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Abstract. An open-source sea ice drift algorithm for Sentinel-1 SAR imagery is introduced based on

the combination of feature-tracking and pattern-matching. A computational efficient feature-tracking

algorithm produces an initial drift estimate and limits the search area for the pattern-matching, that

provides small to medium scale drift adjustments and normalised cross correlation values as quality

measure. The algorithm is designed to utilise the respective advantages of the two approaches and5

allows drift calculation at user defined locations. The pre-processing of the Sentinel-1 data has been

optimised to retrieve a feature distribution that depends less on SAR backscatter peak values. A

recommended parameter set for the algorithm has been found using a representative image pair over

Fram Strait and 350 manually derived drift vectors as validation. Applying the algorithm with this

parameter setting, sea ice drift retrieval with a vector spacing of 8 km on Sentinel-1 images covering10

400 km x 400 km, takes less than 3.5 minutes on a standard 2.7 GHz processor with 8 GB memory.

For validation, buoy GPS data, collected in 2015 between 15th January and 22nd April and covering

an area from 81◦ N to 83.5◦ N and 12◦ E to 27◦ E, have been compared to calculated drift results

from 261 corresponding Sentinel-1 image pairs. We found a logarithmic distribution of the error

with a peak at 300 m. All software requirements necessary for applying the presented sea ice drift15

algorithm are open-source to ensure free implementation and easy distribution.

1 Introduction

Sea ice drift has a strong impact on sea ice distribution on different temporal and spatial scales. Mo-

tion of sea ice due to wind and ocean currents causes convergence and divergence zones, resulting

in formation of ridges and opening/closing of leads. On large scales, ice export from the Arctic and20

Antarctic into lower latitudes, where the ice eventually melts away, contributes to a strong season-

ality of total sea ice coverage (IPCC, 2013). Due to a lack of ground stations in sea ice covered

areas, satellite remote sensing represents the most important tool for observing sea ice conditions

on medium to large scales. Despite the strong impact of sea ice drift and the opportunities given by
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latest satellite remote sensing techniques, there is a lack of extensive ice drift data sets providing25

sufficient resolution for estimating sea ice deformation on a spatial scaling of less than 5 km.

Our main regions of interest are the ice covered seas around Svalbard and East of Greenland.

Characteristic for this area are a large variation of different ice types (Marginal Ice Zone, First Year

Ice, Multi Year Ice etc.), a strong seasonality of ice cover and a wide range of drift velocities. Focus

was put on the winter/spring period, since the area of interest experiences the highest ice cover during30

this time of the year.

Space-borne Synthetic Aperture Radar (SAR) are delivering systematic acquisitions of sea ice

covered oceans since the early 90s and Kwok et al. (1990) showed that sea ice displacement can

be calculated from consecutive SAR scenes. SAR is an active imaging sensor operating in the mi-

crowave spectrum and produces data regardless of solar illumination and cloud cover. The geophys-35

ical processor system from Kwok et al. (1990) has been used to calculate sea ice drift fields for

the entire Arctic every week with a spatial resolution of 5 km for the time period 1997–2012. This

extensive dataset makes use of SAR data from Radarsat and ENVISAT (Environmental Satellite).

A high-resolution sea ice drift algorithm for SAR images from ERS-1 (European Remote-sensing

Satellite) based on pattern-matching was introduced by Thomas et al. (2008), allowing drift calcula-40

tion up to 400 m resolution. The work on this algorithm has been continued by Hollands and Dierk-

ing (2011), who derived sea ice drift from ENVISAT ASAR data. Komarov and Barber (2014) and

Muckenhuber et al. (2016) have evaluated the sea ice drift retrieval performance of dual-polarisation

SAR imagery using pattern-matching and feature-tracking respectively. Muckenhuber et al. (2016)

has shown that feature-tracking provides on average around four times as many vectors using HV45

polarisation compared to HH polarisation.

