, there are so many more
important avenues of discovery. I’ll offer up a few suggestions of personal interest:

Reply: We agree with the suggestions made by the reviewers and we added some of them
as outlooks in our conclusion.

The minor editorial suggestions were taken into account in the revised version of the manuscript.

*
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Response to Maurine Montagnat’s comments (SC1)
We gratefully acknowledge Maurine Montagnat for her comments to improve the quality of
our manuscript.
All the reviewers’ comments have been taken into account to provide a revised version of
our manuscript. The major modifications of the manuscript consist in:

- an enriched introduction containing an improved state of the art and a clearer statement
of the objectives and the scope of our manuscript.

- a more detailed assessment of both the elastic and viscous material parameters on the
homogenized viscous behavior of snow. A slight change in the postprocessing procedure
has been made by introducing a characteristic time.

The specific influence of the material parameters of the ice on their numerical results is
discussed below.

1. As already discussed with one of the authors, I think the values of the Young modulus
and stress exponent taken for ice in this manuscript can be questioned.
Schulson and Duval 2009 (Creep and Fracture of Ice, chapter 4, part 4.2.2) give a clear
explanation about the difficulties arising when trying to estimate the Young modulus from
a ”classical” mechanical test, since plasticity is activated very soon. They mention the work
done by Gammon et al (1983 for instance), based on acoustic wave propagation as being the
only one to give ”robust” data of Young modulus for ice. In the ”ice community”, it is now
accepted that the value of the Young modulus, from Gammon et al work, is 9.33 GPa, very
far from the 325 MPa taken here...
This value of about 9 GPa is also the one taken by Theile et al. 2011 (Acta Mat) for instance
in order to estimate the Young modulus of snow with FE simulations from microCT images
of natural snow.

Reply: Even if the value of about 9 GPa seems to be the most widely accepted value for
the Young’s modulus within the ice community, reported values in the literature cover 2
orders of magnitude from 0.2 GPa to 9.5 GPa as mentioned in [1]. As a result, we chose
a value of 325 MPa based on our experimental results. However in the revised version of
our manuscript, the value of 9 GPa was also considered. The typical stress response of a
snow sample under a constant given strain rate is illustrated on Figure 1 for the snow sample
RG 1600 for the cases (n, E) = (4.5, 325 MPa) and (n, E) = (4.5, 9 GPa). The mechanical
response is characterized by a transient regime driven by the elastic properties followed by
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a permanent regime dominated by the viscoplastic behavior. Because of the change in the
Young’modulus value, the duration of the transient regime is changed. In order to compare
the time responses of the two aforementioned cases in Figure 1, a characteristic time τ
is defined as the ratio between the ice viscosity η(Ėref) = (Ėref/A)1/n/Ėref and the Young
modulus E

τ =
η(Ėref)

E
=

1

E

(
A− 1

n Ė
1−n
n

ref

)
. (1)

In Figure 1, the responses S1(t/τ) and S̄2(t/τ) are found independent of the Young’s modu-
lus value chosen. As a result, the homogenization approach presented in our manuscript and,
more precisely the macroscopic 3D viscoplastic behavior of snow deduced from ou numerical
simluations is completely independent of the Young’s modulus value chosen.
The revised version of the paper has been modified accordingly. The second step of postpro-
cessing procedure is slightly modified (in the form) and the initial and final asymptotes are
computed with respect to t/τ and not t.
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Ē

2
(s
−

1
)

1e 7

n= 2, E= 325MPa

n= 3, E= 325MPa

n= 4. 5, E= 325MPa

n= 4. 5, E= 9GPa

Figure 1: Imposed strain rate (top) and stress response (bottom) versus dimensionless time (t/τ) for the
sample RG 1600. Loading strain rate is characterized by θ = 65◦ in equation (21). Two Young’s moduli
and three values of n are considered.

2. Another question concerns the value of the stress exponent. The stress exponent at sec-
ondary creep in ice is known to be 3, based on a strong experimental work (well summarized
in Schulson and Duval 2009). Values close to 5 (or 4.5) were found from experiments that
were pushed up to the tertiary creep, when dynamic recrystallization (or micro fracturation)
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comes into play. I guess that this type of behavior is not relevant for the conditions men-
tioned here?
Maybe these values do not play a significant role in the main results of the paper... nev-
ertheless, to use well documented values could maybe enhance the quality of this work?

Reply: Concerning the visco-plastic parameters used, even if the most commonly used
value for the exponent n of the Norton Hoff’s law is 3, it is found to vary between 1.8 and
4.6 under usual loading (strain rate, stress) and temperature conditions [3, 5, 4]. The value
of 4.5 initially chosen was based on a relaxation test performed on an ice cylinder. In the
revised version of the manuscript, two other values of n (n = 2 and n = 3) are considered to
show its influence on the material parameters f and c.
As expected, the Figure 1 shows that for a given imposed strain rate and a given sample,
the macroscopic responses S1(t/τ) and S̄2(t/τ) depend on the value of n. The viscous stress
increases with increasing n, since the ice viscosity η(Ėref) increases. Figure 2 shows the
influence of n onto the isodissipation curves for the particular snow sample MF 522. Similar
results have been obtained on the other samples. As expected, for a given value P◦

v , the size
of the isodissipation curves increases with n (since the ice viscosity η(Ėref) increases) but
their shape remains unchanged. They can be deduced from each other by simple dilation.
The values for f(φ) and (φ) for n ∈ {2, 3, 4.5} deduced from these simulations are summarized
in Table 1 and reported in Figure 3. By contrast to the Young’s modulus, the exponent n
has a noticeable influence on the parameters f and c and consequently on the parameters a,
b, p and q given in Table 2. The influence of n on these parameters is illustrated in Figure 4.

||(E1, Ē2)||= 5. 10−5 s−1
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Figure 2: Influence of the exponent n onto the isodissipation curves (Pv = P◦
v ) for the particular snow

sample MF 522. The associated strain flow vectors (E1, Ē2) are represented by solid arrows. Abouaf models
are fitted to the numerical points (solid lines) and theoretical values of strain flow vectors are shown (dashed
arrows).
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Table 1: Optimal values for the parameters f and c of the Abouaf’s equivalent stress (25) for three values
of n.

n = 2 n = 3 n = 4.5
Sample name Porosity f c f c f c
PP 123kg 600 0.87 36.0 150 79.7 336 146 628
RG 172kg 600 0.81 16.3 75.7 33.5 156 58.3 277.4
RG 256kg 512 0.72 4.05 20.5 6.98 34.7 10.5 52.3

RG 1600 0.64 2.07 11.0 3.32 17.0 4.70 24.0
RG 430kg 651 0.53 0.915 6.38 1.40 9.12 1.89 12.1
MF 522kg 542 0.43 0.354 3.32 0.503 4.26 0.630 5.07
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0.0 0.2 0.4 0.6 0.8 1.0

ρsnow/ρice
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n= 2. 0

n= 3. 0

n= 4. 5

Figure 3: Evolution of the Abouaf coefficients f and c (numerical results as diamond points, functions (29)
as solid lines) with respect to the snow compacity for different n values.

All these new results have been incorporated in the revised version of the manuscript. In
addition the Figures 6, 8 and 11 of the paper were updated to show the influence of the
exponent n on the results. The exponent n doesn’t have any influence on the shape of the
isodissipation curves but only on the stress level leading to a given isodissipation. Finally, the
evolution of the ratio Σrr/Σzz in the case of an oedometer test is similar to the one measured
by [2] and [6] on metallic powders. This ratio is almost independent of the exponent n, which
is consistent with the experimental results of [6].
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Table 2: Optimal parameters chosen for the expressions (29) for different n values.
n = 2 n = 3 n = 4.5

a 0.68 1.0 1.5
p 2.1 2.3 2.5
b 4.0 6.1 8.9
q 2.0 2.2 2.3

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

n

0

2

4

6

8

10

a

p

b

q

Figure 4: Evolution of the fitted coefficients a, p, b and q with respect to the exponent n of the ice Norton
Hoff constitutive behavior.
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Abstract. The homogenization techniques recently developed for the numerical study of the elastic behavior of snow are

adapted to its non-linear visco-plastic behavior. Based on the definition of kinematically uniform boundary conditions, homog-

enization problems are applied to 3D-images obtained by X-ray tomography, and the mechanical response of snow samples of

different densities is explored. An original post-processing approach in terms of viscous dissipated powers is defined in order

to formulate the macroscopic behavior of snow. Then, the ability of Abouaf models to account for snow visco-plastic behavior5

is shown and a homogenized constitutive equation is proposed based on a density parametrization. Finally, the mechanical

responses of snow for classical laboratory tests are analyzed and compared with the proposed model.

