
1 
 

Process-level model evaluation: A Snow and Heat Transfer Metric 
 
Andrew G. Slater1, David M. Lawrence2, Charles D. Koven3 

 
1 NSIDC/CIRES, University of Colorado, Boulder, 80303, USA 5 
2 National Center for Atmospheric Research, Boulder, 80305, USA 
3 Lawrence Berkeley National Laboratory, Berkeley, 94720, USA 

Correspondence to: David Lawrence (dlawren@ucar.edu) 

Abstract. Land models require evaluation in order to understand results and guide future development. Examining 

functional relationships between model variables can provide insight into the ability of models to capture fundamental 10 

processes and aid in minimizing uncertainties or deficiencies in model forcing. This study quantifies the proficiency of land 

models to appropriately transfer heat from the soil through a snowpack to the atmosphere during the cooling season 

(Northern Hemisphere: October-March). Using the basic physics of heat diffusion, we investigate the relationship between 

seasonal amplitudes of soil versus air temperatures due to insulation from seasonal snow. Observations demonstrate the 

anticipated exponential relationship of attenuated soil temperature amplitude with increasing snow depth and indicate that 15 

the marginal influence of snow insulation diminishes beyond an ‘effective snow depth’ of about 50cm. A Snow and Heat 

Transfer Metric (SHTM) is developed to quantify model skill compared to observations.  Land models within the CMIP5 

experiment vary widely in SHTM scores and deficiencies can often be traced to model structural weaknesses. The SHTM 

value for individual models is stable over 150 years of climate 1850-2005, indicating that the metric is insensitive to climate 

forcing and can be used to evaluate each model’s representation of the insulation process. 20 

1 Introduction 

The current generation of land models are typically complex in nature and simulate a vast array of processes [Clark et al., 

2015; Prentice et al., 2015]. Interdependencies within these models produce external and internal feedbacks that can operate 

on various temporal and spatial scales. It is therefore imperative that such models be rigorously evaluated in order to 

interpret their performance, as well as to guide future development.  25 

 

Verifying a model result against observations using statistics such as root mean squared error can provide useful information, 

but alone does not necessarily indicate whether the model is getting the right answers for the right reason [Abramowitz et al., 

2008; Gupta et al., 2008].  For example, the impact of the forcing data can play an equal or greater role in results than some 

aspects of the model [Ménard et al., 2015]. Most global-scale “observationally based” data sets contain substantial 30 

uncertainty, especially in the relatively sparsely observed high latitudes [Anisimov et al., 2007; Decker et al., 2012; Slater, 
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2016], and coupled Earth System Models can produce biased surface meteorology, particularly in high latitude winters 

[Slater and Lawrence, 2013]. It therefore follows, that if one is trying to assess land model structural error (i.e., deficiencies 

in model architecture and/or parameterizations) it is preferable to reduce ambiguity by minimizing other sources of 

uncertainty, e.g. uncertainties in model parameters, initial conditions or forcing (in either land-only or coupled simulations). 

In high latitude regions an important process is snow and soil heat transfer. The temperature and state of the soil, whether 5 

frozen or thawed, plays a pivotal role in the timing and magnitude of energy, mass and biogeochemical fluxes between the 

land and atmosphere [Hobbie et al., 2000; Dutta et al., 2006; Monson et al., 2006; Lawrence et al., 2012, 2015]. Concerns 

about the potential release of vast carbon stores currently locked in permafrost soils and its feedback on the climate has 

brought this topic to the fore [Schuur et al., 2015]. Model estimates of Arctic carbon fluxes are highly variable [Fisher et al., 

2014; Koven et al., 2015] in part due to differences in simulation of soil temperatures and permafrost conditions. Essentially, 10 

we need to ensure soil temperature and moisture are correctly simulated before confidence in projected biogeochemical 

fluxes can be achieved. 

