
Manuscript prepared for J. Name
with version 2015/09/17 7.94 Copernicus papers of the LATEX class copernicus.cls.
Date: 2 May 2017

Response to Editor
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Correspondence to: S. Muckenhuber (stefan.muckenhuber@nersc.no)

Dear Professor Lars Kaleschke,

Thank you very much for helping us improving our paper.

Please find here the answers to your comments:

1 Comment from the editor5

The manuscript requires further major revisions before it can be accepted. In addition to the com-

ments raised by the referees I’d like to add that some figures need to be improved, e.g. the black

vectors in Fig. 3 are largely overlapping and Figure 8 looks really strange.

We changed several parts of the manuscript, adjusted the algorithm, recomputed the pa-

rameter evaluation and validation with the new algorithm version and included an evaluation10

of the algorithm performance for HH polarisation.

We changed the vector spacing in Figure 3 to improve the visibility of the individual vectors

and replaced the vectors in Figure 8 by dots to get a better impression of the buoy data

locations. In addition, we included information about the retrieved cross-correlation values in

Figure 3.15

We hope that the new version will meet the high standards of The Cryosphere.

Please find attached the corrected manuscript with changes marked in blue and red.

Thanks again for your comments. We are looking forward to your reply!20

Best regards,

S. Muckenhuber and S. Sandven
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Manuscript prepared for J. Name
with version 2015/09/17 7.94 Copernicus papers of the LATEX class copernicus.cls.
Date: 2 May 2017

Response to Referee # 1
’Open-source sea ice drift algorithm for Sentinel-1 SAR
imagery using a combination of feature-tracking and
pattern-matching’
Stefan Muckenhuber and Stein Sandven
Nansen Environmental and Remote Sensing Center (NERSC), Thormøhlensgate 47,
5006 Bergen, Norway

Correspondence to: S. Muckenhuber (stefan.muckenhuber@nersc.no)

Dear Referee # 1,

Thank you very much for helping us improving our paper.

Please find here the answers to your comments and the corresponding changes in manuscript:

1 Comments to the answers to Referee 15

Page 2 Line 42-46: The problem with the backscatter values is not solved by correcting a typo and

claiming that the values were shown in Bell (a very uncommon unit for backscatter by the way).

The correction of the typo shifts the backscatter values into the right magnitude. However, given a

noise level of 22 dB for Sentinel-1 I would still like to question the calibration routines used. Using

scaling suggested by the authors on correctly calibrated S1 data would mean to focus on a value10

range mainly containing noise (-32.5 dB - -22 dB) and only partly containing potentially meaningful

backscatter values in the range -22 dB to -18.86 dB. The authors might want to check again there

calibration routines.

The way we understood the Sentinel-1 data is that -22 dB represents the maximum NESZ

(Noise Equivalent Sigma Zero) and the NESZ depends on the incidence angle. The maximum15

NESZ is found at the lowest incidence angle, but the NESZ values decrease with increasing

incidence angle, which means that values below -22 dB might contain useful information.

(Otherwise around half of the pixels in Figure 1 would be below the noise level.) The algorithm

is mainly sensitive to changes of the upper brightness boundary and less sensitive to the

lower brightness boundary (see Muckenhuber et al. 2016). Muckenhuber et al. 2016 tuned20

the algorithm to find suitable brightness boundaries and we converted the corresponding

backscatter values to dB. The lower boundary in Muckenhuber et al. 2016 was set to 0. Since

it is impossible to convert 0 to dB, we looked into the backscatter distributions of images
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over sea ice (e.g. Figure 1) and chose a value that includes the majority of the measured dB

values. This means that our lower dB threshold is set to an even higher value than used in25

Muckenhuber et al. 2016.

Page 8 Line 245: the use of logarithmic scaling is the standard for all SAR based sea ice research

and professional monitoring by universities, ice services and research institutes. But it is good to see

that this promising approach uses dB scaling now as well.30

We agree and just wanted to mention why we did not apply the linear pre-processing as

suggested by Muckenhuber et al. 2016 for the feature-tracking approach.

Page 8 Line 255: I did not want to vote against parameter tuning or the validation using displace-

ment vectors derived from satellite image pairs. Both instruments are extremely useful. I just thought35

that a validation using the same dataset originally used for tuning is not the best approach for an in-

dependent validation. It is a pity that the authors decided to skip both parts completely but then it is

for sure the most effective approach to deal with my remark.

We agree that comparison against manually derived drift vectors represent an important

tool for parameter tuning, but we hope that the new approach delivers an even better40

parameter set, because a higher number of satellite image pairs is now considered.

Page 9 Line 278 - 301 I like this new paragraph you added into section 5, but as far as I can say it

does not consider the specific problem, I outlined in my question and they suggest to handle with this

paragraph (the same search window size means different degrees of freedom depending on the time45

span between the two considered image acquisitions) - It does however discuss the general aspect of

time span regarding the ’hard’ 0.5 m/s maximum speed threshold but I guess, that’s o.k.

It is true that the same search window size for short and long time spans between acquisi-

tions, results in different degrees of freedom. Considering short time spans allows for a higher

velocity adjustment in the pattern-matching step. However, more feature-tracking vectors are50

usually found on image pairs with shorter time spans, which reduces the search window sizes,

and acts to a certain extent against the higher degree of freedom. Adjusting the search window

according to the time span would add additional complexity to both the algorithm and the

parameter tuning and needs more research on how the search window should be adjusted

depending on the time span. We aim for a simple algorithm both for computational efficiency55

and easy open-source distribution to users and therefore hope that the simple approach to

remove drift vectors above the maximum speed is sufficient to satisfy the users need for now.

Our current and future efforts include the investigation of ice drift behaviour on different time

scales to combine drift information from image pairs with different time spans. This work will

hopefully help us to improve our understanding on how to adjust the pattern-matching search60
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window in the most meaningful way.

2 The article itself

2.1 General comments

The article improved a lot since the last time and the authors handled the comments of the reviewers65

in a very efficient manner. It reads like a completely new manuscript. Personally I think that the

authors tend to use superlatives like ’optimize’ or ’most meaningful’ a bit too often given the flexi-

bility of their approach (various changes between both versions) but nevertheless it seems to be on

a right track now and worth being published in ’The Cryosphere’ after major revisions. Within the

frame of the revision it would however be necessary to discuss the differences of this paper to the70

recently published paper by Anton Korosov and Pierre Rampal for the same institute on the same

topic: A.Korosov and P. Rampal (2017): ’A Combination of Feature Tracking and Pattern Match-

ing with Optimal Parametrization for Sea Ice Drift Retrieval from SAR Data’, Remote Sens. 2017,

9(3), 258; doi:10.3390/rs9030258, which looks quite similar to me. Personally, I think that this par-

allel publishing from the same institute is at least a bit unfortunate (even though I’m aware, that the75

manuscript at hand was originally submitted earlier than the now published article by Korosov and

Rampal).

We replaced ’optimised’ with adjusted and removed ’most meaningful’ throughout the

manuscript.

Regarding the recent publication from Korosov and Rampal 2017: The open-source character80

of the review process in TC and the open-source distribution of the presented algorithm make

it impossible to compete with journals that have a review process of approximately 31 days

plus 7 days until acceptance to publication (median values for papers published in Remote

Sensing in 2016 from http://www.mdpi.com/journal/remotesensing). Since the presented

manuscript was earlier submitted and due to the fact that our manuscript and algorithm85

was already distributed in TCD and on github more than 2 months before the submission of

Korosov and Rampal 2017, we would like to disregard the paper from Korosov and Rampal

2017 in our manuscript.

2.2 Specific comments90

Page 4 Line 113-115 I’m not sure how much of the vector independence from the feature tracking

actually exists, given the overlap of features from the various resolution levels, the filtering and poly-

nomial least square fitting to identify outliers and the linear interpolation to get first guess estimates

for the subsequent pattern matching. What do the authors think?
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In this sentence, we refer to the feature-tracking vectors as such (blue in Figure 3),95

without considering filtering, fitting etc. The mentioned independence here is only reduced by

overlapping, i.e. in the case of very close features. All other feature-tracking vectors can be

seen completely independent from each other. We try to preserve this independence as good

as possible during filtering and interpolation. The filter parameters were set according to our

experience with the algorithm performance and visual interpretation of several representative100

image pairs. We tried to allow for the largest possible degree of freedom without including

too many erroneous vectors. The first guess is constructed by triangulating the input data

and performing linear barycentric interpolation on each triangle. Hence, the first guess is

only affected by the three closest vectors and reveals therefore a relatively high degree of

independence compared to methods that apply e.g. a pattern-matching resolution pyramid.105

The interpolation method was chosen in order to allow for as much independence as possible

in the first guess. Our next goal is to test the algorithm on large datasets to identify potential

weaknesses in areas with strong deformation, shear zones etc. and this work will provide

further information on the independence of the final drift vectors.

110

Page 6 Line 173-192 I would like to repeat my statement from the last review: there seems to be

something wrong with your calibration routine and it is not only a typo. It would be great for sea ice

research if S1 had a sensitivity of -32.5 of even -25 dB only but its noise level is at -22 dB, which

means that especially your lower boundaries for the scaling cause a problem for correctly calibrated

S1 images.115

See the first comment in Comments to the answers to Referre 1.

Page 6 Line 186 The scaling to 8 bit / 256 grey level is an input requirement for feature tracking

using the ORB algorithm but reduces the signal variation. This reduces the effectiveness of the

NCC which can handle any numerical precision you like. It is not a problem for medium to larger120

resolutions (like CMES service provided by the DTU) since there are still enough pixel in each

correlation window but as soon as you go to higher resolutions, even slight variations in the signal

become more important (since there might be not so many clear variations left in a smaller window).

Have the authors tried to use the original dB backscatter values for the pattern matching instead of

the scaled 256 greyscale image?125

We thought about applying another scaling for the pattern-matching step, but decided to

use the same scaling as used for feature-tracking for the following three reasons:

1. Applying an additional conversion from the digital numbers (provided in the Sentinel-1

file) into dB values in a 32 bit floating point format increases the computational effort of

the pre-processing step.130
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2. The utilised pattern-matching python package can handle both 8-bit and 32-bit floating-

point format. However, using 32-bit increases the computational effort of the pattern-

matching step.

3. The scaling that is currently applied was tuned to provide a high number of feature-

tracking vectors. We assume that a scaling that favours the recognition of features is135

also favourable for the applied pattern-matching procedure.

Page 9, Line 223-224 As I mentioned before, the use of logarithmic scaling for SAR is common

and I’m actually surprised that the authors did not do it from the start.

We agree that logarithmic scaling represents the common procedure for SAR. We mention140

the procedure in this line to address the differences to the approach from Muckenhuber et al.

2016.

II Filters: I have various questions:

1. For the polynomial fit the authors use all vectors (those from coarser resolution levels and those145

from finer resolution levels - a single pixel on the coarser resolution level covers about 3.6 pixel on

the finest resolution level: subpixel uncertainty of +/-145 m vs a subpixel uncertainty of +/- 40 m?) -

isn’t this a bit of a problem if you merge it all in one polynomial surface and then try calculate if the

predicted vector is 100 px away from your polynomial surface?

Since we down-sample the image by a factor of two, the pixels have a size of 80 m and150

287 m for the highest and lowest resolution level. The resolution levels are only considered

inside the ORB python package and retrieving the information from which resolution level

the vector is derived, is unfortunately not implemented at the moment. A work around would

be to downsample the satellite image with Nansat and apply the feature-tracking algorithm

individually for each resolution pyramid. However, that would increase the computational155

effort significantly and the vectors from the different resolution levels would not be linked and

compared to each other in terms of Harris corner measure etc. This means that we have to

treat all vectors equally regardless of the resolution level (since we don’t know the resolution

level). The threshold of 100 pixels in this context refers to 8 km away from the simulated

starting point, since we work with a resolution of 80 m outside the feature-tracking procedure.160

2. You are applying a least square fit to an angle and calculate a polynomial surface from it. How

do you handle the zero-crossing problem and all the other problems you are facing once you start

averaging and interpolating angle values?

