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Dear Referee # 1,

Thank you very much for helping us improving our paper.

Please find here the answers to your comments and the corresponding changes in manuscript:

1 General comments5

The authors present a new approach for sea ice motion tracking, combining a modified feature track-

ing algorithm (Muckenhuber, 2016) with a basic pattern matching approach using cross correlation.

The authors thereby replace the often used iterative cross correlation approach within an image res-

olution pyramid by a feature tracking step (which involves a resolution pyramid as well) to predict

the search direction for the higher resolution levels of the cross correlation step. A. Berg and L. E. B.10

Eriksson (2014) presented with their paper on ’Investigation of a Hybrid Algorithm for Sea Ice Drift

Measurements Using Synthetic Aperture Radar Images,’ based on the combination of pattern match-

ing (cross and/or phase correlation) and feature tracking. In 2014 Komarov and Barber published an

algorithm (also referred in this paper), which uses a kind of correlation based feature tracking - since

it first identifies characteristic points for the following correlation.15

The work from Berg and Eriksson needs to be mentioned and we included

Berg and Eriksson (2014) introduced a hybrid algorithm for sea ice drift retrieval from ENVISAT

ASAR data using phase correlation and a feature based matching procedure that is activated if

the phase correlation value is below a certain threshold.

Unlike Berg and Eriksson (2014), the feature-tracking step is performed initially and serves as a20

first guess to limit the computational effort of the pattern-matching step.

To specify the approach from Komarov and Barber 2014, we changed ’pattern-matching’ to
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combination of phase/cross-correlation.

The idea to combine feature tracking and pattern matching for sea ice drift estimation is tempting25

and I really like it. It would potentially allow estimating sea ice motion faster and in the case of

appropriate feature descriptors even that are rotationally invariant for areas which contain not only

translational motion but rotational motion as well. This characteristic can be especially useful in

regions like the marginal ice zone, where rotational motion occurs relatively often. However, the

devil is in the details.30

The idea of study is first step in the direction of a rotational invariant drift algorithm (or at least

more robust against rotational motion) for the marginal ice zone and would therefore be worth being

published in the Cryosphere after major revisions. However, due to some open questions regarding

the implementation of the approach and its validation I cannot recommend its publication at this

point. I would like to encourage the authors to continue the work on this interesting idea and resubmit35

a strongly revised version of this work in the future.

My main concerns are:

1. the suggested logarithmic scaling and its surprising limits (I guess there is something wrong with

the calibration routines, )

2. The very vague description of the combination of feature tracking and pattern matching40

3. And the slightly irritating validation approach

There is a typo in previous Section 3: the values of the brightness boundaries were given

in B and not dB. We corrected that and included a histogram of a representative image pair

to illustrate the chosen boundaries. The description of the algorithm has been changed and

extended. The validation approach has been changed and the error analysis has been extended.45

Details are given below.

2 Specific comments

Page 3 Line 62-63 ’the resulting vectors are independent of their neighbours [which] is an important

advantage ...’ - I’m afraid I have to disagree at that point, especially given the implemented feature

tracking algorithm. - It has the advantage that it is fast, that it does not get confused by rotational50

motion and is able to estimate the translational motion even in regions with occurring rotational

motion (and that is already great!) but since the employed feature tracking uses a resolution pyramid

as well and simply combines all vectors from the different levels of the resolution pyramid, the

resulting vectors are neither necessarily all independent nor have the same accuracy (given that

some of them are based on a coarser version of the image). Regarding shear and deformation zones,55

I would claim that a pattern matching algorithm could do the same with an optimised search strategy.

Even more problematic, the suggested feature tracking algorithm only identifies a given number of
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features for the whole scene. In the worst case, a shear zone or a divergence / convergence zone

would not be covered at all, if other features in the scene have a higher score.

With the term ’independent’, we wanted to refer to the fact that features are identified60

without taking the position of other features into account and matched from one image to

the other without taking the drift and rotation information from surrounding vectors into

account. It is true that features can overlap, the resolution varies due to the resolution pyramid

and the independent feature positioning can lead to missing important drift information. We

changed the sentences to:65

This can be done computationally efficient and the resulting vectors are often independent of

their neighbours in terms of position, lengths, direction and rotation, which is an important

advantage for resolving shear zones, rotation and divergence/convergence zones. The considered

feature-tracking approach identifies features without taking the position of other features into

account and matches features from one image to the other without taking the drift and rotation70

information from surrounding vectors into account (Muckenhuber et al., 2016). However, due to

the independent positioning of the features, very close features may share some pixels and since

all vectors from the resolution pyramid are combined, the feature size varies among the matches,

which implies a varying resolution. In addition, the resulting vector field is not evenly distributed

in space and large gaps may occur between densely covered areas, which can eventually lead to75

missing a shear or divergence/convergence zone.

Page 3 Line 69 ’comparable quality estimate for each vector’ - I wish there were! There has been

a first suggestion by Hollands, Linow and Dierking in 2015 and there is definitely the potential to do

so but it is far from being a standard.80

We agree and removed this part of the sentence.

Page 3 Line 92 ’this data type’ - the dual pol version of this data type is only available for the

southern part of the Arctic and the Coastal regions and not at all for Antarctica. Since their feature

tracking algorithm prefers HV polarisation I wonder if the authors have analysed the results of their85

algorithm in the case of HH polarisation only to predict a potential performance for the otherwise

omitted regions.

The focus of this paper is put on HV, since this polarisation has a better feature-tracking

performance and we found a good coverage of this data type in our region of interest. We did

not yet analyse the HH performance of the algorithm on a large dataset, but this will certainly90

be addressed in our future work. We added the following to Section 2:

The introduced algorithm can utilise both HH and HV channel. However, the focus of this paper

is put on using HV polarisation, since this channel provides on average four times more feature

tracking vectors than HH Muckenhuber et al. (2016), representing a better initial drift estimate
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for the combined algorithm.95

To further address the polarisation topic, we added the following to Section 5:

The focus of this paper in terms of polarisation was put on the HV channel, since this polarisation

provides on average four times more feature tracking vectors than HH and therefore delivers

a finer initial drift for the first guess. We found our area of interest well covered with HV

images, but other areas in the Arctic and Antarctic reveal a better coverage in HH polarisation.100

Considering the four representative feature-tracking image pairs from Muckenhuber et al.

(2016), the the relatively best HH polarisation performance (i.e. most vectors from HH, while at

the same time fewest vectors from HV) was the image pair that showed the least time difference,

i.e. 8 h, compared to 31 h, 33 h and 48 h. Therefore, we assume that the HV polarisation provides

more features that are better preserved over time. And more consistent features would also favour105

the performance of the pattern-matching step. However, at this point, this is just an assumption

and will be addressed in more detail in our future work.

Utilising the advantage of dual polarisation (HH+HV) is certainly possible with the presented

algorithm, but increases the computational effort. A simple approach is to combine the feature

tracking vectors derived from HH and HV and produce a combined first-guess. Pattern-matching110

can be performed based on this combined first-guess for both HH and HV individually and the

results can be compared and eventually merged into a single drift product. Having two drift

estimates for the same position, from HH and HV pattern-matching respectively, would also

allow to disregard vectors that disagree significantly. However, this option would increase the

computational effort by two, meaning that the presented Fram Strait example would need about115

8 min processing time.

After implementing the presented algorithm into a super-computing facility, we aim to test and

compare the respective performance of HV, HH and HH+HV on large datasets to identify the

respective advantages.

120

Page 4 Line 118 ’good geolocation accuracy’ - I believe I remembered some discussions, that

there were some geolocation problems with Nansat earlier, which effected the drift estimation. If

I remember correctly: is there a chance that the authors could quantify what ’good’ means in this

respect?

We discovered drift artefacts in high latitudes between the ground control points before we125

introduced spline interpolation and reprojection to stereographic. We tested the performance

before and after introducing these steps and the artefact disappeared using either one of

the steps. To ensure the best possible performance, we apply both steps. The geolocation

accuracy depends on the accuracy and amount of ground control points that are delivered

in the metadata of the Sentinel-1 scene. At the ground control point the location accuracy130

should be highest. We cannot give an error value in meter, since we do not have validation
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points on the ground and cannot control the accuracy of the Sentinel-1 ground control points.

However, from our experience and comparison with buoy drift data, the geolocation accuracy

is expected to be in the order of the image resolution.

135

Page 5 Lines 126 - 135 For a start I would suggest to change the order of the explanation and first

mention the conversion from linear to log scale before the authors mention the scaling to integer

values between 0 - 255 but this is the easier part. The more difficult part might be that we have a

problem if there are no typos in these lines and I understood everything correctly. Log(0.013) = -1.88

dB while log(0.08) = -1.1 dB. If their minimum backscatter values are in dB as well (units missing!),140

it would mean, that the authors only use the range between -3.25dB – -1.88dB for HV and the range

between -2.5dB – -1.1 dB. Could the authors please comment on this and even rephrase this part

if I just misunderstood the authors? The problem I see is that their chosen backscatter range only

represents a minor part of the backscatter range to be expected for sea ice in the logarithmic scale.

If these are the correct numbers, the authors might as well want to check the calibration routines for145

their data.

We changed the order of explanation and first mention the conversion from linear to log

scale before the scaling to integer values. There has been a typo with regards to the units: the

values of the brightness boundaries were given in B and not dB. We corrected that, added

the units and included a histogram of a representative image pair (Figure 1) to illustrate150

the chosen boundaries and show the representative image pair after the conversion into the

integer range (Figure 2).

Page 6 Line 166 ’serves as a quality estimate of the matching performance’ - After it has been

shown by Hollands, Linow and Dierking (2015) that there is no relation between the matching error155

and the correlation coefficient I would prefer a proof why the authors can use it as a quality measure.

Even their Fig. 7 shows that the authors also dismiss good values, using the correlation coefficient as

a quality value. Admittedly there is a group of large error values in their histogram but I wonder if this

is significant. A correlation coefficient is only meaningful if the respective texture is characteristic

enough. - I suggest to google Anscombe’s quartet.160

We agree and removed the claim that the cross correlation value could serve as quality

estimate. However, using the considered validation data, we found for our data type, time

period and area of interest that the probability for large errors decreases with increasing cross

correlation value. The following was added to Section 3:

We found that the probability for a large D value (representative for the error) decreases with165

increasing maximum cross coefficient value MCC. Therefore we suggest to exclude matches

with a MCC value below a certain threshold MCCmin. This option is embedded into the
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algorithm, but can easily be adjusted or turned off by setting MCCmin = 0.

Page 6 Line 173 - 176 ’To filter outliers, ... removed’ - I have to admit, it would help me, if the170

authors could describe this outlier removal in more detail - based on the current description it is

difficult to evaluate what the authors actually did.

The algorithm description has been changed and more details have been included. A

subsection ’II Filter’ and Figure 4 have been added to describe and illustrate the filtering

process.175

Page 6 Line 177 - 181 ’The remaining feature vectors ... neighbouring feature tracking vectors’ -

Just for the better understanding: What happens if there is a large area with no vectors at all framed by

a few sparse vectors. Would the authors just triangulate over the whole area (potentially containing

deformation or shear zones)?180

If the considered area lies in between three feature tracking vectors, we triangulate over the

area to provide the first guess. This initial drift estimate however, will then be adjusted by the

pattern-matching approach. If the closest feature-tracking vector is far away, we apply the

lowest restrictions defined by dmax. We found a useful value for dmax for our area and time

period of interest to be 100 pixels, meaning that the search area is defined by an 8 km radius185

around the first guess. The lowest restrictions can easily be adjusted according to expected ice

conditions and computational performance.

Page 6 Line 181-183 ’To provide a drift estimate ... combination of x1 and y1.’ - similar to Line

173 - 176 it is hard to say, what the authors actually did. May be the authors could add some details,190

making it easier to follow.

The algorithm description has been changed and more details have been included. A

subsection ’III First guess’ and Figure 5 have been added to describe and illustrate the process

that leads to the first guess.

195

Page 6 Line 187- 190 I find it a bit confusing that we have a given size of the window before it is

tuned. The same is true for dmin and dmax: It only became clear when I reached section 3.3. I would

suggest that the authors mention here that they are going to identify the optimal parameters and may

be as well why the authors decided to choose formula (4) for the window size.

We changed the description of the pattern-matching step and adjusted the order according200

to this comment. We clarify which parameters need to be specified for the introduced pattern-

matching procedure and how we find the recommended setting for each parameter.
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Page 7 Figure 1 It would be interesting so see a SAR image for the same area and may be a drift

vector field. Is it correct that there is land where the distances are low and sea ice where the distance205

colour scale is saturated- Actually the authors already anticipate a result of their parameter tuning

here. That makes it difficult to read. May be the authors should reorganise this part.

We added Figure 2 to illustrate the related SAR images and show the corresponding

feature-tracking vectors in Figure 3. The colour scales of the left and middle panel represent

the first guess of the end positions on SAR2 and the colour scale of the right panel indicates210

the distance to the closest feature tracking vectors, i.e. values of d= 10 represent 0-10 pixel

distance to the closest feature-tracking vector and values of d= 100 represent 100-∞pixel

distance. We split the figure and changed the algorithm description accordingly to make the

process better understandable.

215

Page 7 Line 195 ’-beta +beta with step delta beta’ - it is confusing that the authors suddenly start

to introduce rotation as well since it has not been mentioned beforehand. The authors should have at

least introduced it in section 3.2 II.

The algorithm description has been changed accordingly and rotation is introduced in the

new subsection ’IV Pattern-matching’.220

Section 3.2 page 5-7 Given that this section is meant to be the innovative part of this study I

suggest restructuring it, to make it more concise. Right now, it is quite confusing and has varying

level of detail and order (e.g. the window size question is a specific cross correlation question. I

would urge the authors to state clearly when they introduce a parameter which they want to tune225

in the later course of the paper. Additionally I would suggest adding a flow chart, highlighting the

steps, described in this paper.

We adjusted the algorithm description accordingly and added more details. Figure 3

includes a flow chart and respective example images to illustrate the algorithm steps and the

resulting products.230

Page 8 Formula 6 Why did the authors choose this distance measure instead of the RMSD in

Formula 5?

The RMSD equation (previous Equation 5) and the comparison to the manually drawn

vectors have been removed. The distance measure D (previous Equation 6) has been used235

to get an individual error value for each compared vector pair, consisting of one validation

vector and one algorithm vector. Since we found a logarithmic error distribution for the

buoy comparison, a mean value as expressed by the RMSD does not represent the found

distribution.

240
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Section 4.1 Honestly, I would suggest skipping this section - it is not surprising that the logarithmic

scaling leads to a higher number of features since the logarithmic histogram scaling favours the

structures in the sea ice which are mainly represented in the shadow and medium backscatter values

but hardly in the highlights.

We skipped this Section and briefly mention in the data pre-processing why a logarithmic245

distribution is used:

Using a logarithmic scaling provides a keypoint distribution for the feature tracking algorithm

that depends less on high peak values, while the total number of vectors increases.

Page 10 Section 4.2 / Table 2 I have various questions:250

- I understood that the authors tuned their Influence domain parameter dmax based on one image

pair over Fram strait as well as the side length for their template but how did the authors tune their

Dmin value and the MCCmin value?

The parameter tuning was removed from the manuscript. Instead, useful restrictions that

limit the computational effort of the pattern-matching were found and a useful MCCmin255

value was found according to the error distribution from the buoy comparison.

- 70 x 70 pixel for t1 means that their correlation window covers an area of approx. 6.3 x 6.3 km

- how does this go along with their claim to resolve deformation and shear zones?

We agree that this resolution is not sufficient and changed the recommended setting to260

34× 34 pixels in order to be consistent with our goal. We added the following to Subsection

’IV Pattern-matching’:

The size of the small template t1s× t1s defines the considered area that is tracked from one

image to the next and hence, affects the resolution of the resulting drift product. In order to be

consistent with the resolution of the feature-tracking step and achieve our goal of a sea ice drift265

product with a spatial scaling of less than 5 km, we use the size of the feature-tracking patch

of the pyramid level with the highest resolution to define the size of t1. That means, we use

ts1 = 34 pixels (2.7 km).

- Since their influence domain influences the size of their search window t2 it would mean that the270

authors add a degree of freedom of +/-1.8 to +/-11.25 km to their first feature tracking based guess,

which would push their 0.5 m/s maximum ice drift limit for the feature tracking to about 0.6 m/s -

right? Its contribution would however vary depending on the time span between both images of the

scene. For the same constant drift velocity (but speed variations with in the scene), an image pair

with a longer time span would then show larger displacement differences with in the scene while275

having the same maximum degree of freedom of +/- 11.25 km like an image pair that has been

acquired at the same day - this might cause a problem, don’t the authors think?
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Yes, this is a good point and needs to be considered. We added the following to Section 5:

The current setting of the feature-tracking algorithm applies a maximum drift filter of 0.5 m/s.

We found this to be a reasonable value for our time period and area of interest. However, when280

considering extreme drift situations in Fram Strait and a short time interval between image

acquisitions, this threshold should be adjusted.

During a KV Svalbard cruise in summer 2016, we deployed three GPS tracker in Fram Strait

that recorded their positions with a temporal resolution of 5-30 min between 8th July until

9th September 2016 in an area covering 75◦ N to 80◦ N and 4◦ W to 14◦ W. Considering the285

displacements with 30 min interval, we found velocities above 0.5 m/s on a few occasions, when

the tidal motion adds to an exceptionally fast ice drift.

The GPS data from the hovercraft expedition FRAM2014-2015 (https://sabvabaa.nersc.no),

that was collected with a temporal resolution of 10 s between 31st August 2014 until 6th July

2015, did not reveal a single 30 min interval during which the hovercraft was moved by ice290

drift more than 0.45 m/s. The hovercraft expedition started at 280 km south from the North Pole

towards the Siberian coast, crossed the Arctic Ocean towards Greenland and was picked up in the

north-western part of Fram Strait.

In case the estimated drift from feature-tracking reaches velocities close to 0.5 m/s, the pattern-

matching step might add an additional degree of freedom of up to 8 km, which could eventually295

lead to a higher drift result than 0.5 m/s, depending on the time interval between the acquisitions.

The smaller the time difference, the larger is the potentially added velocity. In order to be

consistent when combining the drift information from several image pairs with different timings,

one should apply a maximum drift filter on the final drift product of the presented algorithm

that has the same maximum velocity as the feature-tracking filter. The corresponding function is300

implemented in the distributed open-source algorithm.

Page 10 Section 4.3 line 249: ’on a grid with 8 km spacing’ - I suggest to summarize the infor-

mation of their resulting product somewhere. It is not necessarily obvious to find the information on

their grid spacing in the Parameter tuning and Computational Efficiency Section.305

The considered grid is not meant as a given parameter of the resulting product, but serves

only to provide an estimate for the computational efficiency of the presented approach. The

points of interest, given in longitude and latitude, represent the input for the algorithm. This

can be the position of a ship, the grid of a model or an evenly spaced grid with any wanted

resolution. The algorithm includes a routine that can derive points of interest in lon-lat on an310

evenly spaced grid. We hope that the changed algorithm description improved the explanation

regarding points of interest and considered grid.
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Page 10 Section 4.3 Given the resolution of 8 x 8 km even pattern matching only based algorithms

show a similar performance or even better. But I admit that the robustness to rotational motion is very315

useful in the marginal ice zone, where many of the pure pattern matching algorithms fail.

We changed the resolution of the example and put more focus on the rotational motion.

Page 10 Section 4.4 line 261: What does the size of 34 pixel mean- Is the feature described as

a patch of 34 x 34 side length- May be the authors should add a short explanation to their feature320

tracking part on page 5.

We removed this Section and added a description of the considered feature patch sizes to

Subsection ’I Feature-tracking’.

Page 12 Line 268-271: Why do the authors choose a minimum Cross Correlation Coefficient of325

0.35? If the authors found a logarithmic function their distance distribution seems to follow, the

authors could name it. Otherwise less strict term would be that the distance distribution seems to

show a logarithmic behaviour or something like this. A peak at 300m is not necessarily meaningful

(e.g. what would be the peak without their Cross Correlation Threshold? How many drift vectors

form a peak?) but even if the authors have a peak, it does only represent the systematic component330

of the error and not the random one. In order to identify the distribution I would suggest smoothing

the histogram and fitting a distribution to it.

We smoothed the histogram and fitted a logarithmic normal distribution to it. We found

the chosen minimum cross correlation coefficient MCCmin = 0.4 by plotting MCC values

against distance D, that represents the error. This is now shown in Figure 11.335

Page 14 Table 4: I would think that it is not the best approach to validate an algorithm based on

the drift vectors I tuned it to. For a real validation the authors need at least another independent

image pair with an independent set of manually derived drift vectors. I would strongly encourage the

authors to change this! The authors compare apple with oranges if the authors compare an algorithm340

tuned to this specific scene with algorithms like the one from CMEMS. Additionally it would be

great, if the authors could quantify both systematic and random error.

We removed the parameter tuning and do not compare our results against the manually

drawn vectors anymore. Figure 11 is included to illustrate systematic and random error.