1 Introduction

It is now well known that the macroscopic mechanical behavior of snow strongly depends on its microstructure, which is mainly

characterized by its density (Mellor, 1974) and its topology (Shapiro et al., 1997), by the mechanical behavior of the ice matrix10

(elastic, visco-plastic, brittle-failure) depending on the external load, by the temperature (Schweizer and Camponovo, 2002)

and by the applied strain rate (Schulson et al., 2009). For example, at high strain rate, large deformations of snow are mainly

controlled by grain rearrangements resulting from the failure of cohesive bonds, whereas at very low strain rates (< 10−5s−1

typically), snow exhibits a visco-plastic behavior (Narita, 1984; Salm, 1982) which plays an important role in the long-term

densification of the snowpack. In practice, a good knowledge of the macroscopic mechanical behavior of snow in a wide range15

of applied loads, strain rates and temperatures is of a particular interest with respect to avalanche risk forecasting or to deter-

mine the forces on avalanche defense structures.

During the last decades, numerous experimental studies have been performed in order to characterize the macroscopic behav-

ior of different types of snow under various loading conditions and temperatures (Mellor, 1974; Salm, 1982; Desrues et al.,20

1980; Shapiro et al., 1997; Bartelt and von Moos, 2000; Moos et al., 2003; Scopozza and Bartelt, 2003a). In the framework of

the continuum mechanics, several models have been then proposed in order to reflect these experimental data (Desrues et al.,
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1980; Scopozza and Bartelt, 2003b; Cresseri and Jommi, 2005; Navarre et al., 2007; Cresseri et al., 2009). However, the fitted

material parameters arising in these models often characterize the mean properties of a few types of snow in a restricted den-

sity range. Thanks to the recent application of X-ray tomography to snow (Brzoska et al., 1999; Schneebeli, 2004; Kaempfer

et al., 2005; Flin and Brzoska, 2008; Chen and Baker, 2010; Srivastava et al., 2010; Pinzer et al., 2012; Wang and Baker,

2013; Adams and Walters, 2014; Calonne et al., 2015) good databases of 3D images for the different snow types described5

in the international classification (Fierz et al., 2009) are now available (Calonne et al., 2012; Löwe et al., 2013). Given these

extensive geometrical descriptions of snow, its corresponding macroscopic behavior can be up-scaled in a more systematic way

thanks to the use of techniques derived from the homogenization theory (Dormieux and Bourgeois, 2002; Auriault et al., 2010).

In recent works, the combination of X-ray tomography imaging, finite element techniques (FEM) or discrete element methods10

(DEM) and ever increasing computing power was used to bridge the gap between the topology of the ice skeleton of snow and

its mechanical behavior.

- In the FEM method, the complex 3D snow skeleton observed by X-ray microtomography can be meshed without loosing

any information on the microstructure and different mechanical behaviors of the polycrystalline ice can be considered.

In the last decade, most of the studies were dedicated to the elastic behavior of snow (Schneebeli, 2004; Pieritz et al.,15

2004; Srivastava et al., 2010; Köchle and Schneebeli, 2014; Wautier et al., 2015; Srivastava et al., 2016), possibly up to

a brittle failure (Hagenmuller et al., 2014). Concerning the modeling of more complex snow constitutive behaviors, the

proposed approaches mainly focus on the modeling of uniaxial compression tests. For instance, Theile et al. (2011) has

proposed a beam network model based on 3D images to simulate creep of snow whereas Chandel et al. (2014) used an

elasto-plastic constitutive law for ice in order to determine the failure envelope.20

- In the DEM method, the snow skeleton is viewed as an assemblage of ice grains interacting between each other through

contact points. This method is well suited to model complex interactions taking place at the interface between snow

grains such as elasto-viscoplastic contact deformation, grain sintering and bond breakage or sliding possibly leading

to grains rearrangement. It has been already used on 3D idealized assemblages of ice grains (Johnson and Hopkins,

2005) to identify microstructural deformation mechanisms of snow and to simulate creep densification process. The25

application of the DEM directly on images obtained by X-ray tomography is not straightforward, since every ice grain

constituting the skeleton must be identified. Recently, DEM simulations taking into account cohesion and friction at the

contact between grains have been performed on more realistic 3D assemblages of grains deduced from X-tomography

(Hagenmuller et al., 2015). However the shape of each ice grain is approximated by a clump of spheres. Moreover, all

these simulations have been performed without taking into account the crystalline orientation of each ice grain. These30

orientations can play an important role on the viscous deformation mechanisms (secondary creep) at the contact between

two grains as it has been recently shown by Burr et al. (2015b, a). The granular structure of snow (grain shape and

crystal orientations) can be determined on real 3D images of snow by X-ray Diffraction Contrast Tomography (DCT)
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(Rolland du Roscoat et al., 2011). However the application of this technique is not straightforward and very few images

are now available.

In the following, we propose to formulate a 3D macroscopic viscoplastic constitutive law for snow by performing FEM simula-

tions on 3D images, which is of particular interest while considering the long term densification of the snowpack under its own

weight. During this process, snow deforms at a low strain rate and an important part of the densification results from the viscous5

deformation (secondary creep) of the ice skeleton. As performed in Wautier et al. (2015) within the framework of elasticity,

typical kinematically uniform boundary conditions (KUBC) are applied to 3D images of snow, and finite element simulations

are run in order to link the macroscopic stress response of different snow samples to imposed strain rates in an incremental

form. Indeed, for each numerical simulation, only small strains are considered to avoid any important microstructure modifi-

cation. Then, the macroscopic law is generalized to finite deformation problems thanks to the use of a collection of 3D snow10

images exhibiting different microstructures and densities. In this upscaling process, the viscous behavior of ice is described by

a power law of exponent n (secondary creep) as in Theile et al. (2011). Due to the non-linear behavior under consideration,

the homogenization does not provide the complete structure of the macroscopic constitutive equation (Auriault et al., 1992,

2002; Geindreau and Auriault, 1999; Orgéas et al., 2007). However, it can be shown that the exponent n is preserved at the

macroscopic scale and that the macroscopic dissipation potential is the volume-averaged of the local dissipation one (Suquet,15

1993). Using these properties, the macroscopic constitutive equation of snow can be formulated within the framework defined

by the theory of representation of anisotropic tensor functions (Smith, 1971; Liu, 1982) and by using macroscopic isodissipa-

tion surfaces (Green, 1972; Abouaf, 1985; Duva and Crow, 1992; Sofronis and McMeecking, 1992; Geindreau et al., 1999b;

Storakers et al., 1999; Sanchez et al., 2002; Orgéas et al., 2007).

20

The paper is organized as follows. In section 2, the numerical homogenization procedure used in Wautier et al. (2015) is

recalled and adapted to the study of a non-linear constitutive equation. Section 3 presents the post-processing procedure that

was used in order to characterize the macroscopic viscous behavior of snow in terms of macroscopic isodissipation curves.

These curves might be seen as the equivalent of yield surfaces in plasticity as they characterize the set of stress or strain rate

states leading to the same level of mechanical dissipation. Their shape and size, which results from the strong coupling between25

the microstructure of the ice skeleton and the ice viscous behavior at the microscale, characterizes the 3D viscoplastic behavior

of snow. In section 4, the obtained numerical results for snow samples of different densities are presented and the ability of an

Abouaf’s model (Abouaf, 1985) to describe the macroscopic viscous behavior of snow is highlighted. In the end of this section,

a macroscopic formulation of the viscoplastic behavior of ice is formulated. Finally, in section 5, the mechanical responses of

snow for classical experimental tests (uniaxial, oedometric and triaxial compression tests) are modeled thanks to the upscaled30

laws. This illustrates the potential applications of the proposed 3D homogenized constitutive behavior.
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2 Numerical homogenization procedure: from image to macroscopic mechanical response

Based on the homogenization theory, it is often possible to replace a heterogeneous material by an equivalent homogeneous

one provided that its microstructure is sufficiently small with respect to the macroscopic scale of interest. With respect to snow,

this separation of scale hypothesis is satisfied in most of the cases and its macroscopic mechanical behavior can be deduced

from mesovolumes obtained thanks to X-ray tomography. Previous studies showed that in most of the cases, samples of a few5

millimeters can be considered as representative elementary volumes (REV) for the study of the mechanical behavior of snow

(Wautier et al., 2015; Srivastava et al., 2016). In the following, in order to distinguish the two scales of interest, lowercase

letters are used for microscopic quantities whereas uppercase letters are used for their macrosccopic counterparts.