We agree that the issue of zero-crossing during filter and inter-/extrapolation of the angle165

values needs to be addressed. We added a function that centres the feature-tracking rotations

around 180◦ before filter and inter-/extrapolation and we remove the adjustment after filter
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and inter-/extrapolation has been applied. The following has been added to Section 3.2 in II

Filter:

To avoid zero-crossing issues during the following filter and inter-/extrapolation process (in case170

the image rotation δ between SAR1 and SAR2 is close to 0◦), a factor |180− δ| is added to the

raw rotation values αrawf using the following Equation:

αf =

αrawf + |180− δ| if αrawf + |180− δ|< 360

αrawf + |180− δ| − 360 if αrawf + |180− δ|> 360
(1)

This centres the reasonable rotation values in the proximity of 180◦. After applying the filter and

inter-/extrapolation process, the estimated rotation α is corrected by subtracting |180− δ|.175

The following has been added to Section 3.2 in III First Guess:

As mentioned above, the rotation estimates α are now corrected for the adjustment applied in

Equation 3, by subtracting |180− δ|.

3. It seems that your angular polynomial surface has a peak at about 130◦. Just for curiosity: Is180

this the rotation between both images?

In this case, the rotation between the two images is 129.08◦ and the mean feature rotation is

132.24◦. The peak of the rotation distribution is usually close to the image rotation.

Page 11 Line 272-273: least square fit and linear function for angles? How do the authors handle185

the specific problems related with this (see my comments on II Filters)

We agree, that this issue needs to be addressed. See answer above to second comment under

II Filters.

Page 11 Line 285-287: ’The uncertainty ... vector’ I would claim that it is not the uncertainty of the190

estimate but the representativeness of the estimate and that it does not only depends on the distance

to the next feature tracking based vector but as well on the heterogeneity of the other surrounding

feature tracking based drift vectors.

We agree that the distance d indicates the representativeness rather than the uncertainty

and changed the sentence to:195

The representativeness of this estimate however, depends on the distance d to the closest feature-

tracking vector.

We consider only the distance and not the heterogeneity of the surrounding feature-tracking

vectors to be as computational efficient as possible. Our first attempt to estimate the drift at

any given location on SAR1, was to apply a search mechanism to identify the surrounding200

feature-tracking vectors. This procedure would allow to derive a search window size based

on the heterogeneity of the surrounding vectors. However, this approach was computationally
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very inefficient. Our current method to derive a matrix that includes the distances to the

closest location of a feature-tracking vector and the applied extra-/interpolation procedure are

implemented in a computational efficient manner in the python toolbox SciPy. This allows us205

to derive drift estimates for the entire scene in a few minutes. The computational efficiency of

the algorithm is one of our main goals, since we want to derive sea ice drift from large datasets

and prepare for an operational product.

Page 12 Line 307-308: As far as I know the idea to restrict the smaller correlation template to210

a circle has been strongly propagated by Roberto Saldo from the DTU who uses it for his drift

algorithm. I’m not sure if this is what the authors mean. While I’m aware of the advantages to limit

the smaller correlation template to a circle, I have no idea why you would want to restrict your search

window to a circle (if not only for the reason to safe computation) but may be the authors want to

outline the advantages of a circled search window while having a rectangular correlation template.215

If they meant to describe a circled correlation window the authors want to refer to Roberto Saldo (if

there is no publication regarding this matter may be as personal communication).

Here we refer to the larger search window t2 on SAR2 and not to the small template t1 on

SAR1 around the start position of the vector.

From the public discussion, we understood that Referee #2 wanted circular templates for both220

the small and large template. See comment:

’P7 Fig.2 (and text): Why rectangular/square templates has been used? A circular template

would be much easier (symmetric) to rotate. Consider using a circular templates instead.’

And our answer from 13.02.2017:

’We agree with this comment. Regarding t1 however, the current version of the used OpenCV225

function matchTemplate does not allow circular templates and work-arounds would influence

the result and the computational efficiency. We hope that a later version of matchTemplate

will allow to use masks. Regarding t2, we included a circular mask for the matching result to

limit the search area to a circle rather than a square.’

To us, it seems more reasonable to search in a circular area rather than a square. This230

limits the distance from the first guess to a constant value, rather than to an arbitrary value

depending on the looking angle of the satellite. This should also be beneficial when searching

for a suitable size for the search window. If there is a correct match in the corner of a square

during parameter tuning, a size for t2 might be recommended that is too small considering

another looking angle of the satellite.235

We added the following sentence:

This limits the distance from the first guess to a constant value, rather than to an arbitrary value

depending on the looking angle of the satellite.
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Page 13 Line 318-319: ’In order to be consistent with the resolution of the feature tracking’. What240

is the advantage of being consistent with the resolution of the feature tracking?

Sea ice drift might be different on different resolution scales. This is particularly an issue in

the case of rotation. The feature-tracking vectors provide the first guess and this vector field

should represent the same drift resolution as considered by the pattern-matching step.

Also, during the tuning of the feature-tracking algorithm, we found the considered template245

size to be a good compromise between high resolution and capturing enough information for

a reliable recognition performance. We assume that this also means that the template size

represents a good choice for the pattern-matching step.

Page 14 Line 344-352 A higher MCC value seems to indicate a higher chance of a better match250

for your algorithm compared to buoy data. This is an interesting finding since most pattern matching

algorithms have lower MCC_min values or none at all and since it was shown, that there is no direct

relation between error and correlation coefficient.

This could mean that the author’s initial guess and search strategy are less effective than those of

pure pattern matching algorithms (and thereby needing a higher correlation to find a suitable match)255

especially since the maximum shift from the feature tracking based first guess is 1.6 (d=10) to 16

km (d=100) at maximum. Every difference above that is a hint that the first guess did not work or

that the buoy drift has nothing to do with the surrounding ice conditions (Figure 11 a). Additionally I

suggest checking the spatial distribution of the vectors the authors rejected due to their low MCC and

high spatial distance (e.g. a shearing zone within the correlation window would for example cause as260

well a drop in the correlation value and potentially a larger difference in displacement relatively to

an originally close drift buoy in another drift regime) and study the behavior compared to manually

tracked vectors from the image pair ensure that the difference comes really from the algorithm and

not from the limitations of the comparison with buoys, the authors are well aware of (page 20 line

439 - 450).265

It is correct, that the drift vectors with higher cross correlation provided by our algorithm

match better with the buoy drift than the vectors with low MCC values.

We believe that our initial guess provides a reliable estimate for the following reasons:

Initial guess in the proximity of the feature-tracking vectors: The error of the feature-tracking

vectors is in the order of a few 100 m compared to manually derived vectors, as shown by270

Muckenhuber et al. 2016. This error does not prohibit the pattern-matching step to search at

the correct location.

Initial guess further away from feature-tracking vectors: Every distance D above 16 km

indicates that the first guess was not close enough to the buoy position, to allow the pattern-

matching to search for a match at the buoy location. However, only very few points are275

above this limit and the buoy location does not necessarily represent the same ice drift as
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the algorithm. As shown in Section 4.1 ’Search restrictions evaluation’, increasing the search

window and allowing up to 200 pixels deviation from the first guess, did not provide many

additional vectors with a distance D below 1000 m. Therefore we believe that the search

window restrictions are suitable for our area and time period of interest.280

Increasing the search window can also increase the error potential, in case the initial guess is

correct. E.g. in very homogeneous ice conditions the pattern-matching could fail and accept a

random match. In this case, the search window restricts the deviation from the first guess and

hereby the error potential.

There is certainly a small remaining probability that the first guess is far away from the285

correct location and the search window is too small to include the correct location. We tried

to find a good compromise between minimising this probability and being computational

efficient enough to perform high resolution drift analysis within a few minutes.

We believe that the presented approach outperforms pure pattern-matching procedures in

terms of computational effort while, at the same time, allowing for higher drift and rotation290

deviation in the drift field. A simple pattern-matching approach with no restrictions is

certainly not computational efficient to provide high-resolution ice drift from a large satellite

database. Therefore, pure pattern-matching approaches usually apply a resolution pyramid

to limit the computational power, which means that high resolution estimates are based on low

resolution drift. This, in combination with additional filtering and smoothing that is usually295

applied to discard outliers, decreases the independence of the high-resolution drift vectors

significantly.

The initial guess of our approach builds on feature-tracking vectors that may point in any

direction regardless of the neighbouring vector and may include any rotation from 0 to

360◦. During the filter and inter-/extrapolation process, we try to preserve the high degree of300

independence to allow for relatively strong deviation in terms of drift and rotation.

We did not reject matches according to high spatial distance, but only based on the MCC

value.

We changed Figure 8 to illustrate the spatial distribution of accepted and rejected vectors and

added the following sentence to the caption:305

Green and blue colour indicates start locations (on SAR1) to which the algorithm provided

vectors with a MCC value above and below 0.4 using (a) HV and (b) HH polarisation.

As shown in the first draft of the manuscript, we compared the algorithm results with

manually derived drift vectors and found that the results compared well. According to the

previous comments, we removed the comparison with the manually derived drift vectors and310

decided to use the buoy data also for parameter evaluation to increase the size of the dataset

and cover a larger range of ice conditions, time spans etc.

As stated in the discussion, the recommended parameters are not meant as a fixed setting,

9



but should rather give a suggestion and guideline to estimate the expected results and the

corresponding computational effort. They can easily be varied in the algorithm setup and315

should be chosen according to the needs of the user. To provide an improved parame-

ter setting depending on ice conditions, area of interest etc. and further test and adjust the

initial guess procedure, the next step of our research is to apply the algorithm on large datasets.

Page 15 3.3 Comparison with buoy data: Just for my understanding: Did the authors center a320

34x34 pixel window at the original buoy position? The original buoy position has been acquired

every hour or has been interpolate to hourly intervals

Yes, a 34×34pixel window was centred around the buoy start position. Based the conversa-

tion with Polona Itkin and Gunnar Spreen, most buoys acquired the GPS position every hour,

but some every three hours. In the later case, the positions were interpolated to every hour by325

NPI.

Page 15 Line 356 ’Each pair yielded more than ... three days’ I’m not sure but it would probably

more interesting to mention the number of vectors, which the recent version of the feature tracking

component provides, using HV only and dB scaling, if at all ...330

We used the recent version of our feature-tracking algorithm and changed the sentence to:

Each pair yielded more than 300 drift vectors applying the feature-tracking algorithm from

Section 3.2 and had a time difference between the two acquisitions of less than three days.

Page 17 Figure 9 and 10: Based on the Figures it is difficult to see an advantage for the variation of335

the search window size or the rotation angle aside from computational efficiency. Would the authors

agree?

The computational efficiency is an important argument for the variation of the restrictions

(search window and rotation angle). In addition, several red dots which where closer than

100 pixels (d < 100pixels) are excluded by applying the recommended restrictions. Appar-340

ently, a large pattern-matching adjustment close to a feature-tracking vector increases the

possibility of an error (represented by D > 1000m). We assume that in these cases, the initial

guess provided already a good estimate and a large search window and rotation range rather

increases the error potential.

345

Page 18 Fig 11 a: something seems to be wrong with the legend

We adjusted the legends in Figure 11 according to this comment.

