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Abstract. An open-source sea ice drift algorithm for Sentinel-1 SAR imagery is introduced based

on the combination of feature-tracking and pattern-matching. Feature-tracking produces an initial

drift estimate and limits the search area for the consecutive pattern-matching, that provides small

to medium scale drift adjustments and normalised cross-correlation values. The algorithm is de-

signed to combine the two approaches in order to benefit from the respective advantages. The main5

advantages of the considered feature-tracking approach are the computational efficiency and the in-

dependence of the vectors in terms of position, lengths, direction and rotation. Pattern-matching on

the other side allows better control over vector positioning and resolution. The pre-processing of

the Sentinel-1 data has been adjusted to retrieve a feature distribution that depends less on SAR

backscatter peak values. Applying the algorithm with the recommended parameter setting, sea ice10

drift retrieval with a vector spacing of 4 km on Sentinel-1 images covering 400 km x 400 km, takes

about 4 minutes on a standard 2.7 GHz processor with 8 GB memory. The corresponding recom-

mended patch size for the pattern-matching step, that defines the final resolution of each drift vector

is 34× 34 pixels (2.7× 2.7 km). For validation, calculated drift results from 246 Sentinel-1 image

pairs have been compared to buoy GPS data, collected in 2015 between 15th January and 22nd April15

and covering an area from 80.5◦ N to 83.5◦ N and 12◦ E to 27◦ E. We found a logarithmic normal

distribution of the error with a median at 352.9 m using HV polarisation and 535.7 m using HH po-

larisation. All software requirements necessary for applying the presented sea ice drift algorithm are

open-source to ensure free implementation and easy distribution.

1 Introduction20

Sea ice drift has a strong impact on sea ice distribution on different temporal and spatial scales. Mo-

tion of sea ice due to wind and ocean currents causes convergence and divergence zones, resulting

in formation of ridges and opening/closing of leads. On large scales, ice export from the Arctic and

Antarctic into lower latitudes, where the ice eventually melts away, contributes to a strong season-
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ality of total sea ice coverage (IPCC, 2013). Due to a lack of ground stations in sea ice covered25

areas, satellite remote sensing represents the most important tool for observing sea ice conditions

on medium to large scales. Despite the strong impact of sea ice drift and the opportunities given by

latest satellite remote sensing techniques, there is a lack of extensive ice drift data sets providing

sufficient resolution for estimating sea ice deformation on a spatial scaling of less than 5 km.

Our main regions of interest are the ice covered seas around Svalbard and East of Greenland.30

Characteristic for this area are a large variation of different ice types (Marginal Ice Zone, First Year

Ice, Multi Year Ice etc.), a strong seasonality of ice cover and a wide range of drift velocities. Focus

was put on the winter/spring period, since the area of interest experiences the highest ice cover during

this time of the year.

Early work from Nansen (1902) established the rule-of-thumb that sea ice velocity resembles 2 %35

of the surface wind speed with a drift direction of about 45◦ to the right (Northern Hemisphere) of

the wind. This wind driven explanation can give a rough estimate for instantaneous ice velocities.

However, the respective influence of wind and ocean current strongly depends on the temporal and

spatial scale. Only about 50 % of the long-term (several months) averaged ice drift in the Arctic can

be explained by geostrophic winds, whereas the rest is related to mean ocean circulation. This pro-40

portion increases to more than 70 % explained by wind, when considering shorter time scales (days

to weeks). The wind fails to explain large-scale ice divergence patterns and its influence decreases

towards the coast (Thorndike and Colony, 1982).

Using GPS drift data from the International Arctic Buoy Program (IABP), Rampal et al. (2009)

analysed the general circulation of the Arctic sea ice velocity field and found that the fluctuations45

follow the same diffusive regime as turbulent flows in other geophysical fluids. The monthly mean

drift using 12 h displacements was found to be in the order of 0.05 to 0.1 m/s and showed a strong

seasonal cycle with minimum in April and maximum in October. The IABP dataset also revealed a

positive trend in the mean Arctic sea ice speed of +17 % per decade for winter and +8.5 % for summer

considering the time period 1979–2007. This is unlikely to be the consequence of increased external50

forcing. Instead, the thinning of the ice cover is suggested to decrease the mechanical strength which

eventually causes higher speed given a constant external forcing (Rampal et al. , 2009b).

Fram Strait represents the main gate for Arctic ice export and high drift velocities are generally

found in this area with direction southward. Based on moored Doppler Current Meters mounted

near 79◦ N 5◦W, Widell et al. (2003) found an average southward velocity of 0.16 m/s for the period55

1996–2000. Daily averaged values were usually in the range 0–0.5 m/s with very few occasions

above 0.5 m/s.

GPS buoys and Current Meters are important tools to measure ice drift at specific locations. How-

ever, to monitor sea ice drift on medium to large scales, satellite remote sensing represents the most

important data source today. The polar night and a high probability for cloud cover over sea ice limit60

the capability of optical sensors for reliable year-round sea ice monitoring. Space-borne Synthetic
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Aperture Radar (SAR), on the other hand, are active microwave sensors and can produce high reso-

lution images regardless of solar illumination and cloud cover. Since the early 1990’s SAR sensors

are delivering systematic acquisitions of sea ice covered oceans and Kwok et al. (1990) showed that

sea ice displacement can be calculated from consecutive SAR scenes.65

The geophysical processor system from Kwok et al. (1990) has been used to calculate sea ice

drift fields in particular over the Western Arctic (depending on SAR coverage) once per week with

a spatial resolution of 10-25 km for the time period 1996–2012. This extensive dataset makes use

of SAR data from RADARSAT-1 operated by the Canadian Space Agency, and from ENVISAT

(Environmental Satellite) ASAR (Advanced Synthetic Aperture Radar) operated by ESA (European70

Space Agency).

To resolve drift details on a finer scale, a high-resolution sea ice drift algorithm for SAR images

from ERS-1 (European Remote-sensing Satellite from ESA) based on pattern-matching was intro-

duced by Thomas et al. (2008), that allowed drift calculation with up to 400 m resolution. Hollands

and Dierking (2011) implemented their own modified version of this algorithm to derive sea ice drift75

from ENVISAT ASAR data.

To provide drift estimates also in areas where areal matching procedures (like cross and phase

correlation) fail, Berg and Eriksson (2014) introduced a hybrid algorithm for sea ice drift retrieval

from ENVISAT ASAR data using phase correlation and a feature based matching procedure that is

activated if the phase correlation value is below a certain threshold.80

The current generation of SAR satellites including RADARSAT-2 and Sentinel-1 are able to pro-

vide images with more than one polarisation. Komarov and Barber (2014) and Muckenhuber et al.

(2016) have evaluated the sea ice drift retrieval performance with respect to the polarisation using a

combination of phase/cross-correlation and feature-tracking based on corner detection respectively.

Muckenhuber et al. (2016) has shown that feature-tracking provides on average around four times as85

many vectors using HV polarisation compared to HH polarisation.