After the successful start of the Sentinel-1 mission in early 2014, high-resolution SAR images

are delivered for the first time in history within a few hours after acquisition as open-source data

to all users. This introduced a new era in SAR Earth observation with great benefits for both sci-

entists and other stack holders. The sea ice covered oceans in the European Arctic Sector represent50

an important area of interest and with Sentinel-1 having a revisit time of less than one day in the

Arctic (ESA, 2012), our area of interest is monitored on a daily basis. Making use of Sentinel-1

data, an operational sea ice drift product with 10 km resolution is provided by the Danish Techni-

cal University (DTU) as part of the Copernicus Marine Environment Monitoring Service (CMEMS,

http://marine.copernicus.eu). Muckenhuber et al. (2016) published an open-source feature-tracking55

algorithm to derive computationally efficient sea ice drift from Sentinel-1 data. This paper follows

up the work from Muckenhuber et al. (2016) and aims to improve the feature-tracking approach by

combining it with pattern-matching.

Contemporary algorithms for deriving displacement vectors between two consecutive images are

based either on feature-tracking or pattern-matching. Feature-tracking detects distinct patterns (fea-60

tures) in both images and tries to connect similar features in a second step without the need for
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knowing the locations. This can be done computationally efficient and the resulting vectors are in-

dependent of their neighbours, which is an important advantage for resolving shear zones, rotation

and divergence/convergence zones. However, the resulting vector field is not evenly distributed in

space and large gaps may occur between densely covered areas (Muckenhuber et al., 2016). Pattern-65

matching, on the other hand, takes a small template from the first image at the starting location of the

vector and tries to find a match on a larger template from the second image. Despite a considerable

computational effort, this approach is widely used, since it allows to define the vector positions and

delivers a comparable quality estimate for each vector. For practical reasons, a pyramid approach

is generally used to derive high-resolution ice drift. This speeds up the processing, but limits the70

independence of neighbouring vectors, since they depend on a lower resolution estimate (Thomas et

al., 2008). The objective of this paper is to combine the two approaches in the most meaningful way

in order to benefit from the respective advantages.

The presented algorithm, all necessary software requirements (python incl. Nansat, openCV and

SciPy) and the satellite data from Sentinel-1 are open-source. A free and user friendly implementa-75

tion shall support an easy distribution of the algorithm among scientists and other stakeholders.

The paper is organised as follows: The used satellite products and buoy data are introduced in

Section 2. The algorithm description including data pre-processing is given in Section 3, together

with tuning and validation methods. Section 4 presents the pre-processing, parameter tuning and

validation results and provides a recommended parameter setting. The discussion including outlook80

can be found in Section 5.

2 Data

The Sentinel-1 mission is a joint initiative of the European Commission and the European Space

Agency (ESA) and represents the Radar Observatory for the Copernicus Programme, a European

system for monitoring the Earth with respect to environmental and security issues. The mission85

includes two identical satellites, Sentinel-1A (launched in April 2014) and Sentinel-1B (launched

in April 2016), each carrying a single C-band SAR with a centre frequency of 5.405 GHz and

dual-polarisation support ((HH+HV, VV+VH). Both satellites fly in the same near-polar, sun-

synchronous orbit and the revisit time is less than 1 day in the Arctic (ESA, 2012). The main

acquisition mode of Sentinel-1 over sea ice covered areas is “Extra Wide Swath Mode Ground90

Range Detected with Medium Resolution” and the presented algorithm is built for processing

this data type. The considered images have a resolution of 93 m range× 87 m azimuth with

residual planimetric distortions within 10 m (Schubert et al., 2014). The covered area per image is

400 km× 400 km and the data are provided with a pixel spacing of 40 m× 40 m in both HH and HV

polarisation.95
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For parameter tuning, we used the image pair ’Fram Strait’, including 350 manually derived

drift vectors as validation, from Muckenhuber et al. (2016). The acquisition times of the two

consecutive images are 2015-03-28 07:44:33 (UTC) and 2015-03-29 16:34:52 (UTC), and the

covered area including validation vectors are shown in Figure 6. This image pair covers a wide100

range of different ice conditions (multiyear ice, first-year ice, marginal ice zone etc.) and the ice

situation is representative for our area and time period of interest.