Page 18 Fig 11 b: how would the fit look like if the authors would include the values you rejected

due to their low correlation value?350
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We included a logarithmic normal distribution for all results and changed the sentence in

the caption to the following:

Logarithmic histogram of distance D with 100 bins between 10 m and 105 m including two

logarithmic normal distributions that were fitted to all results (grey) and to the filtered results

with MCC > 0.4 (solid red line).355

Page 18 Line 407 / Page 20 Line 441 ’median and 341.9 m’ What’s the significance? Obviously

it means that 50% of your data has an error of less than 340 m with respect to the buoy data but it

means as well that 50% have an error, that is larger (and based on the distribution: 1% < 20m, 5%

< 43m, 10% < 68m, 68% (1 sigma criterion) < 620 m, 95% (2 sigma criterion) < 2700 m and 99%360

(3 sigma criterion) < 6400m). But could the authors give a hint what it could mean regarding the

quality of the algorithm, given the various influences they identified which could have biased the

result? May be a solution would again be to use the manually derived vectors from the original draft

for it to account for the algorithm ’accuracy’ only (well with an ’uncertainty’ hidden in the manually

collected drift vectors of course)?365

According to the comment of Referee #2 during the first review process, ’the validation with

this data set (NB: the manually derived vectors) is not fair as the algorithm has been tuned for

this data. Then only the buoy data can be used for independent validation.’ Therefore, we had

to excluded the comparison with the manually derived vectors. In addition, the buoy dataset

represents a larger dataset, accounts for a larger range of ice conditions and time spans and370

is therefore more representative for our area and time period of interest, despite its limitations.

Page 20 Line 458-460 ’The parameters can ... strong rotation).’ I have a fair idea which parameters

to vary to meet changes in computational power, area of interest and expected ice conditions but I

have no idea why availability of time, computational power and number of image pairs are mentioned375

individually since the only parameter behind it is computation time or rather the selection of a finer

or coarser resolution. Additionally I would be interested what parameter to change to influence the

accuracy!

We meant resolution instead of accuracy and changed the sentence to the following:

The parameters can easily be varied in the algorithm setup and should be chosen according380

to availability of computational power, needed resolution, area of interest and expected ice

conditions (e.g. strong rotation).

Page 20 Line 470-484 I guess this paragraph is based on information you received from Nuno

Miranda. It would be useful to refer to it as Personal Communication in the text since otherwise the385

readers might wonder where this information comes from.
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Yes, this paragraph is based on a personal communication with Nuno Miranda and we

added the following to the end of the paragraph:

(Personal Communication with Nuno Miranda, January 2017)

390

Page 21 Line 487-490 ’Our next step ... less than 5 km’ That’s really nice! I’m really looking

forward to such a dataset with a good quality. However, given that most of the S1-data in the Arctic

and Antarctic is in HH polarization (in Antarctica completely) wouldn’t it been better to perform

this study in HH from the beginning, even if there seems to be an advantage for HV in the feature

tracking?395

So far, we found good coverage in HV for our area and time period of interest. However,

it is true that some areas are currently only monitored in HH and we included an algorithm

performance evaluation also for HH polarisation.

We changed the sentence to:

Our next step is to embed the algorithm into a super-computing facility to further test the400

performance in different regions, time periods and ice conditions and evaluate and combine the

results of different polarisation modes.

We aim to eventually combine drift information from the two channels in the most meaningful

way. This is also described further down in Section 5 ’Discussion and outlook’. We expect that

the number of feature-tracking vectors derived from HH will increase in the future due to405

an increased coverage provided by Sentinel-1A and Sentinel-1B (a shorter time span between

the acquisitions is favourable for HH as shown by Muckenhuber et al. 2016) and a better

pre-processing system that we will be able to access through our ongoing cooperation with TU

Wien. This will bring the feature-tracking performance of HH closer to the performance of

HV and therefore the same (or a very similar) parameter setting is expected to be favourable410

for HH.

Page 21 Line 503 ’better coverage in HH pol’ - that’s nicely put - the S1 observation scenario

does not plan any HV acquisition Antarctic part of the southern ocean and none in the central Arctic

ocean but it could of be a reason to demonstrate the need for HV data in these regions as well.415

We changed the sentence to:

We found our area of interest well covered with HV images, but other areas in the Arctic and

Antarctic are currently only monitored in HH polarisation.

We agree, that the shown HV performance to track features could demonstrate the need for

HV data in regions that are currently only monitored in HH. However, before we suggest to420

monitor these regions with HV, we would like to compare the two channels more thoroughly

and perform case studies in the respective regions. Based on the presented work we can only

refer to our area and time period of interest, which is well covered with HV data. Testing the
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algorithm on large HV and HH datasets will hopefully provide us with more information on

the necessity of HV monitoring for sea ice drift retrieval.425

Page 21 Line 507 - 510 ’Therefore ...future work’ A good idea! Just a thought I would like to add.

Feature tracking needs linear features which tend to depend a bit more on incidence angle, orbit, and

changes in ice condition in HH than in HV and depending on the robustness of your feature detector

it might even be quite robust to the quite strong noise in the S1-HV data (it is actually impressive430

how many feature tracking based vectors you were able to retrieve from the HV scene compared

to the HH one). This could explain the better performance of the feature tracking part for the HV

component. Cross correlation based pattern matching however is less sensitive to changes in linear

feature and more sensitive to areal pattern changes which might potentially favor the HH channel -

but as I said: just a thought.435

We agree and added the following to Section 5:

Another argument is that the presented feature-tracking approach identifies and matches corners,

which represent linear features. The linear features on HH images are more sensitive to changes

in incidence angle, orbit and ice conditions than the linear features on HV images. This could

explain the better feature-tracking performance of the HV channel. However, pattern-matching440

is less affected by changing linear features and more sensitive to areal pattern changes. This

could potentially mean that the HH channel performs better than HV when it comes to pattern-

matching.

2.3 Technical comments445

Page 1 Line 9 ’pre-processing of S1 data ... has been optimized’ - Are the authors refereeing to their

use of the logarithmic scale for the backscatter again? As far as I’m aware that is all you did and it

is a bit of disappointing if the abstract promises an optimized preprocessing while the article offers

the conversion to dB only.

The sentence has been changed to:450

The pre-processing of the Sentinel-1 data has been adjusted to retrieve a feature distribution that

depends less on SAR backscatter peak values.

Page 1 Line 10-13 I’m not sure if computational efficiency is necessary in the abstract, the authors

might want to give it a second thought but I’m fine if you want to keep it there.455

In case the ’computational efficiency’ in Line 6-7 is addressed by this comment, we would

like to keep the phrase. Our long-term goals are an operational sea ice drift product and to

provide large drift datasets. Therefore the computational efficiency of the algorithm is a ma-
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jor factor for us and one of the main arguments for the development of the presented approach.

460

Introduction: I think the introduction improved a lot but especially of page 3 I miss something

running like a common thread through it. It reads like an accumulation of independent facts.

We changed the introduction according to this comment. The history and evolution of sea

ice drift retrieval from SAR is to a certain extent an accumulation of independent facts, since

it includes the work of different people and institutes, but we tried to re-write the part in order465

to emphasize the connections.

Page 3 Line 69 If I’m not mistaken, Hollands and Dierking (2011) implemented their own mod-

ified version of the algorithm and did not just continue the work on the algorithm but the authors

might want to check that.470

We changed the sentence to:

Hollands and Dierking (2011) implemented their own modified version of this algorithm to derive

sea ice drift from ENVISAT ASAR data.

Page 3 Line 86 -88 ’Muckenhuber ... Sentinel-1 data’ I suggest adding at the end of the sentence475

something like: ’as a frontend to the ORB algorithm from Rublee included in the OpenCV package’

just to give the reader an impression of the used technique, but I might be mistaken.

We changed the sentence to:

This paper follows up the work from Muckenhuber et al. (2016), who published an open-source

feature-tracking algorithm to derive computationally efficient sea ice drift from Sentinel-1 data480

based on the open-source ORB algorithm from Rublee et al. (2011), that is included in the

OpenCV Python package.

Page 5 Line 139 ’HV polarization’ - given that most of the Arctic and the whole Antarctic is only

covered by HH data this limits the conclusions for the application of the presented algorithm to the485

European Part of the Arctic and the Baltic sea.

We changed the sentence to:

However, the focus of this paper is put on using HV polarisation (mainly acquired over the

European Arctic and the Baltic sea), since this channel provides in our area of interest on average

four times more feature tracking vectors than HH (Muckenhuber et al., 2016), representing a490

better initial drift estimate for the combined algorithm.

Page 5 Line 165 ’Nansat ... gdal.org).’ It reads like a commercial - may be the authors want to

give this line a second thought.
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We changed the sentence to:495

To process Sentinel-1 images within Python (extraction of backscatter values and corresponding

geolocations, reprojection, resolution reduction etc.), we use the Python toolbox Nansat (Korosov

et al., 2016), that builds on the Geospatial Data Abstraction Library (http://www.gdal.org).

Page 9, Line 215 I suggest to add :’Given a suitable threshold [and unique features]...’500

We agree and changed the sentence accordingly.

Page 9, Line 217 I suggest to change: ’Muckenhuber ... found the most suitable ...’ to ’Mucken-

huber ... found a suitable ...’ given the flexibility of your approach and your suggested parameters

We agree and changed the sentence accordingly.505

Page 10 Line 260-261: I suggest adding something like: ’The quality of this ’first guess’, however

depends on the density of the feature vector field and the local ice conditions’

We added the following sentence after the first sentence in Section ’III First guess’:

The quality of this ’first guess’, however depends on the density of the feature-tracking vector510

field and the local ice conditions.

Please find attached the corrected manuscript with changes marked in blue and red.

Thanks again for your comments. We are looking forward to your reply!515

Best regards,

S. Muckenhuber and S. Sandven

15



Manuscript prepared for J. Name
with version 2015/09/17 7.94 Copernicus papers of the LATEX class copernicus.cls.
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Response to Referee # 2
’Open-source sea ice drift algorithm for Sentinel-1 SAR
imagery using a combination of feature-tracking and
pattern-matching’
Stefan Muckenhuber and Stein Sandven
Nansen Environmental and Remote Sensing Center (NERSC), Thormøhlensgate 47,
5006 Bergen, Norway

Correspondence to: S. Muckenhuber (stefan.muckenhuber@nersc.no)

Dear Referee # 2,

Thank you very much for helping us improving our paper.

Please find here the answers to your comments and the corresponding changes in manuscript:

Comments5

P13 (in the version with the changes indicated): ’normalized cross coefficient’, I think this should be

’normalized cross-correlation coefficient’ or just ’normalized cross-correlation’, Check this through-

out the manuscript, I think this appears more than once.

We changed ’cross coefficient’ to cross-correlation throughout the manuscript.

10

Eq 11: One closing parenthesis missing "argmax(NCC(x,y)" -> agrmax(NCC(x,y)). Could also

add (x,y) under argmax to indicate that argmax is with respect to (x,y).

We changed Equation 11 to the following:

(
1+ ts2 − ts1

2
+ dx,

1+ ts2 − ts1
2

+ dy) = argmax
x,y

(NCC(x,y)) (1)

Please find attached the corrected manuscript with changes marked in blue and red.15

Thanks again for your comments. We are looking forward to your reply!