 

In cold mid-latitude and Arctic regions, snow forms an insulating barrier between the colder atmosphere and underlying soil 

during winter. The impact of snow on soil temperatures, particularly in permafrost regions, has been well documented in 15 

both observational [Sharratt et al., 1992; Zhang, 2005] and modeling studies [Luetschg et al., 2008; Lawrence and Slater, 

2010; Ekici et al., 2015; Yi et al., 2015]. A variety of structures has been used to represent snow in models [Slater et al., 

2001], with varying levels of simulated insulation [Koven et al., 2013]. The aim of this work is to define a metric that 

demonstrates processes-level model evaluation using the heat transfer mechanism from atmosphere to soil under the 

conditions of a seasonal snowpack. 20 

 

2 Method 

The theory of conductive heat flow under periodic forcing (e.g., the annual cycle) is demonstrated in many texts [Lunardini, 

1981; Yershov, 1998].Taking an example of a semi-infinite medium forced at the surface with a periodic temperature wave 

with no phase change or mass exchange, we can compute the amplitude of this periodic wave at soil depth (z) as: 25 

 

𝐴! = 𝐴! 𝑒!
!
!             (1) 

 

where Az is the amplitude of the temperature wave at depth (z), Ao is the surface amplitude and d is the damping depth 

defined as the depth at which the 1/e of the surface amplitude occurs. The value of d is a function of the thermal diffusivity 30 

of the medium and the period over which the forcing is applied. 
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The above theory is adapted to the cooling period of the year, defined here as October to March. A vast portion of the 

terrestrial Northern Hemisphere becomes snow covered during October and remains so beyond March. The actual land 

surface temperature is rarely observed in situ, but 2m air temperature serves as a sufficient proxy as the two quantities tend 

to equilibrate towards each other, particularly in colder months of high latitude regions with low solar input. Observations 

(Section 3) show that the coldest air temperature is typically in January or February, while the coldest soil temperature at 5 

20cm depth usually lags by a month. Confining data to the annual cooling period, the amplitude of air temperature is taken 

as 

 

𝐴!"# = 𝑀𝐴𝑋 𝑇!"# −𝑀𝐼𝑁 𝑇!"#          (2) 

 10 

The soil temperature amplitude (Asoil) can be calculated annually in the same way. To elucidate the process of heat transfer 

and remove climatically driven factors, for example the large seasonal cycle associated with deep continental regions as 

compared to more moderate coastal locations, a normalized temperature amplitude difference is computed as 

 

𝐴!"#$ = !!"#!!!"#$
!!"#

          (3) 15 

  

  

which ranges from 0 to 1. Anorm values near 0.0 indicate minimal difference in the annual cycle of air and soil temperatures, 

while a value close to 1.0 suggests soil temperatures essentially do not change over the cooling period. If we take Asoil to be 

Az and Aair as Ao, then substitute equation (3) into equation (1) we arrive at the form where: 20 

 

𝐴!"#$ = 1.− 𝑒!
!
!           (4)  

  

Such theory pertains to an idealized case, but in reality the distance z would be affected by the quantity and temporal 

sequence of snow accumulation and the damping depth d will be impacted by snow density, soil inhomogeneity or phase 25 

change. Therefore, we propose a similar but more flexible approach: 

 

𝐴!"#$ = 𝑃 + 𝑄 1.− 𝑒!
!!"#$!,!""

!         (5) 

  

We introduce an offset, P, because even if there was absolutely no snow, the thermal properties of the soil, along with phase 30 

change, and imperfect heat transfer between the surface and near-surface air mean that the amplitude of soil temperature at a 

depth (e.g., 20cm) will likely be different to that of the air. A multiplier, Q, is applied to account for the temporal nature of 
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snow accumulation. Our analysis pertains to locations with seasonal, rather than permanent, snow cover so even if 3m of 

snow accumulates by the end of March there is likely to be some cooling in soil temperature from atmospheric forcing in 

October. The R parameter is an effective thermal diffusivity of the snow and soil system. The density and morphology of the 

snow, along with soil moisture content and phase change play a role in determining R. The R value also tends to govern the 

marginal influence of additional snow insulation. To account for seasonal variations in the linear distance between the soil 5 

and the atmosphere (i.e., the snow depth z, in equation 4), we define an effective snow depth (Sdepth,eff).  

 

Sdepth,eff describes the insulation impact of snow and is an integral value such that the mean snow depth (S) each month (m;1-

6) is weighted by its duration. The maximum duration (M=6) is the total cooling period of 6 months (Oct-Mar). The first 

snow depth value (S1) is the October mean snow depth.  10 

 

𝑆!"#$!,!"" =  !! !!!!!!
!!!

!!!!
!!!

