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Abstract. Ice cores provide temporal records of snow accumulation, a crucial component of Antarctic mass 

balance. Coastal areas are particularly under-represented in such records, despite their relatively high and 

sensitive accumulation rates. Here we present records from a 120 m ice core drilled on Derwael Ice Rise, coastal 

Dronning Maud Land (DML), East Antarctica in 2012. We date the ice core bottom back to 1745 ± 2 AD. δ18O 

and δD stratigraphy is supplemented by discontinuous major ion profiles, and verified independently by 20 

electrical conductivity measurements (ECM) to detect volcanic horizons. The resulting annual layer history is 

combined with the core density profile to calculate accumulation history, corrected for the influence of ice 

deformation. The mean long-term accumulation is 0.425 ± 0.035 m water equivalent (w.e.) a-1 (average corrected 

value). Reconstructed annual accumulation rates show an increase from 1955 onward to a mean value of 0.61 

±0.02 m w.e. a-1 between 1955 and 2012. This trend is compared to other reported accumulation data in 25 

Antarctica, generally showing a high spatial variability. Output of the fully coupled Community Earth System 

Model demonstrates that sea ice and atmospheric patterns largely explain the accumulation variability. This is 

the first record from a coastal ice core in East Antarctica showing a steady increase during the 20th and 21st 

centuries, thereby supporting modelling predictions.  
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1 Introduction 

In a changing climate, it is important to know the Surface Mass Balance (SMB) of Earth's ice sheets as it is an 

essential component of their total mass balance, directly affecting sea level (Rignot et al., 2011). The average 

rate of Antarctic contribution to sea level rise is estimated to have increased from 0.08 [–0.10 to 0.27] mm a-1 for 

1992–2001 to 0.40 [0.20 to 0.61] mm a-1 for 2002–2011 mainly due to rising ice discharge from coastal West 5 

Antarctica (Vaughan et al., 2013).  

This increase in ice loss could be partly balanced by a warming-related increase in precipitation in East 

Antarctica (e.g Polvani et al., 2011; Krinner et al., 2007). There is consistent evidence that past Antarctic snow 

accumulation rates were positively correlated with past air temperature, as recently shown by Frieler et al. (2015) 

using ice core data and modelling. Similarly, satellite radar and laser altimetry suggest mass gain in East 10 

Antarctica (Shepherd et al., 2012), in particular in DML, which has experienced several high-accumulation years 

since 2009 (Boening et al., 2012; Lenaerts et al., 2013). However, although recent regional atmospheric climate 

models indicate higher accumulation along the coastal sectors than in previous estimates, they show no long-

term trend in the total accumulation over the continent during the past few decades (Monaghan et al., 2006; van 

den Broeke et al., 2006; Bromwich et al., 2011; Lenaerts et al., 2012).  15 

Ice cores provide temporal records of snow accumulation. These are essential to calibrate internal reflection 

horizons in radio-echo sounding records (e.g. Fujita et al., 2011; Kingslake et al., 2014), to force ice sheet flow 

and dating models (e.g. Parennin et al., 2007) and to evaluate regional climate models (e.g. Lenaerts et al., 2014). 

However, records of accumulation are still scarce relative to the size of Antarctica. Whilst the majority lack a 

significant trend in snow accumulation over the last century (e.g. Nishio et al., 2002), some do show an increase 20 

(e.g. Karlof et al., 2005), and others show a decrease (e.g. Kaczmarska et al., 2004). Frezzotti et al. (2013) 

compiled surface accumulation records for the whole of Antarctica and Altnau et al. (2015) for Dronning Maud 

Land (DML). Both authors concluded that the trends are insignificant.  

However, there is still a clear need for data from the coastal areas of East Antarctica (ISMASS Committee, 2004; 

van de Berg et al., 2006; Magand et al, 2007), where very few studies have focused on ice cores, and few of 25 

those have spanned more than 20 years. Coastal regions allow higher temporal resolution as accumulation rates 

generally decrease with both altitude and distance from the coast (Frezzotti et al., 2005). Ice rises are ideal 

locations for paleoclimate studies (Matsuoka et al., 2015) as they are undisturbed by up-stream topography, since 

lateral flow is almost negligible. Melt events are also likely to be much less frequent than on ice shelves 

(Hubbard et al., 2013). 30 

The Cryosphere Discuss., doi:10.5194/tc-2016-27, 2016
Manuscript under review for journal The Cryosphere
Published: 29 February 2016
c© Author(s) 2016. CC-BY 3.0 License.



3 

In this paper we report on continuous ice δ18O and δD measurements (5-10 cm resolution) along a 120 m core 

drilled on Derwael Ice Rise (70°14’44.88’’ S, 26°20’5.64’’E), in coastal DML. This record is complemented by 

major ions profiles to improve the resolution of the seasonal cycles wherever necessary. Dating is checked 

independently using volcanic horizons detected from continuous electrical conductivity measurements (ECM) 

along the core (Hammer et al., 1994). After correcting for dynamic vertical thinning, we derive annual 5 

accumulation, and average accumulation and trends over the last 267 years, i.e. across the Anthropocene 

transition. These are compared to other reported trends in Antarctica including DML over the last 20 and 50 

years.  

2 Field site and methods 

2.1 Field site 10 

The study site is located in coastal DML, East Antarctica. A 120 m ice core was drilled in 2012 on the divide of 

Derwael Ice Rise, named IC12 after the project name IceCon (70°14’44.88’’S, 26°20’5.64’’E Figure 1), which is 

486 m thick and has a local ice flow (Drews et al., 2015). Due to its coastal location, the accumulation rate is 

high and allows dating by seasonal peak counting. Only a few very thin melt layers are present. A continuous 

density profile was obtained by calibrating optical televiewer (OPTV; Hubbard et al. 2008) luminosity records in 15 

the borehole with discontinuous gravimetric measurements (Hubbard et al., 2013). 

2.2 Ice coring 

The IC12 ice core was drilled with an Eclipse electromechanical ice corer in a dry borehole. The mean length of 

the core sections recovered after each run was 0.77 and the standard deviation 0.40 m. Immediately after drilling, 

temperature (Testo 720 probe, inserted in a 4 mm diameter hole drilled to the centre of the core, precision ±0.1 20 

°C) and length were measured on each core section, which was then wrapped in a PVC bag and stored directly in 

a refrigerated container at -25 °C, and kept at this temperature until analysis. The core sections were then split 

lengthwise in two, in a cold room at -20 °C. One half of the core section was used for ECM measurements and 

then kept as archive, while the other half was sectioned for continuous stable isotope sampling and discontinuous 

major ion analysis. 25 
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2.3 Annual layer counting and dating 

2.3.1 Water stable isotopes and major ions 

Half of each core section was resampled as a central bar of 30 mm square section with a clean band saw. The 

outer part of the half-core was melted and stored in 4 ml bottles for δ
18O and δD measurements, completely 

filled to prevent contact with air. For major ions measurements, the inner bar was then placed in a Teflon holder 5 

and further decontaminated by removing ~2 mm from each face under a class-100 laminar flow hood, using a 

methanol-cleaned microtome blade. Each 5 cm-long decontaminated section was then covered with a clean PE 

storage bottle, and the sample cut loose from the bar by hitting it perpendicularly to the bar axis. Blank ice 

samples prepared from milliQ water were processed before every new core section and analysed for 

contamination. 10 

Dating was achieved by annual layer counting identified from the stratigraphy of the δ18O and δD isotopic 

composition of H2O measured (10 cm resolution in the top 80 m and 5 cm resolution below) with a PICARRO L 

2130-i Cavity Ring Down Spectrometer (CRDS) (precision, σ = 0.05 ‰ for δ18O and 0.3 ‰ for δD). The annual 

layer was identified by the δ18O summer maximum value. 