Best regards,

S. Muckenhuber and S. Sandven20
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Manuscript prepared for J. Name
with version 2015/09/17 7.94 Copernicus papers of the LATEX class copernicus.cls.
Date: 2 May 2017

Open-source sea ice drift algorithm for Sentinel-1
SAR imagery using a combination of feature-tracking
and pattern-matching
Stefan Muckenhuber and Stein Sandven
Nansen Environmental and Remote Sensing Center (NERSC), Thormøhlensgate 47,
5006 Bergen, Norway

Correspondence to: S. Muckenhuber (stefan.muckenhuber@nersc.no)

Abstract. An open-source sea ice drift algorithm for Sentinel-1 SAR imagery is introduced based

on the combination of feature-tracking and pattern-matching. Feature-tracking produces an initial

drift estimate and limits the search area for the consecutive pattern-matching, that provides small to

medium scale drift adjustments and normalised cross coefficient
:::::::::::::
cross-correlation

:
values. The algo-

rithm is designed to combine the two approaches in the most meaningful way in order to benefit from5

the respective advantages. The main advantages of the considered feature-tracking approach are the

computational efficiency and the independence of the vectors in terms of position, lengths, direction

and rotation. Pattern-matching on the other side allows better control over vector positioning and

resolution. The pre-processing of the Sentinel-1 data has been optimised
:::::::
adjusted to retrieve a fea-

ture distribution that depends less on SAR backscatter peak values. Applying the algorithm with the10

recommended parameter setting, sea ice drift retrieval with a vector spacing of 4 km on Sentinel-1

images covering 400 km x 400 km, takes about 4 minutes on a standard 2.7 GHz processor with 8 GB

memory. The corresponding recommended patch size for the pattern-matching step, that defines the

final resolution of each drift vector is 34× 34 pixels (2.7× 2.7 km). For validation, calculated drift

results from 241
:::
246

:
Sentinel-1 image pairs have been compared to buoy GPS data, collected in15

2015 between 15th January and 22nd April and covering an area from 80.5◦ N to 83.5◦ N and 12◦ E

to 27◦ E. We found a logarithmic normal distribution of the error with a median at 341.9
:::::
352.9 m

::::
using

::::
HV

::::::::::
polarisation

:::
and

:::::
535.7

:
m

:::::
using

:::
HH

::::::::::
polarisation. All software requirements necessary for

applying the presented sea ice drift algorithm are open-source to ensure free implementation and

easy distribution.20

1 Introduction

Sea ice drift has a strong impact on sea ice distribution on different temporal and spatial scales. Mo-

tion of sea ice due to wind and ocean currents causes convergence and divergence zones, resulting

in formation of ridges and opening/closing of leads. On large scales, ice export from the Arctic and

1



Antarctic into lower latitudes, where the ice eventually melts away, contributes to a strong season-25

ality of total sea ice coverage (IPCC, 2013). Due to a lack of ground stations in sea ice covered

areas, satellite remote sensing represents the most important tool for observing sea ice conditions

on medium to large scales. Despite the strong impact of sea ice drift and the opportunities given by

latest satellite remote sensing techniques, there is a lack of extensive ice drift data sets providing

sufficient resolution for estimating sea ice deformation on a spatial scaling of less than 5 km.30

Our main regions of interest are the ice covered seas around Svalbard and East of Greenland.

Characteristic for this area are a large variation of different ice types (Marginal Ice Zone, First Year

Ice, Multi Year Ice etc.), a strong seasonality of ice cover and a wide range of drift velocities. Focus

was put on the winter/spring period, since the area of interest experiences the highest ice cover during

this time of the year.35

Early work from Nansen (1902) established the rule-of-thumb that sea ice velocity resembles 2 %

of the surface wind speed with a drift direction of about 45◦ to the right (Northern Hemisphere) of

the wind. This wind driven explanation can give a rough estimate for instantaneous ice velocities.

However, the respective influence of wind and ocean current strongly depends on the temporal and

spatial scale. Only about 50 % of the long-term (several months) averaged ice drift in the Arctic can40

be explained by geostrophic winds, whereas the rest is related to mean ocean circulation. This pro-

portion increases to more than 70 % explained by wind, when considering shorter time scales (days

to weeks). The wind fails to explain large-scale ice divergence patterns and its influence decreases

towards the coast (Thorndike and Colony, 1982).

Using GPS drift data from the International Arctic Buoy Program (IABP), Rampal et al. (2009)45

analysed the general circulation of the Arctic sea ice velocity field and found that the fluctuations

follow the same diffusive regime as turbulent flows in other geophysical fluids. The monthly mean

drift using 12 h displacements was found to be in the order of 0.05 to 0.1 m/s and showed a strong

seasonal cycle with minimum in April and maximum in October. The IABP dataset also revealed a

positive trend in the mean Arctic sea ice speed of +17 % per decade for winter and +8.5 % for summer50

considering the time period 1979–2007. This is unlikely to be the consequence of increased external

forcing. Instead, the thinning of the ice cover is suggested to decrease the mechanical strength which

eventually causes higher speed given a constant external forcing (Rampal et al. , 2009b).

Fram Strait represents the main gate for Arctic ice export and high drift velocities are generally

found in this area with direction southward. Based on moored Doppler Current Meters mounted55

near 79◦ N 5◦W, Widell et al. (2003) found an average southward velocity of 0.16 m/s for the period

1996–2000. Daily averaged values were usually in the range 0–0.5 m/s with very few occasions

above 0.5 m/s.

::::
GPS

:::::
buoys

::::
and

:::::::
Current

::::::
Meters

:::
are

:::::::::
important

:::::
tools

::
to

::::::::
measure

:::
ice

::::
drift

::
at

:::::::
specific

:::::::::
locations.

::::::::
However,

::
to

:::::::
monitor

:::
sea

:::
ice

:::::
drift

::
on

::::::::
medium

::
to

:::::
large

::::::
scales,

:::::::
satellite

::::::
remote

:::::::
sensing

:::::::::
represents60

::
the

:::::
most

::::::::
important

::::
data

::::::
source

::::::
today.

:::
The

:::::
polar

:::::
night

:::
and

::
a
::::
high

:::::::::
probability

:::
for

::::::
cloud

:::::
cover

::::
over

2



:::
sea

:::
ice

::::
limit

:::
the

:::::::::
capability

:::
of

::::::
optical

::::::
sensors

::::
for

::::::
reliable

::::::::::
year-round

:::
sea

:::
ice

::::::::::
monitoring.

:
Space-

borne Synthetic Aperture Radar (SAR)are
:
,
::
on

::::
the

::::
other

:::::
hand,

::::
are

:::::
active

:::::::::
microwave

:::::::
sensors

::::
and

:::
can

:::::::
produce

::::
high

::::::::
resolution

::::::
images

:::::::::
regardless

::
of

::::
solar

:::::::::::
illumination

:::
and

:::::
cloud

:::::
cover.

:::::
Since

:::
the

:::::
early

:::::
1990’s

:::::
SAR

::::::
sensors

:::
are

:
delivering systematic acquisitions of sea ice covered oceans since the early65

1990’s and Kwok et al. (1990) showed that sea ice displacement can be calculated from consecutive

SAR scenes. SAR is an active imaging sensor operating in the microwave spectrum and produces

data regardless of solar illumination and cloud cover.

The geophysical processor system from Kwok et al. (1990) has been used to calculate sea ice

drift fields in particular over the Western Arctic (depending on SAR coverage) once per week with70

a spatial resolution of 10-25 km for the time period 1996–2012. This extensive dataset makes use

of SAR data from RADARSAT-1 operated by the Canadian Space Agency, and from ENVISAT

(Environmental Satellite) ASAR (Advanced Synthetic Aperture Radar) operated by ESA (European

Space Agency). A

::
To

::::::
resolve

::::
drift

::::::
details

:::
on

:
a
::::
finer

:::::
scale,

::
a high-resolution sea ice drift algorithm for SAR images75

from ERS-1 (European Remote-sensing Satellite from ESA) based on pattern-matching was intro-

duced by Thomas et al. (2008), allowing drift calculation
:::
that

:::::::
allowed

::::
drift

::::::::::
calculation

::::
with up to

400 m resolution. The work on this algorithm has been continued by Hollands and Dierking (2011) ,

who derived
:::::::::::::::::::::::::::::::::::
Hollands and Dierking (2011) implemented

:::::
their

:::::
own

::::::::
modified

:::::::
version

:::
of

:::::
this

::::::::
algorithm

::
to

:::::
derive

:
sea ice drift from ENVISAT ASAR data.80

::
To

:::::::
provide

::::
drift

::::::::
estimates

::::
also

::
in

:::::
areas

::::::
where

::::
areal

::::::::
matching

::::::::::
procedures

::::
(like

:::::
cross

:::
and

::::::
phase

:::::::::
correlation)

::::
fail,

:
Berg and Eriksson (2014) introduced a hybrid algorithm for sea ice drift retrieval

from ENVISAT ASAR data using phase correlation and a feature based matching procedure that is

activated if the phase correlation value is below a certain threshold.

:::
The

:::::::
current

:::::::::
generation

::
of

:::::
SAR

::::::::
satellites

::::::::
including

:::::::::::::
RADARSAT-2

::::
and

:::::::::
Sentinel-1

:::
are

::::
able

:::
to85

::::::
provide

::::::
images

::::
with

:::::
more

:::
than

::::
one

::::::::::
polarisation. Komarov and Barber (2014) and Muckenhuber et al.

(2016) have evaluated the sea ice drift retrieval performance of dual-polarisation SAR imagery
::::
with

::::::
respect

::
to

:::
the

:::::::::
polarisation

:
using a combination of phase/cross-correlation and feature-tracking based

on corner detection respectively. Muckenhuber et al. (2016) has shown that feature-tracking provides

on average around four times as many vectors using HV polarisation compared to HH polarisation.90

Making use of Sentinel-1 SAR data, an operational sea ice drift product with 10km resolution is

provided by the Danish Technical University (Pedersen et al. (2015) , http://www.seaice.dk/) as part

of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu).

After the successful start of the Sentinel-1 mission in early 2014, high-resolution SAR im-95

ages are delivered for the first time in history within a few hours after acquisition as open-source

data to all users. This introduced a new era in SAR Earth observation with great benefits for

both scientists and other stack holders. The sea ice
:::::
Easy,

:::
free

::::
and

::::
fast

:::::
access

:::
to

::::::
satellite

::::::::
imagery
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:::::::
facilitate

:::
the

:::::::::
possibility

:
to
:::::::
provide

:::::::
products

:::
on

::
an

:::::::::
operational

:::::
basis.

::::
The

::::::
Danish

::::::::
Technical

:::::::::
University

:::::::::::::::::::
(Pedersen et al. (2015) ,

:::::::::::::::::::
http://www.seaice.dk/)

:::::::
provides

:::
an

:::::::::
operational

::::
sea

:::
ice

::::
drift

::::::
product

::::::
based100

::
on

:::::::::
Sentinel-1

::::
data

::::
with

::
10

:::
km

::::::::
resolution

:::
as

:::
part

::
of

:::
the

::::::::::
Copernicus

::::::
Marine

:::::::::::
Environment

::::::::::
Monitoring

::::::
Service

:::::::::
(CMEMS,

:::::::::::::::::::::::
http://marine.copernicus.eu).

:

:::
The

:::
sea

::::
ice covered oceans in the European Arctic Sector represent an important area of in-

terest and with
:::
for

:::
the

:
Sentinel-1

::::::
mission

::::
and

::::
with

:
having a revisit time of less than one day

in the Arctic (ESA, 2012), our area of interest is monitored
::
by

:::::::::
Sentinel-1

:
on a daily basis.105

Muckenhuber et al. (2016)

::::
This

:::::
paper

::::::
follows

:::
up

:::
the

::::
work

:::::
from

:::::::::::::::::::::::
Muckenhuber et al. (2016) ,

::::
who published an open-source

feature-tracking algorithm to derive computationally efficient sea ice drift from Sentinel-1 data .

This paper follows up the work from Muckenhuber et al. (2016) and aims
:::::
based

::
on

:::
the

:::::::::::
open-source

::::
ORB

::::::::
algorithm

:::::
from

:::::::::::::::::
Rublee et al. (2011) ,

::::
that

:
is
::::::::
included

::
in

:::
the

:::::::
OpenCV

:::::::
Python

:::::::
package.

:::
We

::::
aim110

to improve the feature-tracking approach by combining it with pattern-matching. Unlike Berg and

Eriksson (2014), the feature-tracking step is performed initially and serves as a first guess to limit

the computational effort of the pattern-matching step.

Contemporary
::::
From

::
a

::::::::::::
methodological

:::::
point

::
of

:::::
view, algorithms for deriving displacement vectors

between two consecutive
:::
SAR

:
images are based either on feature-tracking or pattern-matching.115

Feature-tracking detects distinct patterns (features) in both images and tries to connect similar

features in a second step without the need for knowing the locations. This can be done compu-

tationally efficient and the resulting vectors are often independent of their neighbours in terms of

position, lengths, direction and rotation, which is an important advantage for resolving shear zones,

rotation and divergence/convergence zones. The considered feature-tracking approach identifies fea-120

tures without taking the position of other features into account and matches features from one image

to the other without taking the drift and rotation information from surrounding vectors into account

(Muckenhuber et al., 2016). However, due to the independent positioning of the features, very close

features may share some pixels and since all vectors from the resolution pyramid are combined, the

feature size varies among the matches, which implies a varying resolution. In addition, the resulting125

vector field is not evenly distributed in space and large gaps may occur between densely covered

areas, which can eventually lead to missing a shear or divergence/convergence zone.