Irrespective of the size of the sample considered, the boundary conditions used in a homogenization procedure introduce unde-10

sired boundary effects of varying thickness. Depending on the type of boundary conditions used, the size of the REV should be

adapted accordingly. Three particular types of boundary conditions are considered to give relatively small REV. In decreasing

order of REV (Kanit et al., 2003), these are statically uniform boundary conditions (SUBC), with a macroscopic homogeneous

stress imposed on the boundary, kinematically uniform boundary conditions (KUBC), with a macroscopic homogeneous strain

imposed on the boundary, and periodic boundary conditions (PBC), with a periodicity condition imposed on the displacement15

field and the normal stress across the sample boundaries. Although PBC are considered to give the best convergence with

respect to the size of the REV (Kanit et al., 2003), their application to a non-periodic highly porous microstructure is not

straightforward. It is necessary, for example, to enclose the sample by a virtual boundary or assume that the pores are filled by

a soft material. In order to avoid the introduction of such artifacts, KUBC were retained. The KUBC numerical homogenization

procedure introduced in Wautier et al. (2015) is used in this paper and easily adapted to the study of the elasto-viscoplastic20

behavior of snow. It consists in the four steps recalled in Figure 1.

The first two steps remain unchanged and consist in: (i) meshing of 3D-microtomographic images (Step 1), (ii) defining the

kinematic relation u = E ·x between the homogeneous macroscopic strain E and the displacement field u on the boundary

(Step 2). Step 1 requires the use of the MATLAB open-source toolbox iso2mesh (Fang and Boas, 2009) while step 2 is achieved25

thanks to the use of the plug-in Homtools (Lejeunes et al., 2011). More details can be found in Wautier et al. (2015). The next

two steps (Step 3 and Step 4) are modified in order to take into account the change in the constitutive modeling of ice.

2.1 Elasto-viscoplastic behavior of ice (Step 3)

In the following, the mechanical behavior of the polycrystalline ice is supposed to be elasto-viscoplastic and isotropic. The

total strain rate tensor (ε̇) is decomposed as the sum of the elastic part (ε̇e) and a viscous part (ε̇v) as30

ε̇ = ε̇e + ε̇v. (1)

The elastic part can be expressed as, εe = (Cice)−1 : σ, where Cice is the elastic stiffness tensor, σ is the Cauchy stress tensor

and ":" the double contraction product. Due to isotropy, Cice is fully defined by a Young’s modulus E and a Poisson ratio ν.
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Figure 1. Four-step procedure used in order to transform 3-D microtomograph images of snow into finite element models and numerically

solve KUBC homogenization boundary value problems.

Concerning the viscous part, at low strain rates, the non linear mechanical behavior of ice is usually described by a power law

(Mellor, 1974; Schulson et al., 2009), i.e. the Norton Hoff in 3D (Lemaitre and Chaboche, 1985). Thus, we have

ε̇v =
3

2
Aσ(n−1)

eq σ, (2)

where A and n are two material parameters (which usually depend on the temperature), σ is the deviatoric stress tensor and

σeq(σ) is the equivalent stress defined as5

σeq(σ) =

√
3

2
σ : σ =

√
3

2
s̄2, σ = σ− 1

3
Tr(σ)I, (3)

where I is the second order identity tensor, Tr is the trace operator and s̄2 is the second invariant of σ. It can be shown

(Lemaitre and Chaboche, 1985) that the viscous strain rate tensor ε̇v derives from a viscous potential ω(σ) as

ε̇v =
∂ω

∂σ
=

dω

dσeq

∂σeq
∂σ

=
3

2

dω

dσeq

σ

σeq
, with ω(σ) =

A

n+ 1
σ(n+1)
eq . (4)
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From (2) and (4), one can define the equivalent strain rate ε̇eq(ε̇v) as the dual variable of the equivalent stress σeq such that

ε̇eq(ε̇v) =

√
2

3
ε̇v : ε̇v =

√
2

3
ē2, with ε̇eq =Aσneq, (5)

where ē2 is the second invariant of the deviatoric part of ε̇v . If pv stands for the volumetric mechanical dissipation, the

equivalent stress and the equivalent strain rate verify

pv = σ : ε̇v = s̄2.ē2 = ε̇eq.σeq =Aσ(n+1)
eq . (6)5

At the microscopic scale, the viscoplastic deformation of ice is incompressible. Consequently the equivalent stress (resp. the

equivalent strain rate) depends only on the second invariant s̄2 of σ (resp. the second invariant ē2 of ε̇v).

Overall, the ice matrix is thus modeled as an isotropic elasto-viscoplastic material in the finite element commercial software

Abaqus. The values of the material constants used in this constitutive modeling, namely A, n, E and ν, are given in Table 1.10

It should be underlined that even if the most common values used for E and n are E = 9 GPa and n= 3, the ice Young’s

modulus values found in the literature range from 0.2 to 9.5 GPa (Chandel et al., 2014) and the values for n vary between

1.8 and 4.6 under usual loading (strain rate, stress) and temperature conditions (Scapozza and Bartelt, 2003; Schulson et al.,

2009; Schleef et al., 2014). As a result, different values for E and n are considered in this study to give more insight on their

influence on the homogenized viscoplastic behavior of snow.15

Table 1. Mechanical parameters used in the elasto-viscoplastic modeling of ice implemented in Abaqus.

Parameters Value

A 1.5 10−3 MPa−n.s−1

n 2, 3, 4.5

E 325 MPa, 9 GPa

ν 0.3
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2.2 Macro-strain paths definition (Step 4)

Given a time dependent macroscopic strain loading E(t), the KUBC homogenization problem to be solved reads as



divσ = 0 for x ∈ V

u = E(t) ·x for x ∈ ∂V

ε =
1

2
(∇ u + t∇ u) for x ∈ V

ε = εe + εv for x ∈ V

ε̇v =
3

2
A(x)σn−1

eq σ for x ∈ V

σ =
E(x)

1 + ν

(
εe +

ν

1− 2ν
Tr(εe)1

)
for x ∈ V

, (7)

where V stands for the domain occupied by the whole snow sample and ∂V its boundary. The spatial heterogeneity of the

mechanical properties of snow is captured thanks to the functions A(x) and E(x) defined as5

A(x) =

 A if x ∈ Vi
0 if x ∈ V \Vi

and E(x) =

 E ifx ∈ Vi
0 ifx ∈ V \Vi

. (8)

where Vi ⊂ V is the domain occupied by the ice matrix. Similarly to the elastic case (Wautier et al., 2015), the macroscopic

stress tensor Σ is deduced from the knowledge of its microscopic counterpart thanks to the volume averaging

Σ =
1

|V |

∫
V

σdV = 〈σ〉 (9)

As a result, for a given macroscopic strain loading E(t), the macroscopic stress response Σ(t) is recovered. The implicit10

function linking these two second order tensors characterizes the homogeneous behavior of the snow sample considered and

can be put in the form:

Ė = Ėe + Ėv = F(Σ) (10)

where Ėe is the macroscopic elastic strain rate tensor and Ėv is the macroscopic viscous strain rate tensor. The elastic part can

be expressed as, Ee = (Chom)−1 : Σ, where Chom is the homogenized stiffness tensor (Wautier et al., 2015). This tensor can15

be obtained by performing only six simulations on Representative Elementary Volumes extracted from 3D images. A single

simulation is required if the snow microstructure is isotropic. By contrast, the homogenization of the visco-plastic behavior

requires a priori an infinite number of numerical simulations. However, this number of simulations can be reduced by taking

into account some theoretical results (Auriault et al., 1992; Suquet, 1993; Orgéas et al., 2007). Indeed, it can be shown that:

– The homogeneity of degree n of the microscopic viscous constitutive equation (2) is preserved in the homogenization20

process. In other words, the macroscopic viscous strain rate Ėv is a homogeneous function of degree n of the macroscopic
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stress Σ, and the macroscopic volumetric mechanical dissipation Pv = Ėv : Σ is an homogeneous function of degree

n+ 1 of Σ Ėv(λΣ) = λn Ėv(Σ)

Pv(λΣ) = λΣ : Ėv(λΣ) = λn+1Pv(Σ)
, ∀λ ∈ R. (11)

As a result, the choice in the macroscopic strain rate Ėv can be reduced to the unit sphere in the second order tensor

space, i.e. to strain rate tensors of norm
√

Ėv : Ėv = 1.5

– The macroscopic dissipation potential Ω(Σ) is the volume-average of the local dissipation potential ω

Ω(Σ) =
1

|V |

∫
V

ω(σ)dV = 〈ω(σ)〉 (12)

and consequently, as at the microscopic scale (see equation (4)), we have

Ėv =
∂Ω

∂Σ
=

dΩ

dΣeq

∂Σeq

∂Σ
, with Ω(Σ) =

A

n+ 1
Σn+1

eq (13)

where Σeq(Σ) is the macroscopic equivalent stress.10

Σeq(Σ) verifies

Pv = Σ : Ėv = Ėeq.Σeq =AΣn+1
eq (14)

with Ėeq(Ėv) the macroscopic equivalent strain rate defined by duality.

As a result, the macroscopic viscoplastic law (13) is perfectly defined if the macroscopic equivalent stress Σeq is known.

The latter equation (14) shows that this macroscopic equivalent stress Σeq can be fitted on iso-mechanical dissipation15

surfaces in the space associated with Σ. Let us remark that the shape and size of such iso-mechanical dissipation surfaces

results from the strong coupling between the microstructure and the non-linear behavior of the ice under consideration.

The relation (14) also shows the equivalent stress can be obtained whatever the chosen A value. In the case of general

anisotropy, the form of Σeq can be formulated within the framework defined by the theory of representation of anisotropic

tensor functions (Smith, 1971; ?). It is also important to mention that for the ice matrix, the overall response of snow20

is insensitive to the sign of Σ as a consequence of definition (4). This condition may be expressed as Ω(Σ) = Ω(−Σ).

Finally, let us remark that by definition (see (13) and (14)), the macroscopic strain rate Ėv is normal to iso-mechanical

dissipation surfaces (normality rule).

In the following, for the sake of simplicity, we will suppose that the macroscopic viscoplastic behavior of snow is isotropic. In

this particular case, for a given value of n, it can be shown (Abouaf, 1985; Geindreau et al., 1999b; Danas et al., 2008) that the25

macroscopic equivalent stress is written:

Σeq(Σ) = Σeq(S1, S̄2, S̄3,φ) (15)
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where φ is the snow porosity and (S1, S̄2, S̄3) are the three invariants of the macroscopic stress tensor Σ defined as:

S1 = Tr(Σ), S̄2 =
√

Σ : Σ, S̄3 = det(Σ), with Σ = Σ− S1

3
I. (16)

Similarly, the macroscopic equivalent strain rate Ėeq takes the form

Ėeq(Ėv) = Ėeq(E1, Ē2, Ē3,φ) (17)

where (E1, Ē2, Ē3) are the invariants of the strain rate tensor Ėv defined as5

E1 = Tr(Ėv), Ē2 =

√
Ėv : Ėv, Ē3 = det(Ėv), with Ėv = Ėv −

E1

3
I. (18)

In contrast with the microscopic scale (see equation (3)), the macroscopic equivalent stress (15) depends on the three invariants

(S1, S̄2, S̄3) of the macroscopic stress tensor Σ. Indeed, at the macroscopic scale, the viscoplastic snow deformation is com-

pressible. This compressibility, characterized by E1, depends on the level of the mean pressure (S1/3) applied on the snow

sample, as well as the mean shear stress (S̄2). The third invariant S̄3 characterizes the loading type and is linked to the Lode10

angle θ in the stress space (Lemaitre and Chaboche, 1985; Danas et al., 2008)

cos(3θ) =
27

2

S̄3

Σ3
eq

. (19)

As a first approximation, it seems reasonable to assume that the influence of the third invariant S̄3 is negligible (Green, 1972;

Abouaf, 1985; Geindreau et al., 1999b; Fritzen et al., 2012). Consequently, the macroscopic volumetric mechanical dissipation

Pv depends on the first and second stress and strain invariants and not only on the second ones as at the microscale (6).15

Pv = Σ : Ėv = Eeq.Σeq =AΣn+1
eq =

1

3
E1.S1 + Ē2.S̄2. (20)

The relation (20) shows that, for a given snow porosity, the equivalent macroscopic stress Σeq can be fitted on iso-volumetric

mechanical dissipation curves in the plane (S1/3, S̄2). These isodissipation curves can be obtained by plotting the values

(S1/3, S̄2) corresponding to different loading conditions defined by (E1, Ē2). Therefore, the choice was made to run numerical

simulation for seven diagonal strain rate tensors defined such that the loading direction in the plane (E1, Ē2) varies from 0◦ to20

90◦. More explicitly, Ė applied on the sample is taken as

Ė = Ėref


1 0 0

0 η 0

0 0 η

 , (21)

with Ėref = 10−7 s−1 and η ≤ 1 such that
Ē2

E1
=

√
2

3

1− η
1 + 2η

= tanθ, θ ∈ {0◦,9◦,18◦,30◦,45◦,65◦,90◦}.

Finally, to be consistent with the isotropy hypothesis, numerical simulations have been performed on the most isotropic snow25

samples with respect to their elastic behavior from the snow database used in Wautier et al. (2015). With reference to the
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supporting information of the cited paper (Wautier et al., 2015), the name and the principal characteristics of each sample are

recalled in Table 2. The porosities of the selected samples vary from 0.43 to 0.87, which covers almost the entire range of

porosity of seasonal snow. Each sample presents similar correlation lengths (`1, `2, `3) (Löwe et al., 2013; Calonne et al., 2014)

in the three space directions. All the simulations have been performed on volumes extracted from the 3D images sufficiently

large to be considered as REV, as in Wautier et al. (2015).5

Table 2. Names and principal characteristics of the six snow images of Wautier et al. (2015) used in this study.

Sample name Snow Dim Dim Resolution Snow density Porosity Correlation lengths

type (px) (mm) (µm/px) (kg/m3) (`1, `2, `3) (µm)

PP_123kg_600 PP 600 2.95 4.91 123.31 0.87 (64, 64, 65)

RG_172kg_600 RG 600 2.95 4.91 172.74 0.81 (92, 94, 97)

RG_256kg_512 RG 512 2.51 4.91 256.28 0.72 (113, 111, 110)

RG_1600 RG 600 4.46 7.43 330.13 0.64 (117, 111, 108)

RG_430kg_651 RG 651 5.61 8.61 430.59 0.53 (83, 82, 81)

MF_522kg_542 MF 542 5.42 10.00 522.31 0.43 (138, 134, 133)

3 Post-processing procedure: from macroscopic stress response to a homogenized model for snow visco-plasticity

From the homogenization procedure presented in the previous section, the time response of a given isotropic snow sample is

recovered for the seven loading directions in the plane of the strain invariants (E1, Ē2) given by the equation (21). The strain

rate is applied on each sample during less than 40,000 s, corresponding to a volumetric strain smaller than 1.2 %. The overall

viscous behavior of the snow samples is deduced thanks to a post-processing procedure consisting in the three steps described10

in this section (steps a to c) and summarized in Figure 2.