To validate the algorithm results, we used GPS data from drift buoys that have been set out in the

ice covered waters north of Svalbard as part of the Norwegian Young Sea Ice Cruise (N-ICE2015)105

project of the Norwegian Polar Institute (Spreen and Itkin, 2015). The considered drift data have

been collected in 2015 between 15th January and 22nd April, and cover an area ranging from 81◦ N

to 83.5◦ N and 12◦ E to 27◦ E. The buoys recorded their positions either hourly or every three hours.

In the later case, the positions have been interpolated for each hour.

3 Method110

3.1 Data pre-processing

To process Sentinel-1 images within Python (extraction of backscatter values and corresponding

geolocations, reprojection, resolution reduction etc.), we use the open-source software Nansat (Ko-

rosov et al., 2016). Nansat is a scientist-friendly Python toolbox for 2-D satellite Earth observa-

tion data, and builds on the Geospatial Data Abstraction Library (http://www.gdal.org). As done115

in Muckenhuber et al. (2016), we change the projection of the the provided ground control points

(latitude/longitude values given for certain pixel/line coordinates) to stereographic and use spline

interpolation to calculate geographic coordinates. This provides a good geolocation accuracy also at

high latitudes.

For each pixel p, the Sentinel-1 data file provides a digital numberDNp and a normalisation coef-120

ficient Ap, from which the normalised radar cross section σ0
raw is derived by the following equation:

σ0
raw =DN2

p/A
2
p (1)

The pixel spacing of the image is changed by averaging from 40 m to 80 m, which is closer to the

sensor resolution of 93 m range× 87 m azimuth, and decreases the computational effort.125

To apply the feature-tracking algorithm from Muckenhuber et al. (2016), the SAR backscatter val-

ues σ0 have to be converted into intensity values iwith 0≤ i≤ 255 for i ∈ R. Before the conversion,

we change the linear scaling of the raw backscatter values σ0
raw to a logarithmic scaling and get the
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backscatter values σ0 = 10 ∗ lgσ0
raw. The conversion is done by using Eq. (2) and setting all values

outside the domain to 0 and 255.130

i = 255 · σ0−σ0
min

σ0
max−σ0

min

(2)

The upper brightness boundary σ0
max is set to the logarithm of the recommended value from

Muckenhuber et al. (2016), i.e. log(0.013) and log(0.08) for HV and HH respectively. The lower

boundary σ0
min was chosen to be -3.25 (HV) and -2.5 (HH), since this was found to be a reasonable

range of expected backscatter values.135

3.2 Sea ice drift algorithm

The presented sea ice drift algorithm is based on a combination of feature-tracking and pattern-

matching, and is designed to utilise the respective advantages of the two approaches. Computational

efficient feature-tracking is used to derive a first estimate of the drift field. The provided vectors

serve as initial search position for pattern-matching, that provides accurate drift vectors at each140

given location including rotation and quality estimate. The algorithm consists of three main steps:

I Feature-tracking

The feature-tracking algorithm used in this work is adopted from Muckenhuber et al. (2016),145

who introduced a computationally efficient sea ice drift algorithm for Sentinel-1 based on the ORB

(Oriented FAST and Rotated BRIEF) algorithm from Rublee et al. (2011). ORB uses the concept

of the FAST keypoint detector (Rosten and Drummond, 2006) to find corners on several resolution

levels. The patch around each corner is then described using an modified version of the binary

BRIEF descriptor from Calonder et al. (2010). To ensure rotation invariance, the orientation of the150

patch is calculated using the intensity-weighted centroid. Muckenhuber et al. (2016) applies a Brute

Force matcher that compares each feature from the first image to all features in the second image.