Pattern-matching, on the other hand, takes a small template from the first image at the starting

location of the vector and tries to find a match on a larger template from the second image. Despite

a considerable computational effort, this approach is widely used, since it allows to define the vector130

positions. For practical reasons, a pyramid approach is generally used to derive high-resolution ice

drift. This speeds up the processing, but limits the independence of neighbouring vectors, since they

depend on a lower resolution estimate (Thomas et al., 2008).

The objective of this paper is to combine the two approaches in the most meaningful way in

order to benefit from the respective advantages. The main advantages of the considered feature-135
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tracking approach are the computational efficiency and the independence of the vectors in terms

of position, lengths, direction and rotation. Pattern-matching on the other side allows better control

over vector positioning and resolution, which is a necessity for computing divergence, shear and

total deformation.

The presented algorithm, all necessary software requirements (python incl. Nansat, openCV and140

SciPy) and the satellite data from Sentinel-1 are open-source. A free and user friendly implementa-

tion shall support an easy distribution of the algorithm among scientists and other stakeholders.

The paper is organised as follows: The used satellite products and buoy data are introduced in

Section 2. The algorithm description including data pre-processing is given in Section 3, together

with tuning and validation methods. Section 4 presents the pre-processing, parameter tuning and145

validation results and provides a recommended parameter setting. The discussion including outlook

can be found in Section 5.

2 Data

The Sentinel-1 mission is a joint initiative of the European Commission and the European Space

Agency (ESA) and represents the Radar Observatory for the Copernicus Programme, a European150

system for monitoring the Earth with respect to environmental and security issues. The mission

includes two identical satellites, Sentinel-1A (launched in April 2014) and Sentinel-1B (launched

in April 2016), each carrying a single C-band SAR with a centre frequency of 5.405 GHz and

dual-polarisation support (HH+HV, VV+VH) also for wide swath mode. Both satellites fly in the

same near-polar, sun-synchronous orbit and the revisit time is less than 1 day in the Arctic (ESA,155

2012). The main acquisition mode of Sentinel-1 over sea ice covered areas is Extra Wide Swath

Mode Ground Range Detected with Medium Resolution (EW GRDM) and the presented algorithm

is built for processing this data type. The covered area per image is 400 km× 400 km and the data

are provided with a pixel spacing of 40 m× 40 m in both HH and HV
:::
HV

:::
and

::::
HH

:
polarisation.

The introduced algorithm can utilise both HH and HV
:::
HV

:::
and

::::
HH channel. However, the focus160

of this paper is put on using HV polarisation
::::::
(mainly

::::::::
acquired

::::
over

:::
the

::::::::
European

::::::
Arctic

::::
and

:::
the

:::::
Baltic

::::
sea), since this channel provides

:
in

:::
our

::::
area

:::
of

::::::
interest

:
on average four times more feature

tracking vectors than HH (Muckenhuber et al., 2016), representing a better initial drift estimate for

the combined algorithm.

165

To illustrate the algorithm performance and explain the individual steps, we use an image pair

acquired over Fram Strait. The acquisition times of the two consecutive images are 2015-03-28

07:44:33 (UTC) and 2015-03-29 16:34:52 (UTC), and the covered area is shown in Figure 3. This

image pair covers a wide range of different ice conditions (multiyear ice, first-year ice, marginal ice
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zone etc.) and the ice situation is representative for our area and time period of interest.170

To evaluate suitable search limitations and validate the algorithm, we use GPS data from drift

buoys that have been set out in the ice covered waters north of Svalbard as part of the Norwe-

gian Young Sea Ice Cruise (N-ICE2015) project of the Norwegian Polar Institute (Spreen and Itkin,

2015). The ice conditions during the N-ICE2015 expedition are describe on the project website175

(http://www.npolar.no/en/projects/n-ice2015.html) as challenging. The observed ice pack, mainly

consisting of 1.3-1.5 m thick multiyear and first-year ice, drifted faster than expected and was very

dynamic. Closer to the ice edge, break up of ice floes has been observed due to rapid ice drift and the

research camp had to be evacuated and re-established four times. This represents a good study field,

since these challenging conditions are expected in our area and time period of interest. The consid-180

ered GPS data have been collected in 2015 between 15th January and 22nd April, and cover an area

ranging from 80.5◦ N to 83.5◦ N and 12◦ E to 27◦ E. The buoys recorded their positions either hourly

or every three hours. In the later case, the positions have been interpolated for each hour.

3 Method

3.1 Data pre-processing185

To process Sentinel-1 images within Python (extraction of backscatter values and correspond-

ing geolocations, reprojection, resolution reduction etc.), we use the open-source software Nansat

(Korosov et al., 2016) . Nansat is a scientist-friendly Python toolbox for 2-D satellite Earth

observation data, and
::::::
Python

::::::
toolbox

:::::::
Nansat

:::::::::::::::::::
(Korosov et al., 2016) ,

:::
that

:
builds on the Geospatial

Data Abstraction Library (http://www.gdal.org). As done in Muckenhuber et al. (2016), we change190

the projection of the the provided ground control points (latitude/longitude values given for certain

pixel/line coordinates) to stereographic and use spline interpolation to calculate geographic coor-

dinates. This provides a good geolocation accuracy also at high latitudes. The pixel spacing of the

image is changed by averaging from 40 m to 80 m, which is closer to the sensor resolution of 93 m

range× 87 m azimuth, and decreases the computational effort.195

For each pixel p, the Sentinel-1 data file provides a digital numberDNp and a normalisation coef-

ficient Ap, from which the normalised radar cross section σ0
raw is derived by the following equation:

σ0
raw =DN2

p/A
2
p (1)

The normalised radar cross section σ0
raw reveals a logarithmic distribution and the structures in the200

sea ice are mainly represented in the low and medium backscatter values rather than in the highlights.

Therefore, we change the linear scaling of the raw backscatter values σ0
raw to a logarithmic scaling

and get the backscatter values σ0 = 10∗ lg(σ0
raw) [dB]. A representative backscatter distribution over
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sea ice is shown in Figure 1. Using a logarithmic scaling provides a keypoint distribution for the

feature tracking algorithm that depends less on high peak values, while the total number of vectors205

increases.

:
a

40 35 30 25 20 15 10 5 0
HV backscatter [dB]

0.5

1

1.5

2

2.5

M
io

. 
p
ix

e
ls

SAR1

SAR2

:
b

40 35 30 25 20 15 10 5 0
HH backscatter [dB]

0.5

1

1.5

2

2.5

M
io

. 
p
ix

e
ls

SAR1

SAR2

Figure 1. Histogram of
::
(a) HV

:::
and

:::
(b)

:::
HH backscatter values σ0 from image pair Fram Strait. The lower and

upper brightness boundaries
::
for

:::
HV

:
(σ0

min = −32.5 dBand
:
, σ0

max = −18.86 dB
:
)
:::
and

:::
HH

::::::::::::
(σ0

min = −25.0
:::
dB,

::::::::::::
σ0
max = −10.97

:::
dB) are shown with blue lines and illustrate the domain for the intensity values i.

To apply the feature-tracking algorithm from Muckenhuber et al. (2016), the SAR backscatter

values σ0 have to be converted into intensity values i with 0≤ i≤ 255 for i ∈ R. This conversion is

done by using Eq. (2) and setting all values outside the domain to 0 and 255.

i = 255 · σ0−σ0
min

σ0
max−σ0

min

(2)210

The upper brightness boundary σ0
max is set according to the recommended value from Mucken-

huber et al. (2016), i.e. -18.86 dB and -10.97 dB for HV and HH respectively. The lower boundary

σ0
min was chosen to be -32.5 dB (HV) and -25

::::
-25.0 dB (HH), since this was found to be a reasonable

range of expected backscatter values. Figure 2 shows the image pair Fram Strait after the conversion

into intensity values.215

3.2 Sea ice drift algorithm

The presented sea ice drift algorithm is based on a combination of feature-tracking and pattern-

matching, and is designed to utilise the respective advantages of the two approaches. Com-

putationally efficient feature-tracking is used to derive a first estimate of the drift field. The

provided vectors serve as initial search position for pattern-matching, that provides accurate220

drift vectors at each given location including rotation estimate and maximum cross coefficient

:::::::::::::
cross-correlation

:
value. As illustrated in the flowchart in Figure 3, the algorithm consists of five
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Figure 2. Image pair Fram Strait in
::
(a)

:
HV

::
and

:::
(b)

:::
HH polarisation after conversion (Equation 2) from backscat-

ter values σ0 into intensity values with range 0 ≤ i≤ 255 using lower and upper brightness boundaries
::
for

::::
HV:

σ0
min = −32.5 dB and σ0

max = −18.86 dB
:::
and

:::
HH:

:::::::::::
σ0
min = −25.0

::
dB,

::::::::::::
σ0
max = −10.97

::
dB.

main steps: I Feature tracking, II Filter, III First guess, IV Pattern matching and V Final drift product.

I Feature-tracking225

The feature-tracking algorithm used in this work is an adjusted version from Muckenhuber et al.

(2016), who introduced a computationally efficient sea ice drift algorithm for Sentinel-1 based on

the ORB (Oriented FAST and Rotated BRIEF) algorithm from Rublee et al. (2011). ORB uses the

concept of the FAST keypoint detector (Rosten and Drummond, 2006) to find corners on several230

resolution levels. The patch around each corner is then described using an modified version of the

binary BRIEF descriptor from Calonder et al. (2010). To ensure rotation invariance, the orientation

of the patch is calculated using the intensity-weighted centroid. Muckenhuber et al. (2016) applies

a Brute Force matcher that compares each feature from the first image to all features in the second

image. The comparison of two features is done using the Hamming distance, that represents the235

number of positions in which the two compared binary feature vectors differ from each other. The
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Figure 3. The flowchart on the left depicts the five main steps of the algorithm. The right column illustrates

the evolution of the drift results using image pair Fram Strait in HV polarisation and a grid with 4 km spacing.

Blue vectors are derived applying an adjusted version of the feature tracking algorithm from Muckenhuber et

al. (2016). Black vectors indicate the initial drift estimate (first guess) based on filtered feature-tracking vectors.

The final drift product (yellow to red vectors) are derived from combining the first guess with pattern-matching

adjustment and applying a minimum cross coefficient
:::::::::::::
cross-correlation value. In this example, a total of 4725

vectors have been found with a MCC value above 0.4 in 4 min.
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best match is accepted if the ratio of the shortest and second shortest Hamming distances is below a

certain threshold. Given a suitable threshold
::::
(and

::::::
unique

:::::::
features), the ratio test will discard a high

number of false matches, while eliminating only a few correct matches.

Muckenhuber et al. (2016) found the most
:
a suitable parameter setting for our area and time period240

of interest, including a Hamming distance threshold of 0.75, a maximum drift filter of 0.5 m/s, a

patch size of 34× 34 pixels and a resolution pyramid with 7 steps combined with a scaling factor

of 1.2. Due to the resolution pyramid, the considered feature area varies from 2.7× 2.7 km to 9.8×
9.8 km and the resulting drift field represents a resolution mixture between these boundaries.

We adjust the algorithm from Muckenhuber et al. (2016) by applying a logarithmic scaling for the245

SAR backscatter values σ0 instead of the previous used linear scaling (Section 3.1). In addition, we

extract for each vector the rotation information α, i.e. how much the feature rotates from the first to

the second image.

Applying the adjusted feature-tracking algorithm provides a number of un-evenly distributed

vectors (e.g. blue vectors in Figure 3) with start positions x1f , y1f on the first image (SAR1), end250

positions x2f , y2f on the subsequent image (SAR2) and corresponding rotation values αf :::::
αrawf .