After the successful start of the Sentinel-1 mission in early 2014, high-resolution SAR images

are delivered for the first time in history within a few hours after acquisition as open-source data

to all users. This introduced a new era in SAR Earth observation with great benefits for both sci-

entists and other stack holders. Easy, free and fast access to satellite imagery facilitate the possibil-90

ity to provide products on an operational basis. The Danish Technical University (Pedersen et al.

(2015), http://www.seaice.dk/) provides an operational sea ice drift product based on Sentinel-1 data

with 10 km resolution as part of the Copernicus Marine Environment Monitoring Service (CMEMS,

http://marine.copernicus.eu).

The sea ice covered oceans in the European Arctic Sector represent an important area of interest95

for the Sentinel-1 mission and with having a revisit time of less than one day in the Arctic (ESA,

2012), our area of interest is monitored by Sentinel-1 on a daily basis.

3



This paper follows up the work from Muckenhuber et al. (2016), who published an open-source

feature-tracking algorithm to derive computationally efficient sea ice drift from Sentinel-1 data based

on the open-source ORB algorithm from Rublee et al. (2011), that is included in the OpenCV Python100

package. We aim to improve the feature-tracking approach by combining it with pattern-matching.

Unlike Berg and Eriksson (2014), the feature-tracking step is performed initially and serves as a first

guess to limit the computational effort of the pattern-matching step.

From a methodological point of view, algorithms for deriving displacement vectors between two

consecutive SAR images are based either on feature-tracking or pattern-matching.105

Feature-tracking detects distinct patterns (features) in both images and tries to connect similar

features in a second step without the need for knowing the locations. This can be done compu-

tationally efficient and the resulting vectors are often independent of their neighbours in terms of

position, lengths, direction and rotation, which is an important advantage for resolving shear zones,

rotation and divergence/convergence zones. The considered feature-tracking approach identifies fea-110

tures without taking the position of other features into account and matches features from one image

to the other without taking the drift and rotation information from surrounding vectors into account

(Muckenhuber et al., 2016). However, due to the independent positioning of the features, very close

features may share some pixels and since all vectors from the resolution pyramid are combined, the

feature size varies among the matches, which implies a varying resolution. In addition, the resulting115

vector field is not evenly distributed in space and large gaps may occur between densely covered

areas, which can eventually lead to missing a shear or divergence/convergence zone.

Pattern-matching, on the other hand, takes a small template from the first image at the starting

location of the vector and tries to find a match on a larger template from the second image. Despite

a considerable computational effort, this approach is widely used, since it allows to define the vector120

positions. For practical reasons, a pyramid approach is generally used to derive high-resolution ice

drift. This speeds up the processing, but limits the independence of neighbouring vectors, since they

depend on a lower resolution estimate (Thomas et al., 2008).

The objective of this paper is to combine the two approaches in order to benefit from the respective

advantages. The main advantages of the considered feature-tracking approach are the computational125

efficiency and the independence of the vectors in terms of position, lengths, direction and rotation.

Pattern-matching on the other side allows better control over vector positioning and resolution, which

is a necessity for computing divergence, shear and total deformation.

The presented algorithm, all necessary software requirements (python incl. Nansat, openCV and

SciPy) and the satellite data from Sentinel-1 are open-source. A free and user friendly implementa-130

tion shall support an easy distribution of the algorithm among scientists and other stakeholders.

The paper is organised as follows: The used satellite products and buoy data are introduced in

Section 2. The algorithm description including data pre-processing is given in Section 3, together

with tuning and validation methods. Section 4 presents the pre-processing, parameter tuning and
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validation results and provides a recommended parameter setting. The discussion including outlook135

can be found in Section 5.

2 Data

The Sentinel-1 mission is a joint initiative of the European Commission and the European Space

Agency (ESA) and represents the Radar Observatory for the Copernicus Programme, a European

system for monitoring the Earth with respect to environmental and security issues. The mission140

includes two identical satellites, Sentinel-1A (launched in April 2014) and Sentinel-1B (launched

in April 2016), each carrying a single C-band SAR with a centre frequency of 5.405 GHz and

dual-polarisation support (HH+HV, VV+VH) also for wide swath mode. Both satellites fly in the

same near-polar, sun-synchronous orbit and the revisit time is less than 1 day in the Arctic (ESA,

2012). The main acquisition mode of Sentinel-1 over sea ice covered areas is Extra Wide Swath145

Mode Ground Range Detected with Medium Resolution (EW GRDM) and the presented algorithm

is built for processing this data type. The covered area per image is 400 km× 400 km and the data

are provided with a pixel spacing of 40 m× 40 m in both HV and HH polarisation. The introduced

algorithm can utilise both HV and HH channel. However, the focus of this paper is put on using

HV polarisation (mainly acquired over the European Arctic and the Baltic sea), since this channel150

provides in our area of interest on average four times more feature tracking vectors than HH

(Muckenhuber et al., 2016), representing a better initial drift estimate for the combined algorithm.

To illustrate the algorithm performance and explain the individual steps, we use an image pair

acquired over Fram Strait. The acquisition times of the two consecutive images are 2015-03-28155

07:44:33 (UTC) and 2015-03-29 16:34:52 (UTC), and the covered area is shown in Figure 3. This

image pair covers a wide range of different ice conditions (multiyear ice, first-year ice, marginal ice

zone etc.) and the ice situation is representative for our area and time period of interest.

To evaluate suitable search limitations and validate the algorithm, we use GPS data from drift160

buoys that have been set out in the ice covered waters north of Svalbard as part of the Norwe-

gian Young Sea Ice Cruise (N-ICE2015) project of the Norwegian Polar Institute (Spreen and Itkin,

2015). The ice conditions during the N-ICE2015 expedition are describe on the project website

(http://www.npolar.no/en/projects/n-ice2015.html) as challenging. The observed ice pack, mainly

consisting of 1.3-1.5 m thick multiyear and first-year ice, drifted faster than expected and was very165

dynamic. Closer to the ice edge, break up of ice floes has been observed due to rapid ice drift and the

research camp had to be evacuated and re-established four times. This represents a good study field,

since these challenging conditions are expected in our area and time period of interest. The consid-

ered GPS data have been collected in 2015 between 15th January and 22nd April, and cover an area
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ranging from 80.5◦ N to 83.5◦ N and 12◦ E to 27◦ E. The buoys recorded their positions either hourly170

or every three hours. In the later case, the positions have been interpolated for each hour.

3 Method

3.1 Data pre-processing

To process Sentinel-1 images within Python (extraction of backscatter values and corresponding

geolocations, reprojection, resolution reduction etc.), we use the Python toolbox Nansat (Korosov175

et al., 2016), that builds on the Geospatial Data Abstraction Library (http://www.gdal.org). As done

in Muckenhuber et al. (2016), we change the projection of the the provided ground control points

(latitude/longitude values given for certain pixel/line coordinates) to stereographic and use spline

interpolation to calculate geographic coordinates. This provides a good geolocation accuracy also at

high latitudes. The pixel spacing of the image is changed by averaging from 40 m to 80 m, which180

is closer to the sensor resolution of 93 m range× 87 m azimuth, and decreases the computational

effort.