The comparison of two features is done using the Hamming distance, that represents the number of

positions in which the two compared binary feature vectors differ from each other. The best match

is accepted if the ratio of the two shortest Hamming distances is below 0.75.155

II Pattern-matching
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The used pattern-matching approach is based on the maximisation of the normalised cross corre-

lation. The normalised cross correlation of two equally sized windows g and h is defined as:160

NCC(g,h) =

∑
i,j(gij − ḡ)(hij − h̄)

√∑
i,j(gij − ḡ)2

∑
i,j(hij − h̄)2

(3)

with gij (hij) representing the value of g (h) at the location i,j and ḡ (h̄) the mean value of g (h)

(Hollands , 2012). Considering a window g from a SAR image and a window h that is moved with

step size 1 pixel over a quadratic area of a consecutive SAR image results in a matrix with NCC

values. The highest value in this matrix, i.e. the maximum cross correlation MCC, represents the165

location of the best match and serves as a quality estimate of the matching performance.

III Combination

After data pre-processing as described above, the feature-tracking algorithm from Muckenhuber170

et al. (2016) is applied with a maximum drift filter of 0.5 m/s. This provides a number of un-evenly

distributed vectors with start positions x1, y1 on the first image (SAR1) and end positions x2, y2 on

the subsequent image (SAR2). To filter outliers, the starting point of each vector is simulated using

two functions fx1(x2,y2) and fy1(x2,y2), that represent the least-squares solutions between x1, y1

and the third degree polynomial of x2 and y2. Vectors that have a start position x1 or y1 further than175

100 pixels (8 km) away from the simulated point are removed.

The remaining feature-tracking vectors are used to estimate the drift on the entire first image,

i.e. x2 and y2 values are provided for each pixel on SAR1 (left and middle panel in Figure 1). The

interpolation is constructed by triangulating between the start positions on SAR1 and performing

linear barycentric interpolation on each triangle to find x2 and y2 based on the three neighbouring180

feature-tracking vectors . To provide a drift estimate for the surrounding area, we extrapolate x2 and

y2 using two functions fx2(x1,y1) and fy2(x1,y1), that are derived from the least-squares solutions

between x2, y2 and a linear combination of x1 and y1.

This initial drift estimate is used to perform efficient pattern-matching based on normalised cross

correlation on a pre-defined grid or chosen points of interest. Figure 2 shows a pattern-matching185

example from image pair ’Fram Strait’ used in Muckenhuber et al. (2016).

A small template t1 with a given size is taken around the point of interest from SAR1. A larger tem-

plate t2 with centre at the location x2, y2 defined by the corresponding drift estimate from feature-

tracking is taken from SAR2. The size of t2 is defined by the distance d to the nearest feature-tracking

vector with a lower and upper threshold (dmin,dmax):190

side(t2) = side(t1) + 2 ∗ d (4)
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Figure 1. Estimated drift based on feature-tracking, and distance d to the nearest feature-tracking vector using

the image pair ’Fram Strait’ from Muckenhuber et al. (2016). The left and middle panel show the two compo-

nents x2 and y2 of the estimated end positions on the second image (SAR2) for each pixel on the first image

(SAR1). The right panel shows the distribution of d on SAR1 with a lower and upper threshold dmin,dmax.
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Figure 2. Pattern-matching using initial drift estimate from feature-tracking: Small template t1 (left) around

point of interest on SAR1 is rotated from −β to +β and matched with large template t2 (middle) from SAR2,

that has its centre at estimated end position x2, y2. The right contour plot shows the normalised cross correlation

matrix of the rotation β∗ that provided the highest maximum cross correlation MCC(β∗). The estimated

end position x2, y2 of this example has to be adjusted by -21 pixels, +32 pixels to fit with the location of

MCC(β∗ = 2◦) = 0.71. NB: X and Y -axis represent pixel coordinates.