3.1 Extracting the viscous response (step a)

Because snow is locally modeled as an elasto-visco-plastic material in Abaqus (see subsection 2.1), the macroscopic time

response Σ(t) =
1

|V |
∫
V
σ(x)dV deduced from numerical simulations does not result only from the viscous behavior. In

the case where the ice viscosity is activated everywhere in the ice skeleton, the macroscopic stress Σ(t) corresponding to a15

constant strain rate should stabilize around a constant value according to equation (2). However, due to the complex ice skeleton

geometry, the ice viscosity is not uniformly activated and the time response of Σ(t) is influenced by the ice elastic behavior

even in the long term. Based on the material parameters A, n, and E, and the typical imposed strain rate Ėref , a characteristic

time τ can be introduced as the ratio between the ice viscosity η(Ėref) = (Ėref/A)1/n/Ėref and the Young modulus E

τ =
η(Ėref)

E
=

1

E

(
A− 1

n Ė
1−n
n

ref

)
. (22)20
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Step a: - Compute the mechanical response    

.                   for a given constant 

strain rate 

 

- Determine the viscous response               

associated with the strain state  

Step b: - For each loading given in Eq. (21), 

compute the associated viscous 

dissipated power with Eq. (22) 

 

- Rescale the numerical points on an 

isodissipation curve thanks to Eq. (23) 

 

Step c: - Fit an Abouaf’s model thanks 

to Eq. (24) and (27) 

 

Figure 2. Three-step post-processing procedure used in order to formulate a homogenized viscous constitutive equation.

The typical stress response of a snow sample under a constant given strain rate versus the dimensionless time (t/τ ) is illustrated

in Figure 3 for the snow sample RG_1600 (Table 2) for different values of n and E. In all the cases, the mechanical response

is characterized by a transient regime driven by the elastic properties followed by a permanent regime dominated by the vis-

coplastic behavior. As illustrated by the comparison between the cases (n, E) = (4.5, 325 MPa) and (n, E) = (4.5, 9 GPa),

the responses S1(t/τ) and S̄2(t/τ) are independent of the Young’s modulus value chosen. On the contrary, the mechanical5

response is influenced by the n value.

As a result, for a given value of n and whatever the Young’s modulus value, the viscoplastic behavior of snow can be char-

acterized by computing the intersection point between the initial and final asymptotes of the curves S1(t/τ) and S̄2(t/τ) in

Figure 3. The obtained values for the two stress invariants are noted Sv1 and S̄v2 and are systematically used in the rest of this10

paper as the snow viscous homogeneous response to a given imposed constant macroscopic strain rate. The top graph in Figure

2 illustrates this step of the post-processing procedure.
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Ē
2
(s
−

1
)

1e 7

n= 2, E= 325MPa

n= 3, E= 325MPa

n= 4. 5, E= 325MPa

n= 4. 5, E= 9GPa

Figure 3. Imposed strain rate (top) and stress response (bottom) versus dimensionless time (t/τ ) for the sample RG_1600 (see Table 2). The

loading strain rate is characterized by θ = 65◦ in equation (21). Two Young’s moduli and three values of n are considered.

3.2 Computing isodissipation curves (step b)

For a given snow sample of porosity φ and for each applied loading path (21), the macroscopic volumetric mechanical dissi-

pation Pv (20) is computed as

Pv =
1

3
E1.S

v
1 + Ē2.S̄

v
2 , (23)

where Sv1 and S̄v2 are the characteristic stress invariants obtained in the first step of the post-processing process (Figure 2).5

Each loading path leads to different values of Pv. However, iso-mechanical dissipation points in the plane (S1/3, S̄2) can be

recovered thanks to the homogeneity property (11). Given an arbitrary value ofP◦
v = 1 Pa.s−1, the corresponding macroscopic

strain and stress invariants are computed as

(E◦
1 , Ē

◦
2 ) =

(
P◦
v

Pv

)n/(n+1)

(E1, Ē2), and (S◦
1 , S̄

◦
2 ) =

(
P◦
v

Pv

)1/(n+1)

(Sv1 , S̄
v
2 ). (24)
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Thanks to this rescaling, the seven homogenization tests (21) enable the description of an isodissipation curve in the plane of

the stress invariants (S1/3, S̄2) as illustrated in Figure 2 (step b). For each point (S◦
1/3, S̄

◦
2 ) on this graph, the associated flow

vector (E◦
1 , Ē

◦
2 ) is plotted. The viscous dissipated power is thus simply equivalent to the scalar product

(
S◦
1/3, S̄

◦
2

)
·
(
E◦

1 , Ē
◦
2

)
.

3.3 Abouaf’s model (step c)

Within the framework presented in section 2.2, Abouaf (1985) has suggested to use the macroscopic equivalent stress initially5

proposed by Green (1972) to describe the viscoplastic behavior of metal powders at high temperatures. This macroscopic

equivalent stress Σeq(Σ), is written

Σeq(Σ) = Σeq(S1, S̄2,φ) =

√
f(φ)S2

1 +
3

2
c(φ) S̄2

2 , (25)

where f(φ) and c(φ) are two material functions which depend on snow porosity only for a given power law creep exponent n.

When φ= 0, we have f(φ) = 0 and c(φ) = 1 in order to recover the equivalent viscous stress of the ice matrix (3): Σeq(Σ,φ=10

0) = σeq(σ). From the definition of the viscous strain in (13) together with the previous definition of the equivalent stress in

(25), it can be shown that

Ėv =AΣn−1
eq

(
f(φ)S1I +

3

2
c(φ)Σ

)
. (26)

As a result, the corresponding macroscopic equivalent strain rate introduced in equation (20) reads

Ėeq(Ėv) = Ėeq(E1, Ē2,φ) =

√
E2

1

9f(φ)
+

2

3

Ē2
2

c(φ)
. (27)15

For a given porosity φ, the combination of (25) and (20) provides an implicit definition of f(φ) and c(φ) such that, for all

(S1, S̄2)

Σeq(S1, S̄2,φ) =

√
f(φ)S2

1 +
3

2
c(φ) S̄2

2 =

(
P◦
v

A

)1/(n+1)

. (28)

In the present work, the optimal values for f(φ) and c(φ), where 0.43< φ < 0.87, were obtained by minimizing the quadratic

error between the model and the numerical points.20

4 Results and discussion

The homogenization and the post-processing procedure presented in the previous sections are applied to six isotropic snow

samples of various densities chosen in the same database as Wautier et al. (2015) and already introduced in Table 2. In Figure

4, the seven points (S◦
1/3, S̄

◦
2 ) corresponding to the strain rates of equation (21) are represented for these six snow samples in

the plane of the two first stress invariants for n= 4.5. Similar results have been obtained for the other values of n, as shown25

on the Figure 5. The corresponding strain flow vectors (E◦
1 , Ē

◦
2 ) are shown by solid arrows and the isodissipation curves

corresponding to the fitted Abouaf model are represented by solid lines. The optimal values for f and c obtained for each snow

type are presented on Figure 4 and reported in Table 3 for n ∈ {2,3,4.5}. It should be underlined here that each isodissipation

curve is typical of a given snow characterized by its density and thus each curve is also an iso-density curve.

13
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Figure 4. Isodissipation curves in the plane of the stress invariants (S1, S̄2) corresponding to n= 4.5 and to an arbitrary dissipated power

P◦
v for the six snow samples of Table 2 in increasing density order. The associated strain flow vectors (E◦

1 , Ē
◦
2 ) are represented by solid

arrows. Abouaf models are fitted to the numerical points (solid lines) and theoretical values of strain flow vectors are shown (dashed arrows).

Parameters f and c of the fits are shown on the graphs and summarized in Table 3.
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4.1 Isodissipation curves for various snow samples

The comparison between the simulated points and the Abouaf’s model shows overall good agreement in terms of stress pre-

diction even if a systematic slight deviation is observed between the model and the simulated points for the highest S1 values.

It should also be noticed that the stress state corresponding to an isotropic strain rate (Ē2 = 0) is not completely isotropic

(S̄2 6= 0). This feature cannot be captured by the Abouaf modeling, which assumes a perfect isotropic behavior of the material.5

Even if the snow samples used in this study were selected as isotropic as possible, a slight anisotropy should account for the

observed residual deviatoric stress component existing under an isotropic strain loading.