For each pixel p, the Sentinel-1 data file provides a digital numberDNp and a normalisation coef-

ficient Ap, from which the normalised radar cross section σ0
raw is derived by the following equation:

185

σ0
raw =DN2

p/A
2
p (1)

The normalised radar cross section σ0
raw reveals a logarithmic distribution and the structures in the

sea ice are mainly represented in the low and medium backscatter values rather than in the highlights.

Therefore, we change the linear scaling of the raw backscatter values σ0
raw to a logarithmic scaling

and get the backscatter values σ0 = 10∗ lg(σ0
raw) [dB]. A representative backscatter distribution over190

sea ice is shown in Figure 1. Using a logarithmic scaling provides a keypoint distribution for the

feature tracking algorithm that depends less on high peak values, while the total number of vectors

increases.

To apply the feature-tracking algorithm from Muckenhuber et al. (2016), the SAR backscatter

values σ0 have to be converted into intensity values i with 0≤ i≤ 255 for i ∈ R. This conversion is195

done by using Eq. (2) and setting all values outside the domain to 0 and 255.

i = 255 · σ0−σ0
min

σ0
max−σ0

min

(2)

The upper brightness boundary σ0
max is set according to the recommended value from Mucken-

huber et al. (2016), i.e. -18.86 dB and -10.97 dB for HV and HH respectively. The lower boundary

σ0
min was chosen to be -32.5 dB (HV) and -25.0 dB (HH), since this was found to be a reasonable200

range of expected backscatter values. Figure 2 shows the image pair Fram Strait after the conversion

into intensity values.
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Figure 1. Histogram of (a) HV and (b) HH backscatter values σ0 from image pair Fram Strait. The lower

and upper brightness boundaries for HV (σ0
min = −32.5 dB, σ0

max = −18.86 dB) and HH (σ0
min = −25.0 dB,

σ0
max = −10.97 dB) are shown with blue lines and illustrate the domain for the intensity values i.
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Figure 2. Image pair Fram Strait in (a) HV and (b) HH polarisation after conversion (Equation 2) from backscat-

ter values σ0 into intensity values with range 0 ≤ i≤ 255 using lower and upper brightness boundaries for HV:

σ0
min = −32.5 dB and σ0

max = −18.86 dB and HH: σ0
min = −25.0 dB, σ0

max = −10.97 dB.
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3.2 Sea ice drift algorithm

The presented sea ice drift algorithm is based on a combination of feature-tracking and pattern-

matching, and is designed to utilise the respective advantages of the two approaches. Computa-205

tionally efficient feature-tracking is used to derive a first estimate of the drift field. The provided

vectors serve as initial search position for pattern-matching, that provides accurate drift vectors at

each given location including rotation estimate and maximum cross-correlation value. As illustrated

in the flowchart in Figure 3, the algorithm consists of five main steps: I Feature tracking, II Filter,

III First guess, IV Pattern matching and V Final drift product.210

I Feature-tracking

The feature-tracking algorithm used in this work is an adjusted version from Muckenhuber et al.

(2016), who introduced a computationally efficient sea ice drift algorithm for Sentinel-1 based on215

the ORB (Oriented FAST and Rotated BRIEF) algorithm from Rublee et al. (2011). ORB uses the

concept of the FAST keypoint detector (Rosten and Drummond, 2006) to find corners on several

resolution levels. The patch around each corner is then described using an modified version of the

binary BRIEF descriptor from Calonder et al. (2010). To ensure rotation invariance, the orientation

of the patch is calculated using the intensity-weighted centroid. Muckenhuber et al. (2016) applies220

a Brute Force matcher that compares each feature from the first image to all features in the second

image. The comparison of two features is done using the Hamming distance, that represents the

number of positions in which the two compared binary feature vectors differ from each other. The

best match is accepted if the ratio of the shortest and second shortest Hamming distances is below a

certain threshold. Given a suitable threshold (and unique features), the ratio test will discard a high225

number of false matches, while eliminating only a few correct matches.

Muckenhuber et al. (2016) found a suitable parameter setting for our area and time period of

interest, including a Hamming distance threshold of 0.75, a maximum drift filter of 0.5 m/s, a patch

size of 34× 34 pixels and a resolution pyramid with 7 steps combined with a scaling factor of 1.2.

Due to the resolution pyramid, the considered feature area varies from 2.7× 2.7 km to 9.8× 9.8 km230

and the resulting drift field represents a resolution mixture between these boundaries.

We adjust the algorithm from Muckenhuber et al. (2016) by applying a logarithmic scaling for the

SAR backscatter values σ0 instead of the previous used linear scaling (Section 3.1). In addition, we

extract for each vector the rotation information α, i.e. how much the feature rotates from the first to

the second image.235

Applying the adjusted feature-tracking algorithm provides a number of un-evenly distributed

vectors (e.g. blue vectors in Figure 3) with start positions x1f , y1f on the first image (SAR1), end

positions x2f , y2f on the subsequent image (SAR2) and corresponding rotation values αrawf . The

index f represents a feature-tracking vector and ranges from 1 to F , with F being the total number
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Figure 3. The flowchart on the left depicts the five main steps of the algorithm. The right column illustrates

the evolution of the drift results using image pair Fram Strait in HV polarisation and a grid with 4 km spacing.

Blue vectors are derived applying an adjusted version of the feature tracking algorithm from Muckenhuber et

al. (2016). Black vectors indicate the initial drift estimate (first guess) based on filtered feature-tracking vectors.

The final drift product (yellow to red vectors) are derived from combining the first guess with pattern-matching

adjustment and applying a minimum cross-correlation value. In this example, a total of 4725 vectors have been

found with a MCC value above 0.4 in 4 min.
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of derived feature-tracking vectors.240

To avoid zero-crossing issues during the following filter and inter-/extrapolation process (in case

the image rotation δ between SAR1 and SAR2 is close to 0◦), a factor |180− δ| is added to the raw

rotation values αrawf using the following Equation:

αf =

αrawf + |180− δ| if αrawf + |180− δ|< 360

αrawf + |180− δ| − 360 if αrawf + |180− δ|> 360
(3)245

This centres the reasonable rotation values in the proximity of 180◦. After applying the filter and

inter-/extrapolation process, the estimated rotation α is corrected by subtracting |180− δ|.

II Filter

250

To reduce the impact of potentially erroneous feature-tracking vectors on the following steps,

outliers are filtered according to drift and rotation estimates derived from least squares solutions

using a third degree polynomial function. Considering a matrix A, that contains all end positions

x2f , y2f in the following form

A =


1 x21 y21 x221 y221 x21 ∗ y21 x321 y321

1 x22 y22 x222 y222 x22 ∗ y22 x322 y322
...