For sections of unclear isotopic seasonality, major ion analysis (Na+, SO4
--, NO3

-, Cl-) was performed with a 15 

Dionex-ICS5000 liquid chromatograph. The system has a standard deviation of 2 ppb for Na+ and SO4
--, 7 ppb 

for NO3
-, and 8 ppb for Cl-. Non sea-salt sulfate was calculated as nssSO4=[SO4

--
]tot -0.052*[Cl

-
], following 

Mulvaney et al. (1992) and represents all SO4
-- not of a marine aerosol origin. The ratio RNa

+
/SO4

-- was also 

calculated as an indicator of seasonal SO4
-- production. 

2.3.2 ECM and volcanic horizons 20 

ECM measurements were made in a cold room at -18°C at the Centre for Ice and Climate, Niels Bohr Institute, 

University of Copenhagen with a modified version of the Copenhagen ECM described by Hammer (1980). 

Direct current (1250 V) was applied at the surface of the freshly cut ice and electrical conductivity was measured 

at a 1 mm resolution. The DC electrical conductivity of the ice, once corrected for temperature, depends 

principally on its impurity content located at the crystal boundaries (SO4
--, NO3

-, Cl-, etc.) (Hammer, 1980; 25 

Hammer et al., 1994). This content varies seasonally and shows longer term maxima associated with sulfate 

production from volcanic eruptions. ECM can therefore be used both as a relative and an absolute dating tool. 

ECM data were smoothed with a 301 point wide first-order Savitsky-Golay filter (Savitsky and Golay, 1964). As 

measurements were principally made in firn, we multiplied the signal by the ratio of the ice density to firn 
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density following Kjær (2014). Finally, data were normalized by substracting the mean and dividing by the 

standard deviation following Karlof et al. (2000). We selected potential volcanic peaks as those above the 2σ 

threshold, following standard practice (e.g. Kaczmarska et al., 2004). 

2.4. Corrections 

Snow burial not only involves density changes along the vertical, but also involves lateral deformation of the 5 

underlying ice. Failure to take the latter process into account would provide an underestimation of reconstructed 

initial annual layer thickness, and therefore of the accumulation rate, especially within the oldest part of the 

record. Commonly, three different models are used to represent vertical strain rate evolution with depth: (i) a 

power-law model (Lliboutry, 1979), (ii) a piece-wise linear model (Dansgaard and Johnsen, 1969) and (iii) a 

fully linear model (Nye, 1963). 10 

(i) The power-law model requires measurements of the borehole horizontal displacement, which are 

unfortunately not available. (ii) The piece-wise model assumes a constant vertical strain rate between the surface 

and a given depth, which in our case is below the zone of interest since the ice core is drilled in the first quarter 

of the total ice rise thickness (486 m, Drews et al., 2015), and then a quadratic decrease to zero at the ice-bedrock 

interface. The constant strain-rate in the upper part of the ice sheet can be inferred from the slope of water 15 

equivalent (w.e.) annual layer thickness versus depth, also in m w.e., assuming a constant long term snow 

accumulation (equal to annual layer thickness at the surface, Roberts et al., 2014). (iii) Finally, the Nye model 

corrects the layer thickness L by assuming ice is incompressible, with a linear decrease from a constant annual 

layer thickness at the surface to zero at the ice bedrock interface (which implies a constant total ice thickness). In 

that case, Lz = Ls (z/H), where H is the total ice thickness in m w.e., and subscripts s and z represent the values at 20 

the surface and at a height z (in m w.e.) above the bed. 

The last two corrections were applied separately and are compared in the results section. 

2.5 Community Earth System Model (CESM) 

To interpret our ice core derived accumulation record and relate it to the large-scale atmospheric and ocean 

conditions, we use outputs of the Community Earth System Model (CESM). CESM is a global, fully coupled, 25 

CMIP6-generation climate model with an approximate horizontal resolution of 1 degree, and has recently been 

shown to realistically simulate present-day Antarctic climate and SMB (Lenaerts et al., in press). We use the 

historical time series of CESM (156 years, 1850-2005) that overlaps with most of the ice core record, and group 

the 16 single (~10%) years with the highest accumulation and lowest accumulation in that time series. We take 
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the mean accumulation of the ice covered CESM grid points of the coastal region around the ice core (20-30 

degrees East, 69-72 degrees South) as a representative value. For the grouped years of high and low 

accumulation we take the anomalies (relative to the 1850-2005 mean) in near-surface temperature, sea-ice 

fraction and surface pressure as parameters to describe the regional ocean and atmosphere conditions 

corresponding to these extreme years. 5 

3 Results 

3.1 Dating 

3.1.1 Relative dating (seasonal peak counting)  

Figure 2 illustrates how the high-resolution stable isotopes (δ18O, δD), smoothed ECM, chemical species and 

their ratios are used in combination to decipher annual layer boundaries. All of these physico-chemical variables 10 

generally show a clear seasonality. The summer peak in water stable isotopes is obvious in most cases. Major 

ions such as nssSO4, SO4
--/Na+, NO3

-
 generally help to distinguish ambiguous peaks in the isotopic record. SO4

--
 

is one of the oxidation products of Dimethyl Sulfide (DMS), a degradation product of DMSP which is 

synthesized by sea ice microorganisms (sympagic) as an antifreeze and osmotic regulator (e.g. Levasseur, 2013). 

Both nssSO4 and RNa
+

/SO4
--

 vary seasonally and are also strong indicators of volcanic eruptions. NO3
- also shows a 15 

seasonal signal but the processes controlling its seasonality are not yet well understood (Wolff et al., 2008). For 

ECM, there is also a regular seasonal signal, but only to a depth of 80 m. The different age-depth profiles 

resulting from this counting procedure are presented in Figure 3. No ambiguity in layer counting is detectable 

above 62.38 m depth (i.e. 1933 A.D.). Between 249 and 269 annual cycles are identified between the reference 

surface (2012 A.D.) and the bottom of the core, which is accordingly preliminarily dated to 1754 ±10A.D. before 20 

absolute dating. 

3.1.2 Absolute dating 

In order to further improve our annual layer estimates and the depth-age relationship, we have used the ECM 

signal (which is mainly inherited from the SO4
-- profile) to detect volcanic eruptions using a threshold from the 

background signal of 2σ (Figure 4). The best depth-age match (corresponding to the closest age match at the 25 

base of the core) was obtained with the "oldest estimate", for which 12 peaks out of 33 could be assigned to 

known volcanic eruptions and one more from the chemistry alone (Krakatau - 1883). Following this absolute 

dating recalibration, the bottom of the core is dated to 1745. The year of deposition of each volcanic peak 
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allowed us to reduce the uncertainty of the depth-age relationship in the IC 12 core to ±2 years. This is the 

precision usually associated with volcanic horizons, due to the time lapse between eruption and deposition (see 

sources in Table 1). The characteristics of these peaks are summarized in Table 1. The 1815 Tambora eruption 

has a clearly identifiable peak (Figure 4), which is expected from its high Volcanic Explosivity Index of 7 (Table 

1) and its signal is detected up to two years after its eruption (e.g. Traufetter et al., 2004). Some eruptions, such 5 

as the 1762 Planchon-Peteroa eruption (assigned as unknown in Sigl et al., 2012) are recorded in both 

hemispheres (Sigl et al., 2012). 