345

Page 14 Line 290: ’To further estimate the accuracy of the algorithm ...’ - here it would be inter-

esting to see, how the other algorithms perform as well. Additionally it would be great, if the authors

could quantify both systematic and random error. The authors might want to check the regular vali-

dation document for the CMEMS ice drift as a start: http:myocean.met.noSIW-TACdocmyo-wp14-

siw-dtu-icedrift-glob-obs-validation_latest.pdf The peak of a distribution is no error value!350
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We illustrate the error in Figure 11 according to this suggestion. We removed the compari-

son with CMEMS and simple feature tracking, since we don’t have drift results of these two

algorithms at the buoy locations.

Page 14 Line 302-303: ’Hence, ... image resolution’ I agree there are various factors influenc-355

ing the result of the algorithm and thereby influencing the validation but I cannot agree with this

statement. It might be but the authors have not shown this yet!

We removed these two sentences.

3 Technical corrections360

Page 1 Line 5: ’respective advantages of the two approaches’ - the authors should emphasise in more

detail what the advantages are, since this is the basic justification for this paper and this not only in

the abstract but in the introduction/motivation as well

The feature-tracking and pattern-matching description in Section 1 has been improved and

the corresponding part in the abstract has been changed to:365

Feature-tracking produces an initial drift estimate and limits the search area for the consecutive

pattern-matching, that provides small to medium scale drift adjustments and normalised cross

coefficient values. The algorithm is designed to combine the two approaches in the most

meaningful way in order to benefit from the respective advantages. The main advantages of the

considered feature-tracking approach are the computational efficiency and the independence of370

the vectors in terms of position, lengths, direction and rotation. Pattern-matching on the other

side allows better control over vector positioning and resolution.

Page 3 Line 37 ’covers the Arctic every week with a spatial resolution of 5 km’ - I’m not sure but

the authors might want to check it: as far as I know the, RGPS covers a large part of the Western375

Arctic Ocean but not the entire Arctic, due to the acquisition area of Radarsat. Up to my knowledge,

the 5 x 5 km spatial resolution is a gridded drift field, which does not necessarily represent the actual

spatial resolution, given that the RGPS searches features in a 10 or 25 km grid respectively. See also

the RGPS Data User-s Handbook (Fig. 1 and Fig. 2)

We changed the sentence to:380

The geophysical processor system from Kwok et al. (1990) has been used to calculate sea ice drift

fields in particular over the Western Arctic (depending on SAR coverage) once per week with a

spatial resolution of 10-25 km for the time period 1997–2012. This extensive dataset makes use of

SAR data from Radarsat-1 and ENVISAT (Environmental Satellite).

385
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Page 3 Line 73 ’respective advantages’ - If possible, be clearer about the respective advantages

and summarise them here together with the disadvantages the authors still have and those the authors

bypass with their approach.

The feature-tracking and pattern-matching description in Section 1 has been improved and

in addition, we added to Section 1:390

The main advantages of the considered feature-tracking approach are the computational effi-

ciency and the independence of the vectors in terms of position, lengths, direction and rotation.

Pattern-matching on the other side allows better control over vector positioning and resolution,

which is a necessity for computing divergence, shear and total deformation.

395

Page 2 Line 44 ’pattern-marching and feature tracking respectively’ - even terms are somehow

flexible: I would claim, that Komarov and Barber do somehow a basic feature tracking as well, since

they identify features, with certain characteristics before the correlate them - in that way, they have

implemented the search for descriptors in a way. The use of correlation does not necessary mean

that the approach is a pattern matching approach, since the correlation itself is the distance measure400

only, that is used to assess how similar a feature or a pattern is, compared to the reference. It might

be a bit pedantic, but the authors might still want to give it a second thought.

We changed the sentence to:

Komarov and Barber (2014) and Muckenhuber et al. (2016) have evaluated the sea ice drift

retrieval performance of dual-polarisation SAR imagery using a combination of phase/cross-405

correlation and feature-tracking based on corner detetction respectively.

Page 2 Line 52-55 ’Making use ... Copernicus.eu).’ - I agree, that it is an important product, which

should definitely be mentioned in the frame of this article but I think, the statement does not really

fit there where it is right now because it interrupts their motivation.410

We moved the sentence into the paragraph above.

Page 6 Line 185 -186 ’Figure 2 shows...’ - I would suggest moving the sentence a few sentence

down to Line 195 after ’...correlation value is returned

The method description has been restructured taking this comment into account. We refer415

to this Figure at a later point in the description.

Page 10 Section 4.3 line 252-254: ’NB: The vectors near ... treated with caution’ - I completely

agree but it is no question of computational efficiency

This sentence has been removed.420
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Page 10 Section 4.4 line 256: Strictly speaking the authors should compare their estimated drift

vectors to their manually derived vectors and not the other way round and the authors estimate a drift

vector and do not calculate it but this is a minor technical issue I guess.

The comparison with the manually drawn vectors have been removed and we took this425

comment into account, when describing the comparison to the GPS buoy dataset.

Page 11 Table 3: Is it correct, that their drift estimation is only based on HV polarisation- I guess

the authors should state it somewhere in the beginning. Given their experience with dual pol motion

tracking, I assumed that the authors used both polarisations here as well- I suggest being clearer430

about it from the beginning, if this is the case.

Yes, the considered drift estimates in this work are based on HV. We added the following to

Section 2:

The introduced algorithm can utilise both HH and HV channel. However, the focus of this paper

is put on using HV polarisation, since this channel provides on average four times more feature435

tracking vectors than HH (Muckenhuber et al., 2016), representing a better initial drift estimate

for the combined algorithm.

Page 15 Line 311: ’The parameters can easily be varied...’ - a short tabular overview on the range

for the individual parameters and their effect on the algorithm performance would be nice even440

though probably difficult.

We updated the algorithm description taking this comment into account. The parameters

and their effect on the drift result are now explained more in detail for a better understanding

of eventual changes from the recommended setting. The possible range of the parameters ts1,

ts2, β, ∆β, dmin and dmax is not limited.445

Page 15 Line 329: ’the real sea ice velocity’ - the velocity the authors observe is not wrong, they

might underestimate the speed and its variation as well as the variation of the drift direction but

velocity is defined as distance per time, and the resulting velocity vector, being a sum of velocity

vector variations over the observation interval is the resulting velocity vector. A higher temporal450

resolution is interesting but it is as interesting and influences the ’realness’ of their velocity vector

the same way higher spatial resolution does. It would be great if the authors could give this phrase a

second thought.

We removed the term ’real sea ice velocity’ and changed it to sea ice displacements with

higher temporal resolution, that reveal more details e.g. rotational motion due to tides. Section 5455

has been updated accordingly.
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Thanks again for your comments. We are looking forward to your reply!

Best regards,460

S. Muckenhuber and S. Sandven
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Response to Referee # 2
’Open-source sea ice drift algorithm for Sentinel-1 SAR
imagery using a combination of feature-tracking and
pattern-matching’
Stefan Muckenhuber and Stein Sandven
Nansen Environmental and Remote Sensing Center (NERSC), Thormøhlensgate 47,
5006 Bergen, Norway

Correspondence to: S. Muckenhuber (stefan.muckenhuber@nersc.no)

Dear Referee # 2,

Thank you very much for helping us improving our paper.

Please find here the answers to your comments and the corresponding changes in manuscript:

1 Major comments5

Introduction, P2: The manuscript should include some additional background information on the sea

ice drift in the study area (with possible references): what are the magnitudes of typical ice drift in

the study area and whole Arctic (e.g. cm/s and daily) and in which areas they are located and which

are their causes?

We added references and the following to Section 1:10

Early work from Nansen (1902) established the rule-of-thumb that sea ice velocity resembles 2 %

of the surface wind speed with a drift direction of about 45◦ to the right (Northern Hemisphere)

of the wind. This wind driven explanation can give a rough estimate for instantaneous ice

velocities. However, the respective influence of wind and ocean current strongly depends on the

temporal and spatial scale. Only about 50 % of the long-term (several months) averaged ice drift15

in the Arctic can be explained by geostrophic winds, whereas the rest is related to mean ocean

circulation. This proportion increases to more than 70 % explained by wind, when considering

shorter time scales (days to weeks). The wind fails to explain large-scale ice divergence patterns

and its influence decreases towards the coast (Thorndike and Colony, 1982).

Using GPS drift data from the International Arctic Buoy Program (IABP), Rampal et al. (2009)20

analysed the general circulation of the Arctic sea ice velocity field and found that the fluctuations

follow the same diffusive regime as turbulent flows in other geophysical fluids. The monthly

mean drift using 12 h displacements was found to be in the order of 0.05 to 0.1 m/s and showed a

1



strong seasonal cycle with minimum in April and maximum in October. The IABP dataset also

revealed a positive trend in the mean Arctic sea ice speed of +17 % per decade for winter and25

+8.5 % for summer considering the time period 1979–2007. This is unlikely to be the consequence

of increased external forcing. Instead, the thinning of the ice cover is suggested to decrease the

mechanical strength which eventually causes higher speed given a constant external forcing

(Rampal et al.; 2009b).

Fram Strait represents the main gate for Arctic ice export and high drift velocities are generally30

found in this area with direction southward. Based on moored Doppler Current Meters mounted

near 79◦ N 5◦ W, Widell et al. (2003) found an average southward velocity of 0.16 m/s for the

period 1996–2000. Daily averaged values were usually in the range 0–0.5 m/s with very few

occasions above 0.5 m/s.

35

Method/Feature tracking, P5: It is mentioned that ’The best match is accepted if the ratio of the

two shortest Hamming Distances is below 0.75.’. Explain why this is done and how the threshold

was selected. Probably to reduce possibilty of similarization errors? What is magnitude of typical

Hamming distances? If they are small, then 0.75 has quite different meaning than for larger values.

I assume that the ratio is the ratio of the shortest and second shortest Hamming distance (also write40

this in the text).

The Hamming distances are embedded in the feature-tracking algorithm and are not re-

turned during application of the algorithm. This makes the evaluation of the value distribution

difficult. However, based on visual interpretation of drift results using different Hamming

distances, Muckenhuber et al. (2016) found a suitable value for our time period and area of45

interest. We added the following to Section 3:

The best match is accepted if the ratio of the shortest and second shortest Hamming distances is

below a certain threshold. Given a suitable threshold, the ratio test will discard a high number of

false matches, while eliminating only a few correct matches.

Muckenhuber et al. (2016) found the most suitable parameter setting for our area and time period50

of interest, including a Hamming distance threshold of 0.75, ...

Method/Combination, P6: To filter outliers each vector is simulated using two functions which are

LS solutions... This need more explanation. Why third degree polynomial has been used and which

data are used in the LS fit? Also in the extrapolation is also performed using a LS solutions. Also55

describe this in more detail. How is the traingulation constructed (Delauney?) in interpolation?

Section 2 has been changed according to this comment. We included more detailed descrip-

tions of LS solutions and triangulation. Equations were added to specify the procedure. The
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Parameter Tuning/Validation, P10: It is not exlpicitly mentioned which data were used for the60

parameter tuning. Were all the vlaidation data used for this? Then the validation with this data set

is not fair as the algorithm has been tuned for this data. Then only the buoy data can be used for

independent validation. Or if separate sets are used for parameter tuning and validation, indicate this

in the manuscript.

The Parameter Tuning Section has been removed and validation is now only done against65

buoy data.

2 Detailed comments

P1L2: ’computanional’ -> ’computationally’

Agree, we changed the manuscript accordingly.

70

P2L33: ’90s’ -> ’90’s’

Agree, has been changed.

P2L38: In the case of ENVISAT, rather give the name of the instrument i.e. ENVISAT ASAR,

could also mention that RADARSAT was an instrument of CSA and ENVISAT ASAR of ESA.75

Agree, has been changed.

P3L88: ’((’ -> ’(’

Agree, has been changed.

80

P3L88: ’...dual polarization support...’ ’..also in wide swath mode’. Also earlier instruments had a

possibility to measure multiple polarizations but the covered area was small. This has been changed

by RADARSAT-2 and SENTINEL-1.

We changed the sentence to:

The mission includes two identical satellites, Sentinel-1A (launched in April 2014) and Sentinel-85

1B (launched in April 2016), each carrying a single C-band SAR with a centre frequency of

5.405 GHz and dual-polarisation support (HH+HV, VV+VH) also for wide swath mode.

P3L90: Give also the acronyms for the mode i.e. EW GRDM (thes are generally used by ESA in

documentation and file names).90

Agree, has been added.

P4L125: You can remove ’of 93m range x 87m azimuth’, this information has already been given

earlier.
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Agree, has been removed.95

P6 eq. 3: Here You give the formula for NCC. Also give the drift (dx,dy) detection as a formula,

something like: (dx,dy) = argmax(k, l)inWNCC(x+ k,y+ l) Is NCC computed according to

this equation or by applying FFT and IFFT (which has been applied in many algorithms to fasten the

computation)?100

The matrix NCC is computed according to the new Equation 8 and FFT and

IFFT are not applied. The used python function is matchTemplate from OpenCV

(http://docs.opencv.org/2.4/modules/imgproc/doc/object_detection.html). We changed the

pattern-matching description according to this comment and added the following:

The highest value in the matrix NCC, i.e. the the maximum normalised cross coefficient value105

MCC, represents the location of the best match and the corresponding location adjustment is

given by dx and dy.

(
1 + ts2 − ts1

2
+ dx,

1 + ts2 − ts1
2

+ dy) = argmax(NCC(x,y) (1)

110

P6 Eq. 4: Define ’side’ in the text.

This phrase has been removed and replaced by t1s and t2s.

P7 Fig 1 and Fig 2. Use a, b, and c for the subfigures and to refer to them.

We added titles to the subfigures to refer to them and make the algorithm description easier115

understandable.

P7 L195: Explain here what is denoted by ’beta’. It is is also in Fig. 2 caption.

The algorithm description has been changed according to this comment and the following

has been added:120

To account for rotation adjustment, the matrix NCC is calculated several times: template t1 is

rotated around the initially estimated rotation α from α−β to α+β with step size ∆β. The angle

β is the maximum additional rotation and represents therefore the rotation restriction. The NCC

matrix with the highest cross coefficient value MCC is returned.

125

P7 Fig.2 (and text): Why rectangular/square templates has been used? A circular template would

be much easier (symmetric) to rotate. Consider using a circular templates instead.

We agree with this comment. Regarding t1 however, the current version of the used OpenCV

function matchTemplate does not allow circular templates and work-arounds would influence

the result and the computational efficiency. We hope that a later version of matchTemplate130

will allow to use masks. Regarding t2, we included a circular mask for the matching result to
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limit the search area to a circle rather than a square.

Logarithmic scaling P8-9: I think logarithmic scale is the typical presentation of SAR sigma0 and

often a fixed scaling to gray tone imagery is used for SAR imagery, e.g. scaling between -30dB ->135

0 dB. You could mention this fact on the manuscript. This also leads to the question if any other

’scaling’ would produce even better results, e.g. applying some king of histogram derived image

mapping (e.g. simple histogram equlization etc.). This could be one topic for further development.

We agree. The corresponding section has been removed and the logarithmic scaling de-

scription has been moved to Section 3 and adjusted according to this comment. Muckenhuber140

et al. (2016) tested different scalings procedures on four representative image pairs to retrieve

the best possible feature-tracking results. We apply the same scaling for pattern-matching

for both computational efficiency and because we assume that a scaling that is preferable for

feature-tracking is also preferable for pattern-matching. This assumption however, has not

been proven and is certainly a topic for further development.145

P10/Computational efficiency: You give a time of less than 3.5 minutes here. Is this a typical

execution time or just execution time for a randomly selected example. Could you give average exe-

cution times and deviations or maybe estimate for the worst case? Does the execution time increase

linearly as a function of the number of vectors or is there some other kind of relationship?150

The given time is representative for an image pair with large overlap, good coverage

with feature-tracking vectors and the given resolution of the final product. We adjusted

and extended the Section Computational efficiency according to this comment. The step

’II Pattern-matching and III Combination’ is proportional to the number of chosen points

of interest, i.e. the number of drift vectors of the final product. The first two steps can be155

seen representative for all Sentinel-1 image pairs with 400× 400 km coverage. We added a

corresponding analysis of the different steps and the influencing parameters.

P12 L270-271: also give the average D. ’peak’ is not a correct word here, the his-

togram/distribution has many peaks, possibly You could use ’mode’ here and also in the caption160

of Fig. 7.

We agree. The error estimation has been changed accordingly. We now fit a logarithmic

normal distribution to the histogram and found a median eµ = 341.9 m.

P12 L276-277: The DTU method has not been documented very well in any publications I think.165

Also the reference given does not say much. I suppose there is not better reference for this?

The comparison with the DTU drift field in Fram Strait has been removed. The DTU

product however, is still mentioned in Section 1. We did not find any better reference than
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Pedersen et al. (2015), http://www.seaice.dk/ and http://marine.copernicus.eu.

170

P12 L279: ’...used the nearest neighbors...’ -> ’...used the nearest neighbors (NN’s)...’ then NN

can be used in Table 4.

We agree. However, the corresponding comparison using image pair Fram Strait has been

removed.

175

P13 Fig. 6: Would it be possible to indicate the location of the detail in the coarse-scale image

(without causing too much damage for the image)?

We agree. However, the corresponding image has been removed.

P14 Table 4: ’Average distance’ -> ’Average NN distance’ or something like that. Are the values180

after +- sign standard deviations or some multiples of standard deviation or something else? Include

this information in the table or caption.

The +- sign indicated one standard deviation. However, the corresponding comparison

using image pair Fram Strait has been removed.

185

Discussion: What is the possible error magnitude of the manually estimated drift (is it assumed to

be sub-pixel, one pixel or more and what kind of possible error sources these vectors include?)?

The estimated error is in the order of several 100 m. However, the corresponding compari-

son using image pair Fram Strait has been removed.

190

P15 L319-320: Also ESA is going to improve their thermal noise removal by including more

measurements along the azimuth direction. Probably this also could be mentioned. If necessary you

can get more information on this from Nuno Miranda at ESA (nuno.miranda@esa.int).

Thank you for this information. We contacted Nuno Miranda from ESA and added the

following to Section 5:195

The European Space Agency is also in the process of improving their thermal noise removal for

Sentinel-1 imagery. Noise removal in range direction is driven by a function that takes measured

noise power into account. Until now, noise measurements are done at the start of each data

acquisition, i.e. every 10-20 minutes, and a linear interpolation is performed to provide noise

values every 3 seconds. The distribution of noise measurements showed a bimodal shape and it200

was recently discovered that lower values are related to noise over ocean while higher values

are related to noise over land. This means, that Sentinel-1 is able to sense the difference of the

earth surface brightness temperature similar to a passive radiometer. When the data acquisition

includes a transition from ocean to land or vice versa, the linear interpolation fails to track the

noise variation. The successors of Sentinel-1A/B are planned to include more frequent noise205
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measurements. Until then, ESA wants to use the 8-10 echoes after the burst that are recorded

while the transmitted pulse is still travelling and the instrument is measuring the noise. This will

provide noise measurements every 0.9 seconds and allows to track the noise variations in more

detail. In addition, ESA is planning to introduce a change in the data format during 2017 that

shall remove the noise shaping in azimuth. These efforts are expected to improve the performance210

of the presented algorithm significantly.

We thank Nuno Miranda in the Acknowledgement for the provided informations.

Thanks again for your comments. We are looking forward to your reply!

215

Best regards,

S. Muckenhuber and S. Sandven
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Dear Referee # 3,

Thank you very much for helping us improving our paper.

Please find here the answers to your comments and the corresponding changes in manuscript:

General comment5

A general impression after reviewing this manuscript is that it requires more work and provision of

additional details before being ready for publication in TC. The authors are thus invited to revise their

manuscript before a new version is submitted. Specifically, the following items should be addressed.

We increased the level of detail and added new figures to improve the manuscript.

10

1 Description of the algorithm

The ’pattern-matching’ step is not well enough described and many questions are still open at the

end of section 3.2.

The pattern-matching description has been rewritten and more details have been added.

15

1.a) The ordering of the sub-sections (I. Feature-Tracking, II. Pattern-matching, III. Combination)

is maybe not optimal as you spend some of Section III to describe the rotation by angle beta (that

should really go into II). Maybe it would be easier to follow if the sub-section followed the steps

of the algorithms (feature-matching, fitting of polynomial for first-guess, filtering, patter-matching,

etc...).20

1



We changed to order according to this comment. The new subsections are: ’I Feature-

tracking’, ’II Filter’, ’III First guess’, ’IV Pattern-matching’ and ’V Final Product’. We added

Figure 3 incl. flow chart to illustrate the steps and the respective products.

1.b) It is unclear if your pattern-matching step features a series of x,y shifts to maximize the cross-25

correlation in addition to the rotation by beta, or not. If you combine both x, y, and beta shifts, what

is the relative order and does it matter?

The pattern-matching description has been changed according to this comment. The

matrix NCC(x,y), containing all normalised cross coefficient values for all possible x,y shift, is

calculated several times: one for each rotation β. The highest cross coefficient value is found30

considering all NCC matrizes.