with dmin ≤ d≤ dmax for d ∈ N (example of d distribution in right panel of Figure 1). The two

templates t1 and t2 are matched using maximisation of normalised cross correlation. Template t1 is

rotated starting with the initial rotation between the two Sentinel-1 images and going from −β to

+β with step ∆β. The result with the highest cross correlation value is returned.195

In the last step, the small to medium scale displacement adjustments derived from pattern-

matching are added to the estimated drift from feature-tracking. The maximum cross correlation

values serve as individual quality measure for each drift vector and vectors that have a MCC value

below the threshold MCCmin are removed.
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3.3 Parameter tuning200

The size of template t1 and t2 are crucial for a reliable drift result and for limiting the computational

effort. As shown in Equation 4, the maximum size of t2 is limited by the upper threshold dmax. To

find the most useful values for dmax and the size of t1, we varied the two parameters within the

domains 20≤ side(t1)≤ 140 with ∆side(t1) = 2, and 50≤ dmax ≤ 200 with ∆dmax = 10 (values

given in pixels). For each combination, we calculated the drift on image pair ’Fram Strait’ at the205

starting locations of the 350 manually derived validation vectors and compared the results using root

mean square distance RMSD:

RMSD =

√∑
i(ui−Ui)2 + (vi−Vi)2

N
(5)

The index i represents a vector pair consisting of a calculated vector and a validation vector at the

same location. The eastward and northward drift components of the calculated vector are ui and vi.210

The validation vector has the corresponding drift components Ui and Vi. N is the total number of

vector pairs.

During parameter tuning, the minimum value of the normalised cross correlation MCCmin was

set to zero. We applied rotation on t1 ranging from−10◦ (−β) to +10◦ (+β) with step size ∆β = 1◦.

The lower threshold dmin was set to 20 pixels to allow for small scale drift adjustments close to the215

locations of feature-tracking vectors.

3.4 Comparison with buoy data

Sentinel-1 image pairs have been selected automatically according to position and timing of the

buoy data. Drift vectors have been calculated starting at the buoy GPS position with the least time

difference to the acquisition of the first satellite image. The distance D between the calculated end220

position on the second image and the buoy GPS position with the least time difference to the second

satellite acquisition has been calculated using the following equation:

D =
√

(u−U)2 + (v−V )2 (6)

where u and v represent eastward and northward drift components of the displacement vector

derived by the algorithm, and U and V the corresponding drift components of the buoy.225

4 Results

4.1 Logarithmic scaling of σ0

The start and end positions of the feature-tracking vectors are tied to keypoints that are found during

an initial processing step in the drift algorithm from Muckenhuber et al. (2016). Looking at the dis-
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Table 1. Linear and logarithmic scaling of the backscatter values σ0 in HV and HH polarisation: range, i.e.

lower and upper brightness boundaries as used in Equation 2, and number of matched keypoints using image

pair ’Fram Strait’ (matched keypoints with maximum pixel value 255 in brackets).

Linear scaling (σ0 = σ0
raw) Logarithmic scaling (σ0 = 10 ∗ lgσ0

raw)

HV range [σ0
min, σ0

max] [0, 0.013] [-3.25; log(0.013)]

HH range [σ0
min, σ0

max] [0, 0.08] [-2.5; log(0.08)]

HV matched keypoints 11244 (4653) 15614 (2196)

HH matched keypoints 2840 (725) 4454 (317)
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Figure 3. Number of matched keypoints for each intensity value in image pair ’Fram Strait’ using linear (HV:

black, HH: gray) and logarithmic scaling (HV: darkgreen, HH: lightgreen) for the backscatter values σ0. Total

numbers, and matches at intensity maximum 255 are shown in Table 1.

tribution of the intensity values among the matched keypoints, we found a strong peak at maximum230

intensity 255, meaning that most matched keypoints are recognised at very high backscatter values

(NB: the number of vectors is equal to the number of matched keypoints divided by two). Before the

conversion of the backscatter values σ0 into the intensity values i (Equation 2), the scaling of σ0 can

be changed from linear (σ0 = σ0
raw) to logarithmic (σ0 = 10∗ lgσ0

raw). Table 1 and Figure 3 show the

intensity value distribution of matched keypoints from image pair ’Fram Strait’. Using a logarithmic235

instead of a linear scaling provided a keypoint distribution that depends less on high peak values (the

number of keypoints with intensity value 255 decreased from 5378 to 2513), while the total number

of vectors increased from 7042 to 10034.
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Table 2. Recommended parameter setting for sea ice drift retrieval from Sentinel-1 using the presented algo-

rithm.