3.2 Snow accumulation rate history 

Combining the annual layer thickness data set with the continuous IC12 density profile (published in Hubbard et 

al., 2013), we reconstructed the accumulation rate history at the summit of Derwael Ice Rise from 1745 to 2012. 10 

The cumulative thickness in w.e. is 91.8 m (Figure 5). Without correction for layer thinning, the mean annual 

layer thickness is 0.34 ± 0.003 m w.e., the lowest annual accumulation is 0.14 ± 0.05 m w.e. in 1834 and the 

highest is 1.05 ± 0.05 m w.e. in 1989 (Figure 6). 

We applied two corrections: the piece-wise linear model (Dansgaard and Johnsen, 1969) and the fully linear 

model (Nye, 1963) (see Section 4.2) to investigate the influence of ice deformation on layer thickness, both 15 

techniques assuming a constant accumulation rate and a steady state. The piece-wise model approach cannot 

therefore be applied to the whole data set, since plotting annual layer thickness against depth in m w.e. reveals 

two trends with different slopes (Figure 5), suggesting an increase in accumulation rates. The transition occurs at 

~ 49 m w.e., corresponding to 1900 A.D. Hypothesizing that, if accumulation rates have increased under the 

intensification of the hydrological cycle in response to the industrial revolution, we can consider the pre-1900 20 

A.D. slope (0.003 a-1, Figure 5) as representative of the rate of thinning associated with the constant long-term 

'pre-industrial' rate of surface accumulation. We therefore used this strain rate value to correct annual layer 

thicknesses when applying the Dansgaard-Johnsen model. 

Figure 6a shows the reconstructed history of annual accumulation rates at IC12 from 1745 to 2012, with 

associated error bars without ice deformation and with the two different ice-deformation models. As interannual 25 

variability is high, 11 years  running means are also shown (thick lines in Figure 6a). As expected, the 

accumulation rate without ice deformation (blue lines in Figure 6a) is underestimated in the oldest part of the ice 

core as compared to the other two reconstructions taking ice deformation into account. The uncorrected curve 

shows a constant increase in accumulation, with multiple-step increases at ~ 1902, 1955 and 1994 A.D. The 

constant increase in accumulation rates before 1902 attenuates with the correction based on the Nye approach for 30 
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taking deformation into account (green lines in Figure 6a and 6b) and becomes insignificant with the Dansgaard-

Johnsen model (D-J, black lines in Figure 6a and 6b). However, all curves show a clear increasing trend in 

accumulation rates since the early 20th century. 

Accumulation rates calculated on the basis of deformation corrections (Nye and D-J) and averaged over various 

periods framed by volcanic horizons (e.g. Kaczmarska et al., 2004, Sigl et al. 2012; bold years in Table 1) are 5 

shown in Figure 6b and summarized in Table 2. The long term annual accumulation, starting from the oldest 

volcanic layer identified: 1768 to 2012, is between 0.39 and 0.46 m w.e. a-1 depending on the correction applied 

(Table 2). The recent (1955-2012) accumulation rate is between 0.60 and 0.63 m w.e. a-1 with, as expected, less 

impact from the different deformation corrections. The sharpest increase occurs between the periods 1902-1955 

and 1955-1992 (36% to 45% increase). With a 31 years running mean, the rate of accumulation change between 10 

1902 and 1992 is 0.21 m w.e. a-1 (data not shown). 

Table 3 shows the detailed annual accumulation rates for the last 10 years for both corrections. The highest 

accumulation of the last 10 years occurred in 2009 and 2011, which belong to the 3% and 1% highest 

accumulation years of the whole record, respectively.  

3.3 Relation to atmospheric and sea ice patterns 15 

Figure 7 shows a summary of the output from the CESM as described in Section 2.5. In anomalously high-

accumulation years (top panel), the sea ice coverage is very low (20-40 fewer days with sea-ice cover) in the 

Southern Ocean northeast of the ice core location, which is the prevalent source region of the atmospheric flow 

(Lenaerts et al., 2013). This is associated with higher near-surface temperatures (1-3 K), and a strengthening of 

the low climatological low-pressure system (>1 hPa lower surface pressure), located offshore the ice core 20 

location (Lenaerts et al., 2013). In low-accumulation years (bottom panel), we see a reverse, albeit less strong, 

signal, with higher sea ice fraction, lower temperatures and higher core pressure of the low pressure system. 

4 Discussion 

4.1 Spatial and temporal variability 

Our results show an increase in accumulation on the Derwael Ice Rise in coastal DML from 1955 onward. This 25 

confirms the studies that show a current increase in precipitation in coastal East Antarctica on the basis of 

satellite data and regional climate models (Davis et al., 2005, Lenaerts et al., 2012). Using a new glacial isostatic 

adjustment model, King et al. (2012) estimated that a 60 ±13 Gt a-1 mass increase of the East Antarctic Ice Sheet 
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during the most recent period was concentrated along coastal regions, particularly in DML. However, until now, 

no change had been detected in ice cores from the area. Our study is the first in situ validation of a climate-

related increase in coastal Antarctica precipitations which is expected to occur mainly in the peripheral areas at 

surface elevations below 2250 m (Krinner et al., 2007; Genthon et al., 2009).  

However, not all of Antarctica would be expected to have the same accumulation trend. Figure 1 and Table A1 5 

summarize results on accumulation trends from previous studies based on ice cores, extended with a few studies 

based on stake networks and radar. The colour of the site position on Figure 1 refers to the accumulation change 

at that site. The reference period refers to the last ~200 years, the recent period to the last ~50 years and the most 

recent period to the last ~20 years. The exact periods are given in Table A1. 

Although the ISMASS Committee (2004) pointed out the importance of analysing coastal records, only 25 of the 10 

temporal records found in the literature concern ice cores drilled at the coast, and only 16 of them are located in 

DML. Only two of those records cover a period longer than 20 years: S100 (Kaczmarska et al., 2004) and B04 

(Schlosser and Oerter, 2002). They both show a small decreasing trend (Figure 1).  

Most studies (69% of those comparing the last ~50 years with the last ~200 years) lack a significant trend (< 

10% change). When we consider only the studies comparing the last 20 years to the last 200 years, the 15 

percentage lacking significant trend falls from 69% to 46%, for all Antarctica, but the trends revealed are both 

positive and negative. For example, Isaksson et al. (1996) found < 3% change at EPICA drilling site 

(Amundsenisen, DML) between 1865-1965 and 1966-1991. No trend was found on most inland and coastal sites 

(e.g.B31, S20) in DML, for the second part of the 20th century (Isaksson et al., 1999; Oerter et al. 1999, 2000; 

Hofstede et al., 2004) or for the recent period (Fernandoy et al., 2010).  20 

A few studies (9% for the larger period and 18% for the shorter, more recent period) show a decrease of more 

than 10%. This is the case for several inland sites in DML (e.g. Anschutz et al., 2011), but also coastal sites in 

this region (Kaczmarska et al., 2004: S100; Isaksson & Melvold, 2002: Site H; Isaksson et al., 1999: S20; 

Isaksson et al., 1996: Site E; Isaksson et al., 1999: Site M).  

Twenty-one percent of the studies record an increase of > 10% of accumulation rates from the middle of the 20th 25 

century, and 36% during the most recent period. In East Antarctica, increasing trends were only recorded at 

inland sites, e.g. in DML (Moore et al., 1991; Oerter et al., 2000), at South Pole Station (Mosley & Thompson, 

1999), Dome C (Frezzotti et al., 2005), and around Dome A (Ren et al., 2010; Ding et al., 2011). Other 

increasing trends were found on the Antarctic Peninsula in coastal West Antarctica (Thomas et al., 2008; 

Aristarain et al., 2004). For some sites, the increase only started during the most recent period (Site M: Karlof et 30 

al., 2005). The only other coastal site in East Antarctica potentially showing an increase in snow accumulation 
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rates is Talos Dome, where Frezzotti et al. (2013) reported a 19% decrease during the period 1966-1996 

(compared to 1816-2001), while Stenni et al. (2002) reported an increase by 11% during 1992-1996 (compared 

to 1816-1996). 