The index f represents a feature-tracking vector and ranges from 1 to F , with F being the total

number of derived feature-tracking vectors.

::
To

:::::
avoid

:::::::::::
zero-crossing

::::::
issues

:::::
during

:::
the

:::::::::
following

::::
filter

:::
and

::::::::::::::::
inter-/extrapolation

:::::::
process

:::
(in

::::
case255

::
the

::::::
image

:::::::
rotation

:
δ
:::::::
between

::::::
SAR1:::

and
::::::
SAR2::

is
::::
close

::
to
::::
0◦),

:
a
:::::
factor

::::::::
|180− δ|

::
is

:::::
added

::
to

:::
the

::::
raw

::::::
rotation

::::::
values

::::::
αrawf ::::

using
:::
the

:::::::::
following

::::::::
Equation:

αf =

αrawf + |180− δ| if αrawf + |180− δ|< 360

αrawf + |180− δ| − 360 if αrawf + |180− δ|> 360
::::::::::::::::::::::::::::::::::::::::::::::::::::

(3)

::::
This

::::::
centres

:::
the

:::::::::
reasonable

:::::::
rotation

:::::
values

::
in

:::
the

:::::::::
proximity

::
of

:::::
180◦.

::::
After

::::::::
applying

:::
the

::::
filter

::::
and

:::::::::::::::
inter-/extrapolation

:::::::
process,

:::
the

::::::::
estimated

:::::::
rotation

::
α

::
is

::::::::
corrected

::
by

::::::::::
subtracting

::::::::
|180− δ|.260

II Filter

To reduce the impact of potentially erroneous feature-tracking vectors on the following steps,

outliers are filtered according to drift and rotation estimates derived from least squares solutions265
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using a third degree polynomial function. Considering a matrix A, that contains all end positions

x2f , y2f in the following form

A =


1 x21 y21 x221 y221 x21 ∗ y21 x321 y321

1 x22 y22 x222 y222 x22 ∗ y22 x322 y322
...

...
...

...
...

...
...

...

1 x2F y2F x22F y22F x2F ∗ y2F x32F y32F

 (4)

, we derive three vectors bx1 , by1 and bα, that represent the least squares solutions for A and

x1 = (x11, ...,x1F ), y1 = (y11, ...,y1F ) and α= (α1, ...,αF ) respectively. The starting position x1f ,270

y1f and the rotation αf of each vector can then be simulated using a third degree polynomial function

f(x2f ,y2f ,b) depending on the end position x2f , y2f and the corresponding least squares solution

b = (b0, b1, b2, b3, b4, b5, b6, b7).

f(x2f ,y2f ,b) = b0 + b1x2f + b2y2f + b3x
2
2f + b4y

2
2f + b5x2fy2f + b6x

3
2f + b7y

3
2f (5)

If the simulated start position, derived from f(x2f ,y2f ,b), deviates from the feature-tracking275

start position x1f , y1f by more than 100 pixels, the vector is deleted. The same accounts for rotation

outliers. If the simulated rotation deviates from the feature-tracking rotation αf by more than 60◦,

the vector is deleted. We found a third degree polynomial function to be a good compromise between

allowing for small to medium scale displacement and rotation discontinuities, and excluding very

unlikely vectors, that eventually would disturb the following steps. The parameters for the filter280

process, i.e. 100 pixels (displacement) and 60◦ (rotation), have been chosen according to visual

interpretation using several representative image pairs. Figure 4 illustrates the filter process by

depicting the results from image pair Fram Strait.

III First guess285

The remaining feature-tracking vectors are used to estimate the drift incl. rotation on the entire

first image, i.e. estimated x2, y2 and α values are provided for each pixel on SAR1 (Figure 5).
:::
The

::::::
quality

::
of

:::
this

:::::
’first

::::::
guess’,

:::::::
however

:::::::
depends

:::
on

:::
the

::::::
density

::
of

:::
the

::::::::::::::
feature-tracking

:::::
vector

::::
field

::::
and

::
the

:::::
local

:::
ice

:::::::::
conditions.290

Between the feature-tracking vectors, estimated values are constructed by triangulating the input

data and performing linear barycentric interpolation on each triangle. That means, the estimated val-

ues represent the weighted mean of the three neighbouring feature-tracking values. The interpolated

value vp at any pixel p inside the triangle is given by Equation 6, where v1, v2, v3 represent the

feature-tracking values at the corners of the triangle and A1, A2, A3 are the areas of the triangle295
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Figure 4. Filter process applied on image pair Fram Strait
::
in

:::
HV

::::::::
polarisation. The x-axis represent the simulated

start position and rotation, derived from f(x2f ,y2f ,b) and the y-axis represent the feature-tracking start posi-

tion x1f , y1f and rotation αf .
:::
NB:

:::
the

:::::
image

::::::
rotation

::
is

::::::::::
δ = 129.08◦,

:::::
which

:::::
means

:::
the

::::::
rotation

:::
was

:::::::
adjusted

::
by

:::::
50.92◦

::::::::
(Equation

::
3).

:
Red points were identified as outliers and deleted.

constructed by p and the two opposite corners, e.g. A1 is the area between p, and the corners with

value v2 and v3.

vp =
A1v1 +A2v2 +A3v3

A1 +A2 +A3
(6)

To provide a first guess for the surrounding area, values are estimated based on the least squares

solutions using a linear combination of x1 and y1. Considering a matrix C, that contains all start300

positions x1f , y1f in the following form

C =


1 x11 y11

1 x12 y12
...

...

1 x1F y1F

 (7)

, we derive three vectors dx2 , dy2 and dα, that represent the least squares solutions for C and

x2 = (x21, ...,x2F ), y2 = (y21, ...,y2F ) and α= (α1, ...,αF ) respectively. The estimated end position

x2, y2 and rotation α at any location can then be simulated using the linear function f(x1,y1,c)305

depending on the start position x1, y1 and the corresponding least squares solution d = (d0,d1,d2).

f(x1,y1,d) = d0 + d1x1 + d2y1 (8)

::
As

:::::::::
mentioned

::::::
above,

:::
the

:::::::
rotation

:::::::::
estimates

::
α

:::
are

::::
now

::::::::
corrected

:::
for

:::
the

::::::::::
adjustment

::::::
applied

:::
in

:::::::
Equation

::
3,

:::
by

:::::::::
subtracting

::::::::
|180− δ|.

:
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Figure 5. Example of estimated drift and rotation (first guess) based on filtered feature-tracking vectors using

image pair Fram Strait
:
in
:::
HV

:::::::::
polarisation. The three panels show the components x2, y2 of the estimated end

positions and the estimated rotation α for each pixel on the first image (SAR1).

An example for the resulting first guess, i.e. estimated values for x2, y2 and α on SAR1, is310

shown in Figure 5 and corresponding vectors are shown in black in Figure 3. Note that rotation

α includes
:::
has

:::::::
already

::::
been

::::::::
corrected

:::
by

::::::::::
subtracting

::::::::
|180− δ|.

::
It
:::::::
includes

:::::
now both the relative

image rotation
:
δ
:
from SAR1 to SAR2 and the actual rotation of the feature itself. The introduced

algorithm provides also the relative image rotation
:::::
image

::::::
rotation

::
δ by projecting the left corners of

SAR2 onto SAR1 and calculating the angle between the left edges of SAR1 and SAR2. The ac-315

tual rotation of the features can easily be obtained by subtracting the relative image rotation
:
δ
:
from α.

IV Pattern-matching

The estimated drift field derived from feature-tracking provides values for x2, y2 and α at any loca-320

tion on SAR1. The uncertainty
::::::::::::::
representativeness

:
of this estimate however, increases with

:::::::
depends

::
on

:::
the

:
distance d to the closest feature-tracking vector. Therefore, small to medium scale adjust-

ments of the estimates are necessary, depending on the distance d. We apply pattern-matching at

chosen points of interest to provide more accurate drift vectors and adjust the rotation estimate at

these specific locations.325

The used pattern-matching approach is based on the maximisation of the normalised cross

:::::::::::::
cross-correlation

:
coefficient. Considering a small template t1 around the point of interest from SAR1

with size t1s× t1s and a larger template t2 around the location x2, y2 (defined by the corresponding

first guess) from SAR2 with size t2s× t2s, the normalised cross coefficient
:::::::::::::
cross-correlation matrix

NCC is defined as (Hollands , 2012):330

NCC(x,y) =

∑
x′,y′(t

′
1(x′,y′)t′2(x+x′,y+ y′))√∑

x′,y′ t
′
1(x′,y′)2

∑
x′,y′ t

′
2(x+x′,y+ y′))2

(9)
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t′1(x′,y′) = t1(x′,y′)− 1

t21s

∑
x′′,y′′

t1(x′′,y′′) (10)

t′2(x+x′,y+ y′) = t2(x+x′,y+ y′)− 1

t21s

∑
x′′,y′′

t2(x+x′′,y+ y′′) (11)

with t1(x′,y′) and t2(x′,y′) representing the value of t1 and t2 at location x′,y′. The summations335

are done over the size of the smaller template, i.e. x′, y′, x′′ and y′′ go from 1 to t1s. Template

t1 is moved with step size 1 pixel over template t2 both in horizontal (x) and vertical (y) direction

and the cross coefficient
::::::::::::::
cross-correlation values for each step are stored in the matrix NCC with

size (1 + ts2− ts1)× (1 + ts2− ts1). The highest value in the matrix NCC, i.e. the the maximum

normalised cross coefficient
:::::::::::::
cross-correlation

:
value MCC, represents the location of the best match340

and the corresponding location adjustment is given by dx and dy.

(
1 + ts2− ts1

2
+ dx,

1 + ts2− ts1
2

+ dy) = argmaxargmax
x,y

(NCC(x,y)) (12)

To restrict the search area t2s to a circle, we set all values of NCC that are further than t2s/2 away

from the centre position to zero.

::::
This

:::::
limits

:::
the

:::::::
distance

::::
from

:::
the

::::
first

:::::
guess

::
to

::
a
:::::::
constant

:::::
value,

::::::
rather

::::
than

::
to

::
an

::::::::
arbitrary

:::::
value345

::::::::
depending

:::
on

:::
the

::::::
looking

:::::
angle

::
of

:::
the

:::::::
satellite.

:
c
:
To account for rotation adjustment, the matrix NCC

is calculated several times: template t1 is rotated around the initially estimated rotation α from α−β
to α+β with step size ∆β. The angle β is the maximum additional rotation and represents therefore

the rotation restriction. The NCC matrix with the highest cross coefficient
::::::::::::::
cross-correlation value

MCC is returned.350

To illustrate the pattern-matching process, an example, taken from image pair Fram Strait, is

shown in Figure 6.

The described process demands the specification of four parameters: t1s, t2s, β and ∆β.

The size of the small template t1s× t1s defines the considered area that is tracked from one image355

to the next and hence, affects the resolution of the resulting drift product. In order to be consistent

with the resolution of the feature-tracking step and achieve our goal of a sea ice drift product with a

spatial scaling of less than 5 km, we use the size of the feature-tracking patch of the pyramid level

with the highest resolution to define the size of t1. That means, we use ts1 = 34 pixels (2.7 km).