...
...

...
...

...
...

...

1 x2F y2F x22F y22F x2F ∗ y2F x32F y32F

 (4)255

, we derive three vectors bx1
, by1 and bα, that represent the least squares solutions for A and

x1 = (x11, ...,x1F ), y1 = (y11, ...,y1F ) and α= (α1, ...,αF ) respectively. The starting position x1f ,

y1f and the rotation αf of each vector can then be simulated using a third degree polynomial function

f(x2f ,y2f ,b) depending on the end position x2f , y2f and the corresponding least squares solution

b = (b0, b1, b2, b3, b4, b5, b6, b7).260

f(x2f ,y2f ,b) = b0 + b1x2f + b2y2f + b3x
2
2f + b4y

2
2f + b5x2fy2f + b6x

3
2f + b7y

3
2f (5)

If the simulated start position, derived from f(x2f ,y2f ,b), deviates from the feature-tracking

start position x1f , y1f by more than 100 pixels, the vector is deleted. The same accounts for rotation

outliers. If the simulated rotation deviates from the feature-tracking rotation αf by more than 60◦,

the vector is deleted. We found a third degree polynomial function to be a good compromise between265

allowing for small to medium scale displacement and rotation discontinuities, and excluding very

unlikely vectors, that eventually would disturb the following steps. The parameters for the filter
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process, i.e. 100 pixels (displacement) and 60◦ (rotation), have been chosen according to visual

interpretation using several representative image pairs. Figure 4 illustrates the filter process by

depicting the results from image pair Fram Strait.270
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Figure 4. Filter process applied on image pair Fram Strait in HV polarisation. The x-axis represent the simulated

start position and rotation, derived from f(x2f ,y2f ,b) and the y-axis represent the feature-tracking start posi-

tion x1f , y1f and rotation αf . NB: the image rotation is δ = 129.08◦, which means the rotation was adjusted

by 50.92◦ (Equation 3). Red points were identified as outliers and deleted.

III First guess

The remaining feature-tracking vectors are used to estimate the drift incl. rotation on the entire

first image, i.e. estimated x2, y2 and α values are provided for each pixel on SAR1 (Figure 5). The275

quality of this ’first guess’, however depends on the density of the feature-tracking vector field and

the local ice conditions.

Between the feature-tracking vectors, estimated values are constructed by triangulating the input

data and performing linear barycentric interpolation on each triangle. That means, the estimated val-

ues represent the weighted mean of the three neighbouring feature-tracking values. The interpolated280

value vp at any pixel p inside the triangle is given by Equation 6, where v1, v2, v3 represent the

feature-tracking values at the corners of the triangle and A1, A2, A3 are the areas of the triangle

constructed by p and the two opposite corners, e.g. A1 is the area between p, and the corners with

value v2 and v3.

vp =
A1v1 +A2v2 +A3v3

A1 +A2 +A3
(6)285
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To provide a first guess for the surrounding area, values are estimated based on the least squares

solutions using a linear combination of x1 and y1. Considering a matrix C, that contains all start

positions x1f , y1f in the following form

C =


1 x11 y11

1 x12 y12
...

...

1 x1F y1F

 (7)

, we derive three vectors dx2
, dy2 and dα, that represent the least squares solutions for C and290

x2 = (x21, ...,x2F ), y2 = (y21, ...,y2F ) and α= (α1, ...,αF ) respectively. The estimated end position

x2, y2 and rotation α at any location can then be simulated using the linear function f(x1,y1,c)

depending on the start position x1, y1 and the corresponding least squares solution d = (d0,d1,d2).

f(x1,y1,d) = d0 + d1x1 + d2y1 (8)

As mentioned above, the rotation estimates α are now corrected for the adjustment applied in295

Equation 3, by subtracting |180− δ|.
An example for the resulting first guess, i.e. estimated values for x2, y2 and α on SAR1, is shown

in Figure 5 and corresponding vectors are shown in black in Figure 3. Note that rotation α has

already been corrected by subtracting |180− δ|. It includes now both the relative image rotation δ

from SAR1 to SAR2 and the actual rotation of the feature itself. The introduced algorithm provides300

also the image rotation δ by projecting the left corners of SAR2 onto SAR1 and calculating the

angle between the left edges of SAR1 and SAR2. The actual rotation of the features can easily be

obtained by subtracting δ from α.

IV Pattern-matching305

The estimated drift field derived from feature-tracking provides values for x2, y2 and α at any

location on SAR1. The representativeness of this estimate however, depends on the distance d to the

closest feature-tracking vector. Therefore, small to medium scale adjustments of the estimates are

necessary, depending on the distance d. We apply pattern-matching at chosen points of interest to310

provide more accurate drift vectors and adjust the rotation estimate at these specific locations.

The used pattern-matching approach is based on the maximisation of the normalised cross-

correlation coefficient. Considering a small template t1 around the point of interest from SAR1

with size t1s× t1s and a larger template t2 around the location x2, y2 (defined by the corresponding
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Figure 5. Example of estimated drift and rotation (first guess) based on filtered feature-tracking vectors using

image pair Fram Strait in HV polarisation. The three panels show the components x2, y2 of the estimated end

positions and the estimated rotation α for each pixel on the first image (SAR1).

first guess) from SAR2 with size t2s× t2s, the normalised cross-correlation matrix NCC is defined315

as (Hollands , 2012):

NCC(x,y) =

∑
x′,y′(t

′
1(x′,y′)t′2(x+x′,y+ y′))√∑

x′,y′ t
′
1(x′,y′)2

∑
x′,y′ t

′
2(x+x′,y+ y′))2

(9)

t′1(x′,y′) = t1(x′,y′)− 1

t21s

∑
x′′,y′′

t1(x′′,y′′) (10)

t′2(x+x′,y+ y′) = t2(x+x′,y+ y′)− 1

t21s

∑
x′′,y′′

t2(x+x′′,y+ y′′) (11)320

with t1(x′,y′) and t2(x′,y′) representing the value of t1 and t2 at location x′,y′. The summations

are done over the size of the smaller template, i.e. x′, y′, x′′ and y′′ go from 1 to t1s. Template t1 is

moved with step size 1 pixel over template t2 both in horizontal (x) and vertical (y) direction and the

cross-correlation values for each step are stored in the matrix NCC with size (1 + ts2− ts1)× (1 +

ts2− ts1). The highest value in the matrix NCC, i.e. the the maximum normalised cross-correlation325

value MCC, represents the location of the best match and the corresponding location adjustment is

given by dx and dy.