A pattern arises when we compare the low accumulation sites to the high accumulation sites (not all coastal), 

setting the threshold at 0.3 m w.e. a-1, following Frezzotti et al. (2013) (Figure 8). The 11 sites above 0.3 m w.e. 5 

a-1 show an average increase of accumulation of 33.8% between the last ~50 years and the reference period (last 

~200 years), whereas the sites with lower accumulation show no trend (Figure 8a). This increase is more 

important (75%) if we compare the same reference period with the most recent period (last ~20 years) but this 

only covers two high accumulation sites, including IC12 (Figure 8b). Comparing the most recent period to the 

last ~50 years, the 12 high accumulation sites show an average increase of 10.1% (Figure 8c). 10 

4.2 Sources of uncertainties 

It is important to keep in mind that the trends, reported in this study (and others) have considerable uncertainties 

(Rupper et al., 2015). The accuracy of reconstruction of past snow accumulation rates depends on the dating 

exactness. Volcanic horizons are sometimes difficult to identify in coastal ice cores due to the ECM peaks 

associated with the presence of marine components. Also, given our vertical sampling resolution, the location of 15 

any single summer peak is only identifiable to a precision of 0.1 m. However, annual layer counting is easier 

than on inland sites, due to higher accumulation rates. Average accumulation rates on longer periods are 

preferred, since they are less affected by uncertainties than annual accumulation rates. These average estimates 

are also useful to reduce the influence of inter-annual variability. 

Vertical strain rates are also a potential source of error. A companion paper will be dedicated to a more precise 20 

assessment of this factor using repeated borehole optical televiewer stratigraphy. However, the present study, by 

using a range of available strain rate models, shows that knowing the exact strain rates should not affect our 

main conclusions. Uncertainties are also influenced by the error on density and small scale variability in 

densification but these are assumed to be very small. For example, Callens et al. (submitted) used a semi-

empirical model of firn compaction (Arthern et al., 2010) adjusting its parameters to fit the discrete 25 

measurements instead of using the best fit in Hubbard et al. (2013). Using the first model changes accumulation 

values by less than 2% (data not shown). Another source of possible error is the potential migration of the ice 

divide. Indeed, radar layers show accumulation asymmetry next to the Derwael ice Rise divide; if the divide 

migrated, it could have affected the change in accumulation. However, recent data indicate that there is a very 

low probability that such a migration occurred (Drews et al., 2015). Temporal variability at certain locations can 30 
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also be due to the presence of surface undulations up-glacier (e.g. Kaspari et al, 2004), but this is not the case for 

ice divides. 

4.3 Causes of spatial and temporal variability 

The increasing temporal trend in snow accumulation measured here and in ice cores from other areas and the 

spatial contrast observed could be the result of variable forcing: thermodynamic (temperature change), dynamic 5 

(change in atmospheric circulation) or both. 

Increasing temperature increases the capacity of the air to hold vapour, generally enhancing precipitation. Oerter 

et al., (2000) showed a correlation between temperature and accumulation rates in DML. On longer timescales, 

using ice cores and models, Frieler et al., (2015) found a correlation between temperature and accumulation rates 

for the whole Antarctic continent. However, Altnau et al. (2015) found no correlation between snow 10 

accumulation and changes in ice δ18O in coastal cores. They hypothesized that changes in synoptic circulation 

(cyclone activity) have more influence at the coast than thermodynamics alone. The increased frequency of 

blocking anticyclone and amplifying Rossby waves leads to the advection of moist air from the warmer middle 

and low latitudes (Schlosser et al., 2010; Frezzotti et al., 2013). This moisture transport is sometimes 

concentrated into “atmospheric rivers” of which two recent manifestations, in 2009 and 2011, have led to a 15 

positive anomaly in the net mass balance of East Antarctica (Shepherd et al., 2012; Boening et al., 2012) which 

was also observed in situ, at a local scale, next to the Belgian Princess Elisabeth base (72 °S, 21 °E) 

(Gorodetskaya et al., 2013; 2014). Such individual precipitation events can represent up to 50% of the annual 

accumulation (Schlosser et al., 2010; Lenaerts et al., 2013). These two highly variable accumulation events are 

also observed in our data as two notably higher than average accumulation years (2009 and 2011, Table 3). Our 20 

record puts these extreme events in an historical perspective, confirming that they are amongst the 1% to 3% 

highest accumulation years of the last two centuries, despite the fact that higher accumulation years exist in the 

recent part of record. 

A change in climate modes could also partly explain recent changes in accumulation. The Southern Annular 

Mode (SAM) has shifted to a more positive phase during the last 50 years (Marshall, 2003). This has led to 25 

increasing cyclonic activity but also increasing wind speed and sublimation. Kaspari et al. (2004) also 

established a link between periods of increased accumulation and sustained El Niño events (negative Southern 

Oscillation Index (SOI) anomalies) in 1991-95 and 1940-42. We compared our detrended data set with SOI and 

SAM time series (KNMI, 2015) and found no correlation with either of those two indexes, yielding respective R² 

value of 0.0016 and 0.0026. In the detrended dataset, mean accumulation is indeed 5% higher during 1991-95 30 
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than the long-term average and 17% higher during 1940-42. However, high accumulation is also recorded during 

1973-75 (19% higher than average) while that period is characterized by positive SOI values. Therefore, climate 

modes seem to have little influence on inter-annual variability of accumulation rates at IC12. 

Small scale spatial variability in cyclonic activity and atmospheric rivers could explain why our results are 

different from others in the same region. Orography can greatly affect spatial variability in snow accumulation 5 

(Lenaerts et al., 2013). Highest snowfall and highest trends in predicted snowfall are expected in the escarpment 

zone, due to orographic uplift (Genthon et al., 2009). The main factor generating spatial variability, however, is 

commonly the wind; wind ablation represents one of the largest sources of uncertainty in modelling SMB. For 

example, in the escarpment area of DML, low and medium precipitation amounts can be entirely removed by the 

wind, while high precipitation events lead to net accumulation (Gorodetskaya et al., 2015). An enhanced wind 10 

speed coupled with an increase in accumulation could only increase SMB where the wind speed is low, while 

decreasing SMB in the windier areas (90% of the Antarctic surface (Frezzotti et al., 2004)). Frezzotti et al. 

(2013) suggested that snow accumulation has increased at low altitude sites and on the highest ridges due to 

more frequent anticyclone blocking events, but has decreased at intermediate altitudes due to stronger wind 

ablation in the escarpment areas. In DML however, Altnau et al. (2015) reported an accumulation increase on the 15 

plateau (coupled to an increase in δ18O) and a decrease on coastal sites, which they associated with a change in 

circulation patterns. Around Dome A, Ding et al. (2011) also reported an increase in accumulation rate in the 

inland area and a recent decrease towards the coast. Their explanation is that air masses may transfer moisture 

inland more easily due to climate warming.  