The size of the larger template t2s× t2s restricts the search area on SAR2, i.e. how much the360

first guess can be adjusted geographically, and the angle β restricts the rotation adjustment of the

first guess α. The three parameter t2s, β and ∆β have a strong influence on the computational effi-

ciency of the drift algorithm. Meaning that an increase of t2s, β and a decrease of ∆β increase the

14
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Figure 6. Pattern-matching using initial drift estimate from feature-tracking: The small template t1 (left) around

the point of interest on SAR1 is rotated from α−β to α+β and matched with the large template t2 (middle)

from SAR2, that has its centre at the estimated end position x2, y2. The right contour plot shows the normalised

cross coefficient
::::::::::::

cross-correlation matrix NCC of the rotation β∗ that provided the highest maximum cross

::::::::::::
cross-correlation

:
coefficient MCC. The estimated end position x2, y2 of this example has to be adjusted by

dx= −21 pixels, dy = 32 pixels to fit with the location of MCC = 0.71. Rotation adjustment β∗ was found

got be 3◦. NB: X and Y -axis represent pixel coordinates.

computational effort of the pattern-matching step. Based on visual interpretation of several repre-

sentative image pairs, we found ∆β = 3◦ to be a good compromise between matching performance365

and computational efficiency.
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Figure 7. Example to illustrate the distribution of distance d to the closest feature-tracking vector using image

pair Fram Strait
:
in

:::
HV

::::::::::
polarisation. Values outside the range dmin ≤ d≤ dmax are set to dmin = 10 and

dmax = 100. The points with value dmin represent the start positions x1, y1 of the feature-tracking vectors on

SAR1.

Since the uncertainty of the first guess increases with distance d (Figure 7) to the closest feature-

tracking vector, the search restrictions t2s and β should increase with d. To find useful restrictions for

t2s and β, we calculated drift vectors using very high values for t2s and β, i.e. being computationally

15



more demanding than we anticipate, and compared the results with the GPS drift buoy dataset from370

the N-ICE2015 expedition. Based on the results (Section 4) we found the following functions to

represent useful restrictions for our area and time period of interest.

t2s(d) = t1s + 2d dmin ≤ d≤ dmax d ∈ N (13)

β(d) =

9 if d < dmax

12 if d≥ dmax
(14)

The values for dmin, dmax, β and ∆β can easily be varied in the algorithm to adjust for e.g.375

different areas, drift conditions or a different compromise between matching performance and

computational efficiency.

V Final drift product

380

In the last step, the small to medium scale displacement adjustments from pattern-matching are

added to the estimated first guess derived from feature-tracking. Using buoy comparison, we found

that the probability for large displacement errors decreases with increasing MCC value (Section 4).

Therefore, vectors that have a MCC value below the threshold MCCmin are removed. We found

MCCmin = 0.4 to be a good filter value, but this value can easily be adjusted in the algorithm de-385

pending on the sought compromise between amount of vectors and error probability. The algorithm

returns the final drift vectors in longitude, latitude, the corresponding first guess rotation α and the

rotation adjustment β in degrees and the maximum cross coefficient
::::::::::::::
cross-correlation value MCC.

An example for the final product is depicted with yellow to red coloured vectors in Figure 3. The

colour scale refers to the MCC value, indicating the probability for an erroneous vector.390

3.3 Comparison with buoy data

Sentinel-1 image pairs have been selected automatically according to position and timing of the

GPS buoy data from the N-ICE2015 expedition. Each pair yielded more than 300 drift vectors using

:::::::
applying

:
the feature-tracking algorithm from Muckenhuber et al. (2016)

::::::
Section

:::
3.2

:
and had a time

difference between the two acquisitions of less than three days. Drift vectors have been calculated395

with the presented algorithm starting at the buoy GPS position with the least time difference to

the acquisition of the first satellite image. The distance D between the calculated end position on

the second image and the buoy GPS position with the least time difference to the second satellite

acquisition has been calculated using the following equation:

D =
√

(u−U)2 + (v−V )2 (15)400
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where u and v represent eastward and northward drift components of the displacement vector

derived by the algorithm, and U and V the corresponding drift components of the buoy.

4 Results

4.1 Search restrictions evaluation

To find suitable values for restricting the size of the search window t2s and the rotation range de-405

fined by β, we calculated drift vectors, that can be compared to the considered GPS buoy dataset,

using restrictions that are computationally more demanding than we anticipate for the recommended

setting, i.e. t2s = 434 pixels and β = 18◦. These values corresponds to a possible pattern-matching

adjustment of up to 200 pixels (16 km) and 18◦ in any direction independent of the distance d to the

closest feature-tracking vector.410
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Figure 8. Considered buoy trajectories
:::::::
locations from the N-ICE2015 expedition that were used for comparison

with algorithm results.
::::

Green
:::
and

::::
blue

:::::
colour

:::::::
indicates

::::
start

::::::::
locations

:::
(on

::::::
SAR1)

::
to

:::::
which

:::
the

::::::::
algorithm

::::::
provided

::::::
vectors

::::
with

:
a
:::::
MCC

:::::
value

::::
above

:::
and

:::::
below

:::
0.4

::::
using

:::
(a)

:::
HV

:::
and

::
(b)

:::
HH

::::::::::
polarisation.

Based on an automatic search, we found 240
:::
244 matching Sentinel-1 image pairs (consisting of

110
:::
111

:
images), that allowed for comparison with 689

:::
711 buoy vectors (

::::
buoy

::::::::
locations

:::
are

::::::
shown

::
in Figure 8). The distanceD (Equation 15) between the buoy location at the time of the second image

SAR2 and the corresponding algorithm result, represents the error estimate for one vector pair. To

identify algorithm results that are more likely erroneous, vector pairs with a value D above 1000 m415

are marked with red dots in Figure 9 and Figure 10. Vector pairs with D < 1000 m are plotted with

black dots.
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Figure 9 and Figure 10 show the resulting pattern-matching adjustment of location (dx, dy) and

rotation (dβ) using the computationally demanding restrictions. The values are plotted against dis-

tance d to the next feature tracking vector in order to identify the dependence of the parameters on420

d. The blue lines in Figure 9 and Figure 10 indicate the recommended restrictions. This represents a

compromise between computational efficiency and allowing the algorithm to adjust the first guess as

much as needed for our time period and area of interest. The corresponding functions for t2s(d) and

β(d) are given in Equation 13 and Equation 14 and the recommended boundary values for distance

d are dmin = 10 and dmax = 100.425
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Figure 9. Pattern-matching location adjustment dx and dy in x and y direction versus distance d to closest

feature tracking vector
::::
using

::
(a)

:::
HV

::::
and

::
(b)

:::
HH

:::::::::
polarisation. D represents the difference between buoy GPS

position and algorithm result. The blue lines indicate the recommended setting for t2s (Equation 13) with

dmin = 10 and dmax = 100.

4.2 Validation

Using the recommended search restrictions from above, the algorithm has been validated against

the N-ICE2015 GPS buoy data set (Figure 8). The automatic search provided 241
:::
246 image pairs
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Figure 10. Pattern-matching rotation adjustment dβ versus distance d to closest feature tracking vector
::::
using

::
(a)

:::
HV

:::
and

:::
(b)

:::
HH

:::::::::
polarisation. D represents the difference between buoy GPS position and algorithm result.

The blue lines indicate the recommended setting for β (Equation 14) with dmin = 10 and dmax = 100.

(consisting of 110
:::
111

:
images) and 714

:::
746 vectors for comparison for the considered time period

(15th January to 22nd April) and area (80.5◦ N to 83.5◦ N and 12◦ E to 27◦ E). NB: this is a higher430

number of vectors than found for the evaluation of the search restrictions, since the used search

windows t2 are smaller and vectors closer to the SAR edge may be included.

The results of the conducted validation are shown in Figure 11. We found that the probability for

a large D value (representative for the error) decreases with increasing maximum cross coefficient

:::::::::::::
cross-correlation

:
value MCC. Therefore we suggest to exclude matches with a MCC value below435

a certain thresholdMCCmin. This option is embedded into the algorithm, but can easily be adjusted

or turned off by setting MCCmin = 0. Based on the findings shown in Figure 11, we recommend a

cross
:::::::::::::
cross-correlation coefficient thresholdMCCmin = 0.4 for our time period and area of interest.

Using the suggested threshold reduces the number of vector pairs from 714 to 565.
:::
746

::
to

::::
588

:::
for

::
the

::::
HV

:::::::
channel

:::
and

::
to

:::
478

:::
for

:::
the

::::
HH

:::::::
channel.440

The conducted validation also reveals a logarithmic normal distribution of the distance D (Equa-

tion 15) that can be expressed by the following probability density function (solid red line in Figure

11):

lnN(D;µ,σ) =
1

σD
√

2π
e−

(lnD−µ)2

2σ2 (16)

with µ and σ being the mean and standard deviation of the variable’s natural logarithm. We445

found the mean and variance of the distribution lnN to be µ= 5.835 and σ2 = 1.584. The median

::::::::
µ= 5.866

::::
and

:::::::::
σ2 = 1.602

:::
for

::::
HV

::::::::::
polarisation

:::
and

:::::::::
µ= 6.284

::::
and

:::::::::
σ2 = 2.731

:::
for

::::
HH

::::::::::
polarisation

:::::
(solid

:::
red

::::
lines

::
in

::::::
Figure

::::
11).

::::
The

:::::::
medians

:
of the logarithmic normal distribution is eµ = 341.9m

::
are

::::::::::::
eµ = 352.9m

:::
for

:::
HV

::::::::::
polarisation

::::
and

:::::::::::
eµ = 535.7m

:::
for

::::
HH

::::::::::
polarisation (dashed red line

::::
lines

in Figure 11).450
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Figure 11. Calculated ice drift using recommended search restrictions compared to buoy GPS data
::::
using

:::::
(a,b,c)

:::
HV

:::
and

:::::
(x,y,z)

:::
HH

::::::::
polarisation. Light grey represents vectors with maximum cross coefficient

::::::::::::
cross-correlation

values MCC < 0.4 and results after using the suggested threshold MCCmin = 0.4 are shown in black. (a
:
,x)

MCC values against distance D (Equation 15) between algorithm and buoy end position. The blue line indi-

cates the recommended setting for MCCmin = 0.4. (b
:
,y) Logarithmic histogram of distance D with 100 bins

between 10 m and 105 m including a
:::
two logarithmic normal distribution (solid red line)

:::::::::
distributions

:
that was

:::
were

:
fitted to

::
all

:::::
results

:::::
(grey)

:::
and

::
to the

:::::
filtered results with MCC > 0.4

::::
(solid

:::
red

:::
line). (c

:
,z) Comparison of

drift distance derived from algorithm against buoy displacement
::
for

::
the

::::::
filtered

:::::
results

::::
with

::::::::::
MCC > 0.4.

4.3 Recommended parameter setting

Based on the restriction evaluation, our experience with the algorithm behaviour, and considering a

good compromise between computational efficiency and high quality of the resulting vector field,

we recommend the parameter setting shown in Table 1. The corresponding recommended values for

t2s(d) and β(d) are given in Equation 13 and Equation 14.455

4.4 Computational efficiency

The processing time depends on the parameter setting and the chosen vector distribution. Using

the recommended parameter setting from Table 1, allows high-resolution sea ice drift retrieval from
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Table 1. Recommended parameter setting for sea ice drift retrieval from Sentinel-1 using the presented algo-

rithm.

Parameter Meaning Recommended setting

[σ0
min, σ0

max] (HH) Brightness boundaries for HH channel [-25 dB, -10.97 dB]

[σ0
min, σ0

max] (HV) Brightness boundaries for HV channel [-32.5 dB, -18.86 dB]

t1s Size of template t1 34 pixels (2.7 km)

[dmin, dmax] Boundaries for distance d [10 pixels, 100 pixels]

MCCmin Threshold for cross coefficient
::::::::::::
cross-correlation 0.4

∆β Rotation angle increment 3◦

a Sentinel-1 image pair within a few minutes. Figure 3 depicts calculated ice drift vectors for the

image pair Fram Strait on a grid with 4 km (50 pixels) spacing. The corresponding processing times460

are shown in Table 2. The calculations have been done using a MacBook Pro from early 2013

with a 2.7 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3 memory. The total processing

time for 4725 vectors with a normalised cross coefficient
:::::::::::::
cross-correlation

:
value above 0.4, is about

4 minutes. This can be considered a representative value for an image pair with large overlap, good

coverage with feature-tracking vectors and 4 km grid spacing.465

The initial process in Table 2 ’Create Nansat objects from Sentinel-1 image pair and read matrixes’

takes the same amount of computational effort for all image pairs consisting of Sentinel-1 images

with 400x400 km coverage.