(
1 + ts2− ts1

2
+ dx,

1 + ts2− ts1
2

+ dy) = argmax
x,y

(NCC(x,y)) (12)

To restrict the search area t2s to a circle, we set all values of NCC that are further than t2s/2 away

from the centre position to zero. This limits the distance from the first guess to a constant value,330

rather than to an arbitrary value depending on the looking angle of the satellite. c To account for

rotation adjustment, the matrix NCC is calculated several times: template t1 is rotated around the

13
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Figure 6. Pattern-matching using initial drift estimate from feature-tracking: The small template t1 (left) around

the point of interest on SAR1 is rotated fromα−β toα+β and matched with the large template t2 (middle) from

SAR2, that has its centre at the estimated end position x2, y2. The right contour plot shows the normalised cross-

correlation matrix NCC of the rotation β∗ that provided the highest maximum cross-correlation coefficient

MCC. The estimated end position x2, y2 of this example has to be adjusted by dx= −21 pixels, dy = 32 pixels

to fit with the location of MCC = 0.71. Rotation adjustment β∗ was found got be 3◦. NB: X and Y -axis

represent pixel coordinates.

initially estimated rotation α from α−β to α+β with step size ∆β. The angle β is the maximum

additional rotation and represents therefore the rotation restriction. The NCC matrix with the highest

cross-correlation value MCC is returned.335

To illustrate the pattern-matching process, an example, taken from image pair Fram Strait, is

shown in Figure 6.

The described process demands the specification of four parameters: t1s, t2s, β and ∆β.

The size of the small template t1s× t1s defines the considered area that is tracked from one image340

to the next and hence, affects the resolution of the resulting drift product. In order to be consistent

with the resolution of the feature-tracking step and achieve our goal of a sea ice drift product with a

spatial scaling of less than 5 km, we use the size of the feature-tracking patch of the pyramid level

with the highest resolution to define the size of t1. That means, we use ts1 = 34 pixels (2.7 km).

The size of the larger template t2s× t2s restricts the search area on SAR2, i.e. how much the345

first guess can be adjusted geographically, and the angle β restricts the rotation adjustment of the

first guess α. The three parameter t2s, β and ∆β have a strong influence on the computational effi-

ciency of the drift algorithm. Meaning that an increase of t2s, β and a decrease of ∆β increase the

computational effort of the pattern-matching step. Based on visual interpretation of several repre-

sentative image pairs, we found ∆β = 3◦ to be a good compromise between matching performance350

and computational efficiency.

Since the uncertainty of the first guess increases with distance d (Figure 7) to the closest feature-

tracking vector, the search restrictions t2s and β should increase with d. To find useful restrictions for
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Figure 7. Example to illustrate the distribution of distance d to the closest feature-tracking vector using image

pair Fram Strait in HV polarisation. Values outside the range dmin ≤ d≤ dmax are set to dmin = 10 and

dmax = 100. The points with value dmin represent the start positions x1, y1 of the feature-tracking vectors on

SAR1.

t2s and β, we calculated drift vectors using very high values for t2s and β, i.e. being computationally

more demanding than we anticipate, and compared the results with the GPS drift buoy dataset from355

the N-ICE2015 expedition. Based on the results (Section 4) we found the following functions to

represent useful restrictions for our area and time period of interest.

t2s(d) = t1s + 2d dmin ≤ d≤ dmax d ∈ N (13)

β(d) =

9 if d < dmax

12 if d≥ dmax
(14)

The values for dmin, dmax, β and ∆β can easily be varied in the algorithm to adjust for e.g.360

different areas, drift conditions or a different compromise between matching performance and

computational efficiency.

V Final drift product

365

In the last step, the small to medium scale displacement adjustments from pattern-matching are

added to the estimated first guess derived from feature-tracking. Using buoy comparison, we found

that the probability for large displacement errors decreases with increasing MCC value (Section 4).

Therefore, vectors that have a MCC value below the threshold MCCmin are removed. We found

MCCmin = 0.4 to be a good filter value, but this value can easily be adjusted in the algorithm de-370

pending on the sought compromise between amount of vectors and error probability. The algorithm

15



returns the final drift vectors in longitude, latitude, the corresponding first guess rotation α and the

rotation adjustment β in degrees and the maximum cross-correlation value MCC. An example for

the final product is depicted with yellow to red coloured vectors in Figure 3. The colour scale refers

to the MCC value, indicating the probability for an erroneous vector.375

3.3 Comparison with buoy data

Sentinel-1 image pairs have been selected automatically according to position and timing of the GPS

buoy data from the N-ICE2015 expedition. Each pair yielded more than 300 drift vectors applying

the feature-tracking algorithm from Section 3.2 and had a time difference between the two acquisi-

tions of less than three days. Drift vectors have been calculated with the presented algorithm starting380

at the buoy GPS position with the least time difference to the acquisition of the first satellite image.

The distance D between the calculated end position on the second image and the buoy GPS posi-

tion with the least time difference to the second satellite acquisition has been calculated using the

following equation:

D =
√

(u−U)2 + (v−V )2 (15)385

where u and v represent eastward and northward drift components of the displacement vector

derived by the algorithm, and U and V the corresponding drift components of the buoy.

4 Results

4.1 Search restrictions evaluation

To find suitable values for restricting the size of the search window t2s and the rotation range de-390

fined by β, we calculated drift vectors, that can be compared to the considered GPS buoy dataset,

using restrictions that are computationally more demanding than we anticipate for the recommended

setting, i.e. t2s = 434 pixels and β = 18◦. These values corresponds to a possible pattern-matching

adjustment of up to 200 pixels (16 km) and 18◦ in any direction independent of the distance d to the

closest feature-tracking vector.395

Based on an automatic search, we found 244 matching Sentinel-1 image pairs (consisting of 111

images), that allowed for comparison with 711 buoy vectors (buoy locations are shown in Figure

8). The distance D (Equation 15) between the buoy location at the time of the second image SAR2

and the corresponding algorithm result, represents the error estimate for one vector pair. To identify

algorithm results that are more likely erroneous, vector pairs with a value D above 1000 m are400

marked with red dots in Figure 9 and Figure 10. Vector pairs with D < 1000 m are plotted with

black dots.
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Figure 8. Considered buoy locations from the N-ICE2015 expedition that were used for comparison with al-

gorithm results. Green and blue colour indicates start locations (on SAR1) to which the algorithm provided

vectors with a MCC value above and below 0.4 using (a) HV and (b) HH polarisation.

Figure 9 and Figure 10 show the resulting pattern-matching adjustment of location (dx, dy) and

rotation (dβ) using the computationally demanding restrictions. The values are plotted against dis-

tance d to the next feature tracking vector in order to identify the dependence of the parameters on405

d. The blue lines in Figure 9 and Figure 10 indicate the recommended restrictions. This represents a

compromise between computational efficiency and allowing the algorithm to adjust the first guess as

much as needed for our time period and area of interest. The corresponding functions for t2s(d) and

β(d) are given in Equation 13 and Equation 14 and the recommended boundary values for distance

d are dmin = 10 and dmax = 100.410

4.2 Validation

Using the recommended search restrictions from above, the algorithm has been validated against the

N-ICE2015 GPS buoy data set (Figure 8). The automatic search provided 246 image pairs (consisting

of 111 images) and 746 vectors for comparison for the considered time period (15th January to

22nd April) and area (80.5◦ N to 83.5◦ N and 12◦ E to 27◦ E). NB: this is a higher number of vectors415

than found for the evaluation of the search restrictions, since the used search windows t2 are smaller

and vectors closer to the SAR edge may be included.