A more recent study using a fully coupled climate model (Lenaerts et al., in press) suggests that DML is the 20 

region most susceptible to an increase in snowfall in a present and future warmer climate. The snowfall increase 

in the coastal regions is particularly attributed to loss of sea ice cover in the Southern Atlantic Ocean, which in 

turn enhances atmospheric moisture uptake by evaporation. This is further illustrated in Figure 7, which shows 

that extremely high accumulation years are associated with low sea ice cover. The longer exposure of open water 

leads to higher near-surface temperatures and enhances evaporation and moisture availability for ice sheet 25 

precipitation (Lenaerts et al., in press). Additionally, the low-pressure system, located offshore the ice core 

location (Lenaerts et al., 2013) is strengthened and invigorates meridional heat and moisture transport towards 

the ice sheet. The opposite is true for extremely low accumulation years.  
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5 Conclusions 

A 120 m ice core was drilled on the divide of Derwael ice rise, and dated back to 1745 ±2 A.D. using δ18O, δD, 

major ions where necessary, and volcanic horizons identified from ECM data. The mean accumulation at this 

site is 0.425 ± 0.035 m w.e. a-1 after corrections for densification and dynamic layer thinning. An increasing 

trend in accumulation rate is observed from 1955 onwards, as expected from climate models. The trends in 5 

accumulation observed in other records all over Antarctica are spatially highly variable. In coastal East 

Antarctica, our study is the only to show an increase in accumulation during the 20th and 21st centuries. Many 

studies point to a difference in the behaviour of coastal and inland sites, due to a combination of thermodynamics 

and dynamic processes. Our results of the CESM suggest that accumulation variability is largely explained by 

sea ice cover and atmospheric patterns. More studies are still clearly needed at other coastal sites in East 10 

Antarctica to determine how representative this result is. 

Long time series are scarce in coastal East Antarctica. The divide of Derwael Ice Rise is a suitable drilling site 

for deep drilling. It has a high accumulation rate, and appropriate ice conditions (few thin ice layers) for 

paleoclimate reconstruction. With a 486 m ice thickness, drilling to the bedrock could reveal at least 2000 years 

of a reliable climate record with high resolution, a priority target of the International Partnership in Ice Core 15 

Science (IPICS, Steig et al., 2005).  

Data Availability 

Age-depth data and uncorrected accumulation rates are available online (doi:10.1594/PANGAEA.857574). 
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Tables 

Table 1. Characteristics of the 12 volcanic peaks found in the IC12 core, and used to constrain the depth-age 

relationship to an uncertainty of ± 2 year. Bold years were used as reference for average accumulation 

calculations by period in Figure 6. Ref.: references: 1) Traufetter et al., 2004 and references therein ; 2) 

Kaczmarska et al., 2004 ; 3) Nishio et al., 2002 ; 4) Stenni et al., 2002 ; 5) Kohno and Fuji, 2002 ; 6) Zhang et 5 

al., 2002 ; 7) Moore et al., 1991 ; 8) Langway et al., 1994. *identified from ion chromatography. 

Probable source 

volcano 

Year of 

eruption 

Year of 

deposition 
VEI Depth (m) 

Difference between 

assigned age and year 

of deposition 

Ref. 

Unknown 2009 4.822 

Unknown 1995 20.01 

Pinatubo 1991 1992 ±1 6 23.095 0 1 

El Chichon 1982 1982 ±1 4 33.63 -2 1 

Unknown 1976 36.42 

Unknown 1973 38.58 
Unknown 1966 44.08 

Agung 1963 1964 ±1 4 45.95 -1 1 

Unknown 1961 47.15 

Carran-Los  Venados 1955 1955 ±1 4 50.79 0 2, 3 

Unknown 1945 56.37 

Unknown 1940 59.24 
Unknown 1936 61.445 

Cerro Azul  1932 1932 ±1 5 62.92 0 1 

Unknown 1930 63.81 

Unknown 1922 67.26 

Unknown 1918 69.05 

Unknown 1916 69.82 
Unknown 1912 71.745 

Unknown 1908 73.49 

Santa Maria  1902 1902 ±1 5 75.03 1 2, 4, 5 

Unknown 1892 78.84 

Krakatau 1883 1884 ±1 6 82.237* 0 1 
Unknown 1844 94.98 

Coseguina 1835 1835 ±1 5 97.34 0 1 

Galunggung  1822 1822 ±1 5 101.3 -1 2, 5, 6 

Tambora 1815 1816 ±1 7 102.4 2 1 

Unknown 1809 ± 2 1809 ±3 ? 104 2 1 

Cotopaxi  1768 1768 ±1 4 115.3 -1 2, 7, 8 
Planchon-Peteroa 1762 1762 ±1 4 116.2 1 1 

Unknown 1759 117.4 

Unknown 1750 119.2 

Unknown 1747 119.9 
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Table 2. Average accumulation rates at IC12 for various time periods framed by volcanic horizons. The first year 

of each period is included, not the second (ex: 1768-2012: includes 1768, not 2012). Nye: correction for a linear 

decrease of annual layer thickness with depth. D-J: Corrected using a strain rate of 0.003 a-1 which is the slope of 

the annual layer thickness (in m w.e.) vs. depth relationship before 1900.  

Period Accumulation (m w. e. a
-1

) (Nye) Accumulation (m w. e. a
-1

) (D-J) 

1768 - 2012 0.39 ± 0.003 0.46 ± 0.004 

1992 - 2012 0.64 ± 0.07 0.65 ± 0.07 

1955 - 1992 0.58 ± 0.03 0.62 ± 0.03 

1902 - 1955 0.40 ± 0.02 0.46 ± 0.02 

1884 - 1902 0.36 ± 0.04 0.43 ± 0.05 

1816 - 1884 0.31 ± 0.01 0.39 ± 0.01 

1768 - 1816 0.27 ± 0.01 0.37 ± 0.01 

1768 - 1955 0.33 ± 0.004 0.41 ± 0.005 

1955 - 2012 0.60 ± 0.02 0.63 ± 0.02 

  5 
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Table 3. Accumulation for the last 10 years from IC12 ice core. *See Table 2 legend and text for explanation 

**not a full year 

Year (A.D.) Accumulation (m w.e. a
-1

) (Nye*) Accumulation (m w.e. a
-1

) (D-J*) 

2012** 0.482 0.482 

2011 0.959 0.960 

2010 0.632 0.634 

2009 0.811 0.815 

2008 0.642 0.646 

2007 0.690 0.695 

2006 0.653 0.658 

2005 0.673 0.679 

2004 0.658 0.666 

2003 0.613 0.621 
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Figure 1: Location of IC12 and other ice cores referred to in the discussion. Change in Accumulation between ~1960-present 

average compared to ~1816-present average (a-b) and ~1990-present compared to 1816-present (c-d), see Table A1 for exact 

periods. Panels (b) and (d) are zoomed of the framed zone in panels (a) and (c).  
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Figure 2. Variations in stable isotopes (δ
18

O, δD), smoothed ECM (running mean, 0.1 m), chemical species and their ratios 

used to constrain annual layer thickness in an example 10 m long section (20 - 30 m depth) of the IC12 ice core. Dashed 

horizontal lines indicate the annual layer limit (middle of the summer δ
18

O peak).  
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Figure 3. Age-depth relationships reconstructed from the relative dating process. Note that the approach results in no 

uncertainty above 62.38 m depth (year 1933). At 120 m depth, the uncertainty is ± 10 years. 
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Figure 4. Continuous record of ECM (except for 6 measurement gaps shown as grey bands). Normalized conductivity (black 

line) is expressed as multiple of standard deviation (σ). The 2σ threshold is shown as a dotted vertical line, and identified 

volcanic peaks as dashed grey horizontal lines. 
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Figure 5. Annual layer thickness plotted against depth. The record is divided into two age/depth ranges, before and after 

