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snow water content is always lower than 1%, as is clear comparing the plot made by the referee with the one 
of the density reported below. 

 

 

⇒ Concept of measurement 

Unfortunately you made several severe mistakes while sampling: 

• The use of a 0.5m resolution for your hand-probed snow height ruins the entire analysis. 

⇒ Concept of estimating uncertainty 

It remains unclear, why the authors have chosen in some cases to use their definition of Type B 
uncertainties, while is would have been possible to stay with a Type A data uncertainty by e.g. 
sampling density or snow height several times in close proximity. 

Ref. comment (page 18, line 26): This fact reduces your whole discussion on uncertainty to absurdity. 
The uncertainty of your probe reading is too large from the very beginning. 

Ref. comment (page 18, line 26): I totally disagree! If you were right, all laser-scan based 
measurements would be useless! If you really believe in this arguement, you must proof it with 
literature or examples. 

Ref. comment (page 12, line 6): This is a very weak point in your analysis. The measured snow height 
with the probe somehow represents your target variable and has the lowest resolution. Why did you 
not combine the 0.5m  resolution with a standard ruler so that you end up with a cm resolution? 

 

Ref. comment (page 10, line 1): not true! Depends on your method! In addition it totally depends on 
the used scale! If you assume that the snow height on almost flat terrain, you can easily compute 10 
probe measurements in an array of 10 by 10 cm which will result in a Type A evaluation of your 
uncertainty, if you you define a 100cm^2 foot print, which should be fine for your radar beam. Your 
Type B is again totally driven by the scale of your measurement device, in your case by the very, very 
coarse setting (0.5m) of your probe. 

 

Reply: We did not introduce any “personal” method to compute the uncertainties but we followed the most 
up to date procedure. See for example: http://www.bipm.org or https://www.nist.gov/. However, in the 
following we better explain why our procedure is rigorous and correct and why using a hand probe with a 
much higher resolution scale would not appreciably improve our analysis.   
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In our field conditions, as these questions are not easy to quantify, we will simplify our computation as 
follows, bearing in mind that such simplification will certainly introduce an underestimation of the 
overall uncertainty.   

We assume to measure the snow with a hand probe having marks every 2 cm. Thus the uncertainty on 
reading (Type B uncertainty assuming a uniform distribution) is:  

2 2

0.6
3

read

a cm

a
cm



 
  

Now, we randomly generated 10 measurements of the snow height (according to the range of height 
variability given above that is  10 cm). The measurements are: 

300, 302, 310, 295, 308, 291, 298, 304, 290, 305 

Note that these readings are taken assuming a resolution of 1 cm (half of the marks distance on the 
scale). From these data we can estimate the Type A uncertainty averaging the measurements and the 
standard deviation uncertainties: 

300.3

6.8

2.2
x

x

x cm

cm

cm








 

From this calculation we see that the uncertainty associated with a single measurement (and any other 
1, 2, ...n n n    measurements that can be made with the hand probe) is about 7 cm, that is over 3 

times the divisions on our hypothetical hand probe scale (i.e., 2 cm). This means that we are using a 
“system” that is too refined for our measurement and the uncertainty is much larger than the scale 
division. In other words, the spread of the data due to bedrock (or bottom layer) irregularities is much 
larger than the sensitivity of the instrument. 

Furthermore, we can try to compute the bias error associated with the inclination of the probe (see 
Fig.R2). If we assume that we insert the probe with an average angle of 10° with respect to the vertical 
and we also assume that the uncertainty on this inclination is 10° (between 15°and 5°) we can compute 
for 300 cm snow height a bias error (BE) as follows: 

304.6
cos

4.6

b
c cm

BE cm


 


  

The uncertainty on this error is: 

310.6
cos

301.1
cos
9.5

b
c cm

b
c cm

c cm





  


  


 

  

Now assuming a uniform distribution, the type B uncertainty for the inclination is: 

9.5
2.7

2 3
incl cm     



As the bias error is, by definition, always there and overestimates the snow height, it should be subtracted 
from the average value:  

300.3 4.6 295.7corrSH cm     

The combined standard uncertainty associated to this value is: 

2 2 2 2 2 22.2 0.6 2.7 3.5x read incl cm          

This standard uncertainty represents 68% of probability that the measurement falls between 3.5cm. If we 
use a coverage factor, e.g., k=2 (as suggested by GUM), we will have that about 95% of our measurements 
will fall in the interval 7.1 cm. 

We can conclude that the uncertainty on our measurement is at best about 7 cm. We should remember 
however that we are underestimating the uncertainty, as several items in points a), b) and c) above weren’t 
considered because they are too difficult to estimate in the present case. For example, it is not easy to 
estimate the effect on snow height measurements of rocks or ice lenses present in the snowpack. As a 
consequence is quite possible that, in our case, the overall uncertainty is 10 cm.  