The results of the conducted validation are shown in Figure 11. We found that the probability for

a large D value (representative for the error) decreases with increasing maximum cross-correlation

valueMCC. Therefore we suggest to exclude matches with aMCC value below a certain threshold420

MCCmin. This option is embedded into the algorithm, but can easily be adjusted or turned off by
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Figure 9. Pattern-matching location adjustment dx and dy in x and y direction versus distance d to closest

feature tracking vector using (a) HV and (b) HH polarisation. D represents the difference between buoy GPS

position and algorithm result. The blue lines indicate the recommended setting for t2s (Equation 13) with

dmin = 10 and dmax = 100.

settingMCCmin = 0. Based on the findings shown in Figure 11, we recommend a cross-correlation

coefficient threshold MCCmin = 0.4 for our time period and area of interest. Using the suggested

threshold reduces the number of vector pairs from 746 to 588 for the HV channel and to 478 for the

HH channel.425

The conducted validation also reveals a logarithmic normal distribution of the distance D (Equa-

tion 15) that can be expressed by the following probability density function (solid red line in Figure

11):

lnN(D;µ,σ) =
1

σD
√

2π
e−

(lnD−µ)2

2σ2 (16)

with µ and σ being the mean and standard deviation of the variable’s natural logarithm. We found430

the mean and variance of the distribution lnN to be µ= 5.866 and σ2 = 1.602 for HV polarisation

and µ= 6.284 and σ2 = 2.731 for HH polarisation (solid red lines in Figure 11). The medians of
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Figure 10. Pattern-matching rotation adjustment dβ versus distance d to closest feature tracking vector using

(a) HV and (b) HH polarisation. D represents the difference between buoy GPS position and algorithm result.

The blue lines indicate the recommended setting for β (Equation 14) with dmin = 10 and dmax = 100.

Table 1. Recommended parameter setting for sea ice drift retrieval from Sentinel-1 using the presented algo-

rithm.

Parameter Meaning Recommended setting

[σ0
min, σ0

max] (HH) Brightness boundaries for HH channel [-25 dB, -10.97 dB]

[σ0
min, σ0

max] (HV) Brightness boundaries for HV channel [-32.5 dB, -18.86 dB]

t1s Size of template t1 34 pixels (2.7 km)

[dmin, dmax] Boundaries for distance d [10 pixels, 100 pixels]

MCCmin Threshold for cross-correlation 0.4

∆β Rotation angle increment 3◦

the logarithmic normal distribution are eµ = 352.9m for HV polarisation and eµ = 535.7m for HH

polarisation (dashed red lines in Figure 11).

4.3 Recommended parameter setting435

Based on the restriction evaluation, our experience with the algorithm behaviour, and considering a

good compromise between computational efficiency and high quality of the resulting vector field,

we recommend the parameter setting shown in Table 1. The corresponding recommended values for

t2s(d) and β(d) are given in Equation 13 and Equation 14.

4.4 Computational efficiency440

The processing time depends on the parameter setting and the chosen vector distribution. Using

the recommended parameter setting from Table 1, allows high-resolution sea ice drift retrieval from

a Sentinel-1 image pair within a few minutes. Figure 3 depicts calculated ice drift vectors for the

image pair Fram Strait on a grid with 4 km (50 pixels) spacing. The corresponding processing times
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Figure 11. Calculated ice drift using recommended search restrictions compared to buoy GPS data using

(a,b,c) HV and (x,y,z) HH polarisation. Light grey represents vectors with maximum cross-correlation values

MCC < 0.4 and results after using the suggested threshold MCCmin = 0.4 are shown in black. (a,x) MCC

values against distance D (Equation 15) between algorithm and buoy end position. The blue line indicates the

recommended setting for MCCmin = 0.4. (b,y) Logarithmic histogram of distance D with 100 bins between

10 m and 105 m including two logarithmic normal distributions that were fitted to all results (grey) and to the

filtered results with MCC > 0.4 (solid red line). (c,z) Comparison of drift distance derived from algorithm

against buoy displacement for the filtered results with MCC > 0.4.

are shown in Table 2. The calculations have been done using a MacBook Pro from early 2013 with a445

2.7 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3 memory. The total processing time for

4725 vectors with a normalised cross-correlation value above 0.4, is about 4 minutes. This can be

considered a representative value for an image pair with large overlap, good coverage with feature-

tracking vectors and 4 km grid spacing.

The initial process in Table 2 ’Create Nansat objects from Sentinel-1 image pair and read matrixes’450

takes the same amount of computational effort for all image pairs consisting of Sentinel-1 images

with 400x400 km coverage.

The process ’I Feature-tracking’ depends on the setting of the feature-tracking algorithm and

varies strongly with the chosen number of features. Using the recommended setting from Mucken-
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Table 2. Processing time for sea ice drift retrieval from image pair Fram Strait on a grid with 4 km (50 pixels)

spacing using HV polarisation (Figure 3). Representative for an image with large overlap and good coverage

with feature-tracking vectors.

Process Time [s]

Create Nansat objects from Sentinel-1 image pair

and read matrixes 70

I Feature-tracking 66

II Pattern-matching and III Combination 107∑
Sea ice drift retrieval 243

huber et al. (2016), that includes the number of features to be 100000, the presented computational455

effort can be considered representative for all image pairs, independent of chosen points of interest

and overlap of the SAR scenes.

The last process ’II Pattern-matching and III Combination’ however, depends on the considered

image pair and the chosen drift resolution. The computational effort is proportional to the number

of chosen points of interest. Given a evenly distributed grid of points of interest, the computational460

effort increases with overlapping area of the SAR scenes, since pattern-matching adjustments are

only calculated in the overlapping area. The effort potentially decreases with a higher number of

well distributed feature-tracking vectors, since the size of the search windows t2 (and slightly the

range of the angle β) increases with distance d to the closest feature-tracking vector.

5 Discussion and outlook465

To estimate the accuracy of the introduced algorithm, we compared drift results from 246 Sentinel-

1 image pairs with corresponding GPS positions from the N-ICE2015 buoy data set. We found a

logarithmic error distribution with a median at 352.9 m for HV and 535.7 m for HH (Figure 11). The

derived error values represent a combination of the following error sources:

– Timing: Buoy GPS data were collected every 1-3 hours and the timing does not necessarily470

match with the satellite acquisition time.

– Resolution: The algorithm returns the drift of a pattern (recommended size = 34 pixels, see

Table 1), whereas the buoy measures the drift at a single location.

– Conditions: The ice conditions around the buoy is not known well enough to exclude the

possibility that the buoy is floating in a lead. In this case, the buoy trajectory could represent a475

drift along the lead rather then the drift of the surrounding sea ice.
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– actual error of the algorithm.