1900/49 m, for which best-fit straight lines are presented. We use the hypothesis that no temporal drift in annual 

accumulation existed prior to 1900 (see text for details). 
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Figure 6. Accumulation rates at IC12. (a) Annual (thin lines with error bars) and average (11 years running mean, thick 

lines) accumulation rates. The blue lines show uncorrected annual layer thickness in m w.e. The red diamonds highlight 

years 2009 and 2011 discussed in the text (a-b) Corrected annual layer thicknesses are shown by green lines for the Nye 5 

approach and black lines for the Dansgaard and Johnsen approach (see text for details). (b) Dotted horizontal lines represent 

long-term accumulation (mean plus standard deviation and mean minus standard deviation) for various time periods bounded 

by specific volcanic eruption events (indicated by vertical lines and bold years). 
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Figure 7. Large-scale atmospheric, ocean and sea-ice anomalies in (a) high-accumulation (10% highest) and (b) low-

accumulation (10% lowest) years in the CESM historical time series (1850-2005). The colours show the annual mean near-

surface temperature anomaly (in °C), the lines show the surface pressure anomaly (in hPa), and the stippled/hatched areas 

show the anomaly in sea-ice coverage (stippled areas are areas with >20 days less sea ice cover than the mean, hatched areas 

show areas with >20 days more sea ice than the mean). The green star shows the location of the ice core. 5 
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Figure 8. Comparison of SMB during (a) the last ~200 years and the last ~50 years (b) the last ~200 years and the last ~20 

years, and (c) the last ~50 years and the last ~20 years. See Table A1 for exact periods. Sites above 0.3 m w.e. a
-1

 are shown 

in black, except our study site, IC12 shown in green. Sites below 0.3 m w.e. a
-1

 are shown in blue. The black lines show a 

linear regression through high accumulation sites. Increases in % between the periods compared are shown on the graph with 

R
2
 value when relevant. The 1:1 slope (0% change) is shown as a dotted line. 
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Appendix A

Site name Latitude Longitude Elevation 

(m a.s.l.)

Reference period Recent period Most recent 

period

% change 

(50a - ref)

% change 

(20a - ref) 

except**

Method Study

Siple Dome -81.6530 -148.9980 620 1890-1994 120 1922-1991 118 -1.67% Ice core Kaspari et al., 2004

ITASE00-5 -77.6830 -123.9950 1828 1716-2000 140 1922-1991 141 0.71% Ice core Kaspari et al., 2004

ITAE99-1 -80.6200 -122.6300 1350 1724-1998 139 1922-1991 146 5.04% Ice core Kaspari et al., 2004

ITASE00-4 -78.0830 -120.0800 1697 1799-2000 189 1922-1991 193 2.12% Ice core Kaspari et al., 2004

RIDS C -80.0100 -119.4300 1530 1903-1995 112 1970-1995 108.35 -3.26% Ice core Kaspari et al., 2004

RIDS B -79.4600 -118.0500 1603 1922-1995 150 1970-1995 149.37 -0.42% Ice core Kaspari et al., 2004

RIDS A -78.7300 -116.3300 1740 1831-1995 235 1922-1991 234 -0.43% Ice core Kaspari et al., 2004

ITASE00-1 -79.3830 -111.2390 1791 1653-2001 220 1922-1991 222 0.91% Ice core Kaspari et al., 2004

ITASE01-2 -77.8430 -102.9100 1353 1890-2001 427 1922-1991 436 2.11% Ice core Kaspari et al., 2004

ITASE01-3 -78.1200 -95.6460 1633 1859-2001 325 1922-1991 331 1.85% Ice core Kaspari et al., 2004

ITASE01-5 -77.0590 -89.1370 1246 1780-2001 388 1922-1991 342 -11.86% Ice core Kaspari et al., 2004

ITASE01-6 -76.0970 -89.0170 1232 ** 1978-1990 395 1978-1999 392.6 -0.61% Ice core Kaspari et al., 2004

Gomez -73.5900 -70.3600 1400 1855-2006 720 1970s-2006 925 1997-2006 1100 28.47% 53% Ice core Thomas et al., 2008

Dyer Plateau -70.6700 -64.8900 2002 1790-1989 549 1969-1989 593 8.00% Ice core Raymond et al., 1996

James Ross Island -64.2200 -57.6800 1640 1847-1980 443 1964-1990 578 30.47% Ice core Aristarain et al., 2004

R1 -78.3075 -46.2728 718 1816-1998 204 ±7 * 204 0.00% Ice core Mulvaney et al., 2002

Berkner B25 -79.5700 -45.7200 890 1816-1956 131 1965-1994 141 7.63% Ice core Ruth et al., 2004

A -72.6500 -16.6333 60 ** 1975-1989 380 1980-1989 350 -8% Ice core Isaksson & Melvold, 2002

E -73.6000 -12.4333 700 ** 1932-1991 324 1980-1991 277 -15% Ice core Isaksson & Melvold, 2002; 

Isaksson et al., 1996

B39 -71.4100 -9.9000 655 ** 1935-2007 818 1987-2007 818 0.00% Ice core Fernandoy et al., 2010

FB0704 -72.0600 -9.5600 760 ** 1962-2007 489 1987-2007 489 0.00% Ice core Fernandoy et al., 2010

BAS-depot -77.0333 -9.5000 2176 1816-1997 71 1965-1997 71 0.00% Ice core Hofstede et al., 2004

B04 -70.6200 -8.3700 35 1892-1981 362 ±95 1960-1980 325 -10.22% Schlosser & Oerter, 2002

CV -76.0000 -8.0500 2400 1816-1997 62 1965-1997 68 ±2 1992-1997 70 9.68% 13% Ice core Karlof et al., 2005

B38 -71.1600 -6.7000 690 ** 1960-2007 1257 1987-2007 1257 0.00% Ice core Fernandoy et al., 2010

FB0702 -71.5700 -6.6700 539 ** 1959-2007 547 1987-2007 500 -9% Ice core Fernandoy et al., 2010

FB9816 -75.0000 -3.5037 2740 1800-1997 47 ±17 1950-1997 51.5*** 9.57% Ice core Oerter et al., 2000

B31 -75.5800 -3.4300 2669 1816-1997 58.4 1966-1989 59.8 2.40% Ice core Oerter et al., 2000

H -70.5000 -2.4500 53 ** 1953-1993 480 1980-1993 425 -11% Ice core Isaksson & Melvold, 2002

NUS08-2 -87.8500 -1.8000 2583 1815-2007/8 67.4 ±2.6 1963-2007/8 63.4 ±4.2 -5.93% Ice core Anschutz et al., 2011

S32 -70.3100 -0.8000 53 ** 1995-2009 339 ±36 318 -6% Ice core Schlosser et al., 2014

G3 -69.8230 -0.6120 57 ** 1993-2009 295 ±29 288 -2% Ice core Schlosser et al., 2014

FB9815 -74.9492 -0.5055 2840 1801-1997 59 ±24 1950-1997 65*** 10.17% Ice core Oerter et al., 2000

G4 -70.9020 -0.4020 60 ** 1983-2009 330 ±21 323 -2% Ice core Schlosser et al., 2014

M2 -70.3160 -0.1090 73 ** 1981-2009 315 ±22 302 -4% Ice core Schlosser et al., 2014

G5 -70.5450 -0.0410 82 ** 1983-2009 298 ±21 290 -3% Ice core Schlosser et al., 2014

K -70.7500 0.0000 53 ** 1954-1996 254 1980-1996 250 0% Ice core Isaksson & Melvold, 2002