The process ’I Feature-tracking’ depends on the setting of the feature-tracking algorithm and

varies strongly with the chosen number of features. Using the recommended setting from Mucken-470

huber et al. (2016), that includes the number of features to be 100000, the presented computational

effort can be considered representative for all image pairs, independent of chosen points of interest

and overlap of the SAR scenes.

The last process ’II Pattern-matching and III Combination’ however, depends on the considered

image pair and the chosen drift resolution. The computational effort is proportional to the number475

of chosen points of interest. Given a evenly distributed grid of points of interest, the computational

effort increases with overlapping area of the SAR scenes, since pattern-matching adjustments are

only calculated in the overlapping area. The effort potentially decreases with a higher number of

well distributed feature-tracking vectors, since the size of the search windows t2 (and slightly the

range of the angle β) increases with distance d to the closest feature-tracking vector.480

5 Discussion and outlook

To estimate the accuracy of the introduced algorithm, we compared drift results from 240
:::
246

Sentinel-1 image pairs with corresponding GPS positions from the N-ICE2015 buoy data set. We
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Table 2. Processing time for sea ice drift retrieval from image pair Fram Strait on a grid with 4 km (50 pixels)

spacing using HV polarisation (Figure 3). Representative for an image with large overlap and good coverage

with feature-tracking vectors.

Process Time [s]

Create Nansat objects from Sentinel-1 image pair

and read matrixes 70

I Feature-tracking 66

II Pattern-matching and III Combination 107∑
Sea ice drift retrieval 243

found a logarithmic error distribution with a median at 341.9
::::
352.9 m

::
for

::::
HV

:::
and

:::::
535.7

:
m

:::
for

::::
HH

(Figure 11). The derived error values represent a combination of the following error sources:485

– Timing: Buoy GPS data were collected every 1-3 hours and the timing does not necessarily

match with the satellite acquisition time.

– Resolution: The algorithm returns the drift of a pattern (recommended size = 34 pixels, see

Table 1), whereas the buoy measures the drift at a single location.

– Conditions: The ice conditions around the buoy is not known well enough to exclude the490

possibility that the buoy is floating in a lead. In this case, the buoy trajectory could represent a

drift along the lead rather then the drift of the surrounding sea ice.

– actual error of the algorithm.

A main advantage of the combined algorithm compared to simple feature-tracking, is the user de-

fined positioning of the drift vectors. The current algorithm setup allows the user to choose whether495

the drift vectors should be positioned at certain points of interest or on a regular grid with adjustable

spacing. Constricting the pattern-matching process to the area of interest minimises the computa-

tional effort according to the individual needs.

The recommended parameters shown in Table 1 are not meant as a fixed setting, but should rather

give a suggestion and guideline to estimate the expected results and the corresponding computational500

effort. The parameters can easily be varied in the algorithm setup and should be chosen according to

availability of time, computational power, number of image pairs, needed accuracy
::::::
needed

::::::::
resolution,

area of interest and expected ice conditions (e.g. strong rotation).

The presented combination of feature-tracking and pattern-matching can be applied to any other

application that aims to derive displacement vectors computationally efficient from two consecutive505

images. The only restriction is that images need to depict edges, that can be recognised as keypoints
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for the feature-tracking algorithm, and the conversion into intensity values i (Equation 2) needs to

be adjusted according to the image type.

The remote sensing group at NERSC is currently developing a new pre-processing step to remove

thermal noise on HV images over ocean and sea ice. First tests have shown a significant improvement510

of the sea ice drift results using this pre-processing step before applying the presented algorithm. This

is ongoing work and will be included into a future version of the algorithm.

The European Space Agency is also in the process of improving their thermal noise removal for

Sentinel-1 imagery. Noise removal in range direction is driven by a function that takes measured

noise power into account. Until now, noise measurements are done at the start of each data acquisi-515

tion, i.e. every 10-20 minutes, and a linear interpolation is performed to provide noise values every

3 seconds. The distribution of noise measurements showed a bimodal shape and it was recently dis-

covered that lower values are related to noise over ocean while higher values are related to noise

over land. This means, that Sentinel-1 is able to sense the difference of the earth surface brightness

temperature similar to a passive radiometer. When the data acquisition includes a transition from520

ocean to land or vice versa, the linear interpolation fails to track the noise variation. The successors

of Sentinel-1A/B are planned to include more frequent noise measurements. Until then, ESA wants

to use the 8-10 echoes after the burst that are recorded while the transmitted pulse is still travelling

and the instrument is measuring the noise. This will provide noise measurements every 0.9 seconds

and allows to track the noise variations in more detail. In addition, ESA is planning to introduce525

a change in the data format during 2017 that shall remove the noise shaping in azimuth. These ef-

forts are expected to improve the performance of the presented algorithm significantly
::::::::
(Personal

:::::::::::::
Communication

::::
with

:::::
Nuno

::::::::
Miranda,

::::::
January

::::::
2017).

Having a computationally efficient algorithm with adjustable vector positioning allows not only

to provide near-real time operational drift data, but also the investigation of sea ice drift over large530

areas and long time periods. Our next step is to embed the algorithm into a super-computing facility

to further test the performance in different regions, time periods and ice conditions
:::
and

:::::::
evaluate

::::
and

:::::::
combine

:::
the

::::::
results

::
of

:::::::
different

::::::::::
polarisation

::::::
modes. The goal is to deliver large ice drift datasets and

open-source operational sea ice drift products with a spatial resolution of less than 5 km.

This work is linked to the question how to combine the different timings of the individual image535

pairs in a most useful way. Having more frequent satellite acquisitions, as we get with the Sentinel-

1 satellite constellation, enables to derive displacements for shorter time gaps and the calculated

vectors will reveal more details e.g. rotational motion due to tides. As part of a scientific cruise with

KV-Svalbard in July 2016, we deployed three GPS trackers on loose ice floes and pack-ice in Fram

Strait. The trackers send their position every 5-30 min to deliver drift information with high temporal540

resolution. This efforts shall help to gain a better understanding of short-term drift variability and

by comparison with calculated sea ice drift, we will investigate how displacement vectors from

subsequent satellite images relate to sea ice displacements with higher temporal resolution.
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The focus of this paper in terms of polarisation was put on the HV channel, since this polarisation

provides on average four times more feature tracking vectors than HH and therefore delivers a finer545

initial drift for the first guess. We found our area of interest well covered with HV images, but other

areas in the Arctic and Antarctic reveal a better coverage
:::
are

::::::::
currently

::::
only

:::::::::
monitored in HH po-

larisation. Considering the four representative feature-tracking image pairs from Muckenhuber et al.

(2016), the the relatively best HH polarisation performance (i.e. most vectors from HH, while at the

same time fewest vectors from HV) was
:::::::
provided

:::
by the image pair that showed

:::
had

:
the least time550

difference, i.e. 8 h, compared to 31 h, 33 h and 48 h. Therefore, we assume that the HV polarisation

provides more features that are better preserved over time. And more consistent features would
:::::
could

also favour the performance of the pattern-matching step. However,
:::::::
Another

::::::::
argument

::
is

::::
that

:::
the

::::::::
presented

:::::::::::::
feature-tracking

::::::::
approach

::::::::
identifies

:::
and

:::::::
matches

:::::::
corners,

:::::
which

::::::::
represent

:::::
linear

::::::::
features.

:::
The

:::::
linear

:::::::
features

:::
on

::::
HH

::::::
images

:::
are

:::::
more

:::::::
sensitive

:::
to

:::::::
changes

::
in

::::::::
incidence

::::::
angle,

::::
orbit

::::
and

:::
ice555

::::::::
conditions

:::::
than

:::
the

:::::
linear

:::::::
features

:::
on

::::
HV

::::::
images.

:::::
This

:::::
could

:::::::
explain

:::
the

:::::
better

::::::::::::::
feature-tracking

::::::::::
performance

:::
of

:::
the

::::
HV

:::::::
channel.

:::::::::
However,

::::::::::::::
pattern-matching

::
is
::::

less
:::::::
affected

:::
by

::::::::
changing

::::::
linear

::::::
features

::::
and

::::
more

:::::::
sensitive

::
to
:::::
areal

::::::
pattern

:::::::
changes.

::::
This

:::::
could

:::::::::
potentially

:::::
mean

:::
that

:::
the

:::
HH

:::::::
channel

:::::::
performs

:::::
better

::::
than

::::
HV

:::::
when

::
it

:::::
comes

::
to
:::::::::::::::

pattern-matching.
::::::::
However,

:
at this point, this is just an

assumption
::::
these

:::
are

:::
just

::::::::::
assumptions

:
and will be addressed in more detail in our future work.560

Utilising the advantage of dual polarisation (HH+HV) is certainly possible with the presented

algorithm, but increases the computational effort. A simple approach is to combine the feature track-

ing vectors derived from HH and HV and produce a combined first-guess. Pattern-matching can be

performed based on this combined first-guess for both HH and HV individually and the results can

be compared and eventually merged into a single drift product. Having two drift estimates for the565

same position, from HH and HV pattern-matching respectively, would also allow to disregard vec-

tors that disagree significantly. However, this option would increase the computational effort by two,

meaning that the presented Fram Strait example would need about 8 min processing time.

After implementing the presented algorithm into a super-computing facility, we aim to test and

compare the respective performance of HV, HH and HH+HV on large datasets to identify the re-570

spective advantages.

The current setting of the feature-tracking algorithm applies a maximum drift filter of 0.5 m/s. We

found this to be a reasonable value for our time period and area of interest. However, when consider-

ing extreme drift situations in Fram Strait and a short time interval between image acquisitions, this

threshold should be adjusted.575

As mentioned above, we deployed three GPS tracker in Fram Strait and they recorded their posi-

tions with a temporal resolution of 5-30 min between 8th July until 9th September 2016 in an area

covering 75◦ N to 80◦ N and 4◦W to 14◦W. Considering the displacements with 30 min interval, we

found velocities above 0.5 m/s on a few occasions, when the tidal motion adds to an exceptionally

fast ice drift.580
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The GPS data from the hovercraft expedition FRAM2014-2015 (https://sabvabaa.nersc.no), that

was collected with a temporal resolution of 10 s between 31st August 2014 until 6th July 2015,

did not reveal a single 30 min interval during which the hovercraft was moved by ice drift more than

0.45 m/s. The hovercraft expedition started at 280 km south from the North Pole towards the Siberian

coast, crossed the Arctic Ocean towards Greenland and was picked up in the north-western part of585

Fram Strait.

In case the estimated drift from feature-tracking reaches velocities close to 0.5 m/s, the pattern-

matching step might add an additional degree of freedom of up to 8 km, which could eventually

lead to a higher drift result than 0.5 m/s, depending on the time interval between the acquisitions.

The smaller the time difference, the larger is the potentially added velocity. In order to be consistent590

when combining the drift information from several image pairs with different timings, one should

apply a maximum drift filter on the final drift product of the presented algorithm that has the same

maximum velocity as the feature-tracking filter. The corresponding function is implemented in the

distributed open-source algorithm.

Appendix A: Open-source distribution595

The presented sea ice drift retrieval method is based on open-source satellite data and software to

ensure free application and easy distribution. Sentinel-1 SAR images are distributed by ESA for free

within a few hours of acquisition under https://scihub.esa.int/dhus/. The algorithm is programmed in

Python (source code: https://www.python.org) and makes use of the open-source libraries Nansat,

openCV and SciPy. Nansat is a scientist friendly Python toolbox for processing 2-D satellite Earth600

observation data (source code: https://github.com/nansencenter/nansat). OpenCV (Open Source

Computer Vision) is a computer vision and machine learning software library and can be downloaded

under http://opencv.org. SciPy (source code: https://www.scipy.org) is a Python-based ecosystem of

software for mathematics, science, and engineering. The presented sea ice drift algorithm is dis-

tributed as open-source software under https://github.com/nansencenter/sea_ice_drift.605
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