Parameter Meaning Recommended setting

[σ0
min, σ0

max] (HH) Brightness boundaries for HH channel [-2.5, log(0.08)]

[σ0
min, σ0

max] (HV) Brightness boundaries for HV channel [-3.25, log(0.013)]

side(t1) Size of template t1 70 pixels

[dmin, dmax] Influence domain for size of t2 [20 pixels, 125 pixels]

MCCmin Threshold for cross correlation 0.35

[−β, +β, ∆β] Rotation angle and increment [-10◦, +10◦, 2◦]

4.2 Parameter tuning

Figure 4 shows the RMSD (Equation 5) calculated for image pair ’Fram Strait’ using HH (left240

panel) and HV polarisation (right panel). Based on this evaluation, our experience with the algorithm

behaviour, and considering a good compromise between computational efficiency and high quality

of the resulting vector field, we recommend the parameter setting shown in Table 2. The following

testing and validation process is conducted using this parameter setting.

4.3 Computational efficiency245

The processing time depends on the parameter setting and the chosen vector distribution. Using the

recommended parameter setting from Table 2, allows high-resolution sea ice drift retrieval from a

Sentinel-1 image pair within a few minutes. Figure 5 depicts calculated ice drift vectors for the image

pair ’Fram Strait’ on a grid with 8 km (100 pixels) spacing. The corresponding processing times are

shown in Table 3. The calculations have been done using a MacBook Pro from early 2013 with a250

2.7 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3 memory. The total processing time for

1145 vectors with a normalised cross correlation value above 0.35, is less than 3.5 minutes. NB: The

vectors near Svalbard are located in the marginal ice zone. This is a very challenging area for drift

algorithms based on consecutive images and the results have to be treated with caution.

4.4 Validation255

The manually derived vectors from the image pair ’Fram Strait’ have been compared with calculated

drift vectors at the same locations (Figure 6) using RMSD from Equation 5 and the recommended

parameters from Table 2. 335 vectors with a normalised cross correlation value above 0.35 could

be used for the comparison and the resulting RMSD value is 540 m. NB: nine vectors close to the

image border could not be used for comparison. The templates t1 and t2 are larger then the patch260

size used for simple feature-tracking (34 pixels) and hence, the restricted area at the image border is

slightly increased.
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Figure 4. RMSD (Equation 5) calculated for image pair ’Fram Strait’ using different values for dmax (X-

axis) and for the side length of template t1 (Y-axis). Left panel shows HH polarisation and right panel HV

polarisation. RMSD values are given in meters, X and Y -axis represent pixel values. Black crosses mark

recommended parameter setting: dmax = 125 pixels and side(t1) = 70 pixels.

Table 3. Processing time for sea ice drift retrieval from image pair ’Fram Strait’ on a grid with 8 km (100 pixels)

spacing using HV polarisation (Figure 5).