SPS -90.0000 0.0000 2850 1816-1956 76.5 1965-1994 84.8 ±3.3 1992-1997 84.5 ±8.9 10.85% 10% Ice core and poles Mosley & Thompson, 1999

B32 -75.0023 0.0070 2882 1816-1997 63 1966-1997 80 26.98% Ice core Oerter et al., 2000

EPICA DML -75.0020 0.0680 2774 1915-2008 73 1964-2008 73.1 ±1.7 0.14% Firn core and radar Fujita et al., 2011

FB9808 -74.7507 0.9998 2860 1801-1997 68 ±22 1950-1997 74.5*** 9.56% Ice core Oerter et al., 2000

FB9809 -74.4992 1.9608 2843 1801-1997 89 ±29 1950-1997 97.5*** 9.55% Ice core Oerter et al., 2000

EPICA (Amundsenisen) -75.0000 2.0000 2900 1865-1965 78 1966-1991 76 -2.56% Ice core Isaksson et al., 1996

G8 -70.4100 2.0100 58 ** 1991-2009 282 ±26 273 -3% Ice core Schlosser et al., 2014

FB9814 -75.0837 2.5017 2970 1801-1997 64 ±21 1950-1997 71*** 10.94% Ice core Oerter et al., 2000

C -72.2583 2.8911 2400 1955-1996 119 1965-1996 123 3.36% Ice core Isaksson et al., 1999

D -72.5083 3.0000 2610 1955-1996 112 1965-1996 116 3.57% Ice core Isaksson et al., 1999

DML08 -75.7528 3.2828 2971 1919-96 60 ±19 * 60 0.00% Ice core Oerter et al., 1999

E -72.6750 3.6628 2751 1955-1996 55 1965-1996 59 7.27% Ice core Isaksson et al., 1999

DML02 -74.9683 3.9185 3027 1919-95 59 ±14 * 59 0.00% Ice core Oerter et al., 1999

FB9810 -74.6672 4.0017 2980 1801-1997 86 ±29 1950-1997 94.5*** 9.88% Ice core Oerter et al., 2000

F -72.8583 4.3514 2840 1955-1996 23 1965-1996 24 4.35% Ice core Isaksson et al., 1999

S100 -70.2333 4.8000 48 1816-2000 292 1956-2000 284 1991-2000 260 ±80 -2.74% -11% Ice core Kaczmarska et al., 2004

S20 -70.2417 4.8111 63 1955-1996 271 1965-1996 265 -2.21% Ice core Isaksson et al., 1999

FB0601 -75.2470 4.8440 3090 1915-2008 52 1964-2008 51.6 ±1.2 -0.77% Firn core and radar Fujita et al., 2011

FB9813 -75.1673 5.0033 3100 1816-1997 48 1950-1997 53*** 10.42% Ice core Oerter et al., 2000

G -73.0417 5.0442 2929 1955-1996 28 1965-1996 30 7.14% Ice core Isaksson et al., 1999

FB9804 -75.2503 6.0000 2630 1801-1997 50 ±16 1950-1997 55*** 10.00% Ice core Oerter et al., 2000

H -73.3917 6.4606 3074 1955-1996 44 1965-1996 46 4.55% Ice core Isaksson et al., 1999
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Table A1. Sites information and snow accumulation values *no significant trend during the 20
th
 century **short record: only recent periods are compared ***when only a stacked accumulation change is given, accumulation 

from individual ice cores are inferred from the stacked record as if it was the same trend for all ice cores. Ref : reference period. Numbers in italic are inferred from the trend given in the referenced paper
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B33 -75.1670 6.4985 3160 1816-1997 45.9 1966-1989 55 19.83% Ice core Oerter et al., 2000, Sommer et 

al., 2000

FB9811 -75.0840 6.5000 3160 1801-1997 58 ±16 1950-1997 64*** 10.34% Ice core Oerter et al., 2000

DML09 -75.9333 7.2130 3156 1897-1996 45 ±12 * 45 0.00% Ice core Oerter et al., 1999

DML10 -75.2167 7.2130 3364 1900-96 47 ±11 * 47 0.00% Ice core Oerter et al., 1999

DML04 -74.3990 7.2175 3179 1905-1996 53 ±15 * 53 0.00% Ice core Oerter et al., 1999

I -73.8008 7.9406 3174 1955-1996 52 1965-1996 53 1.92% Ice core Isaksson et al., 1999

NUS07-1 74.7200 7.9800 3174 1815–2007/8 52 ±2 1963–2007/08 55.9 ±3.9 7.50% Ice core Anschutz et al., 2009

Site I -73.7167 7.9833 3174 1815-2007 52 ±1.3 1963-2007 56 ±4.7 1991-2007 52 7.69% 0% Ice core Anschutz et al., 2009

DML06 -75.0007 8.0053 3246 1899-1996 50 ±14 * 50 0.00% Ice core Oerter et al., 1999

NUS08-6 -81.7000 8.5700 2447 1815-2007/8 39.2 ±1.5 1963-2007/8 49.2 ±3.4 25.51% Ice core Anschutz et al., 2011

J -74.0417 9.4917 3268 1955-1996 44 1965-1996 45 ±4 2.27% Ice core Isaksson et al., 1999

FB0603 -75.1170 9.7240 3300 1915-2008 41 1964-2008 38 ±0.9 -7.32% Firn core and radar Fujita et al., 2011

K -74.3583 11.1036 3341 1955-1996 45 1965-1996 41 -8.89% Ice core Isaksson et al., 1999

L -74.6417 12.7908 3406 1955-1996 45 1965-1996 41 -8.89% Ice core Isaksson et al., 1999

A28 -74.8617 14.7420 3466 1915-2008 44 1964-2008 44.5 ±1 1.14% Firn core and radar Fujita et al., 2011

MC -75.0112 14.8865 3470.4 1816-1884 40 1955-2000 39 1992-2000 46 -2.50% 15% Ice core Karlof et al., 2005

MD -74.9706 14.9567 3470.8 1816-1884 42 1955-2000 40 1992-2000 53 -4.76% 26% Ice core Karlof et al., 2005

M -75.0000 14.9964 3470 1816-1884 41 ±0.7 1955-2000 41 ±0.5 1992-2000 50 ±1.1 0.00% 22% Ice core Karlof et al., 2005

M150 -74.9900 15.0000 3470 1816-1997 43 1965-1997 48.5 12.79% Ice core Hofstede et al., 2004

M -74.9917 15.0017 3453 1955-1965 51 1965-1996 45 -11.76% Ice core Isaksson et al., 1999

MB -75.0294 15.0435 3470.5 1816-1884 39 1955-2000 42 1992-2000 46 7.69% 18% Ice core Karlof et al., 2005

MA -74.9887 15.1134 3470.4 1816-1884 42 1955-2000 42 1992-2000 48 ±1.3 0.00% 14% Ice core Karlof et al., 2005

NUS08-5 -82.6300 17.8700 2544 1815-2007/8 35 ±0.8 1963-2007/8 37.6 ±2.3 7.43% Ice core Anschutz et al., 2011

NUS08-4 -82.8167 18.9000 2552 1815-2007/8 36.7 ±0.9 1963-2007/8 36.1 ±2.1 -1.63% Ice core Anschutz et al., 2011

NUS08-3 -84.1300 22.0000 2625 1815-2007/8 40.1 ±1 1963-2007/8 45.3 ±3.1 12.97% Ice core Anschutz et al., 2011

A35 -76.0660 22.4590 3586 1915-2008 35 1964-2008 39.2 ±0.9 12.00% Firn core and radar Fujita et al., 2011