A main advantage of the combined algorithm compared to simple feature-tracking, is the user de-

fined positioning of the drift vectors. The current algorithm setup allows the user to choose whether

the drift vectors should be positioned at certain points of interest or on a regular grid with adjustable480

spacing. Constricting the pattern-matching process to the area of interest minimises the computa-

tional effort according to the individual needs.

The recommended parameters shown in Table 1 are not meant as a fixed setting, but should rather

give a suggestion and guideline to estimate the expected results and the corresponding computational

effort. The parameters can easily be varied in the algorithm setup and should be chosen according to485

availability of computational power, needed resolution, area of interest and expected ice conditions

(e.g. strong rotation).

The presented combination of feature-tracking and pattern-matching can be applied to any other

application that aims to derive displacement vectors computationally efficient from two consecutive

images. The only restriction is that images need to depict edges, that can be recognised as keypoints490

for the feature-tracking algorithm, and the conversion into intensity values i (Equation 2) needs to

be adjusted according to the image type.

The remote sensing group at NERSC is currently developing a new pre-processing step to remove

thermal noise on HV images over ocean and sea ice. First tests have shown a significant improvement

of the sea ice drift results using this pre-processing step before applying the presented algorithm. This495

is ongoing work and will be included into a future version of the algorithm.

The European Space Agency is also in the process of improving their thermal noise removal for

Sentinel-1 imagery. Noise removal in range direction is driven by a function that takes measured

noise power into account. Until now, noise measurements are done at the start of each data acquisi-

tion, i.e. every 10-20 minutes, and a linear interpolation is performed to provide noise values every500

3 seconds. The distribution of noise measurements showed a bimodal shape and it was recently dis-

covered that lower values are related to noise over ocean while higher values are related to noise

over land. This means, that Sentinel-1 is able to sense the difference of the earth surface brightness

temperature similar to a passive radiometer. When the data acquisition includes a transition from

ocean to land or vice versa, the linear interpolation fails to track the noise variation. The successors505

of Sentinel-1A/B are planned to include more frequent noise measurements. Until then, ESA wants

to use the 8-10 echoes after the burst that are recorded while the transmitted pulse is still travelling

and the instrument is measuring the noise. This will provide noise measurements every 0.9 seconds

and allows to track the noise variations in more detail. In addition, ESA is planning to introduce

a change in the data format during 2017 that shall remove the noise shaping in azimuth. These ef-510

forts are expected to improve the performance of the presented algorithm significantly (Personal

Communication with Nuno Miranda, January 2017).
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Having a computationally efficient algorithm with adjustable vector positioning allows not only

to provide near-real time operational drift data, but also the investigation of sea ice drift over large

areas and long time periods. Our next step is to embed the algorithm into a super-computing facility515

to further test the performance in different regions, time periods and ice conditions and evaluate and

combine the results of different polarisation modes. The goal is to deliver large ice drift datasets and

open-source operational sea ice drift products with a spatial resolution of less than 5 km.

This work is linked to the question how to combine the different timings of the individual image

pairs in a most useful way. Having more frequent satellite acquisitions, as we get with the Sentinel-520

1 satellite constellation, enables to derive displacements for shorter time gaps and the calculated

vectors will reveal more details e.g. rotational motion due to tides. As part of a scientific cruise with

KV-Svalbard in July 2016, we deployed three GPS trackers on loose ice floes and pack-ice in Fram

Strait. The trackers send their position every 5-30 min to deliver drift information with high temporal

resolution. This efforts shall help to gain a better understanding of short-term drift variability and525

by comparison with calculated sea ice drift, we will investigate how displacement vectors from

subsequent satellite images relate to sea ice displacements with higher temporal resolution.

The focus of this paper in terms of polarisation was put on the HV channel, since this polarisation

provides on average four times more feature tracking vectors than HH and therefore delivers a finer

initial drift for the first guess. We found our area of interest well covered with HV images, but other530

areas in the Arctic and Antarctic are currently only monitored in HH polarisation. Considering the

four representative feature-tracking image pairs from Muckenhuber et al. (2016), the the relatively

best HH polarisation performance (i.e. most vectors from HH, while at the same time fewest vectors

from HV) was provided by the image pair that had the least time difference, i.e. 8 h, compared to

31 h, 33 h and 48 h. Therefore, we assume that the HV polarisation provides more features that are535

better preserved over time. And more consistent features could also favour the performance of the

pattern-matching step. Another argument is that the presented feature-tracking approach identifies

and matches corners, which represent linear features. The linear features on HH images are more

sensitive to changes in incidence angle, orbit and ice conditions than the linear features on HV

images. This could explain the better feature-tracking performance of the HV channel. However,540

pattern-matching is less affected by changing linear features and more sensitive to areal pattern

changes. This could potentially mean that the HH channel performs better than HV when it comes to

pattern-matching. However, at this point, these are just assumptions and will be addressed in more

detail in our future work.

Utilising the advantage of dual polarisation (HH+HV) is certainly possible with the presented545

algorithm, but increases the computational effort. A simple approach is to combine the feature track-

ing vectors derived from HH and HV and produce a combined first-guess. Pattern-matching can be

performed based on this combined first-guess for both HH and HV individually and the results can

be compared and eventually merged into a single drift product. Having two drift estimates for the
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same position, from HH and HV pattern-matching respectively, would also allow to disregard vec-550

tors that disagree significantly. However, this option would increase the computational effort by two,

meaning that the presented Fram Strait example would need about 8 min processing time.

After implementing the presented algorithm into a super-computing facility, we aim to test and

compare the respective performance of HV, HH and HH+HV on large datasets to identify the re-

spective advantages.555

The current setting of the feature-tracking algorithm applies a maximum drift filter of 0.5 m/s. We

found this to be a reasonable value for our time period and area of interest. However, when consider-

ing extreme drift situations in Fram Strait and a short time interval between image acquisitions, this

threshold should be adjusted.

As mentioned above, we deployed three GPS tracker in Fram Strait and they recorded their posi-560

tions with a temporal resolution of 5-30 min between 8th July until 9th September 2016 in an area

covering 75◦ N to 80◦ N and 4◦W to 14◦W. Considering the displacements with 30 min interval, we

found velocities above 0.5 m/s on a few occasions, when the tidal motion adds to an exceptionally

fast ice drift.

The GPS data from the hovercraft expedition FRAM2014-2015 (https://sabvabaa.nersc.no), that565

was collected with a temporal resolution of 10 s between 31st August 2014 until 6th July 2015,

did not reveal a single 30 min interval during which the hovercraft was moved by ice drift more than

0.45 m/s. The hovercraft expedition started at 280 km south from the North Pole towards the Siberian

coast, crossed the Arctic Ocean towards Greenland and was picked up in the north-western part of

Fram Strait.570

In case the estimated drift from feature-tracking reaches velocities close to 0.5 m/s, the pattern-

matching step might add an additional degree of freedom of up to 8 km, which could eventually

lead to a higher drift result than 0.5 m/s, depending on the time interval between the acquisitions.