!          (6) 

 

As shown in Figure 1, a season with an early snowfall will typically produce a higher effective snow depth compared to a 

linearly increasing snowpack with the same mean value. Similarly, if shallow snow persists for most of the winter but a large 15 

snowfall occurs in February, the effective snow depth will be lower than the linear case. 

 

Given inputs of Anorm and Sdepth,eff (from observations or models) we can efficiently compute the values of the three 

parameters P, Q, R using a non-linear fitting method (e.g. the Levenberg-Marquardt (LM) algorithm [Press et al., 2007]). 

The relationship between Anorm and Sdepth,eff informs us about the heat transfer mechanism between the atmosphere and the 20 

subsurface. To alleviate the problem of overfitting, the curve is fit using data that is sampled evenly across a range of 

effective snow depths with up to 35 data points per 10cm of Sdepth,eff up to 1m (with the final category being 90cm or 

beyond). This sampling was performed 100 times, with the median of fit values taken; if the LM algorithm does not 

converge for a given sample, another sample is taken. Sampling also ensures that a wide variety of climatic regimes is used 

for characterizing the functional relationship seen in observations or a model. 25 

3 Data 

Assessing the relation between Anorm and Sdepth,eff requires three pieces of data: screen level air temperature, 20cm soil 

temperature (as this is the most commonly observed depth) and snow depth. An analysis constraint is the need to use 

monthly mean values, as this is the most common output from large-scale land models. 

 30 
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A large network of hydrometeorological stations in Russia (and the Former Soviet Union) provide the three required 

variables as follows: air temperature was acquired from the NCDC Global Summary of the Day 

(https://data.noaa.gov/dataset/global-surface-summary-of-the-day-gsod), provided the snow depths measured at stations (as 

opposed to local transects) and information on soil temperatures is available in Sherstyukov and Sherstyukov, [2015]. Data 

in the USA is from the Natural Resources Conservation Service as part of the SNOTEL and SCAN networks 5 

(http://www.wcc.nrcs.usda.gov/). In Canada, Alberta’s AgroClimate Information Service (ACIS; 

http://agriculture.alberta.ca/acis/) collates and distributes station data within the province. 

 

For a given season, we use only sites with complete, quality controlled records from October to March; 2049 observed site-

years are available. It is also recognized that the data has inherent limitations, for example it is unknown whether snow 10 

depths are measured at precisely the same location as the soil temperature measurements. Many measurements have been 

made on soils that have been historically altered, however our use of shallow (20cm) soil temperatures and focus on the 

winter period aims to minimizes possible artifacts due to disturbance. 

 

Snow heat transfer in 13 models that participated in the CMIP5 experiment [Taylor et al., 2012; http://cmip-15 

pcmdi.llnl.gov/cmip5/] is evaluated using the Historical (1850-2005) simulations. Soil columns within the various land 

models have different depths and layer thicknesses [Slater and Lawrence, 2013; their Figure 2] so a spline interpolation of 

each monthly mean temperature profile was used to estimate a 20cm value. Further details of the land models are available 

in Koven et al., [2013] and Slater and Lawrence, [2013]. 

 20 

All data is restricted to those instances where, during the cooling period (Oct-Mar), mean Tair is below -1°C, mean Tsoil is 

below 2.5°C, Aair is greater than 10°C and Sdepth,eff is greater than 0.01m and less than 1.5m. Observed locations fitting the 

above data criteria are shown in Figure 2. Model data meet the same criteria, but our intention is to test the ubiquitous 

physics of a process, thus model data is not restricted to the same locations as the observations and an order of magnitude (or 

more) is available for sampling. 25 

4 Results and Discussion 

The observations show the expected exponential shape and fit the underlying theory (5) well despite noise in the data (Figure 

3). The noise is due to a range of conditions that occur across the landscape, such as the exact timing of snowfall, the pattern 

of snow metamorphism, the properties and moisture content of the soil as well as uncertainty about exact measurement 

locations of the observed data. Grey shading in Figure 3 shows the span of median error of all 100 fits to the observations 30 

with the black curve being the median fit value.  
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The observational results demonstrate that the marginal influence of snow insulation relative to the annual cycle of air 

temperature diminishes beyond a Sdepth,eff of about 50cm. This phenomenon of insulation saturation has been previously noted 

in observations and models [Zhang, 2005; Lawrence and Slater, 2010]. 