In measurement theory (and practice) the best choice of instrument scale division is driven by the overall (or 
maximum) uncertainty, thus to optimize our calibration in our specific field conditions, we should have used 
a hand probe with marks divisions computed using the combined standard uncertainty computed above (i.e., 
10 cm).  From this value we can compute the suitable scale division assuming a uniform distribution as 

follows: 2 2 10 3 34.6a cm    . In our work we used a probe with 50 cm distance between the marks, 
so in analogy with the example discussed above, with a resolution of 25 cm, which for a uniform distribution 
gives a type B uncertainty of 14 cm. This is an uncertainty of about 1.5 times the value we have found using 
a hand probe with only 2 cm marks distance. 

If we use for the hand probe readings a uncertainty of 10 cm (assuming that, as we will demonstrate below, 
the uncertainties on the TDR are correct) we found a 0.91

HPtwtu ns  which does not change the results 

presented in the original manuscript (cf. Table 2 in the manuscript). 

We can conclude that, in the specific field conditions of our study, the use of a more precise technique like 
laser, which samples a very small area [see e.g., Lee et al., 2015], would not significantly improve the GPR 
calibration due to all sources of errors present in the large radar footprint. 

 

⇒ Concept of measurement 

Unfortunately you made several severe mistakes while sampling: 

• I believe that your analysis of the TDR travel time is inaccurate. Please provide more details how you 
processed the data including figures. 

 

⇒ Concept of estimating uncertainty 

In addition, I have the feeling that Type B uncertainties are purely driven by the units given by the 
chosen estimated values. E.g. with TDR small differences in estimating t2 may result in large 
differences for the permittivity. I want to see a broader discussion on that topic. 

Ref. comment (page 11, line 6): Provide a Figure on the signal and explain exactly how you picked the 
derivate. Since snow tends to give a weak signal, the slope indicating the end of your sensor tends to be 
flat which introduces again a source of uncertainty, since you have to pick a certain time of your 



signal. Please comment on that and make statements on how you could eventually prevent this source 
of error for future investigations. 

 

Ref. comment (page 18, line 7): In my opinion not shown and biased by your chosen parameters for u. 

 

Reply: The comments made by the referee require some explanation about TDR working principle and its 
applicability to snow measurements. In the following we summarize such information, including an example 
of the analysis of a waveform collected during the measurement campaign.  Time domain reflectometry 
(TDR) is a valuable method for measuring the electromagnetic (e.m.) wave propagation velocity in solid, 
granular and liquid materials. Our TDR system consists of an open ended three-prong line (hereafter referred 
to as probe line) that can be embedded in the material; the instrument generates a stepwise signal with a 
200ps rise time [Tektronix 1502 cable tester]. The output of the TDR system consists essentially of the signal 
recorded at the feeder line input, which displays the results of the reflection processes taking place in the 
system. A first partial reflection occurs when the wave front from the generator comes across the impedance 
discontinuity at the probe line input. In fact, the probe line is designed in a way to exhibit an impedance 
mismatch at the generator feeder line. A second reflection takes place at the end of the probe, with a unit 
reflection coefficient as the probe is open-ended. The wave velocity is estimated from the signal two-way 
travel time; a complete discussion about the multiple reflections is given by Yanuka et al. (1988) and Topp et 
al. (1988). An example of the TDR trace acquired during the survey in the Ortles-Cevedale group is reported 
in Fig. R3. The first and second arrows indicate the reflection at the beginning and the end of the probe line. 
As we can see, the two reflections are very clear and can be used to determine the two way travel time of the 
signal along the TDR probe: in fact, the two way travel time appears in the TDR trace as the time interval 
between the reflections at the probe edges. For non-magnetic materials (like snow), this time is given by 

cLt a /2=  , where L is the length of the probe, c the light speed in a vacuum, and a  is the apparent 

relative permittivity given by [Von Hippel, 1994] 

2 2

a

(1 1 / )

2

  
   ,                 

where    and    are the real and imaginary part of the permittivity. Therefore, the two way travel time can 
be used to compute the apparent permittivity or, alternatively, the velocity of the em signal in the medium 
under test (i.e., snow), by using: 

  2( / 2 )a c t L    

2 /v L t   

Note that a reduces to the real part of permittivity if losses are negligible. 
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Reply: We are well aware about the very interesting application of upward looking GPR published in several 
papers. However, we did not mention such papers in our manuscript because the field conditions and the 
rationale of the measurement are totally different and hardly comparable; consequently we compared our 
results with those reported in similar experiments. In particular, upward looking GPR has been employed at 
fixed locations monitoring the time evolution of the snow layer (surface). In contrast, in our case we have a 
strong spatial variability in the properties of the basal reflector. Therefore the two methodologies are affected 
by different phenomena and error sources.        
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