1.c) As you recall in I. ’Feature-Tracking’, the ORB algorithms also gives an information about

the rotation angle (delta between centroid-based orientation of the matched features). Is this feature-

matching first-guess of the rotation used at all? If yes, how; and if no, why not?35

This is a good point and we adjusted the algorithm according to this comment. We included

the usage of the feature-tracking rotation: a filtered rotation field based on the rotation found

for the individual features serves now as initial rotation for the pattern-matching step.

1.d) What is ’the initial rotation between the two Sentinel-1 image’ (line 194) and how is it com-40

puted? Is it the same value across the image?

The ’initial rotation between two Sentinel-1 images’ was derived as angle between the left

edges of the images. It was calculated by re-projecting the left edge of the second image onto

the projection of the first image. This is the same value for the entire scene. However, after

including the feature-tracking rotation (see above), the algorithm is not using this rotation45

anymore, but rather a rotation field, that varies over the image (see α in Figure 5), based on

the rotation of the individual features.

The ’initial rotation between two Sentinel-1 images’ is still calculated since it allows to exclude

the different projections of the two scenes and derive the actual rotation of the sea ice at each

point of interest.50

1.e) In subsection II. ’Pattern-matching’ you write the NCC formula for ’two equally sized win-

dows’. But later you seem to use two unequally sized windows (size t1 in SAR1, size t2 in SAR2).

What is the NCC formula do you then use? Of is size t2 related to the size of the search window

while t1 is the size of the pattern? The questions above are mostly to give an impression of the level55

of details expected when you re-formulate this section. Your first manuscript contained quite some

details on the methodology, and this new one requires at least as many details.
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We changed the pattern-matching description according to this comment and included a

more detailed formulation of the NCC equation.

2 Validation against GPS data60

2.a) The choice of validation metric (the distance between the end points of the reference and esti-

mated vectors) is not peculiar. Virtually all other studies use the RMSE along two components (e.g.

u and v). And the logarithmic distribution of the errors is not discussed or exploited. Please also

discuss the RMSDs in u and v components and compare your results with that of other investigators.

We changed the validation procedure and fitted a logarithmic normal distribution to65

the histogram. We did not see any specific pattern when considering u and v component

separately, but we added plots to further investigate the systematic and random error (Figure

11). To our knowledge, we are currently the only ones using this GPS dataset for validation.

It is hard to compare these results with other drift products, since they resemble a different

resolution and we don’t have drift estimates at the buoy locations. However, we tried to make70

our validation procedure similar to the regular validation of the CMEMS ice drift to improve

the possibility for future comparison.

2.b) The N-ICE campaign deployed many buoys, but very much in the vicinity of the vessel Lance.

How many different buoys enter your validation database, and what is the average distance between75

them? Are we sampling more than few kilometres in each SAR pair?

The Norwegian Polar Institute provided us with data from 32 buoys. Based on that dataset,

we automatically searched for fitting Sentinel-1 image pairs that provided more than 300

feature-tracking vectors and had a time differences of less than three days. We added a map

with the resulting buoy trajectories (Figure 8) to illustrate location, spread and drift distance.80

2.c) N-ICE data should offer the possibility to discuss the accuracy when inside the pack versus at

the marginal ice zone. Please see if you can segment your validation database to cover this. As you

point out yourself, the added value of rotation should be most visible in the marginal ice zone.

To describe the ice conditions during the collection of the validation data, we added the85

following to Section 2:

The ice conditions during the N-ICE2015 expedition are describe on the project website

(http://www.npolar.no/en/projects/n-ice2015.html) as challenging. The observed ice pack, mainly

consisting of 1.3-1.5 m thick multiyear and first-year ice, drifted faster than expected and was

very dynamic. Closer to the ice edge, break up of ice floes has been observed due to rapid ice90

drift and the research camp had to be evacuated and re-established four times. This represents a

good study field, since these challenging conditions are expected in our area and time period of
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interest.

The automatic search algorithm, that allows to perform the validation on a high number of

image pairs, is only comparing location and timing of buoy and satellite data and does not95

include any information on ice condition. To segment the validation dataset according to ice

condition, we would need to describe the ice conditions for each validation vector individually.

Unfortunately However, future work will cover experiments of the algorithm performance in

different ice conditions.

100

2.d) Can you convince the reader (and the reviewer!) that the value of the maximum NCC in-

deed constitutes a quality measure (your Abstract)? Are matchups with lower NCC values really

father away from GPS truth, than those with high NCC? Hollands et al. (2015) did not find any

relation between the two. Is your threshold at 0.35 related to a significant drop in the documented

accuracy against the buoy drift? (Hollands, T. , Linow, S. and Dierking, W. (2015): Reliability Mea-105

sures for Sea Ice Motion Re?trieval From Synthetic Aperture Radar Images , IEEE Journal of Se-

lected Topics in Applied Earth Observations and Remote Sensing, 8 (1), pp. 67-75 . doi: 10.1109/JS-

TARS.2014.2340572)

We removed the term ’quality measure’ throughout the manuscript. However, we found

that the probability for a high error decreases with increasing maximum cross coefficient110

value (Figure 11) and added the following to the validation section:

We found that the probability for a large D value (representative for the error) decreases with

increasing maximum cross coefficient value MCC. Therefore we suggest to exclude matches

with a MCC value below a certain threshold MCCmin. This option is embedded into the

algorithm, but can easily be adjusted or turned off by settingMCCmin = 0. Based on the findings115

shown in Figure 11, we recommend a cross coefficient threshold MCCmin = 0.4 for our time

period and area of interest.

A corresponding statement was added to the method section.

After changing the recommended size of the smaller template t1 to 34× 34pixels (to be

consistent with the feature-tracking resolution and the aimed accuracy of the drift product),120

we also adjusted the cross coefficient threshold to 0.4.

2.e) You use a maximum velocity of 0.5 m/s for your feature-based results (line 171). Is this limit

high-enough in view of your validation dataset in the Fram Strait region?

To discuss the maximum velocity limit of 0.5 m/s, we added a general drift assessment to the125

Introduction and the following to Section 5:

The current setting of the feature-tracking algorithm applies a maximum drift filter of 0.5 m/s.

We found this to be a reasonable value for our time period and area of interest. However, when

considering extreme drift situations in Fram Strait and a short time interval between image
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acquisitions, this threshold should be adjusted.130

As mentioned above, we deployed three GPS tracker in Fram Strait and they recorded their

positions with a temporal resolution of 5-30 min between 8th July until 9th September 2016 in

an area covering 75◦ N to 80◦ N and 4◦ W to 14◦ W. Considering the displacements with 30 min

interval, we found velocities above 0.5 m/s on a few occasions, when the tidal motion adds to an

exceptionally fast ice drift.135

The GPS data from the hovercraft expedition FRAM2014-2015 (https://sabvabaa.nersc.no),

that was collected with a temporal resolution of 10 s between 31st August 2014 until 6th July

2015, did not reveal a single 30 min interval during which the hovercraft was moved by ice

drift more than 0.45 m/s. The hovercraft expedition started at 280 km south from the North Pole

towards the Siberian coast, crossed the Arctic Ocean towards Greenland and was picked up in the140

north-western part of Fram Strait.

We removed the validation procedure with the considered image pair over Fram Strait, even

though it did not include velocities above 0.5 m/s.

Finally, it would be good if the revision of the paper could include a thorough discussion of the145

robustness of the combined method to the success of the feature-matching step (not in terms of

computation cost, but of introduction of artefacts).

We did not find any artefacts in the test images that we considered so far. However, we

would like to increase the number of image pairs significantly and produce large drift field

datasets (and corresponding divergence, shear and total deformation datasets) to further150

evaluate the algorithm performance and investigate its robustness in terms of artefacts. To

do that, we recently established a cooperation with TU Wien to embed our algorithm into

their super-computing facility and learn from their experience with handling large Sentinel-1

datasets. The aim of this paper is mainly the presentation of the methodology and our next

goal is the application on large datasets for further testing. To specify our next steps, we added155

the following to Section 5:

Our next step is to embed the algorithm into a super-computing facility to further test the

performance in different regions, time periods and ice conditions. The goal is to deliver large ice

drift datasets and open-source operational sea ice drift products with a spatial resolution of less

than 5 km.160

Thanks again for your comments. We are looking forward to your reply!

Best regards,

S. Muckenhuber and S. Sandven165
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Abstract. An open-source sea ice drift algorithm for Sentinel-1 SAR imagery is introduced based on

the combination of feature-tracking and pattern-matching. A computational efficient feature-tracking

algorithm
:::::::::::::
Feature-tracking

:
produces an initial drift estimate and limits the search area for the

:::::::::
consecutive

:
pattern-matching, that provides small to medium scale drift adjustments and nor-

malised cross correlation valuesas quality measure
::::::::
coefficient

::::::
values. The algorithm is designed to5

utilise the respective advantages of the two approaches and allows drift calculation at user defined

locations
:::::::
combine

:::
the

::::
two

::::::::::
approaches

::
in
::::

the
::::
most

::::::::::
meaningful

:::::
way

::
in

:::::
order

::
to
:::::::

benefit
::::
from

::::
the

::::::::
respective

::::::::::
advantages.

::::
The

:::::
main

:::::::::
advantages

:::
of

:::
the

::::::::::
considered

:::::::::::::
feature-tracking

::::::::
approach

:::
are

::::
the

:::::::::::
computational

:::::::::
efficiency

:::
and

:::
the

:::::::::::
independence

:::
of

:::
the

::::::
vectors

::
in

:::::
terms

::
of

:::::::
position,

:::::::
lengths,

::::::::
direction

:::
and

:::::::
rotation.

:::::::::::::::
Pattern-matching

::
on

::::
the

::::
other

::::
side

::::::
allows

:::::
better

:::::::
control

::::
over

:::::
vector

::::::::::
positioning

::::
and10

::::::::
resolution. The pre-processing of the Sentinel-1 data has been optimised to retrieve a feature dis-

tribution that depends less on SAR backscatter peak values. A recommended parameter set for the

algorithm has been found using a representative image pair over Fram Strait and 350 manually

derived drift vectors as validation. Applying the algorithm with this
:::
the

::::::::::::
recommended

:
parameter

setting, sea ice drift retrieval with a vector spacing of 8
:
4 km on Sentinel-1 images covering 400 km15

x 400 km, takes less than 3.5
:::::
about

::
4 minutes on a standard 2.7 GHz processor with 8 GB mem-

ory.
:::
The

::::::::::::
corresponding

:::::::::::
recommended

:::::
patch

::::
size

:::
for

:::
the

::::::::::::::
pattern-matching

::::
step,

::::
that

::::::
defines

:::
the

::::
final

::::::::
resolution

::
of

::::
each

::::
drift

:::::
vector

::
is
:::::::
34× 34

:::::
pixels

::::::::
(2.7× 2.7

::::
km). For validation,

::::::::
calculated

::::
drift

::::::
results

::::
from

:::
241

:::::::::
Sentinel-1

::::::
image

::::
pairs

::::
have

:::::
been

::::::::
compared

::
to

:
buoy GPS data, collected in 2015 between

15th January and 22nd April and covering an area from 81
:::
80.5◦ N to 83.5◦ N and 12◦ E to 27◦ E,20

have been compared to calculated drift results from 261 corresponding Sentinel-1 image pairs. We

found a logarithmic
::::::
normal

:
distribution of the error with a peak at 300

::::::
median

::
at

:::::
341.9 m. All soft-

ware requirements necessary for applying the presented sea ice drift algorithm are open-source to

ensure free implementation and easy distribution.
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1 Introduction25

Sea ice drift has a strong impact on sea ice distribution on different temporal and spatial scales. Mo-

tion of sea ice due to wind and ocean currents causes convergence and divergence zones, resulting

in formation of ridges and opening/closing of leads. On large scales, ice export from the Arctic and

Antarctic into lower latitudes, where the ice eventually melts away, contributes to a strong season-

ality of total sea ice coverage (IPCC, 2013). Due to a lack of ground stations in sea ice covered30

areas, satellite remote sensing represents the most important tool for observing sea ice conditions

on medium to large scales. Despite the strong impact of sea ice drift and the opportunities given by

latest satellite remote sensing techniques, there is a lack of extensive ice drift data sets providing

sufficient resolution for estimating sea ice deformation on a spatial scaling of less than 5 km.

Our main regions of interest are the ice covered seas around Svalbard and East of Greenland.35

Characteristic for this area are a large variation of different ice types (Marginal Ice Zone, First Year

Ice, Multi Year Ice etc.), a strong seasonality of ice cover and a wide range of drift velocities. Focus

was put on the winter/spring period, since the area of interest experiences the highest ice cover during

this time of the year.

::::
Early

:::::
work

::::
from

::::::::::::::::::::::
Nansen (1902) established

:::
the

::::::::::::
rule-of-thumb

:::
that

:::
sea

:::
ice

:::::::
velocity

::::::::
resembles

::
2 %40

::
of

:::
the

::::::
surface

:::::
wind

:::::
speed

::::
with

:
a
::::
drift

::::::::
direction

::
of

:::::
about

::::
45◦

::
to

:::
the

::::
right

:::::::::
(Northern

::::::::::
Hemisphere)

:::
of

::
the

::::::
wind.

::::
This

::::
wind

::::::
driven

::::::::::
explanation

:::
can

::::
give

::
a
:::::
rough

:::::::
estimate

:::
for

::::::::::::
instantaneous

:::
ice

:::::::::
velocities.

::::::::
However,

:::
the

::::::::
respective

::::::::
influence

::
of

:::::
wind

:::
and

::::::
ocean

::::::
current

:::::::
strongly

:::::::
depends

:::
on

:::
the

:::::::
temporal

::::
and

:::::
spatial

:::::
scale.

:::::
Only

:::::
about

:::
50 %

:
of

::::
the

::::::::
long-term

:::::::
(several

:::::::
months)

::::::::
averaged

:::
ice

:::::
drift

::
in

:::
the

::::::
Arctic

:::
can

::
be

:::::::::
explained

::
by

::::::::::
geostrophic

::::::
winds,

:::::::
whereas

:::
the

::::
rest

::
is

::::::
related

::
to

:::::
mean

:::::
ocean

::::::::::
circulation.

::::
This45

::::::::
proportion

::::::::
increases

:::
to

:::::
more

::::
than

::
70 %

::::::::
explained

::
by

::::::
wind,

:::::
when

::::::::::
considering

::::::
shorter

::::
time

::::::
scales

::::
(days

:::
to

:::::::
weeks).

::::
The

::::
wind

:::::
fails

::
to

:::::::
explain

:::::::::
large-scale

:::
ice

::::::::::
divergence

:::::::
patterns

::::
and

:::
its

::::::::
influence

::::::::
decreases

::::::
towards

:::
the

:::::
coast

::::::::::::::::::::::::::
(Thorndike and Colony, 1982) .

:::::
Using

::::::
GPS

::::::
drift

:::::
data

::::::
from

:::::
the

:::::::::::::
International

:::::::
Arctic

:::::::
Buoy

:::::::::
Program

:::::::::
(IABP),

::::::::::::::::::::::::
Rampal et al. (2009) analysed

::::
the

:::::::
general

:::::::::
circulation

:::
of

::::
the

::::::
Arctic

:::
sea

::::
ice

:::::::
velocity

:::::
field

::::
and50

:::::
found

:::
that

:::
the

::::::::::
fluctuations

::::::
follow

:::
the

::::
same

::::::::
diffusive

::::::
regime

::
as

::::::::
turbulent

:::::
flows

::
in

:::::
other

::::::::::
geophysical

:::::
fluids.

::::
The

:::::::
monthly

:::::
mean

::::
drift

:::::
using

:::
12

:
h
::::::::::::

displacements
::::

was
::::::
found

::
to

::
be

:::
in

:::
the

:::::
order

::
of

::::
0.05

:::
to

:::
0.1

:::
m/s

:::
and

:::::::
showed

:
a
::::::
strong

:::::::
seasonal

:::::
cycle

::::
with

::::::::
minimum

:::
in

::::
April

::::
and

::::::::
maximum

:::
in

:::::::
October.

::::
The

:::::
IABP

::::::
dataset

::::
also

:::::::
revealed

:
a
:::::::

positive
:::::
trend

::
in

:::
the

:::::
mean

::::::
Arctic

:::
sea

:::
ice

:::::
speed

:::
of

:::
+17 %

::
per

:::::::
decade

::
for

::::::
winter

::::
and

::::
+8.5 %

::
for

:::::::
summer

::::::::::
considering

:::
the

::::
time

::::::
period

::::::::::
1979–2007.

:::::
This

::
is

:::::::
unlikely

::
to

:::
be55

::
the

:::::::::::
consequence

::
of

:::::::::
increased

::::::
external

:::::::
forcing.

:::::::
Instead,

:::
the

:::::::
thinning

::
of
:::

the
:::

ice
:::::
cover

::
is
:::::::::
suggested

::
to

:::::::
decrease

:::
the

::::::::::
mechanical

:::::::
strength

::::::
which

:::::::::
eventually

:::::
causes

::::::
higher

::::::
speed

:::::
given

:
a
::::::::
constant

:::::::
external

::::::
forcing

::::::::::::::::::::
(Rampal et al. , 2009b) .

::::
Fram

:::::
Strait

:::::::::
represents

:::
the

:::::
main

:::
gate

:::
for

::::::
Arctic

:::
ice

::::::
export

:::
and

::::
high

::::
drift

:::::::::
velocities

:::
are

::::::::
generally

:::::
found

::
in

::::
this

::::
area

::::
with

::::::::
direction

:::::::::
southward.

::::::
Based

:::
on

:::::::
moored

:::::::
Doppler

:::::::
Current

::::::
Meters

::::::::
mounted60

:::
near

::::
79◦

::
N

::
5◦

::
W,

::::::::::::::::::::::
Widell et al. (2003) found

::
an

:::::::
average

::::::::
southward

:::::::
velocity

::
of

::::
0.16

::
m/s

:::
for

:::
the

::::::
period
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::::::::::
1996–2000.

:::::
Daily

::::::::
averaged

:::::
values

:::::
were

:::::::
usually

::
in

:::
the

:::::
range

::::::
0–0.5

:::
m/s

::::
with

::::
very

::::
few

:::::::::
occasions

:::::
above

:::
0.5

:::
m/s.

:

Space-borne Synthetic Aperture Radar (SAR) are delivering systematic acquisitions of sea ice

covered oceans since the early 90s
:::::
1990’s

:
and Kwok et al. (1990) showed that sea ice displacement65

can be calculated from consecutive SAR scenes. SAR is an active imaging sensor operating in the

microwave spectrum and produces data regardless of solar illumination and cloud cover. The geo-

physical processor system from Kwok et al. (1990) has been used to calculate sea ice drift fields

for the entire Arctic every
::
in

::::::::
particular

::::
over

:::
the

:::::::
Western

::::::
Arctic

:::::::::
(depending

:::
on

::::
SAR

::::::::
coverage)

:::::
once

:::
per week with a spatial resolution of 5

::::
10-25 km for the time period 1997–2012. This extensive70

dataset makes use of SAR data from Radarsat and
::::::::::::
RADARSAT-1

::::::::
operated

::
by

:::
the

::::::::
Canadian

::::::
Space

:::::::
Agency,

:::
and

::::
from

:
ENVISAT (Environmental Satellite)

:::::
ASAR

:::::::::
(Advanced

::::::::
Synthetic

::::::::
Aperture

::::::
Radar)

:::::::
operated

::
by

:::::
ESA

:::::::::
(European

:::::
Space

:::::::
Agency). A high-resolution sea ice drift algorithm for SAR im-

ages from ERS-1 (European Remote-sensing Satellite
::::
from

::::
ESA) based on pattern-matching was

introduced by Thomas et al. (2008), allowing drift calculation up to 400 m resolution. The work75

on this algorithm has been continued by Hollands and Dierking (2011), who derived sea ice drift

from ENVISAT ASAR data.
::::::::::::::::::::::::::::::
Berg and Eriksson (2014) introduced

::
a

::::::
hybrid

::::::::
algorithm

:::
for

::::
sea

:::
ice

:::
drift

::::::::
retrieval

::::
from

::::::::::
ENVISAT

::::::
ASAR

::::
data

:::::
using

:::::
phase

::::::::::
correlation

:::
and

::
a
::::::
feature

:::::
based

:::::::::
matching

::::::::
procedure

::::
that

:
is
::::::::
activated

::
if

:::
the

:::::
phase

:::::::::
correlation

:::::
value

::
is

:::::
below

::
a
::::::
certain

::::::::
threshold.