As already mentioned in section 2.2, the viscous behavior of snow should be insensitive to the sign of Σ as the ice matrix

behave exactly the same in tension and in compression. In the stress space (S1/3, S̄2), this results in the symmetry of the

isodissipation curves with respect to the axis S1/3 = 0. Provided that the isodissipation curves are smooth, their tangent for10

S1/3 = 0 is horizontal, which is respected in Figure 4. It must be mentioned that when snow is subjected to large strain

levels, geometrical effects will introduce non linear effects and the mechanical response in tension will differ from the one in

compression. These effects can also be investigated using the same homogenization procedure.

The overall viscoplastic response of snow is of course sensitive to the n exponent of the Norton Hoff’s law (2) used for the

ice (see section 3.1). As for example, in Figure 5, the influence of n onto the isodissipation curves is shown for the snow15

sample MF_522. Similar results have been obtained on the other samples. As expected, for a given value P◦
v , the size of the

isodissipation curves increases with n (since the ice viscosity η(Ėref) increases) but their shape remains unchanged. They can

be deduced from each other by simple dilation.

4.2 Density dependence of the isodissipation curves

As snow density increases, the isodissipation curves tend to expand, and conversely the flow vectors tend to get smaller. In20

terms of physics, this means that the denser snow is, the smaller the applied strain rate in order to dissipate the same level of

Table 3. Optimal values for the parameters f and c of the Abouaf’s equivalent stress (25) for three n values.

n= 2 n= 3 n= 4.5

Sample name Porosity f c f c f c

PP_123kg_600 0.87 36.0 150 79.7 336 146 628

RG_172kg_600 0.81 16.3 75.7 33.5 156 58.3 277.4

RG_256kg_512 0.72 4.05 20.5 6.98 34.7 10.5 52.3

RG_1600 0.64 2.07 11.0 3.32 17.0 4.70 24.0

RG_430kg_651 0.53 0.915 6.38 1.40 9.12 1.89 12.1

MF_522kg_542 0.43 0.354 3.32 0.503 4.26 0.630 5.07

15
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Figure 5. Influence of the exponent n onto the isodissipation curves (Pv = P◦
v ) for the particular snow sample MF_522. The associated

strain flow vectors (E◦
1 , Ē

◦
2 ) are represented by solid arrows. Abouaf models are fitted to the numerical points (solid lines) and theoretical

values of strain flow vectors are shown (dashed arrows).

viscous power. In the meantime the applied stress should be increased. This is consistent with the fact that fresh snow tends to

get denser more rapidly than already compacted snow under the same imposed loading.

The density dependence of snow viscous behavior is fully described by the evolution of f(φ) and c(φ) with respect to snow

compacity (ρsnow/ρice = 1−φ) represented in Figure 6 for n ∈ {2,3,4.5}. As snow density increases in Figure 6, the parameter

values decrease, which is consistent with the implicit definition of the isodissipation curves in equation (25). For a given5

equivalent stress Σeq, higher values for f and c will result in lower stress invariants S1 and S̄2 as observed in Figure 4.

Concerning the influence of n, the observed increase in f and c is consistent with the dilation of the isodissipation curves

observed in Figure 5.

Different expressions of the material functions f(φ) and c(φ) have been proposed in the past based on experimental data on

metal powders (Abouaf, 1985; Abouaf and Chenot, 1988; Geindreau et al., 1999b), micromechanical modeling (cell model -10

Duva and Crow (1992)) or numerical simulations on simple microstructures (Sofronis and McMeecking, 1992). These func-

tions have been identified in a restricted range of porosity (dense materials with φ < 0.4). We propose to fit our numerical

results using the expressions proposed by Geindreau et al. (1999b). In order to account for the change in the porosity range

between metal powders and snow, the compacity limit value of 0.57 is set equal to zero. As a result, the proposed functions are
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Figure 6. Evolution of the Abouaf coefficients f and c (numerical results as diamond points, functions (29) as solid lines) with respect to

snow compacity for different n values.

written
f(φ) = a

(
φ

1−φ

)p
c(φ) = 1 + b

(
φ

1−φ

)q , (a,b,p,q) ∈ R4. (29)

The above fits respect the theoretical values f(0) = 0 and c(0) = 1 already mentioned in section 3.3. For a highly porous

snow (φ→ 1), an infinitely small stress level would be needed in order to produce a high viscous dissipation. This is consistent

with the infinitely high values for f and c proposed by the above functions (29). These functions allow a good description of5

the numerical points resulting from the homogenization of the six snow samples (Table 3) and are represented by solid lines in

Figure 6 for n ∈ {2,3,4.5}. As a result, they may stand for a general formulation for the viscous isotropic behavior of snow

according to its porosity through the four n-dependent parameters (a,b,p,q) given in Table 4. For the sake of illustration, the

evolution of the coefficients a, p, b and q with respect to n is shown in Figure 7. Let us remark that the parameters a and b

are close to the ones obtained for metal powders by Geindreau et al. (1999b). However, the exponents corresponding to the10

snow case are approximately twice bigger, which is linked to a more pronounced dependence on the porosity for very porous

materials.

Another interesting feature which can be highlighted in Figure 4 is the fact that the isodissipation curves are closed for all the

snow samples under consideration. This contrasts with the shape of ice isodissipation curves in the plane (S1/3, S̄2) which are
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Table 4. Optimal parameters chosen for the expressions (29) for different n values.

n= 2 n= 3 n= 4.5

a 0.68 1.0 1.5

p 2.1 2.3 2.5

b 4.0 6.1 8.9

q 2.0 2.2 2.3

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

n

0

2

4

6

8

10

a

p

b

q

Figure 7. Evolution of the fitted coefficients a, p, b and q with respect to the exponent n of the ice Norton Hoff constitutive behavior.

represented by horizontal straight lines. Indeed, the corresponding viscous power doesn’t depend on S1 since the constitutive

equation (2) for ice only involves the deviatoric stress σ. The ability of snow to dissipate significant energy even under an

isotropic loading (S̄2 = 0) is due to its porosity. Indeed, even under this type of macroscopic loading conditions, some regions

of the snow microstructure experience a non zero deviatoric loading, which activates locally the viscous behavior of ice.

Even if this deviatoric loading vanishes on average, the mean viscous dissipated power only piles up, which results in closed5

isodissipation curves. Their shapes provide information about the ability of an isotropic macroscopic loading to locally activate

the ice viscous behavior. Based on the Abouaf formulation (25), the ratio between the maximum isotropic stress Smax
1 /3 and

the maximum deviatoric stress S̄2
max can be expressed for each sample as

(Smax
1 /3)

S̄2
max =

√
c

6f
. (30)

As snow is always submitted to a mechanical loading which can be decomposed into a deviatoric part and an isotropic part, this10

ratio provides a measure of the relative contribution of the isotopic part of the mechanical loading in the activation of the ice

viscosity. The bigger this ratio, the smaller the activation degree. The evolution of this ratio is plotted in Figure 8 as a function

of snow compacity for n ∈ {2,3,4.5}. The diamond points are computed using the values for f and c presented in Table 3 and

the solid line is computed using the two functions (29) with the parameters presented in Table 4. The increase in this ratio with
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Figure 8. Aspect ratios (Smax
1 /3)/S2

max of the Abouaf models with respect to snow compacity. Numerical results are represented with

diamond points, results computed using functions (29) with solid lines.

snow density highlights the fact that deviatoric fluctuations get smaller under isotropic loading conditions as snow gets denser.

In other words, the ice viscosity is more difficult to activate for dense snow than for fresh snow. The divergence of the solid line

around 1 corresponds to the limit case of ice where Smax
1 becomes infinite as predicted by (3). On this Figure, the dependence

on the n value is very limited which highlights the fact that n doesn’t have any influence on the shape of the isodissipation

curves but only on the stress level leading to a given isodissipation as already seen in Figure 5.5

4.3 Normality rule

The proposed macroscopic modeling is formulated within the framework of associated viscoplasticity. In other words, the flow

direction Ė is by construction supposed to be orthogonal to the isodissipation curves (see equation (13)). In the space composed

of the two first stress and strain invariants’ planes, for an isodissipation curve corresponding to Σeq, this normality is writtenE1

Ē2

∝
3∂Σeq

∂S1
∂Σeq

∂S̄2

 . (31)10

In the case of the Abouaf’s model (see equation (25)), the theoretical values of the strain flow vectors associated to the seven

points in Figure 4 is writtenE1

Ē2

 = AΣn−1
eq

3f(φ)S1

3
2c(φ) S̄2

 . (32)
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In Figures 4 and 5, the theoretical values of the strain flow vectors are represented by dashed arrows for the radial projections

of the numerical points on the Abouaf fits. The overall comparison with their numerical counterparts represented by solid

arrows is quite satisfactory, especially for the densest snows. However, concerning the flow direction, the Abouaf’s model

tends to over-predict the strain deviatoric component for high deviatoric stresses S̄2 and to under-predict the strain deviatoric

component for low deviatoric stresses except for the direction θ = 0◦. In terms of magnitude, the Abouaf’s model tends to5

under-predict the intensity of the flow for deviatoric loading.