The smaller the time difference, the larger is the potentially added velocity. In order to be consistent

when combining the drift information from several image pairs with different timings, one should575

apply a maximum drift filter on the final drift product of the presented algorithm that has the same

maximum velocity as the feature-tracking filter. The corresponding function is implemented in the

distributed open-source algorithm.

Appendix A: Open-source distribution

The presented sea ice drift retrieval method is based on open-source satellite data and software to580

ensure free application and easy distribution. Sentinel-1 SAR images are distributed by ESA for free

within a few hours of acquisition under https://scihub.esa.int/dhus/. The algorithm is programmed in

Python (source code: https://www.python.org) and makes use of the open-source libraries Nansat,

openCV and SciPy. Nansat is a Python toolbox for processing 2-D satellite Earth observation data
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(source code: https://github.com/nansencenter/nansat). OpenCV (Open Source Computer Vision)585

is a computer vision and machine learning software library and can be downloaded under http:

//opencv.org. SciPy (source code: https://www.scipy.org) is a Python-based ecosystem of software

for mathematics, science, and engineering. The presented sea ice drift algorithm is distributed as

open-source software under https://github.com/nansencenter/sea_ice_drift.

Acknowledgements. This research was supported by the Norwegian Research Council project IceMotion (High590

resolution sea-ice motion from Synthetic Aperture Radar using pattern tracking and Doppler shift, project num-

ber 239998/F50). We thank Polona Itkin and Gunnar Spreen for providing us the buoy GPS data that were

collected as part of the N-ICE2015 project with support by the Norwegian Polar Institute’s Centre for Ice, Cli-

mate and Ecosystems (ICE) and its partner institutes. The used satellite data were provided by the European

Space Agency. We thank Nuno Miranda for information on ESA’s de-noising efforts for Sentinel-1.595

25

https://github.com/nansencenter/nansat
http://opencv.org
http://opencv.org
http://opencv.org
https://www.scipy.org
https://github.com/nansencenter/sea_ice_drift


References

Berg, A. and Eriksson L.E.B.: Investigation of a Hybrid Algorithm for Sea Ice Drift Measurements Using

Synthetic Aperture Radar Images IEEE Transactions on Geoscience and Remote Sensing, Vol. 52, No. 8,

5023–5033, 2014.

Calonder, M., Lepetit, V., Strecha, C., and Fua, P.: BRIEF: Binary Robust Independent Elementary Features,600

CVLab, EPFL, Lausanne, Switzerland, 2010.

ESA: Sentinel-1 ESA’s Radar Observatory Mission for GMES Operational Services, ESA Communications,

SP-1322/1, ISBN: 978-92-9221-418-0, ISSN: 0379-6566, 2012.

Hollands, T.: Motion tracking of sea ice with SAR satellite data, dissertaiton, Section 2: Estimation of motion

from images, University Bremen, 2012.605

Hollands, T. and Dierking, W.: Performance of a multiscale correlation algorithm for the estimation of sea-ice

drift from SAR images: initial results, Ann. Glaciol., 52, 311–317, 2011.

IPCC – Intergovernmental Panel on Climate Change: Climate Change 2013: The Physical Science Basis, Fifth

Assessment Report, AR5, 317–382, 323–335, 2013.

Komarov, A.S., and Barber, D.G.: Sea Ice Motion Tracking From Sequential Dual-Polarization RADARSAT-610

2 Images, IEEE Transactions on Geoscience and Remote Sensing, Vol. 52(1), No. 1, 121–136, doi:

10.1109/TGRS.2012.2236845, 2014.

Korosov A.A., Hansen W.M., Dagestad F.K., Yamakawa A., Vines A., Riechert A.: Nansat: a Scientist-

Orientated Python Package for Geospatial Data Processing, Journal of Open Research Software, 4: e39,

DOI: http:// dx.doi.org/10.5334/jors.120, 2016615

Kwok, R., Curlander J.C., McConnell R., and Pang S.: An Ice Motion Tracking System at the Alaska SAR

Facility, IEEE Journal of Oceanic Engineering, Vol. 15, No. 1, 44–54, 1990.

Muckenhuber S., Korosov A.A., and Sandven S. (2016): Open-source feature-tracking algorithm for sea ice drift

retrieval from Sentinel-1 SAR imagery, The Cryosphere, 10, 913-925, doi:10.5194/tc-10-913-2016, 2016

Nansen, F.: The Oceanography of the North Polar Basin. Scientific Results, Vol. 3, 9, Longman Green and Co.,620

Kristinania, Norway, 1902.

Pedersen, L.T., Saldo, R. and Fenger-Nielsen, R.: Sentinel-1 results: Sea ice operational moni-

toring, Geoscience and Remote Sensing Symposium (IGARSS), IEEE International, 2828–2831,

doi=10.1109/IGARSS.2015.7326403, 2015

Rampal, P., Weiss, J., Marsan, D. and Bourgoin M.: Arctic sea ice velocity field: General circula-625

tion and turbulent-like fluctuations, Journal of Geophysical Research: Oceans, Vol. 114, Nr. C10014,

doi=10.1029/2008JC005227, 2009.

Rampal, P., Weiss, J. and Marsan, D.: Positive trend in the mean speed and deformation rate of Arctic sea ice

1979–2007, Journal of Geophysical Research: Oceans, Vol. 114, Nr. C5013, doi=10.1029/2008JC005066,

2009b.630

Rosten, E. and Drummond, T.: Machine learning for high-speed corner detection, in European Conference on

Computer Vision, ISBN 978-3-540-33833-8, 430–443, doi: 10.100711744023_34, 2006.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G.: ORB: an efficient alternative to SIFT or SURF, IEEE I.

Conf. Comp. Vis. (ICCV), ISBN: 978-1-4577-1101-5, 2564–2571, doi: 10.1109ICCV.2011.6126544, 6–13

Nov, 2011.635

26



Spreen, G. and Itkin, P.: N-ICE2015 buoy data, Norwegian Polar Institute,

https://data.npolar.no/dataset/6ed9a8ca-95b0-43be-bedf-8176bf56da80, 2015.

Thomas, M., Geiger, C. A., and Kambhamettu, C.: High resolution (400 m) motion characterization of sea ice

using ERS-1 SAR imagery, Cold Reg. Sci. Technol., 52, 207–223, 2008.

Thorndike, A. S. and Colony, R.: Sea ice motion in response to geostrophic winds, Journal of Geophysical640

Research: Oceans, Vol. 87, Nr. C8, 5845–5852, doi=10.1029/JC087iC08p05845, 1982.

Widell, K., Østerhus, S. and Gammelsrød, T.: Sea ice velocity in the Fram Strait monitored by moored instru-

ments, Geophysical Research Letters, Vol. 30, Nr. 19, doi=10.1029/2003GL018119, 2003.

27