:
Komarov and

Barber (2014) and Muckenhuber et al. (2016) have evaluated the sea ice drift retrieval performance of80

dual-polarisation SAR imagery using pattern-matching
:
a
::::::::::
combination

::
of

:::::::::::::::::::
phase/cross-correlation

:
and

feature-tracking
:::::
based

::
on

::::::
corner

:::::::::
detetction respectively. Muckenhuber et al. (2016) has shown that

feature-tracking provides on average around four times as many vectors using HV polarisation com-

pared to HH polarisation.
::::::
Making

::::
use

::
of

:::::::::
Sentinel-1

::::
SAR

:::::
data,

::
an

::::::::::
operational

:::
sea

:::
ice

::::
drift

:::::::
product

::::
with

:::
10

::
km

:::::::::
resolution

:::
is

::::::::
provided

:::
by

:::
the

:::::::
Danish

::::::::
Technical

::::::::::
University

::::::::::::::::::::
(Pedersen et al. (2015) ,85

::::::::::::::::::
http://www.seaice.dk/)

::
as

::::
part

::
of

:::
the

:::::::::
Copernicus

::::::
Marine

:::::::::::
Environment

:::::::::
Monitoring

:::::::
Service

:::::::::
(CMEMS,

:::::::::::::::::::::::
http://marine.copernicus.eu).

:

After the successful start of the Sentinel-1 mission in early 2014, high-resolution SAR images

are delivered for the first time in history within a few hours after acquisition as open-source data

to all users. This introduced a new era in SAR Earth observation with great benefits for both sci-90

entists and other stack holders. The sea ice covered oceans in the European Arctic Sector represent

an important area of interest and with Sentinel-1 having a revisit time of less than one day in the

Arctic (ESA, 2012), our area of interest is monitored on a daily basis. Making use of Sentinel-1

data, an operational sea ice drift product with 10km resolution is provided by the Danish Technical

University (DTU) as part of the Copernicus Marine Environment Monitoring Service (CMEMS,95

http://marine.copernicus.eu). Muckenhuber et al. (2016) published an open-source feature-tracking

algorithm to derive computationally efficient sea ice drift from Sentinel-1 data. This paper follows

up the work from Muckenhuber et al. (2016) and aims to improve the feature-tracking approach by
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combining it with pattern-matching.
:::::
Unlike

::::::::::::::::::::::
Berg and Eriksson (2014) ,

::::
the

:::::::::::::
feature-tracking

::::
step

::
is

::::::::
performed

:::::::
initially

:::
and

::::::
serves

::
as

:
a
:::
first

:::::
guess

::
to

::::
limit

:::
the

::::::::::::
computational

:::::
effort

::
of

:::
the

::::::::::::::
pattern-matching100

::::
step.

Contemporary algorithms for deriving displacement vectors between two consecutive images are

based either on feature-tracking or pattern-matching.

Feature-tracking detects distinct patterns (features) in both images and tries to connect similar

features in a second step without the need for knowing the locations. This can be done computa-105

tionally efficient and the resulting vectors are
::::
often

:
independent of their neighbours ,

:
in

:::::
terms

:::
of

:::::::
position,

:::::::
lengths,

:::::::
direction

::::
and

:::::::
rotation,

:
which is an important advantage for resolving shear zones,

rotation and divergence/convergence zones. However, the
:::
The

::::::::::
considered

:::::::::::::
feature-tracking

::::::::
approach

:::::::
identifies

:::::::
features

:::::::
without

::::::
taking

:::
the

:::::::
position

::
of

:::::
other

:::::::
features

::::
into

:::::::
account

:::
and

::::::::
matches

:::::::
features

::::
from

::::
one

:::::
image

:::
to

:::
the

:::::
other

:::::::
without

:::::
taking

:::
the

:::::
drift

:::
and

:::::::
rotation

:::::::::::
information

::::
from

:::::::::::
surrounding110

::::::
vectors

:::
into

:::::::
account

:::::::::::::::::::::::
(Muckenhuber et al., 2016) .

::::::::
However,

:::
due

::
to

:::
the

::::::::::
independent

::::::::::
positioning

::
of

:::
the

:::::::
features,

::::
very

::::
close

:::::::
features

::::
may

:::::
share

::::
some

:::::
pixels

::::
and

::::
since

:::
all

::::::
vectors

::::
from

:::
the

:::::::::
resolution

:::::::
pyramid

::
are

::::::::::
combined,

:::
the

::::::
feature

::::
size

:::::
varies

::::::
among

::::
the

:::::::
matches,

::::::
which

:::::::
implies

:
a
:::::::
varying

:::::::::
resolution.

:::
In

:::::::
addition,

:::
the

:
resulting vector field is not evenly distributed in space and large gaps may occur be-

tween densely covered areas(Muckenhuber et al., 2016) . ,
::::::
which

:::
can

:::::::::
eventually

::::
lead

::
to

:::::::
missing

::
a115

::::
shear

::
or

::::::::::::::::::::
divergence/convergence

:::::
zone.

Pattern-matching, on the other hand, takes a small template from the first image at the starting

location of the vector and tries to find a match on a larger template from the second image. Despite

a considerable computational effort, this approach is widely used, since it allows to define the vector

positionsand delivers a comparable quality estimate for each vector. For practical reasons, a pyramid120

approach is generally used to derive high-resolution ice drift. This speeds up the processing, but

limits the independence of neighbouring vectors, since they depend on a lower resolution estimate

(Thomas et al., 2008).

The objective of this paper is to combine the two approaches in the most meaningful way in order

to benefit from the respective advantages.
::::
The

::::
main

::::::::::
advantages

::
of

:::
the

:::::::::
considered

::::::::::::::
feature-tracking125

:::::::
approach

:::
are

:::
the

::::::::::::
computational

:::::::::
efficiency

:::
and

:::
the

:::::::::::
independence

:::
of

:::
the

::::::
vectors

::
in

:::::
terms

::
of

::::::::
position,

::::::
lengths,

::::::::
direction

::::
and

::::::::
rotation.

:::::::::::::::
Pattern-matching

:::
on

:::
the

:::::
other

:::::
side

::::::
allows

:::::
better

:::::::
control

:::::
over

:::::
vector

::::::::::
positioning

:::
and

:::::::::
resolution,

::::::
which

::
is

::
a
::::::::
necessity

:::
for

:::::::::
computing

::::::::::
divergence,

:::::
shear

:::
and

:::::
total

::::::::::
deformation.

:

The presented algorithm, all necessary software requirements (python incl. Nansat, openCV and130

SciPy) and the satellite data from Sentinel-1 are open-source. A free and user friendly implementa-

tion shall support an easy distribution of the algorithm among scientists and other stakeholders.

The paper is organised as follows: The used satellite products and buoy data are introduced in

Section 2. The algorithm description including data pre-processing is given in Section 3, together

with tuning and validation methods. Section 4 presents the pre-processing, parameter tuning and135
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validation results and provides a recommended parameter setting. The discussion including outlook

can be found in Section 5.

2 Data

The Sentinel-1 mission is a joint initiative of the European Commission and the European Space

Agency (ESA) and represents the Radar Observatory for the Copernicus Programme, a European140

system for monitoring the Earth with respect to environmental and security issues. The mission

includes two identical satellites, Sentinel-1A (launched in April 2014) and Sentinel-1B (launched

in April 2016), each carrying a single C-band SAR with a centre frequency of 5.405 GHz and

dual-polarisation support ((HH+HV, VV+VH)
:::
also

::::
for

::::
wide

::::::
swath

:::::
mode. Both satellites fly in

the same near-polar, sun-synchronous orbit and the revisit time is less than 1 day in the Arctic145

(ESA, 2012). The main acquisition mode of Sentinel-1 over sea ice covered areas is “Extra Wide

Swath Mode Ground Range Detected with Medium Resolution ”
:::
(EW

::::::::
GRDM) and the presented

algorithm is built for processing this data type. The considered images have a resolution of 93m

range×87m azimuth with residual planimetric distortions within 10m (?) . The
:::
The covered area

per image is 400 km× 400 km and the data are provided with a pixel spacing of 40 m× 40 m in both150

HH and HV polarisation.
:::
The

:::::::::
introduced

::::::::
algorithm

::::
can

:::::
utilise

::::
both

:::
HH

::::
and

:::
HV

::::::::
channel.

::::::::
However,

::
the

:::::
focus

:::
of

:::
this

:::::
paper

::
is

:::
put

::
on

:::::
using

::::
HV

::::::::::
polarisation,

:::::
since

:::
this

:::::::
channel

::::::::
provides

::
on

:::::::
average

::::
four

::::
times

:::::
more

:::::::
feature

:::::::
tracking

:::::::
vectors

::::
than

::::
HH

::::::::::::::::::::::::
(Muckenhuber et al., 2016) ,

::::::::::
representing

::
a
::::::

better

:::::
initial

::::
drift

:::::::
estimate

:::
for

:::
the

::::::::
combined

:::::::::
algorithm.

155

For parameter tuning, we used the image pair ’Fram Strait’, including 350 manually derived drift

vectors as validation, from Muckenhuber et al. (2016)
::
To

::::::::
illustrate

:::
the

::::::::
algorithm

:::::::::::
performance

::::
and

::::::
explain

:::
the

::::::::
individual

::::::
steps,

::
we

::::
use

::
an

:::::
image

::::
pair

::::::::
acquired

::::
over

::::
Fram

:::::
Strait. The acquisition times

of the two consecutive images are 2015-03-28 07:44:33 (UTC) and 2015-03-29 16:34:52 (UTC),

and the covered area including validation vectors are
::
is shown in Figure ??

:
3. This image pair covers160

a wide range of different ice conditions (multiyear ice, first-year ice, marginal ice zone etc.) and the

ice situation is representative for our area and time period of interest.

To
::::::
evaluate

:::::::
suitable

::::::
search

:::::::::
limitations

::::
and validate the algorithmresults, we used ,

:::
we

:::
use

:
GPS

data from drift buoys that have been set out in the ice covered waters north of Svalbard as part of the165

Norwegian Young Sea Ice Cruise (N-ICE2015) project of the Norwegian Polar Institute (Spreen and

Itkin, 2015). The considered drift
::
ice

:::::::::
conditions

:::::
during

:::
the

::::::::::
N-ICE2015

:::::::::
expedition

::
are

:::::::
describe

:::
on

:::
the

::::::
project

::::::
website

:::::::::::::::::::::::::::::::::::::::::
(http://www.npolar.no/en/projects/n-ice2015.html)

::
as

:::::::::::
challenging.

:::
The

::::::::
observed

:::
ice

::::
pack,

::::::
mainly

:::::::::
consisting

::
of

:::::::
1.3-1.5

::
m

::::
thick

::::::::
multiyear

::::
and

::::::::
first-year

:::
ice,

::::::
drifted

:::::
faster

::::
than

::::::::
expected

:::
and

::::
was

::::
very

::::::::
dynamic.

:::::
Closer

::
to
:::
the

:::
ice

:::::
edge,

:::::
break

:::
up

::
of

:::
ice

::::
floes

:::
has

:::::
been

:::::::
observed

::::
due

::
to

:::::
rapid170
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::
ice

::::
drift

::::
and

:::
the

:::::::
research

:::::
camp

::::
had

::
to

:::
be

::::::::
evacuated

::::
and

:::::::::::
re-established

::::
four

::::::
times.

::::
This

:::::::::
represents

:
a
:::::
good

::::
study

:::::
field,

:::::
since

:::::
these

::::::::::
challenging

:::::::::
conditions

:::
are

:::::::
expected

:::
in

:::
our

::::
area

:::
and

:::::
time

:::::
period

:::
of

::::::
interest.

::::
The

:::::::::
considered

::::
GPS

:
data have been collected in 2015 between 15th January and 22nd April,

and cover an area ranging from 81
:::
80.5◦ N to 83.5◦ N and 12◦ E to 27◦ E. The buoys recorded their

positions either hourly or every three hours. In the later case, the positions have been interpolated175

for each hour.

3 Method

3.1 Data pre-processing

To process Sentinel-1 images within Python (extraction of backscatter values and corresponding

geolocations, reprojection, resolution reduction etc.), we use the open-source software Nansat (Ko-180

rosov et al., 2016). Nansat is a scientist-friendly Python toolbox for 2-D satellite Earth observa-

tion data, and builds on the Geospatial Data Abstraction Library (http://www.gdal.org). As done

in Muckenhuber et al. (2016), we change the projection of the the provided ground control points

(latitude/longitude values given for certain pixel/line coordinates) to stereographic and use spline

interpolation to calculate geographic coordinates. This provides a good geolocation accuracy also at185

high latitudes.
:::
The

:::::
pixel

:::::::
spacing

::
of

:::
the

:::::
image

::
is
::::::::

changed
::
by

:::::::::
averaging

::::
from

:::
40

::
m

::
to

:::
80

::
m,

::::::
which

:
is
::::::

closer
::
to

:::
the

::::::
sensor

:::::::::
resolution

::
of

:::
93

::
m

:::::
range

::
×

::
87

::
m

:::::::
azimuth,

::::
and

::::::::
decreases

::::
the

::::::::::::
computational

:::::
effort.

For each pixel p, the Sentinel-1 data file provides a digital numberDNp and a normalisation coef-

ficient Ap, from which the normalised radar cross section σ0
raw is derived by the following equation:190

σ0
raw =DN2

p/A
2
p (1)

The pixel spacing of the image is changed by averaging from 40m to 80m, which is closer to the

sensor resolution of 93m range×87m azimuth, and decreases the computational effort
:::::::::
normalised

::::
radar

:::::
cross

::::::
section

::::
σ0

raw ::::::
reveals

:
a
::::::::::
logarithmic

:::::::::
distribution

::::
and

:::
the

::::::::
structures

::
in

:::
the

:::
sea

:::
ice

:::
are

::::::
mainly195

:::::::::
represented

::
in
:::

the
::::

low
::::
and

:::::::
medium

:::::::::
backscatter

::::::
values

:::::
rather

::::
than

:::
in

:::
the

:::::::::
highlights.

:::::::::
Therefore,

:::
we

::::::
change

:::
the

:::::
linear

:::::::
scaling

::
of

:::
the

::::
raw

::::::::::
backscatter

:::::
values

::::
σ0

raw:::
to

:
a
::::::::::

logarithmic
:::::::

scaling
:::
and

:::
get

::::
the

:::::::::
backscatter

::::::
values

:::::::::::::::
σ0 = 10 ∗ lg(σ0

raw)
:

[
::
dB].

::
A
::::::::::::

representative
::::::::::

backscatter
::::::::::
distribution

::::
over

::::
sea

:::
ice

:
is
::::::

shown
::
in
::::::

Figure
::
1.
::::::

Using
::
a

:::::::::
logarithmic

:::::::
scaling

:::::::
provides

::
a
:::::::
keypoint

::::::::::
distribution

:::
for

:::
the

:::::::
feature

:::::::
tracking

::::::::
algorithm

:::
that

:::::::
depends

::::
less

::
on

::::
high

::::
peak

::::::
values,

:::::
while

:::
the

::::
total

::::::
number

::
of

::::::
vectors

::::::::
increases.200

To apply the feature-tracking algorithm from Muckenhuber et al. (2016), the SAR backscatter val-

ues σ0 have to be converted into intensity values i with 0≤ i≤ 255 for i ∈ R. Before the conversion

, we change the linear scaling of the raw backscatter values σ0
raw to a logarithmic scaling and get the
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Figure 1.
:::::::
Histogram

::
of

:::
HV

:::::::::
backscatter

:::::
values

::
σ0

::::
from

:::::
image

:::
pair

::::
Fram

:::::
Strait.

:::
The

::::
lower

:::
and

:::::
upper

::::::::
brightness

::::::::
boundaries

:::::::::::
σ0
min = −32.5

::
dB

::::
and

::::::::::::
σ0
max = −18.86

::
dB

:::
are

:::::
shown

::::
with

::::
blue

:::
lines

::::
and

::::::
illustrate

:::
the

::::::
domain

:::
for

::
the

:::::::
intensity

:::::
values

:
i.

backscatter values σ0 = 10 ∗ lgσ0
raw. The conversion

:::
This

::::::::::
conversion is done by using Eq. (2) and

setting all values outside the domain to 0 and 255.205

i = 255 · σ0−σ0
min

σ0
max−σ0

min

(2)

The upper brightness boundary σ0
max is set to the logarithm of the

::::::::
according

::
to

:::
the recommended

value from Muckenhuber et al. (2016), i.e. log(0.013) and log(0.08)
:::::
-18.86

:::
dB

:::
and

::::::
-10.97

:::
dB for

HV and HH respectively. The lower boundary σ0
min was chosen to be -3.25

::::
-32.5

:::
dB (HV) and -2.5

:::
-25

::
dB

:
(HH), since this was found to be a reasonable range of expected backscatter values.

:::::
Figure

::
2210

:::::
shows

:::
the

:::::
image

::::
pair

:::::
Fram

::::
Strait

:::::
after

:::
the

:::::::::
conversion

:::
into

::::::::
intensity

::::::
values.

3.2 Sea ice drift algorithm

The presented sea ice drift algorithm is based on a combination of feature-tracking and pattern-

matching, and is designed to utilise the respective advantages of the two approaches. Computational

:::::::::::::
Computationally

:
efficient feature-tracking is used to derive a first estimate of the drift field. The215

provided vectors serve as initial search position for pattern-matching, that provides accurate drift

vectors at each given location including rotation and quality estimate . The
:::::::
estimate

:::
and

:::::::::
maximum

::::
cross

:::::::::
coefficient

:::::
value.

:::
As

::::::::
illustrated

::
in

:::
the

::::::::
flowchart

::
in

::::::
Figure

::
3,

:::
the algorithm consists of three

:::
five

main steps:
:
I
::::::
Feature

::::::::
tracking,

::
II

:::::
Filter,

::
III

::::
First

:::::
guess,

:::
IV

::::::
Pattern

::::::::
matching

:::
and

::
V

::::
Final

::::
drift

:::::::
product.

:

220

I Feature-tracking

7
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Figure 2.
:::::
Image

:::
pair

:::::
Fram

::::
Strait

::
in

:::
HV

:::::::::
polarisation

::::
after

::::::::
conversion

::::::::
(Equation

::
2)

::::
from

::::::::
backscatter

:::::
values

:::
σ0

:::
into

:::::::
intensity

:::::
values

::::
with

::::
range

::::::::::
0 ≤ i≤ 255

::::
using

:::::
lower

:::
and

:::::
upper

::::::::
brightness

::::::::
boundaries

:::::::::::
σ0
min = −32.5

::
dB

:::
and

::::::::::::
σ0
max = −18.86

:::
dB.

The feature-tracking algorithm used in this work is adopted
::
an

:::::::
adjusted

:::::::
version from Muckenhu-

ber et al. (2016), who introduced a computationally efficient sea ice drift algorithm for Sentinel-1

based on the ORB (Oriented FAST and Rotated BRIEF) algorithm from Rublee et al. (2011). ORB225

uses the concept of the FAST keypoint detector (Rosten and Drummond, 2006) to find corners on

several resolution levels. The patch around each corner is then described using an modified version

of the binary BRIEF descriptor from Calonder et al. (2010). To ensure rotation invariance, the ori-

entation of the patch is calculated using the intensity-weighted centroid. Muckenhuber et al. (2016)

applies a Brute Force matcher that compares each feature from the first image to all features in the230

second image. The comparison of two features is done using the Hamming distance, that represents

the number of positions in which the two compared binary feature vectors differ from each other.

The best match is accepted if the ratio of the two shortest
::::::
shortest

::::
and

::::::
second

:::::::
shortest

:
Hamming

distances is below 0.75.
:
a
::::::
certain

::::::::
threshold.

::::::
Given

:
a
:::::::
suitable

::::::::
threshold,

::::
the

::::
ratio

:::
test

::::
will

::::::
discard

::
a

::::
high

::::::
number

::
of

:::::
false

:::::::
matches,

:::::
while

::::::::::
eliminating

::::
only

:
a
::::
few

::::::
correct

:::::::
matches.

:
235

II Pattern-matching

The used pattern-matching approach is based on the maximisation of the normalised cross

correlation. The normalised cross correlation of two equally sized windows g and h is defined as:

NCC(g,h) =

∑
i,j(gij − ḡ)(hij − h̄)√∑

i,j(gij − ḡ)2
∑
i,j(hij − h̄)2

with gij (hij) representing the value of g (h) at the location i, j and ḡ (h̄) the mean value of g240

(h) (Hollands , 2012) . Considering a window g from a SAR image and a window h that is moved

8
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Figure 3.
::
The

::::::::
flowchart

::
on

:::
the

:::
left

::::::
depicts

::
the

::::
five

::::
main

::::
steps

::
of

:::
the

::::::::
algorithm.

:::
The

::::
right

::::::
column

::::::::
illustrates

::
the

::::::::
evolution

::
of

:::
the

::::
drift

::::::
results

::::
using

::::::
image

:::
pair

:::::
Fram

:::::
Strait

::
in

:::
HV

::::::::::
polarisation

:::
and

::
a

:::
grid

::::
with

::
4
:::
km

::::::
spacing.

::::
Blue

::::::
vectors

::::
are

::::::
derived

:::::::
applying

:::
an

:::::::
adjusted

::::::
version

::
of
:::

the
::::::

feature
:::::::

tracking
::::::::

algorithm
:::::

from

::::::::::::::::::::
Muckenhuber et al. (2016) .