The observed difference between theoretical and numerical flow vectors actually results from the slight misfit between the

Abouaf models and the numerical points, which is amplified by the radial projection procedure used in order to compute the

theoretical flow vectors. Moreover, the validity of normality rule tends to get less accurate as the porosity of the material

increases. A similar trend has been already observed in the case of power law fluid flow through porous media (Orgéas et al.,10

2007). Overall, the Abouaf’s model presented in section 3.3 provides a satisfactory modeling of snow viscous behavior on the

whole range of investigated densities.

5 Application to classical laboratory tests

In the case of isotropic snow microstructures, the homogenized constitutive viscous behavior developed in this paper can be

summarized as follow:15

Ėv = Ėeq
∂Σeq

∂Σ
= AΣn−1

eq

(
f(φ)S1I +

3

2
c(φ)Σ

)
(33)

with

Σeq(S1, S̄2,φ) =

√
f(φ)S2

1 +
3

2
c(φ) S̄2

2 , Ėeq(E1, Ē2,φ) =

√
E2

1

9f(φ)
+

2

3

Ē2
2

c(φ)
, (34)

and

f(φ) = a

(
φ

1−φ

)p
, c(φ) = 1 + b

(
φ

1−φ

)q
(35)20

where n and A account for the ice viscosity (Table 1) and a, p, b and q account for snow porosity (Table 4).

In the following, the mechanical responses of the proposed model are analyzed and compared in the case of classical labo-

ratory tests (Figure 9). In this Figure, the situation (a) corresponds to the oedometric compression test in which the radial

deformation Err of the snow sample is prevented. Snow mechanical response is then characterized by the relationship between

the axial stress Σzz and the axial strain rate Ėzz . The situation (b) corresponds to the general triaxial compression test in25

which the radial stress Σrr is prescribed and kept constant. From this general setting, two particular cases can be studied: the

uniaxial compression test with Σrr = 0 and the isotropic compression test with Σzz = Σrr. In all this section, the classical soil

mechanics convention is adopted, i.e. compression stresses are positive, and the elasticity of snow is neglected.

20



Figure 9. Oedometric compression test (a) and triaxial compression test (b).

5.1 Oedometric compression test

As the snow samples are often extracted from the snowpack thanks to hollow cylinders, the oedometric compression test is one

of the most convenient mechanical laboratory test to perform on snow. Under the lateral constraint Err = 0, we have

Ė =


0 0 0

0 0 0

0 0 Ėzz

 . (36)

The static equilibrium divΣ = 0 implies that Σθθ = Σrr. Consequently, the macroscopic stress tensor is written5

Σ =


Σrr 0 0

0 Σrr 0

0 0 Σzz

 . (37)

As a result, the two first strain rate and stress invariants are written

E1 = Ėzz, Ē2 =

√
2

3
Ėzz, S1 = 2Σrr + Σzz, S̄2 =

√
2

3
(Σzz −Σrr), with Σzz ≥ Σrr. (38)

In this particular case, from (33) and (34) it can be shown that the lateral constraint Err = 0 implies that

Σrr
Σzz

=
c(φ)− 2f(φ)

c(φ) + 4f(φ)
, (39)10

and consequently,

Σeq =

√
9c(φ)f(φ)

4f(φ) + c(φ)
Σzz, (40)

and

Ėzz = A

(
9f(φ)c(φ)

4f(φ) + c(φ)

)n+1
2

Σnzz. (41)
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Figure 10. Evolution of the ratio between the lateral and axial stresses with respect to snow compacity during any oedometric compression

test for different values of the exponent n (numerical points as diamond points, results computed using functions (29) as solid lines). The

compacity range for typical snow samples is materialized by the gray zone.

In oedometric experimental tests, the lateral pressure Σrr is not easily accessible and it is often tempting to neglect this pressure

and interpret the oedometric compression test as a uniaxial compression test. The relation (39) can be used to assess the relative

importance of the confining pressure with respect to the vertical stress. The evolution of this ratio with respect to snow density

is shown in Figure 10 for n ∈ {2,3,4.5}. It should be noticed that this ratio does not depend on the axial strain rate Ėzz . As

expected, this ratio increases with increasing snow density, and tends towards one for φ= 0, due to the incompressiblity of5

the ice skeleton. In the whole range of snow compacities under consideration (materialized by the gray zone in Figure 10) the

lateral pressure represents 30 to 50 % of the vertical stress and cannot be neglected in practice. Finally, let us remark that the

evolution of this ratio is similar to the one measured by Geindreau et al. (1999a) and Viot and Stutz (2002) on metallic powders.

Figure 10 also shows that this ratio is almost independent of the exponent n, which is consistent with the experimental results

of Viot and Stutz (2002).10
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5.2 Triaxial compression test

During a triaxial test, the cylindric snow sample is submitted simultaneaously to an axial stress Σzz and a lateral confining

pressure Σrr. The static equilbrium divΣ = 0 implies that Σθθ = Σrr, consequently the macroscopic stress tensor is written

Σ =


Σrr 0 0

0 Σrr 0

0 0 Σzz

 , (42)

In these conditions, the constitutive equation (33) implies that Ėθθ = Ėrr, and thus5

Ė =


Ėrr 0 0

0 Ėrr 0

0 0 Ėzz

 , (43)

As a result, the two first strain rate and stress invariants are written

E1 = 2Ėrr + Ėzz, Ē2 =

√
2

3
(Ėzz − Ėrr), S1 = 2Σrr + Σzz, S̄2 =

√
2

3
|Σzz −Σrr|. (44)

In this particular case, from (33) and (34) it can be shown that:

Σeq =
√
f(φ)(2Σrr + Σzz)2 + c(φ)(Σzz −Σrr)2. (45)10

and Ėrr = AΣn−1
eq

[(
2f(φ) + 1

2c(φ)
)

Σrr +
(
f(φ)− 1

2c(φ)
)

Σzz
]

Ėzz = AΣn−1
eq [(2f(φ)− c(φ)) Σrr + (f(φ) + c(φ)) Σzz]

. (46)

In the case of an uniaxial compression test, Σrr must be set to 0 in the above equations.

In order to compare the mechanical response of snow under various loadings (uniaxial, oedometric, isotropic and triaxial

tests), Figure 11 presents the evolution of the snow densification rate (for n= 4.5 and A= 1.5 10−3 MPa−n.s−1) given by15

E1 = ρ̇snow/ρsnow with respect to snow compacity when constant stresses are applied on the sample. As expected, this figure

shows that:

– whatever the loading, the densification rate strongly decreases with increasing snow density. In the investigated range,

i.e. ρsnow/ρice ∈ [0.1,0.6], the densification rate decreases by 9 orders of magnitude from 10−1s−1 to 10−10s−1.