NUS07-2 -76.0700 22.4700 3582 1815-2007/8 33 ±0.7 1963-2007/8 28 ±2 -15.15% Ice core Anschutz et al., 2011

MP -75.8880 25.8340 3661 1286-2008 33.1 ±1.0 1964-2008 38.7 ±0.9 1993-2008 41.9 ±2.8 16.92% 27% Firn core and radar Fujita et al., 2011

NUS07-3 -77.0000 26.0500 3589 1815-2007/8 22 ±0.5 1963-2007/8 23.7 ±1.7 7.73% Ice core Anschutz et al., 2009

IC12 -70.2458 26.3349 450 1816-2012 480 ±10 1955-2012 630 ±20 1992-2012 680 ±70 31.25% 42% Ice core This paper

DK190 -76.7940 31.9000 3741 1286-2008 28.7 ± 0.9 1993-2008 34.1 ±2.3 19% Firn core and radar Fujita et al., 2011

NUS07-4 -78.2167 32.8500 3595 1815-2007/8 19 ±0.5 1963-2007/8 17.5 ±1.2 -7.89% Ice core Anschutz et al., 2009

NUS07-5 -78.6500 35.6300 3619 1815-2007/8 24 ±0.5 1963-2007/8 20.1 ±1.4 -16.25% Ice core Anschutz et al., 2011

DF -77.3170 39.7030 3810 1816-2001 26.3 1964-2008 28.8 ±0.7 1995-2006 27.3 ±0.4 9.51% 4% Ice core Igarashi et al., 2011

YM85 -71.5800 40.6300 2246 1816-2002 140 1965-2002 135 -3.57% Ice core Takahashi et al., 2009

H72 -69.2047 41.0906 1214 1831-1998 311 1973-1998 307 -1.29% Ice core and poles Nishio et al., 2002

NUS07-6 -80.7833 44.8500 3672 1815-2007/8 22 1902-2007/8 21 -4.55% Ice core Anschutz et al., 2009

G15 -71.2000 45.9800 2544 1816-1964 86 1964-1984 116 34.88% Ice core Moore et al., 1991

NUS07-8 -84.1833 53.5333 3452 1815-2007/8 32 ±1.2 1963-2007/8 30 ±2.1 -6.25% Ice core Anschutz et al., 2009

NUS07-7 -82.0700 54.5500 3725 1815-2007/8 29.4 ±0.6 1963-2007/8 26.1 ±1.9 -11.22% Ice core Anschutz et al., 2011

DT217 -75.7167 76.8333 2800 ** 1998-2008 12 ±1.72 2005-2008 12 0% Stake arrays Ding et al., 2011

DT364 -78.3333 77.0000 3380 ** 1999-2008 62 ±0.14 2005-2008 72 16% Stake arrays Ding et al., 2011

DT401 -79.0200 77.0000 3760 1816-1999 19 1963-1999 24 1999–2005 25 ±16 26.32% 32% Ice core Ren et al., 2010; Ding et al., 

2011a

DT001 -70.8300 77.0700 2325 1810-1959 131 1959-1996 131 0.00% Ice core Zhang et al., 2006

Dome A -80.3667 77.3500 4093 ** 2005-2008 19 ±0.25 2008-2009 21 11% Stake arrays Ding et al., 2011

DomeA -80.3600 77.3600 4092 1815-1998 23 1963-1998 23 0.00% Ice core Jiang et al., 2012

LGB65 -71.8500 77.9200 1850 1815-1996 131 1960-1996 131 0.00% Ice core Xiao et al., 2004

DT008 -72.1667 77.9333 2390 ** 1998-2008 118 ±0.30 2005-2008 80 -32% Stake arrays Ding et al., 2011

VOSTOK -78.4500 106.8300 3488 1816-2010 20.6 ±0.3 1955-2010 21.5 ±0.5 1958-2010 20.8 4.37% 1% Snow pits and poles Ekaykin et al., 2004

DSS -66.7697 112.8069 1370 1816-2000 680 1970-2009 750 10.29% Ice core Roberts et al., 2015

LAW DOME -66.7700 112.9800 1370 1816-1966 687 1966-2005 742 8.01% Ice core Morgan et al., 1991; van 

Ommen & Morgan, 2010

DomeC -75.1200 123.3100 3233 1816-1998 25.3 1965-1998 28.3 1996-1998 39 11.86% 54% Ice core and poles Frezzotti et al., 2005

D6 A -75.4400 129.8100 3027 1816-1998 36 ±1.8 1966-1998 29 ±1.4 1998-2002 39 -19.44% 8% Ice core and poles Frezzotti et al., 2005

D66 -68.9400 136.9400 2333 1966-1864 196 1965-2001 213 ±13 2001-2003 197 8.67% 1% Ice core and poles Magand et al., 2004;Frezzotti et 

al., 2013

D2 A -75.6200 140.6300 2479 1816-1998 20 ±1.0 1966-1998 31 ±1.6 1998-2002 30 55.00% 50% Ice core and poles Frezzotti et al., 2005

GV1 -70.8700 141.3800 2244 1816-2001 114 1965-2001 117 ±7 2001-2003 96 2.63% -16% Ice core and poles Magand et al., 2004;Frezzotti et 

al., 2013

GV2 -71.7100 145.2600 2143 1816-2001 112 1965-2001 112 ±7 2001-2003 92 0.00% -18% Ice core and poles Magand et al., 2004;Frezzotti et 

al., 2013

MdPtA -75.5300 145.8600 2454 1816-1998 36 ±1.8 1966-1998 45 ±2.7 1998-2010 47 25.00% 31% Ice core and poles Frezzotti et al., 2005
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GV3 -72.6300 150.1700 2137 1816-2001 81 1965-2001 84 ±5 2001-2003 73 3.70% -10% Ice core and poles Magand et al., 2004;Frezzotti et 

al., 2013

M2 A -74.8000 151.2700 2278 1816-1998 17 ±0.8 1966-1998 15 ±7.5 1998-2002 8.5 -11.76% -50% Ice core and poles Frezzotti et al., 2005

GV4 -72.3900 154.4800 2126 1816–2001 119 1965–2001 100 ±6 2001–2003 96 -15.97% -19% Ice core and poles Magand et al., 2004;Frezzotti et 

al., 2013

31DPT A -74.0300 155.9600 2069 1816-1998 98 ±4.9 1966-1998 112 ±5.6 1998-2002 98 14.29% 0% Ice core and poles Frezzotti et al., 2005

GPS2A -74.6400 157.5020 1804 1816-1998 60 ±3.0 1966-1998 54 ±2.7 1993-2000 55 -10.00% -8% Ice core and poles Frezzotti et al., 2005

GV5 -71.8900 158.5400 2184 1816-2001 129 1965-2001 129 ±7 2001-2004 135 0.00% 5% Ice core and poles Magand et al., 2004;Frezzotti et 

al., 2007

GV7 -70.6800 158.8600 1947 1854-2001 237 1965-2001 241 ±13 2001-2004 252 1.69% 6% Ice core and poles Magand et al., 2004;Frezzotti et 

al., 2007

Talos Dome -72.7700 159.0800 2316 1816-2001 83.6 1966-1996 86.6 2001-2010 68 3.59% -19% Ice core and poles Magand et al., 2004;Frezzotti et 

al., 2007; 2013

Talos Dome -72.8000 159.1000 2246 1816-1996 83.6 1966-1996 86.6 1992-1996 92.5 3.59% 11% Ice core Stenni et al., 2002

Hercules Neve -73.1000 165.4000 2960 1816-1966 118 1966-1992 129 9.32% Ice core Stenni et al., 1999
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