:::::
Black

::::::
vectors

:::::::
indicate

:::
the

:::::
initial

::::
drift

::::::
estimate

:::::
(first

:::::
guess)

:::::
based

:::
on

::::::
filtered

:::::::::::
feature-tracking

:::::::
vectors.

:::
The

::::
final

::::
drift

::::::
product

::::::
(yellow

::
to

:::
red

::::::
vectors)

:::
are

::::::
derived

::::
from

::::::::
combining

:::
the

::::
first

::::
guess

::::
with

:::::::::::::
pattern-matching

::::::::
adjustment

:::
and

:::::::
applying

::
a
:::::::
minimum

:::::
cross

::::::::
coefficient

:::::
value.

::
In

:::
this

:::::::
example,

::
a

:::
total

::
of

::::
4725

::::::
vectors

::::
have

:::
been

:::::
found

::::
with

:
a
:::::
MCC

:::::
value

::::
above

:::
0.4

::
in

:
4

:::
min.
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with step size 1
:::::::::::::::::::::::::::
Muckenhuber et al. (2016) found

:::
the

::::
most

:::::::
suitable

::::::::
parameter

::::::
setting

::
for

::::
our

:::
area

::::
and

::::
time

:::::
period

:::
of

:::::::
interest,

::::::::
including

:
a
:::::::::
Hamming

:::::::
distance

::::::::
threshold

::
of

:::::
0.75,

:
a
:::::::::
maximum

::::
drift

::::
filter

:::
of

:::
0.5 pixel over a quadratic area of a consecutive SAR image results in a matrix with NCC values .

The highest value in this matrix, m/s
:
,
:
a
:::::
patch

::::
size

::
of

:::::::
34× 34

:::::
pixels

:::
and

::
a
::::::::
resolution

::::::::
pyramid

::::
with245

:
7
:::::
steps

::::::::
combined

::::
with

:
a
:::::::
scaling

:::::
factor

::
of

:::
1.2.

::::
Due

::
to

:::
the

:::::::::
resolution

:::::::
pyramid,

:::
the

::::::::::
considered

::::::
feature

:::
area

::::::
varies

::::
from

::::::::
2.7× 2.7

::
km

:::
to

::::::::
9.8× 9.8

:::
km

:::
and

:::
the

::::::::
resulting

::::
drift

:::::
field

::::::::
represents

::
a
:::::::::
resolution

::::::
mixture

:::::::
between

:::::
these

::::::::::
boundaries.

:::
We

:::::
adjust

:::
the

:::::::::
algorithm

::::
from

:::::::::::::::::::::::::
Muckenhuber et al. (2016) by

::::::::
applying

:
a
::::::::::

logarithmic
:::::::
scaling

:::
for

::
the

:::::
SAR

::::::::::
backscatter

:::::::
values

:::
σ0 ::::::

instead
:::

of
::::

the
:::::::
previous

:::::
used

::::::
linear

:::::::
scaling

:::::::
(Section

:::::
3.1).

:::
In250

:::::::
addition,

:::
we

::::::
extract

:::
for

::::
each

::::::
vector

:::
the

:::::::
rotation

::::::::::
information

::
α,

:
i.e. the maximum cross correlation

MCC, represents the location of the best match and serves as a quality estimate of the matching

performance.
::::
how

:::::
much

:::
the

::::::
feature

::::::
rotates

:::::
from

:::
the

:::
first

::
to

:::
the

::::::
second

::::::
image.

:

III Combination

After data pre-processing as described above, the
::::::::
Applying

:::
the

:::::::
adjusted

:
feature-tracking algo-255

rithm from Muckenhuber et al. (2016) is applied with a maximum drift filter of 0.5. This provides

a number of un-evenly distributed vectors
::::
(e.g.

::::
blue

::::::
vectors

::
in

::::::
Figure

::
3)

:
with start positions x1, y1

:::
x1f ,

::::
y1f on the first image (SAR1)and end positions x2, y2 ::::::

SAR1),
::::
end

::::::::
positions

::::
x2f ,

:::
y2f:on the

subsequent image (SAR2) . To filter outliers, the starting point of each vector is simulated using

two functions fx1
(x2,y2) and fy1(x2,y2)

::::::
SAR2)

:::
and

::::::::::::
corresponding

:::::::
rotation

::::::
values

:::
αf .

::::
The

:::::
index260

:
f
:::::::::
represents

::
a

:::::::::::::
feature-tracking

::::::
vector

:::
and

::::::
ranges

:::::
from

:
1
:::

to
::
F ,

:::::
with

::
F

:::::
being

:::
the

:::::
total

::::::
number

:::
of

::::::
derived

:::::::::::::
feature-tracking

:::::::
vectors.

::
II

:::::
Filter

265

::
To

::::::
reduce

:::
the

:::::::
impact

::
of

:::::::::
potentially

:::::::::
erroneous

:::::::::::::
feature-tracking

:::::::
vectors

:::
on

:::
the

::::::::
following

::::::
steps,

::::::
outliers

:::
are

:::::::
filtered

::::::::
according

::
to
:::::

drift
:::
and

:::::::
rotation

::::::::
estimates

:::::::
derived

:::::
from

::::
least

:::::::
squares

::::::::
solutions

::::
using

::
a
::::
third

::::::
degree

::::::::::
polynomial

::::::::
function.

::::::::::
Considering

::
a
::::::
matrix

::
A

:
,
:::
that

::::::::
contains

::
all

::::
end

::::::::
positions

:::
x2f ,

:::
y2f ::

in
:::
the

::::::::
following

::::
form

:

A =


1 x21 y21 x221 y221 x21 ∗ y21 x321 y321

1 x22 y22 x222 y222 x22 ∗ y22 x322 y322
...

...
...

...
...

...
...

...

1 x2F y2F x22F y22F x2F ∗ y2F x32F y32F


:::::::::::::::::::::::::::::::::::::::::::::::::

(3)270

:
,
::
we

::::::
derive

::::
three

::::::
vectors

::
b

::x1 ,
::
b

:y1::::
and

:
b
::α, that represent the least-squares solutions between x1, y1

and the
::::
least

::::::
squares

::::::::
solutions

:::
for

:
A

:::
and

:
x
:::::::::::::::1 = (x11, ...,x1F ),

:
y
::::::::::::::1 = (y11, ...,y1F )

:::
and

::
α
::::::::::::
= (α1, ...,αF )

::::::::::
respectively.

::::
The

::::::
starting

:::::::
position

::::
x1f ,

:::
y1f::::

and
:::
the

::::::
rotation

:::
αf::

of
::::
each

::::::
vector

:::
can

::::
then

::
be

:::::::::
simulated

10



::::
using

::
a
:
third degree polynomial of x2 and y2. Vectors that have a start positionx1 or y1 further

:::::::
function

:::::::::::
f(x2f ,y2f ,b)

:::::::::
depending

:::
on

:::
the

:::
end

:::::::
position

::::
x2f ,

::::
y2f :::

and
:::
the

::::::::::::
corresponding

::::
least

:::::::
squares275

::::::
solution

::::::::::::::::::::::::::
b = (b0, b1, b2, b3, b4, b5, b6, b7).

f(x2f ,y2f ,b) = b0 + b1x2f + b2y2f + b3x
2
2f + b4y

2
2f + b5x2fy2f + b6x

3
2f + b7y

3
2f

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(4)

:
If
:::
the

::::::::
simulated

::::
start

::::::::
position,

::::::
derived

::::
from

::::::::::::
f(x2f ,y2f ,b),

:::::::
deviates

:::::
from

:::
the

:::::::::::::
feature-tracking

::::
start

::::::
position

:::::
x1f ,

:::
y1f:::

by
::::
more

:
than 100 pixels(8,

:::
the

::::::
vector

::
is

:::::::
deleted.

::::
The

::::
same

::::::::
accounts

:::
for

:::::::
rotation

::::::
outliers.

::
If
:::

the
:::::::::

simulated
:::::::
rotation

:::::::
deviates

::::
from

:::
the

::::::::::::::
feature-tracking

::::::
rotation

:::
αf:::

by
:::::
more

::::
than

::::
60◦,280

::
the

::::::
vector

::
is

::::::
deleted.

:::
We

:::::
found

::
a
::::
third

::::::
degree

:::::::::
polynomial

:::::::
function

::
to

:::
be

:
a
::::
good

:::::::::::
compromise

:::::::
between

:::::::
allowing

:::
for

:::::
small

::
to

:::::::
medium

:::::
scale

:::::::::::
displacement

::::
and

:::::::
rotation

::::::::::::
discontinuities,

::::
and

::::::::
excluding

:::::
very

:::::::
unlikely

:::::::
vectors,

:::
that

:::::::::
eventually

::::::
would

::::::
disturb

::::
the

::::::::
following

:::::
steps.

::::
The

::::::::::
parameters

:::
for

:::
the

:::::
filter

::::::
process,

::::
i.e.

::::
100 ) away from the simulated point are removed.

:::::
pixels

:::::::::::::
(displacement)

::::
and

::::
60◦

::::::::
(rotation),

::::
have

:::::
been

::::::
chosen

:::::::::
according

::
to

:::::
visual

::::::::::::
interpretation

:::::
using

::::::
several

::::::::::::
representative

::::::
image285

::::
pairs.

::::::
Figure

::
4

::::::::
illustrates

:::
the

::::
filter

:::::::
process

::
by

::::::::
depicting

:::
the

::::::
results

::::
from

:::::
image

::::
pair

:::::
Fram

:::::
Strait.

:
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Figure 4.
::::
Filter

::::::
process

::::::
applied

::
on

:::::
image

:::
pair

::::
Fram

:::::
Strait.

:::
The

:::::
x-axis

:::::::
represent

:::
the

:::::::
simulated

:::
start

:::::::
position

:::
and

::::::
rotation,

::::::
derived

::::
from

:::::::::::
f(x2f ,y2f ,b)

:::
and

:::
the

:::::
y-axis

:::::::
represent

:::
the

::::::::::::
feature-tracking

:::
start

:::::::
position

:::
x1f ,

::::
y1f :::

and

::::::
rotation

:::
αf .

:::
Red

:::::
points

::::
were

:::::::
identified

::
as

::::::
outliers

:::
and

::::::
deleted.

::
III

:::::
First

:::::
guess

The remaining feature-tracking vectors are used to estimate the drift
::::
incl.

:::::::
rotation on the entire290

first image, i.e.
::::::::
estimated x2and ,

:
y2 ::

and
::
α
:

values are provided for each pixel on SAR1 (left and

middle panel in Figure ??). The interpolation is
::::::
Figure

::
5).

:

:::::::
Between

:::
the

:::::::::::::
feature-tracking

:::::::
vectors,

::::::::
estimated

::::::
values

:::
are

:
constructed by triangulating between

the start positions on SAR1 ::
the

:::::
input

::::
data

:
and performing linear barycentric interpolation on each

11



triangleto find x2 and y2 based on the
:
.
::::
That

::::::
means,

:::
the

:::::::::
estimated

:::::
values

:::::::::
represent

:::
the

::::::::
weighted295

::::
mean

:::
of

:::
the three neighbouring feature-tracking vectors .

::::::
values.

:::
The

:::::::::::
interpolated

:::::
value

::
vp::

at
::::
any

::::
pixel

::
p

:::::
inside

:::
the

:::::::
triangle

::
is

:::::
given

:::
by

::::::::
Equation

::
5,

:::::
where

:::
v1,

::::
v2,

::
v3::::::::

represent
:::
the

::::::::::::::
feature-tracking

:::::
values

::
at

:::
the

::::::
corners

::
of

:::
the

:::::::
triangle

:::
and

::::
A1,

:::
A2,

:::
A3 :::

are
:::
the

::::
areas

::
of

:::
the

:::::::
triangle

:::::::::
constructed

:::
by

:
p
::::
and

::
the

::::
two

:::::::
opposite

:::::::
corners,

:::
e.g.

:::
A1::

is
:::
the

::::
area

:::::::
between

::
p,

::::
and

::
the

:::::::
corners

::::
with

:::::
value

::
v2:::

and
:::
v3.

:

vp =
A1v1 +A2v2 +A3v3

A1 +A2 +A3
::::::::::::::::::::::

(5)300

To provide a drift estimate
:::
first

:::::
guess

:
for the surrounding area, we extrapolate x2 :::::

values
::::

are

::::::::
estimated

:::::
based

::
on

:::
the

::::
least

:::::::
squares

::::::::
solutions

::::
using

::
a
:::::
linear

::::::::::
combination

:::
of

::
x1::::

and
::
y1.

:::::::::::
Considering

:
a
::::::
matrix

::
C,

::::
that

:::::::
contains

::
all

::::
start

::::::::
positions

::::
x1f ,

:::
y1f::

in
:::
the

::::::::
following

:::::
form

C =


1 x11 y11

1 x12 y12
...

...

1 x1F y1F


::::::::::::::::::

(6)

:
,
:::
we

:::::
derive

:::::
three

::::::
vectors

::
d
::x2

,
::
d
::y2

and y2 using two functions fx2
(x1,y1) and fy2(x1,y1), that305

are derived from the least-squares solutions between
:
d
::α

,
::::
that

::::::::
represent

:::
the

::::
least

:::::::
squares

::::::::
solutions

::
for

::
C

:::
and

::
x

::::::::::::::2 = (x21, ...,x2F ),
::

y
::::::::::::::2 = (y21, ...,y2F )

:::
and

::
α
::::::::::::
= (α1, ...,αF )

:::::::::::
respectively.

:::
The

:::::::::
estimated

:::
end

:::::::
position

:::
x2,

:::
y2 :::

and
:::::::
rotation

::
α

::
at

::::
any

:::::::
location

:::
can

::::
then

:::
be

::::::::
simulated

:::::
using

:::
the

:::::
linear

::::::::
function

:::::::::
f(x1,y1,c)

:::::::::
depending

:::
on

:::
the

:::::
start

:::::::
position

:::
x1,

:::
y1::::

and
:::
the

::::::::::::
corresponding

:::::
least

::::::
squares

::::::::
solution

:::::::::::::
d = (d0,d1,d2).310

f(x1,y1,d) = d0 + d1x1 + d2y1
:::::::::::::::::::::::::

(7)

::
An

::::::::
example

:::
for

:::
the

:::::::
resulting

::::
first

:::::
guess,

:::
i.e.

::::::::
estimated

::::::
values

:::
for x2, y2 and a linear combination

of x1 and y1.
:
α

:::
on

::::::
SAR1,

::
is

:::::
shown

:::
in

::::::
Figure

:
5
::::
and

::::::::::::
corresponding

::::::
vectors

:::
are

::::::
shown

::
in
:::::

black
:::

in

:::::
Figure

::
3.
:::::
Note

:::
that

:::::::
rotation

::
α
::::::::
includes

::::
both

:::
the

::::::
relative

::::::
image

:::::::
rotation

::::
from

::::::
SAR1::

to
::::::
SAR2::::

and

::
the

::::::
actual

:::::::
rotation

::
of

:::
the

::::::
feature

::::::
itself.

:::
The

::::::::::
introduced

::::::::
algorithm

::::::::
provides

:::
also

::::
the

::::::
relative

::::::
image315

::::::
rotation

:::
by

:::::::::
projecting

:::
the

::::
left

::::::
corners

:::
of

::::::
SAR2::::

onto
::::::
SAR1::::

and
::::::::::
calculating

:::
the

:::::
angle

::::::::
between

::
the

::::
left

:::::
edges

::
of

::::::
SAR1::::

and
::::::
SAR2.

::::
The

::::::
actual

:::::::
rotation

::
of

:::
the

:::::::
features

:::
can

::::::
easily

::
be

::::::::
obtained

:::
by

:::::::::
subtracting

:::
the

::::::
relative

::::::
image

::::::
rotation

:::::
from

::
α.

:

This initial drift estimate is used to perform efficient
:::
IV

:::::::::::::::
Pattern-matching320
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Figure 5. Estimated
:::::::
Example

::
of

:::::::
estimated

:
drift

::
and

::::::
rotation

::::
(first

::::::
guess) based on

::::::
filtered feature-tracking

, and distance d to the nearest feature-tracking vector
:::::
vectors

:
using the image pair ’Fram Strait’ from

Muckenhuber et al. (2016) . The left and middle panel
::::
three

:::::
panels

:
show the two components x2and ,

:
y2 of

the estimated end positions on
:::
and the second image (SAR2)

:::::::
estimated

::::::
rotation

:
α
:
for each pixel on the first im-

age (SAR1).The right panel shows the distribution of d on SAR1 with a lower and upper threshold dmin,dmax.

:::
The

::::::::
estimated

:::::
drift

::::
field

::::::
derived

:::::
from

:::::::::::::
feature-tracking

::::::::
provides

::::::
values

:::
for

:::
x2,

::
y2::::

and
::
α

::
at

::::
any

::::::
location

:::
on

::::::
SAR1.

::::
The

:::::::::
uncertainty

::
of

::::
this

:::::::
estimate

:::::::
however,

::::::::
increases

::::
with

:::::::
distance

::
d

::
to

:::
the

::::::
closest

:::::::::::::
feature-tracking

::::::
vector.

::::::::
Therefore,

:::::
small

::
to

:::::::
medium

::::
scale

::::::::::
adjustments

:::
of

::
the

::::::::
estimates

:::
are

:::::::::
necessary,

::::::::
depending

:::
on

:::
the

:::::::
distance

::
d.

::::
We

:::::
apply pattern-matching based on normalised cross correlation on325

a pre-defined grid or
:
at
:
chosen points of interest . Figure 6 shows a pattern-matching example from

image pair ’Fram Strait’ used in Muckenhuber et al. (2016) .
::
to

::::::
provide

:::::
more

:::::::
accurate

::::
drift

:::::::
vectors

:::
and

:::::
adjust

:::
the

:::::::
rotation

:::::::
estimate

::
at

:::::
these

::::::
specific

::::::::
locations.

:

Pattern-matching using initial drift estimate from feature-tracking: Small template t1 (left) around

point of interest on SAR1 is rotated from −β to +β and matched with large template t2 (middle)330

from SAR2, that has its centre at estimated end position x2, y2. The right contour plot shows the

normalised cross correlation matrix of the rotation β∗ that provided the highest maximum cross

correlation MCC(β∗). The estimated end position x2, y2 of this example has to be adjusted by

-21pixels, +32pixels to fit with the location ofMCC(β∗ = 2◦) = 0.71. NB:X and Y -axis represent

pixel coordinates.335

A
:::
The

:::::
used

::::::::::::::
pattern-matching

::::::::
approach

::
is
::::::

based
:::
on

:::
the

:::::::::::
maximisation

:::
of

:::
the

::::::::::
normalised

:::::
cross

:::::::::
coefficient.

::::::::::
Considering

::
a small template t1 with a given size is taken around the point of interest

from SAR1. A
:::::
SAR1:::::

with
:::
size

::::::::
t1s× t1s :::

and
:
a
:

larger template t2 with centre at
::::::
around the location

x2, y2 (defined by the corresponding drift estimate from feature-tracking is taken from SAR2. The

size of t2 is defined by the distance d to the nearest feature-tracking vector with a lower and upper340

threshold (dmin,dmax) :

side(t2) = side(t1) + 2 ∗ d
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:::
first

::::::
guess)

::::
from

::::::
SAR2::::

with
::::
size

::::::::
t2s× t2s,:::

the
:::::::::
normalised

:::::
cross

:::::::::
coefficient

:::::
matrix

:::::
NCC

:
is
:::::::
defined

::
as

:::::::::::::::
(Hollands , 2012) :

:

NCC(x,y) =

∑
x′,y′(t

′
1(x′,y′)t′2(x+x′,y+ y′))√∑

x′,y′ t
′
1(x′,y′)2

∑
x′,y′ t

′
2(x+x′,y+ y′))2

:::::::::::::::::::::::::::::::::::::::::::::::::

(8)345

t′1(x′,y′) = t1(x′,y′)− 1

t21s

∑
x′′,y′′

t1(x′′,y′′)

::::::::::::::::::::::::::::::::::

(9)

t′2(x+x′,y+ y′) = t2(x+x′,y+ y′)− 1

t21s

∑
x′′,y′′

t2(x+x′′,y+ y′′)

::::::::::::::::::::::::::::::::::::::::::::::::::::::

(10)

with dmin ≤ d≤ dmax for d ∈ N (example of d distribution in right panel of Figure ??). The two

templates
:::::::
t1(x′,y′)

::::
and

:::::::
t2(x′,y′)

:::::::::::
representing

::
the

:::::
value

::
of

:
t1 and t2 are matched using maximisation350

of normalised cross correlation. Template
::
at

:::::::
location

::::
x′,y′.

::::
The

::::::::::
summations

:::
are

:::::
done

::::
over

:::
the

::::
size

::
of

:::
the

::::::
smaller

::::::::
template,

:::
i.e.