– for a given snow density, the loading conditions influence strongly the densification rate. Typically, when Σzz = 1020

kPa the densification rate decreases by nearly one order of magnitude if the confining pressure Σrr is reduced from

10 kPa (isotropic compression) to 0 kPa (uniaxial compression). On the contrary, when Σrr = 10 kPa, the densification

rate increases by nearly one order of magnitude if the axial stress Σzz increases from 10 kPa (isotropic compression)
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Figure 11. Predicted densification rate (for n= 4.5 and A= 1.5 10−3 MPa−n.s−1) with respect to snow compacity for four classical

laboratory tests: an oedometric compression test (dash-dotted line), a uniaxial compression test (solid line), a triaxial compression test

(dashed line) and an isotropic compression test (dotted line). The inset plot provides a zoom on the classical range of snow densities observed

experimentally (gray background).

to 20 kPa (triaxial compression). As expected, this last result shows the increase in the densification rate with the

increase in the deviatoric stress (i.e. S̄2). Even if the lateral confining pressure cannot be neglected during oedometric

test as highlighted in Figure 10, the oedometric compression test results in a similar densification rate as the uniaxial

compression test for the same axial stress Σzz . Indeed, the vertical strain rate is lower for an oedometric compression

than for a uniaxial one but the geometrical constraint imposed in the oedometric compression test prevents the snow5

sample from dilating, which is not the case for the uniaxial compression test. Overall the two effects cancel out each

other. Finally, above the classical snow compacity range (ρsnow/ρice ≥ 0.6), the densification rate dramatically decreases

for the oedometric and isotropic compression tests due to the ice incompressibility. As already underlined in Figure 10,

in this limit case, the oedometric compression test is equivalent to the isotropic compression one.

In practice, the strain rate is often imposed on the sample. The Figure 12 presents the evolution of the stress Σzz versus10

snow compacity ρsnow/ρice = 1−φ for two different values of strain rates Ėzz ∈ {10−7;10−5} s−1 and the different loading

conditions (uniaxial, oedometric, isotropic and triaxial tests). This figure suggests the following comments:
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Figure 12. Predicted axial stress level (for n= 4.5 and A= 1.5 10−3 MPa−n.s−1) with respect to snow compacity for two imposed strain

rates (line thickness) and for four classical laboratory tests: an oedometric compression test (dash-dotted line), a uniaxial compression test

(solid line), a triaxial compression test (dashed line) and an isotropic compression test (dotted line). The inset plot provides a zoom on the

classical range of snow densities observed experimentally (gray background).

– as expected, for a given strain rate, the stress Σzz increases with increasing snow density.

– for a given strain rate and a given density, the stress Σzz increases with increasing the lateral pressure Σrr around the

sample.

– for a given snow density, the stress Σzz strongly increases with increasing strain rate, which is in accordance with the

power law relationship.5

– the ice viscoplastic behavior is recovered when ρsnow/ρice tends towards 1. For a given strain rate, the axial stress for

a uniaxial or triaxial compression test tends towards a maximum value. By contrast, due to the incompressibility of ice,

the axial stress Σzz tends towards +∞.
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In order to quantitatively compare the predictions of our model against the experimental results of Bartelt and von Moos (2000),

we consider a snow of density ρsnow = 255 kg.m−3 (corresponding to ρsnow/ρice = 0.27) subjected to a confining pressure

of Σrr = 2.5 kPa and a strain rate of 2.2× 10−5 s−1. In this case, the axial stress predicted by our model is Σzz = 22.8 kPa,

which is consistent with the experimental values obtained by Bartelt and von Moos (2000) around 30 kPa.

Further comparison with Bartelt and von Moos (2000) can be achieved in the case of the uniaxial compression test (Σrr = 0).5

In this case, the axial stress simply reads

Σzz(Ėzz,φ) =

(
Ėzz

A(f(φ) + c(φ))
n+1
2

) 1
n

. (47)

For a given strain rate, the mechanical response of snow can be compared to the one of ice as in Bartelt and von Moos (2000)

by using the following parameter:

αη(φ) =
Σsnow
zz

(1−φ)Σice
zz

=
Σzz(Ėzz,φ)

(1−φ)Σzz(Ėzz,0)
=

1

1−φ

(
1

f(φ) + c(φ)

)n+1
2n

. (48)10

This parameter compares the axial stress that a given snow sample can transmit (Σsnow
zz ) to a rough estimate of this stress

given as a fraction of the axial stress transmitted in the case of ice ((1−φ)Σice
zz ). In Figure 13, the above theoretical expression

of αη(φ) is compared with the experimental fit αη = 0.0028 exp(0.008ρice ∗ (1−φ)) proposed by Bartelt and von Moos

(2000). As expected, αη(φ) increases with increasing snow density. By definition, αη(φ) should vary between 0 and 1. We

can observe that the theoretical expression of αη(φ) is strictly greater than 1 for ρsnow/ρice ∈ [0.8,1], which is not physically15

reasonable. This feature results from the independent choices of the parameters a, b, p and q in the fitting procedure used in

subsection 4.2. An implicit relation between these parameters could help in order to ensure that αη(φ) remains lower than 1

in the whole compacity range. Nevertheless, in the range of snow densities under consideration (ρsnow/ρice ∈ [0.1,0.6]), αη

increases monotonously between roughly 0.1 and 0.6. This prediction is higher than the experimental fit proposed by Bartelt

and von Moos (2000) (see Figure 13). However, during this experiment, the macroscopic mechanical response probably results20

from both the viscous deformation of the ice skeleton and numerous ruptures of ice bridges between snow grains. Even if our

model is able to account for some microstructure modifications through the porosity dependence of the parameters f and c, the

changes induced by the experimental testing conditions might exceed the scope of application of our model.

6 Conclusions

Despite the non-linearity of the ice viscous constitutive equation, the image-based homogenization approach introduced by25

Wautier et al. (2015) was successfully adapted to the numerical homogenization of snow viscous behavior. It allows the vis-

coplastic response of any snow sample being computed from its X-ray tomographic image. By contrast to the elastic case, the

macroscopic stress response is not a linear function of the imposed macroscopic strain anymore. As a result, the macroscopic

response of snow was investigated in terms of isodissipation curves in the planes of the two first strain rate and stress invari-

ants. The shape and size of these curves characterize the strong coupling between the snow microstructure and the ice viscous30
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Figure 13. Comparison between our theoretical prediction for αη (48) and the experimental fit proposed by Bartelt and von Moos (2000).

The points computed directly from the values for f and c reported in Table 3 are shown as diamond points. The compacity range for snow

samples under consideration is materialized by the gray zone.

behavior (power law with an exponent n) at the microscopic scale. Different values for n were considered in this study to give

some insight on their influence on the homogenized viscoplastic behavior of snow. Thanks to a few selected loading paths, an

Abouaf’s model was fitted onto the numerical results. This formulation seems to be relevant to describe the snow viscoplastic

behavior in the whole range of snow density under consideration (0.43< φ < 0.87), provided that the snow microstructure is

isotropic. For a given value of n, the influence of the snow microstructure, on the viscoplastic response of snow is described at5

the first order through two materials functions (f(φ) and c(φ), see (29)) which depend on the porosity only.

The robustness of this Abouaf formulation is tested for several isotropic snow samples covering the whole range of accessible

densities. The fitted models proved to be able to account for the stress and strain rate levels as well as the viscous flow

directions. In particular and contrary to the case of ice, the ability of snow to exhibit a viscous behavior even under isotropic

strain loading is recovered. The scope of application of the presented unified formulation is quite promising and could help10

improve the modeling of the densification of the snowpack in avalanche forecasting models.

The proposed homogenization model can be easily used to predict the viscous behavior of snow in classical laboratory tests

as illustrated in the last section of this paper. However, the uncertainties made on our model parameters should be quantified
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through a sensitivity analysis, in order to reckon the ability of our homogenized law for snow viscosity to quantitatively

recover the experimental results of Desrues et al. (1980); Bartelt and von Moos (2000); Moos et al. (2003); Scopozza and

Bartelt (2003b).

Even though the porosity is known to have a very strong influence on the resulting homogenized properties of snow, it is

also acknowledged that the very strong anisotropy of some snow microstructures cannot be neglected. The importance of5

this anisotropy was quantified within the framework of elasticity (Srivastava et al., 2010, 2016; Wautier et al., 2015) but the

extension of our homogenized visco-plastic formulation to anisotropic snow types is quite challenging as the dimension of the

invariant space will increase dramatically (Boehler, 1978; Liu, 1982; Hansen et al., 1991).

Finally, in the present work based on FEM simulations, the ice skeleton is viewed as a continuous polycrystalline material. The

proposed methodology to identify and formulate the 3D viscoplastic behavior of snow can be also applied to DEM simulations.10

For that purpose, the identification of the shape and crystalline orientations of every ice grain (Rolland du Roscoat et al., 2011)

as well as the knowledge of the viscoplastic contact laws (Burr et al., 2015b, a) would be of primary interest.
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