Process Time [s]

Create Nansat objects from Sentinel-1 image pair 21

Read matrixes from Nansat objects 49

I Feature-tracking 66

II Pattern-matching and III Combination 65∑
Sea ice drift retrieval 201

To compare the drift results from the algorithm with GPS positions from the N-ICE2015 buoy

data set, 261 Sentinel-1 image pairs have been selected automatically for the considered time period

(15th January to 22nd April) and area (81◦ N to 83.5◦ N and 12◦ E to 27◦ E). Each pair yielded more265

than 300 drift vectors using the feature-tracking algorithm from Muckenhuber et al. (2016) and

had a time difference between the two acquisitions of less than three days. The satellite and buoy

data sets provide 633 possible displacement pairs for comparison. Using the suggested threshold
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Figure 5. Sea ice drift from image pair ’Fram Strait’ on a grid with 8 km spacing using HV polarisation. Black

vectors indicate the initial drift estimate from feature-tracking. Coloured vectors are derived from combining

feature-tracking and pattern-matching with a minimum cross correlation value MCCmin = 0.35. The colour

indicates the maximum cross correlation MCC. A total of 1145 vectors have been found with a MCC value

above 0.35.

for cross correlation MCCmin = 0.35 reduces the number of vector pairs to 540. The results of the

comparison are shown in Figure 7. We found a logarithmic distribution of the distance D (Equation270

6) with a peak at 300 m (3.75 pixels).

5 Discussion and outlook

Muckenhuber et al. (2016) compared their drift results (based on simple feature-tracking) and drift

vectors from the Copernicus Marine Environment Monitoring Service (CMEMS) with the same

manually drawn vectors as we use in Section 4. The CMEMS product is provided by the Technical275

University of Denmark (DTU), has a resolution of 10 km and is based on pattern-matching tech-

niques (Pederson et al. (2015), http://www.seaice.dk/). Since the start locations of the drift vectors

from these two algorithms do not coincide with the validation vectors, Muckenhuber et al. (2016)

used the nearest neighbours for comparison and a maximum distance of 5 km. Table 4 shows the val-

idation results from simple feature-tracking as done in Muckenhuber et al. (2016), pattern-matching280
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Figure 6. Sea ice drift derived from image pair ’Fram Strait’ using HV polarisation: manually drawn validation

vectors (green), initial drift estimate from feature-tracking (black) and vectors from combined feature-tracking

and pattern-matching (colour according to maximum cross correlationMCC). The right panel shows the entire

scene and the left panel depicts the algorithm procedure on an enlarged area.
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Figure 7. Buoy GPS data compared to calculated ice drift. Logarithmic histogram of distance D (Equation 6)

with 100 bins between 10 m and 105 m. Light grey shows the unfiltered results (MCCmin = 0) and dark grey

shows the results after using the suggested threshold for cross correlation MCCmin = 0.35. The peak of the

distribution is marked with a red line at 300 m.
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Table 4. Comparison of presented algorithm (combined feature-tracking + pattern-matching), simple feature-

tracking as done in Muckenhuber et al. (2016), and CMEMS data using image pair ’Fram Strait’ and 350 manu-

ally derived drift vectors as validation. RMSD is the root mean square distance from Equation 5. The # vector

pairs refers to the number of used vector pairs for comparison, i.e. vector pairs with maximum 5 km distance.

The average distance is measured between the start positions of the validation vectors and the corresponding

nearest neighbour vectors from the algorithm.

Algorithm RMSD [m] # vector pairs Average distance [m]

Feature-tracking + pattern-matching 540 335 0

Feature-tracking 563 314 1702±1325

CMEMS (pattern-matching) 1690 201 3440±1105

as done by DTU for CMEMS, and the presented combined feature-tracking + pattern-matching al-

gorithm. The combined algorithm provides the highest accuracy (represented by RMSD = 540 m)

and the highest number of vectors pairs that can be used for comparison (335). Unlike simple feautre-

tracking, the combined algorithm allows to choose the positions of the drift vectors, which makes it

possible to place them at the same locations as the validation vectors. This is represented by an aver-285

age distance of 0 m. As discussed in Muckenhuber et al. (2016), the manually drawn vectors cannot

be considered as perfect validation, since there might be an error introduced during the manual ice

drift identification. Hence, we expect the error originating from the combined algorithm to be less

than 540 m.