:::
x′,

::
y′,

:::
x′′

::::
and

::
y′′

:::
go

::::
from

::
1

::
to

:::
t1s.::::::::

Template
:
t1 :

is
::::::
moved

::::
with

::::
step

::::
size

:
1
::::
pixel

::::
over

::::::::
template

::
t2:::::

both
::
in

:::::::::
horizontal

:::
(x)

:::
and

:::::::
vertical

:::
(y)

::::::::
direction

::::
and

:::
the

:::::
cross

:::::::::
coefficient

:::::
values

:::
for

::::
each

::::
step

:::
are

::::::
stored

::
in

:::
the

::::::
matrix

:::::
NCC

:::
with

::::
size

:::::::::::::::::::::::::::
(1 + ts2− ts1)× (1 + ts2− ts1).

::::
The

::::::
highest

:::::
value

::
in

:::
the

::::::
matrix

:::::
NCC,

:::
i.e.

:::
the

:::
the

:::::::::
maximum

::::::::::
normalised

::::
cross

:::::::::
coefficient

:::::
value

:::::::
MCC,355

::::::::
represents

:::
the

:::::::
location

::
of

:::
the

::::
best

::::::
match

:::
and

:::
the

::::::::::::
corresponding

:::::::
location

:::::::::
adjustment

::
is
:::::
given

:::
by

:::
dx

:::
and

:::
dy.

(
1 + ts2− ts1

2
+ dx,

1 + ts2− ts1
2

+ dy) = argmax(NCC(x,y)
:::::::::::::::::::::::::::::::::::::::::::::::::::

(11)

::
To

::::::
restrict

:::
the

::::::
search

:::
area

:::
t2s::

to
:
a
::::::
circle,

:::
we

::
set

:::
all

:::::
values

::
of

:::::
NCC

:::
that

::
are

::::::
further

::::
than

:::::
t2s/2:::::

away

::::
from

:::
the

:::::
centre

:::::::
position

::
to

:::::
zero.360

::
To

:::::::
account

:::
for

:::::::
rotation

::::::::::
adjustment,

:::
the

::::::
matrix

:::::
NCC

:
is

:::::::::
calculated

::::::
several

::::::
times:

:::::::
template

:::
t1 is

rotated starting with the initial rotation between the two Sentinel-1 images and going from −β to

+β with step
::::::
around

:::
the

:::::::
initially

::::::::
estimated

:::::::
rotation

:
α
:::::
from

:::::
α−β

::
to

::::::
α+β

::::
with

:::
step

::::
size

:
∆β. The

result
::::
angle

::
β
::
is
:::
the

:::::::::
maximum

:::::::::
additional

::::::
rotation

::::
and

:::::::::
represents

::::::::
therefore

:::
the

::::::
rotation

::::::::::
restriction.

:::
The

:::::
NCC

::::::
matrix with the highest cross correlation value

::::::::
coefficient

:::::
value

::::::
MCC is returned.365

In the last step, the small to medium scale displacement adjustments derived from
::
To

::::::::
illustrate

::
the

:
pattern-matching are added to the estimated drift from feature-tracking. The maximum cross

correlation values serve as individual quality measure for each drift vector and vectors that have a

MCC value below the threshold MCCmin are removed.
::::::
process,

:::
an

::::::::
example,

:::::
taken

::::
from

::::::
image

:::
pair

:::::
Fram

:::::
Strait,

::
is

::::::
shown

::
in

:::::
Figure

::
6.
:

370
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Figure 6.
:::::::::::::
Pattern-matching

::::
using

::::
initial

::::
drift

::::::
estimate

::::
from

::::::::::::
feature-tracking:

::::
The

::::
small

::::::
template

::
t1::::

(left)
::::::
around

::
the

::::
point

::
of
::::::
interest

::
on

:::::
SAR1::

is
::::::
rotated

:::
from

:::::
α−β

::
to
:::::
α+β

:::
and

:::::::
matched

::::
with

::
the

::::
large

:::::::
template

::
t2:::::::

(middle)

:::
from

::::::
SAR2,

:::
that

:::
has

::
its

:::::
centre

:
at
:::
the

:::::::
estimated

:::
end

::::::
position

:::
x2,

:::
y2.

:::
The

::::
right

::::::
contour

:::
plot

:::::
shows

::
the

:::::::::
normalised

::::
cross

::::::::
coefficient

:::::
matrix

::::
NCC

::
of

::
the

::::::
rotation

:::
β∗

:::
that

:::::::
provided

:::
the

::::::
highest

:::::::
maximum

:::::
cross

::::::::
coefficient

::::::
MCC.

:::
The

:::::::
estimated

:::
end

::::::
position

:::
x2,

:::
y2 :

of
::::

this
::::::
example

:::
has

::
to

::
be

::::::
adjusted

:::
by

::::::::
dx= −21

:::::
pixels,

::::::
dy = 32

::::
pixels

::
to

::
fit

:::
with

:::
the

::::::
location

::
of

:::::::::::
MCC = 0.71.

:::::::
Rotation

::::::::
adjustment

:::
β∗

:::
was

:::::
found

:::
got

::
be

::
3◦.

::::
NB:

::
X

:::
and

::::::
Y -axis

:::::::
represent

::::
pixel

:::::::::
coordinates.

3.3 Parameter tuning

:::
The

::::::::
described

:::::::
process

:::::::
demands

:::
the

:::::::::::
specification

::
of

::::
four

::::::::::
parameters:

:::
t1s,::::

t2s, :
β
::::
and

::::
∆β.

:::
The

::::
size

::
of

:::
the

::::
small

::::::::
template

:::::::
t1s× t1s::::::

defines
:::
the

:::::::::
considered

::::
area

::::
that

:
is
:::::::
tracked

::::
from

:::
one

::::::
image

::
to

:::
the

::::
next

:::
and

::::::
hence,

::::::
affects

:::
the

::::::::
resolution

:::
of

:::
the

:::::::
resulting

::::
drift

:::::::
product.

:::
In

::::
order

:::
to

::
be

:::::::::
consistent375

::::
with

:::
the

::::::::
resolution

::
of

:::
the

:::::::::::::
feature-tracking

::::
step

::::
and

::::::
achieve

:::
our

::::
goal

::
of

::
a
:::
sea

:::
ice

::::
drift

::::::
product

::::
with

::
a

:::::
spatial

::::::
scaling

:::
of

:::
less

::::
than

::
5
:::
km,

:::
we

:::
use

::::
the

:::
size

::
of

:::
the

::::::::::::::
feature-tracking

:::::
patch

::
of

:::
the

:::::::
pyramid

:::::
level

::::
with

::
the

:::::::
highest

::::::::
resolution

::
to

::::::
define

:::
the

:::
size

::
of

:::
t1.

::::
That

::::::
means,

:::
we

:::
use

::::::::
ts1 = 34

:::::
pixels

:::
(2.7

:::
km).

:

The size of template t1 and t2 are crucial for a reliable drift result and for limiting
::
the

::::::
larger

:::::::
template

:::::::
t2s× t2s:::::::

restricts
:::
the

::::::
search

::::
area

:::
on

::::::
SAR2,

:::
i.e.

::::
how

:::::
much

:::
the

::::
first

:::::
guess

:::
can

::
be

::::::::
adjusted380

::::::::::::
geographically,

::::
and

:::
the

:::::
angle

::
β
::::::::

restricts
:::
the

:::::::
rotation

:::::::::
adjustment

:::
of

:::
the

::::
first

:::::
guess

:::
α.

::::
The

:::::
three

::::::::
parameter

::::
t2s,::

β
::::
and

::::
∆β

::::
have

::
a
::::::
strong

::::::::
influence

:::
on

:::
the

:::::::::::::
computational

::::::::
efficiency

:::
of

:::
the

:::::
drift

::::::::
algorithm.

::::::::
Meaning

::::
that

:::
an

:::::::
increase

::
of

::::
t2s,::

β
::::
and

:
a
::::::::
decrease

::
of

::::
∆β

:::::::
increase

:
the computational

effort . As shown in Equation ??,
::
of

:::
the

:::::::::::::::
pattern-matching

::::
step.

::::::
Based

::
on

::::::
visual

:::::::::::
interpretation

:::
of

::::::
several

:::::::::::
representative

::::::
image

:::::
pairs,

:::
we

:::::
found

::::::::
∆β = 3◦

::
to

::
be

:
a
:::::

good
::::::::::
compromise

::::::::
between

::::::::
matching385

::::::::::
performance

:::
and

::::::::::::
computational

:::::::::
efficiency.

:

::::
Since

:::
the

::::::::::
uncertainty

::
of

:
the maximum size of t2 is limited by the upper threshold dmax :::

first
:::::
guess

:::::::
increases

:::::
with

:::::::
distance

::
d

::::::
(Figure

:::
7)

::
to

:::
the

::::::
closest

::::::::::::::
feature-tracking

::::::
vector,

:::
the

::::::
search

::::::::::
restrictions

::
t2s::::

and
::
β
::::::
should

::::::::
increase

::::
with

::
d. To find the most useful values for dmax and the size of t1,

we varied the two parameters within the domains 20≤ side(t1)≤ 140 with ∆side(t1) = 2, and390

50≤ dmax ≤ 200 with ∆dmax = 10 (values given in pixels). For each combination, we calculated
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Figure 7.
:::::::
Example

::
to

::::::
illustrate

:::
the

:::::::::
distribution

::
of

::::::
distance

::
d

:
to
:::

the
::::::
closest

:::::::::::
feature-tracking

:::::
vector

:::::
using

:::::
image

:::
pair

::::
Fram

:::::
Strait.

:::::
Values

::::::
outside

::
the

:::::
range

:::::::::::::
dmin ≤ d≤ dmax:::

are
::
set

::
to
:::::::::
dmin = 10

:::
and

::::::::::
dmax = 100.

:::
The

:::::
points

:::
with

:::::
value

::::
dmin :::::::

represent
::
the

::::
start

:::::::
positions

:::
x1,

::
y1::

of
:::
the

::::::::::::
feature-tracking

:::::
vectors

::
on

::::::
SAR1.

the drift on image pair ’Fram Strait’ at the starting locations of the 350 manually derived validation

vectors and compared the results using root mean square distanceRMSD:
:::::
useful

:::::::::
restrictions

:::
for

:::
t2s

:::
and

::
β,

:::
we

:::::::::
calculated

::::
drift

::::::
vectors

:::::
using

::::
very

:::::
high

:::::
values

:::
for

:::
t2s::::

and
::
β,

:::
i.e.

:::::
being

::::::::::::::
computationally

::::
more

::::::::::
demanding

:::
than

:::
we

:::::::::
anticipate,

:::
and

:::::::::
compared

:::
the

::::::
results

::::
with

:::
the

::::
GPS

::::
drift

::::
buoy

::::::
dataset

:::::
from395

::
the

::::::::::
N-ICE2015

::::::::::
expedition.

::::::
Based

::
on

::::
the

:::::
results

::::::::
(Section

::
4)

:::
we

::::::
found

:::
the

::::::::
following

::::::::
functions

:::
to

:::::::
represent

::::::
useful

:::::::::
restrictions

:::
for

:::
our

::::
area

:::
and

::::
time

::::::
period

::
of

:::::::
interest.

:

t2s(d) = t1s + 2d dmin ≤ d≤ dmax d ∈ N
:::::::::::::::::::::::::::::::::::::::::::::

(12)

The index i represents a vector pair consisting of a calculated vector and a validation vector at the

same location.The eastward and northward drift components of the calculated vector are ui and vi.400

The validation vector has the corresponding drift components Ui and Vi. N is the total number of

vector pairs.

β(d) =

9 if d < dmax

12 if d≥ dmax
:::::::::::::::::::::::

(13)

:::
The

::::::
values

:::
for

:::::
dmin,

::::::
dmax,

::
β

:::
and

::::
∆β

::::
can

:::::
easily

:::
be

:::::
varied

:::
in

:::
the

::::::::
algorithm

::
to
::::::

adjust
:::
for

::::
e.g.

:::::::
different

:::::
areas,

:::::
drift

:::::::::
conditions

:::
or

:
a
::::::::

different
:::::::::::

compromise
:::::::
between

:::::::::
matching

:::::::::::
performance

::::
and405

:::::::::::
computational

:::::::::
efficiency.

:

During parameter tuning, the minimum value of the normalised cross correlation
:
V

:::::
Final

:::::
drift

:::::::
product

410
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::
In

:::
the

:::
last

::::
step,

::::
the

::::
small

:::
to

:::::::
medium

::::
scale

::::::::::::
displacement

::::::::::
adjustments

::::
from

:::::::::::::::
pattern-matching

:::
are

:::::
added

::
to

:::
the

::::::::
estimated

::::
first

:::::
guess

::::::
derived

:::::
from

:::::::::::::
feature-tracking.

::::::
Using

::::
buoy

:::::::::::
comparison,

::
we

::::::
found

:::
that

:::
the

::::::::::
probability

:::
for

::::
large

::::::::::::
displacement

:::::
errors

::::::::
decreases

::::
with

:::::::::
increasing

::::::
MCC

:::::
value

::::::::
(Section

::
4).

:::::::::
Therefore,

:::::::
vectors

:::
that

::::
have

::
a
::::::
MCC

:::::
value

:::::
below

:::
the

::::::::
threshold

:
MCCmin was set to zero. We

applied rotation on t1 ranging from −10◦ (−β) to +10◦ (+β) with step size ∆β = 1◦. The lower415

threshold dmin was set to 20pixels to allow for small scale drift adjustments close to the locations

of feature-tracking vectors
:::
are

::::::::
removed.

:::
We

:::::
found

:::::::::::::
MCCmin = 0.4

:::
to

::
be

:
a
:::::
good

::::
filter

:::::
value,

:::
but

::::
this

::::
value

::::
can

:::::
easily

::
be

:::::::
adjusted

::
in

:::
the

:::::::::
algorithm

::::::::
depending

:::
on

:::
the

::::::
sought

::::::::::
compromise

:::::::
between

:::::::
amount

::
of

::::::
vectors

:::
and

::::
error

::::::::::
probability.

:::
The

:::::::::
algorithm

::::::
returns

::
the

::::
final

::::
drift

::::::
vectors

::
in
:::::::::
longitude,

:::::::
latitude,

:::
the

:::::::::::
corresponding

::::
first

:::::
guess

:::::::
rotation

:
α
::::
and

::
the

:::::::
rotation

:::::::::
adjustment

::
β

::
in

::::::
degrees

::::
and

:::
the

::::::::
maximum

:::::
cross420

::::::::
coefficient

:::::
value

:::::::
MCC.

:::
An

:::::::
example

:::
for

:::
the

::::
final

:::::::
product

::
is

:::::::
depicted

:::::
with

::::::
yellow

::
to

:::
red

::::::::
coloured

::::::
vectors

::
in

::::::
Figure

::
3.

::::
The

::::::
colour

::::
scale

::::::
refers

::
to

:::
the

::::::
MCC

::::::
value,

::::::::
indicating

::::
the

:::::::::
probability

:::
for

:::
an

::::::::
erroneous

:::::
vector.

3.3 Comparison with buoy data

Sentinel-1 image pairs have been selected automatically according to position and timing of the425

buoy data.
:::
GPS

:::::
buoy

::::
data

:::::
from

::::
the

::::::::::
N-ICE2015

::::::::::
expedition.

:::::
Each

::::
pair

::::::
yielded

:::::
more

:::::
than

::::
300

:::
drift

:::::::
vectors

:::::
using

:::
the

::::::::::::::
feature-tracking

::::::::
algorithm

:::::
from

:::::::::::::::::::::::::
Muckenhuber et al. (2016) and

::::
had

:
a
:::::

time

::::::::
difference

:::::::
between

:::
the

::::
two

::::::::::
acquisitions

::
of

::::
less

::::
than

:::::
three

::::
days.

:
Drift vectors have been calculated

::::
with

:::
the

::::::::
presented

:::::::::
algorithm starting at the buoy GPS position with the least time difference to

the acquisition of the first satellite image. The distance D between the calculated end position on430

the second image and the buoy GPS position with the least time difference to the second satellite

acquisition has been calculated using the following equation:

D =
√

(u−U)2 + (v−V )2 (14)

where u and v represent eastward and northward drift components of the displacement vector

derived by the algorithm, and U and V the corresponding drift components of the buoy.435

4 Results

4.1 Logarithmic scaling of σ0

The start and end positions of the feature-tracking vectorsare tied to keypoints that are found during

an initial processing step in the drift algorithm from Muckenhuber et al. (2016) .Looking at the

distribution of the intensity values among the matched keypoints440

4.1
:::::
Search

::::::::::
restrictions

::::::::::
evaluation
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::
To

::::
find

:::::::
suitable

::::::
values

:::
for

:::::::::
restricting

:::
the

::::
size

:::
of

:::
the

::::::
search

:::::::
window

:::
t2s::::

and
:::
the

:::::::
rotation

::::::
range

::::::
defined

::
by

:::
β,

::
we

:::::::::
calculated

::::
drift

:::::::
vectors,

:::
that

::::
can

::
be

::::::::
compared

::
to
:::
the

:::::::::
considered

:::::
GPS

::::
buoy

:::::::
dataset,

::::
using

::::::::::
restrictions

:::
that

:::
are

:::::::::::::
computationally

:::::
more

:::::::::
demanding

::::
than

:::
we

::::::::
anticipate

:::
for

:::
the

::::::::::::
recommended

::::::
setting,

:::
i.e.

::::::::
t2s = 434

::::
pixels

::::
and

:::::::
β = 18◦.

::::::
These

:::::
values

:::::::::::
corresponds

::
to

:
a
:::::::
possible

:::::::::::::::
pattern-matching445

:::::::::
adjustment

::
of

::
up

:::
to

:::
200

:::::
pixels

:::
(16

:::
km)

:::
and

::::
18◦

::
in

:::
any

::::::::
direction

::::::::::
independent

::
of

:::
the

:::::::
distance

::
d

::
to

:::
the

:::::
closest

::::::::::::::
feature-tracking

::::::
vector.

80°N

81°N

82°N

83°N

80°N

81°N

82°N

83°N

10°E 20°E 30°E

10°E 20°E 30°E

Figure 8.
::::::::
Considered

::::
buoy

:::::::::
trajectories

::::
from

:::
the

:::::::::
N-ICE2015

::::::::
expedition

:::
that

::::
were

::::
used

:::
for

:::::::::
comparison

::::
with

:::::::
algorithm

::::::
results.

:::::
Based

:::
on

::
an

:::::::::
automatic

::::::
search, we found a strong peak at maximum intensity 255, meaning

that most matched keypoints are recognised at very high backscatter values (NB: the number of

vectors is equal to the number of matched keypoints divided by two). Before the conversion of the450

backscatter values σ0 into the intensity values i (Equation 2), the scaling of σ0 can be changed from

linear (σ0 = σ0
raw)to logarithmic (σ0 = 10 ∗ lgσ0

raw). Table ?? and Figure ?? show the intensity value

distribution of matched keypoints from image pair ’Fram Strait’. Using a logarithmic instead of a

linear scaling provided a keypoint distribution that depends less on high peak values (the number of

keypoints with intensity value 255 decreased from 5378 to 2513), while the total number of vectors455

increased from 7042 to 10034.
:::
240

::::::::
matching

::::::::
Sentinel-1

::::::
image

::::
pairs

:::::::::
(consisting

::
of

::::
110

:::::::
images),

::::
that

::::::
allowed

:::
for

::::::::::
comparison

::::
with

::::
689

:::::
buoy

::::::
vectors

::::::
(Figure

:::
8).

::::
The

:::::::
distance

:::
D

::::::::
(Equation

:::
14)

::::::::
between

::
the

:::::
buoy

:::::::
location

::
at
:::
the

:::::
time

::
of

:::
the

::::::
second

::::::
image

::::::
SAR2:::

and
:::

the
:::::::::::::

corresponding
::::::::
algorithm

::::::
result,
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::::::::
represents

:::
the

:::::
error

:::::::
estimate

:::
for

:::
one

::::::
vector

::::
pair.

:::
To

:::::::
identify

::::::::
algorithm

::::::
results

::::
that

:::
are

::::
more

::::::
likely

::::::::
erroneous,

::::::
vector

::::
pairs

::::
with

:
a
:::::
value

::
D

:::::
above

:::::
1000

::
m

:::
are

::::::
marked

::::
with

:::
red

::::
dots

::
in

:::::
Figure

::
9

:::
and

::::::
Figure460

:::
10.

:::::
Vector

:::::
pairs

::::
with

::::::::
D < 1000

:
m

:::
are

::::::
plotted

::::
with

:::::
black

::::
dots.

:

Linear and logarithmic scaling of the backscatter values σ0 in HV and HH polarisation: range,

i.e. lower and upper brightness boundaries as used in Equation 2, and number of matched keypoints

using image pair ’Fram Strait’ (matched keypoints with maximum pixel value 255 in brackets).

Linear scaling (σ0 = σ0
raw) Logarithmic scaling (σ0 = 10 ∗ lgσ0

raw)HV range σ0
min :::::

Figure
::
9

::::
and465

:::::
Figure

:::
10

:::::
show

::::
the

:::::::
resulting

:::::::::::::::
pattern-matching

::::::::::
adjustment

::
of

::::::::
location

:::
(dx, σ0

max0, 0.013-3.25;

log(0.013)HH range σ0
min, σ0

max0, 0.08-2.5; log(0.08)HV matched keypoints11244 (4653) 15614

(2196) HH matched keypoints2840 (725) 4454 (317)
:::
dy)

:::
and

:::::::
rotation

::::
(dβ)

::::
using

:::
the

::::::::::::::
computationally

:::::::::
demanding

::::::::::
restrictions.

:::
The

::::::
values

:::
are

::::::
plotted

::::::
against

:::::::
distance

::
d
::
to

:::
the

::::
next

::::::
feature

:::::::
tracking

::::::
vector

::
in

::::
order

:::
to

::::::
identify

::::
the

::::::::::
dependence

::
of

:::
the

:::::::::
parameters

:::
on

::
d.

::::
The

::::
blue

:::::
lines

::
in

::::::
Figure

:
9
::::
and

::::::
Figure470

::
10

:::::::
indicate

:::
the

::::::::::::
recommended

:::::::::::
restrictions.

::::
This

:::::::::
represents

:
a
:::::::::::

compromise
:::::::
between

:::::::::::::
computational

::::::::
efficiency

:::
and

::::::::
allowing

:::
the

::::::::
algorithm

::
to

:::::
adjust

:::
the

::::
first

:::::
guess

::
as

:::::
much

::
as

::::::
needed

:::
for

:::
our

::::
time

::::::
period

:::
and

::::
area

::
of

:::::::
interest.

::::
The

::::::::::::
corresponding

::::::::
functions

::
for

::::::
t2s(d)

:::
and

:::::
β(d)

:::
are

:::::
given

::
in

::::::::
Equation

::
12

::::
and

:::::::
Equation

:::
13

:::
and

:::
the

::::::::::::
recommended

::::::::
boundary

:::::
values

:::
for

:::::::
distance

::
d
:::
are

:::::::::
dmin = 10

:::
and

:::::::::::
dmax = 100.

:

Number of matched keypoints for each intensity value in image pair ’Fram Strait’ using linear475

(HV: black, HH: gray) and logarithmic scaling (HV: darkgreen, HH: lightgreen) for the backscatter

values σ0. Total numbers, and matches at intensity maximum 255 are shown in Table ??.
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Figure 9.
::::::::::::
Pattern-matching

::::::
location

:::::::::
adjustment

:::
dx

:::
and

::
dy

::
in
::
x
:::
and

::
y
:::::::
direction

:::::
versus

:::::::
distance

:
d
::
to

::::::
closest

:::::
feature

::::::
tracking

::::::
vector.

::
D

:::::::
represents

:::
the

::::::::
difference

::::::
between

::::
buoy

::::
GPS

::::::
position

:::
and

::::::::
algorithm

:::::
result.

:::
The

::::
blue

:::
lines

:::::::
indicate

::
the

:::::::::::
recommended

:::::
setting

:::
for

::
t2s::::::::

(Equation
:::
12)

:::
with

:::::::::
dmin = 10

:::
and

::::::::::
dmax = 100.

4.2 Parameter tuning
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Figure 10.
::::::::::::
Pattern-matching

:::::::
rotation

:::::::::
adjustment

::
dβ

::::::
versus

:::::::
distance

:
d
:::

to
:::::
closest

::::::
feature

:::::::
tracking

::::::
vector.

::
D

::::::::
represents

:::
the

::::::::
difference

::::::
between

:::::
buoy

::::
GPS

::::::
position

::::
and

:::::::
algorithm

::::::
result.

:::
The

::::
blue

::::
lines

:::::::
indicate

:::
the

::::::::::
recommended

:::::
setting

:::
for

::
β

:::::::
(Equation

:::
13)

::::
with

::::::::
dmin = 10

:::
and

::::::::::
dmax = 100.

Figure ?? shows the RMSD (Equation ??) calculated for image pair ’Fram Strait’ using HH (left

panel) and HV polarisation (right panel). Based on this480

4.2
::::::::
Validation

:::::
Using

:::
the

:::::::::::
recommended

::::::
search

:::::::::
restrictions

:::::
from

:::::
above,

:::
the

:::::::::
algorithm

:::
has

::::
been

::::::::
validated

::::::
against

:::
the

:::::::::
N-ICE2015

::::
GPS

:::::
buoy

:::
data

:::
set

::::::
(Figure

:::
8).

:::
The

:::::::::
automatic

:::::
search

::::::::
provided

:::
241

:::::
image

:::::
pairs

:::::::::
(consisting

::
of

:::
110

::::::::
images)

:::
and

::::
714

:::::::
vectors

:::
for

::::::::::
comparison

:::
for

:::
the

:::::::::
considered

:::::
time

::::::
period

:::::
(15th

::::::
January

:::
to

::::
22nd

:::::
April)

::::
and

:::
area

::::::
(80.5◦

::
N

::
to

:::::
83.5◦

:
N
::::
and

:::
12◦

::
E

::
to

:::
27◦

:::
E).

::::
NB:

:::
this

::
is

:
a
::::::
higher

::::::
number

::
of

:::::::
vectors485

:::
than

::::::
found

::
for

:::
the

:::::::::
evaluation

::
of

:::
the

::::::
search

:::::::::
restrictions,

:::::
since

:::
the

::::
used

::::::
search

:::::::
windows

::
t2:::

are
:::::::
smaller

:::
and

::::::
vectors

:::::
closer

::
to
:::
the

:::::
SAR

::::
edge

::::
may

::
be

::::::::
included.

:

:::
The

::::::
results

::
of

:::
the

:::::::::
conducted

::::::::
validation

:::
are

::::::
shown

::
in

::::::
Figure

:::
11.

:::
We

:::::
found

::::
that

:::
the

:::::::::
probability

:::
for

:
a
::::
large

:::
D

:::::
value

::::::::::::
(representative

:::
for

:::
the

:::::
error)

::::::::
decreases

::::
with

:::::::::
increasing

:::::::::
maximum

:::::
cross

:::::::::
coefficient

::::
value

:::::::
MCC.

::::::::
Therefore

:::
we

::::::
suggest

::
to

:::::::
exclude

:::::::
matches

::::
with

:
a
::::::
MCC

::::
value

::::::
below

:
a
::::::
certain

::::::::
threshold490

:::::::::
MCCmin.

::::
This

::::::
option

:
is
:::::::::

embedded
::::
into

:::
the

:::::::::
algorithm,

:::
but

:::
can

::::::
easily

::
be

:::::::
adjusted

:::
or

:::::
turned

:::
off

:::
by

:::::
setting

:::::::::::::
MCCmin = 0.

:::::
Based

:::
on

:::
the

:::::::
findings

:::::
shown

::
in
::::::
Figure

:::
11,

:::
we

::::::::::
recommend

:
a
:::::
cross

:::::::::
coefficient

:::::::
threshold

::::::::::::::
MCCmin = 0.4

:::
for

::::
our

::::
time

::::::
period

:::
and

::::
area

::
of

:::::::
interest.

::::::
Using

:::
the

:::::::::
suggested

::::::::
threshold

::::::
reduces

:::
the

:::::::
number

::
of

:::::
vector

:::::
pairs

::::
from

::::
714

::
to

::::
565.
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Figure 11.
::::::::
Calculated

::
ice

::::
drift

::::
using

:::::::::::
recommended

:::::
search

:::::::::
restrictions

:::::::
compared

::
to

::::
buoy

::::
GPS

::::
data.

::::
Light

::::
grey

:::::::
represents

::::::
vectors

::::
with

::::::::
maximum

::::
cross

::::::::
coefficient

:::::
values

::::::::::
MCC < 0.4

::::
and

:::::
results

::::
after

::::
using

:::
the

::::::::
suggested

:::::::
threshold

:::::::::::::
MCCmin = 0.4

::
are

::::::
shown

::
in

:::::
black.

::
(a)

::::::
MCC

:::::
values

::::::
against

::::::
distance

::
D

::::::::
(Equation

:::
14)

:::::::
between

:::::::
algorithm

:::
and

::::
buoy

::::
end

::::::
position.

::::
The

::::
blue

:::
line

:::::::
indicates

:::
the

:::::::::::
recommended

:::::
setting

:::
for

:::::::::::::
MCCmin = 0.4.

:::
(b)

:::::::::
Logarithmic

::::::::
histogram

::
of

::::::
distance

::
D

::::
with

:::
100

:::
bins

::::::
between

:::
10

:
m
:::
and

::::
105

:
m
::::::::

including
:
a
:::::::::
logarithmic

::::::
normal

::::::::
distribution

:::::
(solid

:::
red

::::
line)

:::
that

:::
was

:::::
fitted

::
to

:::
the

:::::
results

::::
with

::::::::::
MCC > 0.4.

:::
(c)

:::::::::
Comparison

::
of
::::

drift
:::::::
distance

:::::
derived

::::
from

::::::::
algorithm

:::::
against

::::
buoy

:::::::::::
displacement.

:::
The

:::::::::
conducted

:::::::::
validation

:::::
also

::::::
reveals

::
a
::::::::::

logarithmic
:::::::

normal
::::::::::

distribution
:::

of
:::
the

::::::::
distance

:::
D495

::::::::
(Equation

:::
14)

::::
that

:::
can

:::
be

:::::::::
expressed

::
by

::::
the

::::::::
following

::::::::::
probability

::::::
density

:::::::
function

::::::
(solid

:::
red

::::
line

::
in

:::::
Figure

::::
11):

lnN(D;µ,σ) =
1

σD
√

2π
e−

(lnD−µ)2

2σ2

:::::::::::::::::::::::::::::

(15)

::::
with

:
µ
::::
and

:
σ
:::::
being

:::
the

:::::
mean

:::
and

::::::::
standard

:::::::
deviation

:::
of

::
the

:::::::::
variable’s

::::::
natural

::::::::
logarithm.

::::
We

:::::
found

::
the

:::::
mean

::::
and

:::::::
variance

::
of

:::
the

::::::::::
distribution

::::
lnN

::
to
:::

be
:::::::::
µ= 5.835

:::
and

::::::::::
σ2 = 1.584.

::::
The

::::::
median

:::
of

:::
the500

:::::::::
logarithmic

::::::
normal

::::::::::
distribution

::
is

:::::::::::
eµ = 341.9m

:::::::
(dashed

:::
red

::::
line

::
in

:::::
Figure

::::
11).

:

4.3
::::::::::::
Recommended

::::::::::
parameter

::::::
setting

:::::
Based

::
on

:::
the

:::::::::
restriction

:
evaluation, our experience with the algorithm behaviour, and considering a

good compromise between computational efficiency and high quality of the resulting vector field,

we recommend the parameter setting shown in Table 1. The following testing and validation process505

is conducted using this parameter setting.
::::::::::::
corresponding

::::::::::::
recommended

:::::
values

:::
for

::::::
t2s(d)

:::
and

:::::
β(d)

::
are

:::::
given

::
in
::::::::
Equation

:::
12

:::
and

::::::::
Equation

:::
13.

RMSD (Equation ??) calculated for image pair ’Fram Strait’ using different values for dmax

(X-axis) and for the side length of template t1 (Y-axis). Left panel shows HH polarisation and right

panel HV polarisation. RMSD values are given in meters, X and Y -axis represent pixel values.510

Black crosses mark recommended parameter setting: dmax = 125pixels and side(t1) = 70pixels.
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Table 1. Recommended parameter setting for sea ice drift retrieval from Sentinel-1 using the presented algo-

rithm.

Parameter Meaning Recommended setting

[σ0
min, σ0

max] (HH) Brightness boundaries for HH channel [-2.5, log(0.08)
:::
-25

::
dB,

::::::
-10.97

::
dB]

[σ0
min, σ0

max] (HV) Brightness boundaries for HV channel [-3.25, log(0.013)
::::
-32.5

:::
dB,

:::::
-18.86

::
dB]

side(t1)
::
t1s Size of template t1 70

::
34 pixels

:::
(2.7

:::
km)

[dmin, dmax] Influence domain for size of t2 ::::::::
Boundaries

:::
for

::::::
distance

:
d
:

[20
:
10 pixels, 125

::
100 pixels]

MCCmin Threshold for cross correlation
:::::::
coefficient

:
0.35

:::
0.4

−β, +β, ∆β Rotation angle and increment -103◦, +10◦, 2◦

4.4 Computational efficiency

The processing time depends on the parameter setting and the chosen vector distribution. Using the

recommended parameter setting from Table 1, allows high-resolution sea ice drift retrieval from a

Sentinel-1 image pair within a few minutes. Figure ??
:
3
:

depicts calculated ice drift vectors for the515

image pair ’Fram Strait ’
::::
Fram

:::::
Strait on a grid with 8

:
4 km (100

::
50 pixels) spacing. The corresponding

processing times are shown in Table 2. The calculations have been done using a MacBook Pro from

early 2013 with a 2.7 GHz Intel Core i7 processor and 8 GB 1600 MHz DDR3 memory. The total

processing time for 1145
::::
4725 vectors with a normalised cross correlation value above 0.35, is less

than 3.5
::::::::
coefficient

:::::
value

:::::
above

::::
0.4,

::
is

:::::
about

:
4 minutes. NB: The vectors near Svalbard are located520

in the marginal ice zone. This is a very challenging area for drift algorithms based on consecutive

images and the results have to be treated with caution
::::
This

:::
can

:::
be

:::::::::
considered

:
a
::::::::::::
representative

:::::
value

::
for

:::
an

::::::
image

:::
pair

:::::
with

::::
large

::::::::
overlap,

::::
good

::::::::
coverage

::::
with

::::::::::::::
feature-tracking

::::::
vectors

::::
and

::
4
:::
km

::::
grid

::::::
spacing.

:::
The

:::::
initial

:::::::
process

::
in

::::
Table

::
2

::::::
’Create

::::::
Nansat

::::::
objects

::::
from

:::::::::
Sentinel-1

:::::
image

::::
pair

:::
and

::::
read

::::::::
matrixes’525

::::
takes

:::
the

:::::
same

:::::::
amount

::
of

::::::::::::
computational

:::::
effort

:::
for

::
all

::::::
image

:::::
pairs

::::::::
consisting

:::
of

::::::::
Sentinel-1

:::::::
images

::::
with

:::::::
400x400

:::
km

::::::::
coverage.

:

:::
The

:::::::
process

:::
’I

:::::::::::::::
Feature-tracking’

:::::::
depends

:::
on

::::
the

:::::::
setting

::
of

::::
the

::::::::::::::
feature-tracking

:::::::::
algorithm

:::
and

::::::
varies

:::::::
strongly

::::
with

::::
the

::::::
chosen

:::::::
number

:::
of

:::::::
features.

::::::
Using

:::
the

:::::::::::::
recommended

::::::
setting

:::::
from

::::::::::::::::::::::
Muckenhuber et al. (2016) ,

::::
that

::::::::
includes

:::
the

::::::::
number

::
of

::::::::
features

::
to

:::
be

::::::::
100000,

:::
the

:::::::::
presented530

:::::::::::
computational

::::::
effort

:::
can

:::
be

:::::::::
considered

::::::::::::
representative

:::
for

:::
all

:::::
image

:::::
pairs,

:::::::::::
independent

::
of

:::::::
chosen

:::::
points

::
of

::::::
interest

::::
and

::::::
overlap

::
of

:::
the

:::::
SAR

::::::
scenes.

:::
The

:::
last

:::::::
process

:::
’II

::::::::::::::
Pattern-matching

::::
and

::
III

::::::::::::
Combination’

::::::::
however,

:::::::
depends

::
on

:::
the

::::::::::
considered

:::::
image

::::
pair

:::
and

:::
the

::::::
chosen

::::
drift

:::::::::
resolution.

::::
The

::::::::::::
computational

:::::
effort

::
is
:::::::::::
proportional

::
to

:::
the

:::::::
number

::
of

::::::
chosen

:::::
points

::
of

:::::::
interest.

::::::
Given

:
a
::::::
evenly

:::::::::
distributed

::::
grid

::
of

::::::
points

::
of

:::::::
interest,

:::
the

::::::::::::
computational535

::::
effort

::::::::
increases

:::::
with

::::::::::
overlapping

::::
area

::
of

:::
the

:::::
SAR

::::::
scenes,

:::::
since

::::::::::::::
pattern-matching

:::::::::::
adjustments

:::
are

::::
only

::::::::
calculated

:::
in

:::
the

::::::::::
overlapping

::::
area.

::::
The

:::::
effort

::::::::::
potentially

::::::::
decreases

::::
with

::
a
::::::
higher

::::::
number

:::
of
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Processing time for sea ice drift retrieval from image pair ’Fram Strait’ on a grid with 8km (100pixels) spacing

using HV polarisation (Figure ??).

Table 2.
:::::::
Processing

::::
time

:::
for

::
sea

:::
ice

::::
drift

::::::
retrieval

::::
from

:::::
image

:::
pair

:::::
Fram

::::
Strait

::
on

::
a

:::
grid

::::
with

:
4
:::
km

::
(50

:::::
pixels)

:::::
spacing

:::::
using

:::
HV

:::::::::
polarisation

::::::
(Figure

:::
3).

:::::::::::
Representative

::
for

:::
an

:::::
image

:::
with

::::
large

::::::
overlap

::::
and

::::
good

:::::::
coverage

:::
with

::::::::::::
feature-tracking

::::::
vectors.

:

Process Time [s]

Create Nansat objects from
:::::
Create

:::::
Nansat

::::::
objects

::::
from Sentinel-1 image pair

::::
image

::::
pair 21

Read matrixes from Nansat objects
:::
and

::::
read

::::::
matrixes 49

::
70

:

I Feature-tracking 66

II Pattern-matching and III Combination
:::::::::::::
Pattern-matching

:::
and

::
III

::::::::::
Combination 65

:::
107

:∑
Sea ice drift retrieval 201

:::
243

:

:::
well

::::::::::
distributed

:::::::::::::
feature-tracking

:::::::
vectors,

:::::
since

:::
the

::::
size

::
of

:::
the

::::::
search

:::::::
windows

:::
t2 ::::

(and
:::::::
slightly

:::
the

::::
range

:::
of

:::
the

::::
angle

:::
β)

::::::::
increases

::::
with

:::::::
distance

:
d
::
to

:::
the

::::::
closest

:::::::::::::
feature-tracking

::::::
vector.

:

Sea ice drift from image pair ’Fram Strait’ on a grid with 8km spacing using HV polarisation.540

Black vectors indicate the initial drift estimate from feature-tracking. Coloured vectors are derived

from combining feature-tracking and pattern-matching with a minimum cross correlation value

MCCmin = 0.35. The colour indicates the maximum cross correlation MCC. A total of 1145

vectors have been found with a MCC value above 0.35.

4.5 Validation545

The manually derived vectors from the image pair ’Fram Strait’ have been compared with calculated

drift vectors at the same locations (Figure ??) usingRMSD from Equation ?? and the recommended

parameters from Table 1. 335 vectors with a normalised cross correlation value above 0.35 could be

used for the comparison and the resulting RMSD value is 540m. NB: nine vectors close to the

image border could not be used for comparison. The templates t1 and t2 are larger then the patch550

size used for simple feature-tracking (34pixels) and hence, the restricted area at the image border is

slightly increased.

Sea ice drift derived from image pair ’Fram Strait’ using HV polarisation: manually drawn

validation vectors (green), initial drift estimate from feature-tracking (black) and vectors from

combined feature-tracking and pattern-matching (colour according to maximum cross correlation555

MCC). The right panel shows the entire scene and the left panel depicts the algorithm procedure on

an enlarged area.

To compare the drift results from the algorithm with GPS positions from the N-ICE2015 buoy

data set, 261 Sentinel-1 image pairs have been selected automatically for the considered time period
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(15thJanuary to 22ndApril) and area (81◦N to 83.5◦N and 12◦E to 27◦E). Each pair yielded more560

than 300 drift vectors using the feature-tracking algorithm from Muckenhuber et al. (2016) and had

a time difference between the two acquisitions of less than three days. The satellite and buoy data

sets provide 633 possible displacement pairs for comparison. Using the suggested threshold for

cross correlation MCCmin = 0.35 reduces the number of vector pairs to 540. The results of the

comparison are shown in Figure ??. We found a logarithmic distribution of the distanceD (Equation565

14) with a peak at 300m (3.75pixels).