To further estimate the accuracy of the algorithm, we compared the drift results from 261 Sentinel-290

1 image pairs with corresponding GPS positions from the N-ICE buoy data set. We found a log-

arithmic error distribution with a peak at 300 m (Figure 7). The derived error values represent a

combination of the following error sources:

– Timing: Buoy GPS data were collected every 1-3 hours and the timing does not necessarily

match with the satellite acquisition time.295

– Resolution: The algorithm returns the drift of a pattern (recommended size = 70 pixels, see

Table 2), whereas the buoy measures the drift at a single location.

– Conditions: The ice conditions around the buoy is not known well enough to exclude the

possibility that the buoy is floating in a lead. In this case, the buoy trajectory could represent a

drift along the lead rather then the drift of the surrounding sea ice.300

– actual error of the algorithm.

Hence, the actual error of the presented algorithm is expected to be even lower than 300 m. This

means, that the algorithm accuracy is in the scale of the satellite image resolution.
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A main advantage of the combined algorithm compared to simple feature-tracking, is the user de-

fined positioning of the drift vectors. The current algorithm setup allows the user to choose whether305

the drift vectors should be positioned at certain points of interest or on a regular grid with adjustable

spacing. Constricting the pattern-matching process to the area of interest minimises the computa-

tional effort according to the individual needs.

The recommended parameters shown in Table 2 are not meant as a fixed setting, but should rather

give a suggestion and guideline to estimate the expected results and the corresponding computational310

effort. The parameters can easily be varied in the algorithm setup and should be chosen according to

availability of time, computational power, number of image pairs, needed accuracy, area of interest

and expected ice conditions (e.g. strong rotation).

The presented combination of feature-tracking and pattern-matching can be applied to any other

application that aims to derive displacement vectors computationally efficient from two consecutive315

images. The only restriction is that images need to depict edges, that can be recognised as keypoints

for the feature-tracking algorithm, and the conversion into intensity values i (Equation 2) needs to

be adjusted according to the image type.

The remote sensing of sea ice group at NERSC is currently developing a new pre-processing step

to remove thermal noise on HV images. First tests have shown a significant improvement of the320

sea ice drift results using this pre-processing step before applying the presented algorithm. This is

ongoing work and will be included into a future version of the algorithm.

Having a computational efficient algorithm with adjustable vector positioning allows not only to

provide near-real time operational drift data, but also the investigation of sea ice drift over large

areas and long time periods. Our nest task is to combine the different timings of the individual image325

pairs in a most useful way. This task is linked to the question how sea ice displacement relates to

real sea ice velocity. Having more frequent satellite acquisitions, as we will get with the Sentinel-

1 satellite constellation, enables to derive displacements for shorter time gaps and the calculated

vectors are getting closer to the real sea ice velocity. As part of a scientific cruise with KV-Svalbard

in July 2016, we deployed GPS trackers on loose ice floes and pack-ice in Fram Strait. The trackers330

send their position every 30 min to deliver drift information with high temporal resolution. This

efforts shall help to gain a better understanding of short-term drift variability and by comparison

with calculated sea ice drift we will investigate how displacements from subsequent satellite images

relate to real sea ice velocity.

Appendix A: Open-source distribution335

The presented sea ice drift retrieval method is based on open-source satellite data and software to

ensure free application and easy distribution. Sentinel-1 SAR images are distributed by ESA for free

within a few hours of acquisition under https://scihub.esa.int/dhus/. The algorithm is programmed in
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Python (source code: https://www.python.org) and makes use of the open-source libraries Nansat,

openCV and SciPy. Nansat is a scientist friendly Python toolbox for processing 2-D satellite Earth340

observation data (source code: https://github.com/nansencenter/nansat). OpenCV (Open Source

Computer Vision) is a computer vision and machine learning software library and can be downloaded

under http://opencv.org. SciPy (source code: https://www.scipy.org) is a Python-based ecosystem of

software for mathematics, science, and engineering. The presented sea ice drift algorithm is dis-

tributed as open-source software under https://github.com/nansencenter/sea_ice_drift.345
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