Buoy GPS data compared to calculated ice drift. Logarithmic histogram of distance D

(Equation 14) with 100bins between 10m and 105m. Light grey shows the unfiltered results

(MCCmin = 0) and dark grey shows the results after using the suggested threshold for cross

correlation MCCmin = 0.35. The peak of the distribution is marked with a red line at 300m.570

5 Discussion and outlook

Comparison of presented algorithm (combined feature-tracking + pattern-matching), simple

feature-tracking as done in Muckenhuber et al. (2016) , and CMEMS data using image pair ’Fram

Strait’ and 350 manually derived drift vectors as validation. RMSD is the root mean square

distance from Equation ??. The vector pairs refers to the number of used vector pairs for575

comparison, i.e. vector pairs with maximum 5km distance. The average distance is measured

between the start positions of the validation vectors and the corresponding nearest neighbour

vectors from the algorithm. AlgorithmRMSD mvector pairs Average distance mFeature-tracking +

pattern-matching540 335 0 Feature-tracking563 314 1702±1325 CMEMS (pattern-matching) 1690

201 3440±1105580

Muckenhuber et al. (2016) compared their drift results (based on simple feature-tracking) and

drift vectors from the Copernicus Marine Environment Monitoring Service (CMEMS) with the

same manually drawn vectors as we use in Section 4. The CMEMS product is provided by the

Technical University of Denmark (DTU), has a resolution of 10km and is based on pattern-matching

techniques (? , http://www.seaice.dk/). Since the start locations of the drift vectors from these two585

algorithms do not coincide with the validation vectors, Muckenhuber et al. (2016) used the nearest

neighbours for comparison and a maximum distance of 5km. Table ?? shows the validation results

from simple feature-tracking as done in Muckenhuber et al. (2016) , pattern-matching as done by

DTU for CMEMS, and the presented combined feature-tracking + pattern-matching algorithm. The

combined algorithm provides the highest accuracy (represented byRMSD = 540m) and the highest590

number of vectors pairs that can be used for comparison (335). Unlike simple feautre-tracking, the

combined algorithm allows to choose the positions of the drift vectors, which makes it possible

to place them at the same locations as the validation vectors. This is represented by an average

distance of 0m. As discussed in Muckenhuber et al. (2016) , the manually drawn vectors cannot be
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considered as perfect validation, since there might be an error introduced during the manual ice drift595

identification. Hence, we expect the error originating from the combined algorithm to be less than

540m.

To further estimate the accuracy of the
::::::::
introduced

:
algorithm, we compared the drift results from

261
:::
240

:
Sentinel-1 image pairs with corresponding GPS positions from the N-ICE

:::::::::
N-ICE2015

:
buoy

data set. We found a logarithmic error distribution with a peak at 300
::::::
median

::
at

:::::
341.9 m (Figure600

??
::
11). The derived error values represent a combination of the following error sources:

– Timing: Buoy GPS data were collected every 1-3 hours and the timing does not necessarily

match with the satellite acquisition time.

– Resolution: The algorithm returns the drift of a pattern (recommended size = 70
::
34 pixels, see

Table 1), whereas the buoy measures the drift at a single location.605

– Conditions: The ice conditions around the buoy is not known well enough to exclude the

possibility that the buoy is floating in a lead. In this case, the buoy trajectory could represent a

drift along the lead rather then the drift of the surrounding sea ice.

– actual error of the algorithm.

Hence, the actual error of the presented algorithm is expected to be even lower than 300m. This610

means, that the algorithm accuracy is in the scale of the satellite image resolution.

A main advantage of the combined algorithm compared to simple feature-tracking, is the user de-

fined positioning of the drift vectors. The current algorithm setup allows the user to choose whether

the drift vectors should be positioned at certain points of interest or on a regular grid with adjustable

spacing. Constricting the pattern-matching process to the area of interest minimises the computa-615

tional effort according to the individual needs.

The recommended parameters shown in Table 1 are not meant as a fixed setting, but should rather

give a suggestion and guideline to estimate the expected results and the corresponding computational

effort. The parameters can easily be varied in the algorithm setup and should be chosen according to

availability of time, computational power, number of image pairs, needed accuracy, area of interest620

and expected ice conditions (e.g. strong rotation).

The presented combination of feature-tracking and pattern-matching can be applied to any other

application that aims to derive displacement vectors computationally efficient from two consecutive

images. The only restriction is that images need to depict edges, that can be recognised as keypoints

for the feature-tracking algorithm, and the conversion into intensity values i (Equation 2) needs to625

be adjusted according to the image type.

The remote sensing of sea ice group at NERSC is currently developing a new pre-processing step

to remove thermal noise on HV images
::::
over

:::::
ocean

:::
and

::::
sea

::
ice. First tests have shown a significant

25



improvement of the sea ice drift results using this pre-processing step before applying the presented

algorithm. This is ongoing work and will be included into a future version of the algorithm.630

Having a computational
:::
The

:::::::::
European

:::::
Space

:::::::
Agency

::
is

::::
also

::
in

:::
the

:::::::
process

::
of

:::::::::
improving

:::::
their

::::::
thermal

:::::
noise

::::::::
removal

:::
for

:::::::::
Sentinel-1

::::::::
imagery.

:::::
Noise

:::::::
removal

:::
in

:::::
range

::::::::
direction

::
is
::::::

driven
:::
by

::
a

:::::::
function

:::
that

:::::
takes

:::::::::
measured

:::::
noise

:::::
power

::::
into

:::::::
account.

:::::
Until

:::::
now,

:::::
noise

::::::::::::
measurements

:::
are

:::::
done

:
at
:::
the

::::
start

:::
of

::::
each

::::
data

:::::::::
acquisition,

:::
i.e.

:::::
every

:::::
10-20

::::::
minutes,

::::
and

:
a
:::::
linear

:::::::::::
interpolation

::
is

:::::::::
performed

::
to

::::::
provide

:::::
noise

::::::
values

::::
every

::
3
:::::::
seconds.

::::
The

::::::::::
distribution

::
of

:::::
noise

::::::::::::
measurements

::::::
showed

::
a

:::::::
bimodal635

:::::
shape

:::
and

::
it

:::
was

:::::::
recently

::::::::::
discovered

:::
that

:::::
lower

::::::
values

:::
are

::::::
related

::
to

:::::
noise

::::
over

:::::
ocean

:::::
while

::::::
higher

:::::
values

:::
are

::::::
related

::
to

:::::
noise

::::
over

:::::
land.

::::
This

::::::
means,

::::
that

:::::::::
Sentinel-1

::
is

::::
able

::
to

:::::
sense

:::
the

::::::::
difference

:::
of

::
the

:::::
earth

::::::
surface

:::::::::
brightness

::::::::::
temperature

::::::
similar

:::
to

:
a
::::::
passive

::::::::::
radiometer.

:::::
When

:::
the

::::
data

::::::::::
acquisition

:::::::
includes

:
a
:::::::::

transition
::::
from

::::::
ocean

::
to

::::
land

:::
or

::::
vice

:::::
versa,

::::
the

:::::
linear

:::::::::::
interpolation

::::
fails

:::
to

::::
track

::::
the

::::
noise

:::::::::
variation.

::::
The

:::::::::
successors

:::
of

:::::::::::::
Sentinel-1A/B

:::
are

:::::::
planned

:::
to

:::::::
include

:::::
more

:::::::
frequent

::::::
noise640

::::::::::::
measurements.

:::::
Until

::::
then,

::::
ESA

::::::
wants

::
to

:::
use

:::
the

::::
8-10

::::::
echoes

::::
after

:::
the

:::::
burst

:::
that

:::
are

::::::::
recorded

:::::
while

::
the

::::::::::
transmitted

:::::
pulse

::
is

:::
still

::::::::
travelling

::::
and

:::
the

:::::::::
instrument

::
is

:::::::::
measuring

:::
the

:::::
noise.

::::
This

::::
will

:::::::
provide

::::
noise

::::::::::::
measurements

:::::
every

::::
0.9

::::::
seconds

::::
and

::::::
allows

::
to

:::::
track

:::
the

:::::
noise

:::::::::
variations

::
in

:::::
more

:::::
detail.

:::
In

:::::::
addition,

::::
ESA

::
is

::::::::
planning

::
to

::::::::
introduce

:
a
::::::
change

::
in

:::
the

::::
data

::::::
format

:::::
during

:::::
2017

:::
that

::::
shall

:::::::
remove

:::
the

::::
noise

:::::::
shaping

::
in

::::::::
azimuth.

:::::
These

::::::
efforts

:::
are

::::::::
expected

::
to

:::::::
improve

:::
the

:::::::::::
performance

::
of

:::
the

:::::::::
presented645

::::::::
algorithm

:::::::::::
significantly.

::::::
Having

:
a
::::::::::::::
computationally efficient algorithm with adjustable vector positioning allows not only to

provide near-real time operational drift data, but also the investigation of sea ice drift over large areas

and long time periods. Our nest task is to
:::
next

::::
step

::
is

::
to

::::::
embed

:::
the

::::::::
algorithm

:::
into

::
a
::::::::::::::
super-computing

::::::
facility

::
to

::::::
further

:::
test

:::
the

::::::::::
performance

::
in

::::::::
different

::::::
regions,

::::
time

:::::::
periods

:::
and

:::
ice

:::::::::
conditions.

::::
The

::::
goal650

:
is
::
to
::::::
deliver

:::::
large

:::
ice

::::
drift

:::::::
datasets

:::
and

::::::::::
open-source

::::::::::
operational

:::
sea

:::
ice

::::
drift

:::::::
products

::::
with

::
a
::::::
spatial

::::::::
resolution

::
of

::::
less

::::
than

:
5
:::
km.

:

::::
This

::::
work

::
is

::::::
linked

::
to

:::
the

:::::::
question

::::
how

::
to

:
combine the different timings of the individual image

pairs in a most useful way. This task is linked to the question how sea ice displacement relates to

real sea ice velocity. Having more frequent satellite acquisitions, as we will get with the Sentinel-655

1 satellite constellation, enables to derive displacements for shorter time gaps and the calculated

vectors are getting closer to the real sea ice velocity
::::
will

:::::
reveal

::::
more

::::::
details

:::
e.g.

::::::::
rotational

::::::
motion

::::
due

::
to

::::
tides. As part of a scientific cruise with KV-Svalbard in July 2016, we deployed

::::
three GPS trackers

on loose ice floes and pack-ice in Fram Strait. The trackers send their position every 30
:::
5-30 min

to deliver drift information with high temporal resolution. This efforts shall help to gain a better660

understanding of short-term drift variability and by comparison with calculated sea ice drift,
:
we will

investigate how displacements
:::::::::::
displacement

::::::
vectors from subsequent satellite images relate to real

sea ice velocity
:::
sea

:::
ice

::::::::::::
displacements

::::
with

:::::
higher

::::::::
temporal

:::::::::
resolution.

:::
The

:::::
focus

::
of

:::
this

:::::
paper

::
in

:::::
terms

::
of

::::::::::
polarisation

::::
was

:::
put

::
on

:::
the

::::
HV

:::::::
channel,

::::
since

::::
this

::::::::::
polarisation

:::::::
provides

::
on

:::::::
average

::::
four

:::::
times

::::
more

::::::
feature

::::::::
tracking

::::::
vectors

::::
than

:::
HH

::::
and

:::::::
therefore

:::::::
delivers

:
a
:::::

finer665

26



:::::
initial

::::
drift

::
for

:::
the

::::
first

:::::
guess.

::::
We

:::::
found

:::
our

::::
area

::
of

::::::
interest

::::
well

:::::::
covered

::::
with

:::
HV

:::::::
images,

:::
but

:::::
other

::::
areas

::
in

:::
the

::::::
Arctic

:::
and

::::::::
Antarctic

::::::
reveal

:
a
:::::
better

::::::::
coverage

::
in

::::
HH

::::::::::
polarisation.

:::::::::::
Considering

:::
the

::::
four

:::::::::::
representative

:::::::::::::
feature-tracking

::::::
image

::::
pairs

:::::
from

:::::::::::::::::::::::
Muckenhuber et al. (2016) ,

:::
the

:::
the

::::::::
relatively

::::
best

:::
HH

::::::::::
polarisation

::::::::::
performance

::::
(i.e.

::::
most

::::::
vectors

:::::
from

:::
HH,

:::::
while

::
at

:::
the

:::::
same

::::
time

:::::
fewest

::::::
vectors

:::::
from

::::
HV)

:::
was

:::
the

::::::
image

::::
pair

:::
that

:::::::
showed

:::
the

::::
least

::::
time

::::::::::
difference,

:::
i.e.

:
8

:
h,

:::::::::
compared

::
to

::
31

:
h,

:::
33

:
h
::::
and670

::
48

::
h.

:::::::::
Therefore,

::
we

:::::::
assume

:::
that

:::
the

::::
HV

:::::::::
polarisation

::::::::
provides

::::
more

:::::::
features

::::
that

::
are

:::::
better

:::::::::
preserved

:::
over

:::::
time.

::::
And

:::::
more

::::::::
consistent

:::::::
features

:::::
would

::::
also

::::::
favour

:::
the

::::::::::
performance

:::
of

::
the

:::::::::::::::
pattern-matching

::::
step.

::::::::
However,

::
at

::::
this

:::::
point,

:::
this

::
is
::::
just

::
an

::::::::::
assumption

:::
and

::::
will

:::
be

::::::::
addressed

::
in
:::::

more
:::::
detail

::
in
::::

our

:::::
future

:::::
work.

:::::::
Utilising

:::
the

:::::::::
advantage

::
of

:::::
dual

::::::::::
polarisation

:::::::::
(HH+HV)

::
is

::::::::
certainly

:::::::
possible

::::
with

:::
the

:::::::::
presented675

::::::::
algorithm,

::::
but

::::::::
increases

:::
the

::::::::::::
computational

::::::
effort.

::
A
:::::::

simple
::::::::
approach

::
is

::
to

::::::::
combine

:::
the

:::::::
feature

:::::::
tracking

::::::
vectors

::::::
derived

::::
from

::::
HH

:::
and

:::
HV

::::
and

:::::::
produce

:
a
::::::::
combined

:::::::::
first-guess.

:::::::::::::
Pattern-matching

::::
can

::
be

:::::::::
performed

:::::
based

:::
on

:::
this

:::::::::
combined

::::::::
first-guess

:::
for

:::::
both

:::
HH

::::
and

:::
HV

::::::::::
individually

::::
and

:::
the

::::::
results

:::
can

::
be

:::::::::
compared

:::
and

:::::::::
eventually

:::::::
merged

:::
into

::
a
:::::
single

::::
drift

::::::::
product.

::::::
Having

::::
two

::::
drift

::::::::
estimates

:::
for

::
the

:::::
same

::::::::
position,

::::
from

::::
HH

:::
and

::::
HV

::::::::::::::
pattern-matching

:::::::::::
respectively,

:::::
would

::::
also

:::::
allow

:::
to

::::::::
disregard680

::::::
vectors

:::
that

::::::::
disagree

::::::::::
significantly.

::::::::
However,

::::
this

::::::
option

:::::
would

:::::::
increase

:::
the

::::::::::::
computational

:::::
effort

:::
by

:::
two,

::::::::
meaning

:::
that

:::
the

::::::::
presented

:::::
Fram

:::::
Strait

:::::::
example

::::::
would

::::
need

:::::
about

:
8

:::
min

:::::::::
processing

:::::
time.

::::
After

::::::::::::
implementing

:::
the

::::::::
presented

:::::::::
algorithm

::::
into

:
a
::::::::::::::
super-computing

:::::::
facility,

:::
we

::::
aim

::
to

:::
test

::::
and

:::::::
compare

:::
the

:::::::::
respective

:::::::::::
performance

:::
of

::::
HV,

:::
HH

::::
and

::::::::
HH+HV

:::
on

:::::
large

:::::::
datasets

::
to

:::::::
identify

::::
the

::::::::
respective

::::::::::
advantages.685

:::
The

::::::
current

:::::::
setting

::
of

:::
the

:::::::::::::
feature-tracking

:::::::::
algorithm

::::::
applies

::
a
:::::::::
maximum

::::
drift

::::
filter

:::
of

:::
0.5

::::
m/s.

:::
We

:::::
found

::::
this

:::
to

:::
be

::
a
:::::::::
reasonable

::::::
value

:::
for

::::
our

::::
time

:::::::
period

:::
and

:::::
area

:::
of

:::::::
interest.

:::::::::
However,

::::
when

::::::::::
considering

:::::::
extreme

:::::
drift

::::::::
situations

::
in

:::::
Fram

:::::
Strait

::::
and

:
a
:::::
short

::::
time

:::::::
interval

:::::::
between

::::::
image

::::::::::
acquisitions,

:::
this

::::::::
threshold

::::::
should

:::
be

:::::::
adjusted.

:

::
As

::::::::::
mentioned

::::::
above,

:::
we

::::::::
deployed

:::::
three

::::
GPS

:::::::
tracker

::
in

:::::
Fram

:::::
Strait

::::
and

::::
they

::::::::
recorded

:::::
their690

:::::::
positions

:::::
with

:
a
::::::::
temporal

:::::::::
resolution

::
of

:::::
5-30

:::
min

::::::::
between

:::
8th

::::
July

:::::
until

:::
9th

::::::::::
September

::::
2016

:::
in

::
an

::::
area

::::::::
covering

:::
75◦

:
N

::
to

::::
80◦

::
N

:::
and

:::
4◦

::
W

::
to
::::

14◦
:::
W.

::::::::::
Considering

:::
the

::::::::::::
displacements

:::::
with

::
30

:::
min

:::::::
interval,

:::
we

:::::
found

::::::::
velocities

::::::
above

:::
0.5

:::
m/s

:::
on

:
a
::::
few

:::::::::
occasions,

:::::
when

:::
the

::::
tidal

:::::::
motion

::::
adds

::
to

:::
an

:::::::::::
exceptionally

:::
fast

:::
ice

::::
drift.

:

:::
The

::::
GPS

::::
data

:::::
from

:::
the

:::::::::
hovercraft

:::::::::
expedition

:::::::::::::::
FRAM2014-2015

::::::::::::::::::::::
(https://sabvabaa.nersc.no),

::::
that695

:::
was

::::::::
collected

::::
with

::
a
::::::::
temporal

:::::::::
resolution

::
of

:::
10

:
s
:::::::
between

::::
31st

:::::::
August

:::::
2014

::::
until

:::
6th

::::
July

::::::
2015,

:::
did

:::
not

:::::
reveal

:
a
:::::
single

:::
30

:::
min

:::::::
interval

::::::
during

:::::
which

:::
the

:::::::::
hovercraft

:::
was

::::::
moved

::
by

:::
ice

::::
drift

:::::
more

::::
than

::::
0.45

:::
m/s.

::::
The

::::::::
hovercraft

:::::::::
expedition

::::::
started

::
at

:::
280

::
km

:::::
south

::::
from

:::
the

:::::
North

::::
Pole

:::::::
towards

:::
the

:::::::
Siberian

:::::
coast,

::::::
crossed

:::
the

::::::
Arctic

:::::
Ocean

:::::::
towards

:::::::::
Greenland

::::
and

:::
was

::::::
picked

:::
up

::
in

:::
the

::::::::::::
north-western

:::
part

:::
of

::::
Fram

::::::
Strait.700

::
In

::::
case

::::
the

:::::::::
estimated

::::
drift

::::::
from

::::::::::::::
feature-tracking

:::::::
reaches

:::::::::
velocities

:::::
close

:::
to

:::
0.5

:::
m/s,

::::
the

::::::::::::::
pattern-matching

::::
step

:::::
might

::::
add

:::
an

:::::::::
additional

::::::
degree

:::
of

:::::::
freedom

:::
of

:::
up

::
to

::
8
::::
km,

:::::
which

::::::
could
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::::::::
eventually

::::
lead

:::
to

:
a
::::::

higher
::::
drift

::::::
result

::::
than

:::
0.5

::::
m/s,

:::::::::
depending

:::
on

:::
the

::::
time

:::::::
interval

:::::::
between

::::
the

::::::::::
acquisitions.

::::
The

::::::
smaller

:::
the

:::::
time

:::::::::
difference,

:::
the

:::::
larger

::
is
:::
the

::::::::::
potentially

:::::
added

:::::::
velocity.

:::
In

:::::
order

::
to

::
be

:::::::::
consistent

:::::
when

::::::::::
combining

:::
the

::::
drift

:::::::::::
information

:::::
from

::::::
several

::::::
image

:::::
pairs

::::
with

::::::::
different705

:::::::
timings,

:::
one

::::::
should

:::::
apply

:
a
::::::::
maximum

::::
drift

:::::
filter

::
on

:::
the

::::
final

::::
drift

::::::
product

::
of

:::
the

::::::::
presented

:::::::::
algorithm

:::
that

:::
has

::::
the

::::
same

:::::::::
maximum

:::::::
velocity

:::
as

:::
the

:::::::::::::
feature-tracking

:::::
filter.

::::
The

::::::::::::
corresponding

::::::::
function

::
is

::::::::::
implemented

::
in
:::

the
:::::::::
distributed

:::::::::::
open-source

:::::::::
algorithm.

Appendix A: Open-source distribution

The presented sea ice drift retrieval method is based on open-source satellite data and software to710

ensure free application and easy distribution. Sentinel-1 SAR images are distributed by ESA for free

within a few hours of acquisition under https://scihub.esa.int/dhus/. The algorithm is programmed in

Python (source code: https://www.python.org) and makes use of the open-source libraries Nansat,

openCV and SciPy. Nansat is a scientist friendly Python toolbox for processing 2-D satellite Earth

observation data (source code: https://github.com/nansencenter/nansat). OpenCV (Open Source715

Computer Vision) is a computer vision and machine learning software library and can be downloaded

under http://opencv.org. SciPy (source code: https://www.scipy.org) is a Python-based ecosystem of

software for mathematics, science, and engineering. The presented sea ice drift algorithm is dis-

tributed as open-source software under https://github.com/nansencenter/sea_ice_drift.
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