 

Results from models are calculated the same as observations, with the median curve for each model shown on the same plot 5 

(Figure 4). The difference amongst model curves is considerable. Several models produce an exponential-like curve (e.g., 

CCSM4, GISS, MRI, NorESM), suggesting that they generally reflect the character of the observed relationship. Many 

models, however, do not reproduce the observed relationship. Models such as CanESM, GFDL, Hadley models, MIROC and 

MPI are more linear in their form. This group of poorer performing models all show Anorm values of less than 0.45 at Sdepth,eff 

of 40cm (compared to a median observed value of 0.65 at 40cm depth). A low Anorm value is produced when soil 10 

temperatures more closely track the changes in air temperature rather than being modulated by snow cover.  

 

Incorrect snow heat transfer curves are symptomatic of model deficiencies. As an example, the land scheme in the Hadley 

Center models used here [MOSES2.2; Essery et al., 2001] applies a composite snow model where the top soil layer and 

snowpack share the same temperature [Slater et al., 2001], hence insulation is not properly accounted for and cold 15 

temperatures easily penetrate into the soil. Conversely, the better performing models feature multi-layer snow packs that are 

more apt at emulating the nonlinear temperature profile of the snow pack.  

 

In the MPI model, the latent heat of fusion associated with freezing of soil moisture is not simulated, further exacerbating the 

problem of soil temperature amplitude tracking that of the air. These types of model flaws will impact the extent of 20 

simulated permafrost, as well as its rate of change. 

 

Despite the application of different coupled model component (e.g., atmosphere or ocean models) and initial conditions, both 

of which will influence terrestrial surface climate, the two Hadley Center climate models (HadGEM2-CC, HadGEM2-ES, 

both utilizing MOSES as their land model) produce essentially the same snow insulation curve.  Similarly, CCSM4 and 25 

NorESM reproduce essentially the same curve, which is expected since both models utilize CLM4 as their land model. The 

fact that snow insulation curves are essentially the same for a particular land model, even when driven with different climatic 

forcings from their parent climate model, suggests that the form of the curve does indeed capture the functional land model 

behavior. 

 30 

The steep gradient of Anorm at shallower Sdepth,eff is an important feature to capture as over 85%  of seasonally snow covered 

land is estimated to have a Sdepth,eff  less than 0.60m. Reliable observed data of hemispheric scale snow depths or mass is not 

yet available, but the prevalence of shallow snow can be seen in estimated climatological Sdepth,eff derived from numerous 

reanalyses (ERA-Interim [Dee et al., 2011], MERRA [Rienecker et al., 2011], CFSR [Saha et al., 2010], JRA-55 [Kobayashi 
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et al., 2015], some of which assimilate snow depths), products such as GlobSnow [Takala et al., 2011] and station 

interpolations [Foster and Davy, 1988; Brown and Brasnett, 2010] (Figure 5). 

 

4.1 A Model Diagnostic: The Snow and Heat Transfer Metric (SHTM) 

A land model should be able to capture the exponential relationship between Anorm and Sdepth,eff, and it is useful to summarize 5 

the ability of a given model to do so as a compact metric. Here, we develop a Snow and Heat Transfer Metric (SHTM) that 

could be used within a broader land model analysis system such as the International Land Model Benchmarking project 

(ILAMB; http://www.ilamb.org;  Luo et al., [2012]). The metric is designed to have a value from 0 to 1, and describes the 

departure of a model’s snow insulation curve from the observed curve. As the marginal influence of snow insulation 

decreases after a Sdepth,eff value of about 0.50m and most of the seasonal snow regions have a Sdepth,eff below 0.60m (Figure 5), 10 

the SHTM value is only calculated over the range of 0-0.60m. For each 0.01m of Sdepth,eff, up to 0.60m, twice the difference 

in Anorm between the model and observational curves is obtained; a root mean square error of these values is then computed 

and subtracted from 1. The SHTM value is thus: 

 

𝑆𝐻𝑇𝑀 =  1.  −  2 ∗ (𝑀𝑜𝑑𝑒𝑙 𝐴!"#$,! − 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴!"#$,!)
!
     (7) 15 

 

The closer SHTM is to 1, the better the model is at reproducing the observed snow insulation curve; a lower limit of 0 is 

placed on the SHTM.  An important feature of the SHTM is that it effectively isolates analysis of the snow insulation process 

and therefore should be robust across different climate forcing. We test that hypothesis here by calculating the SHTM for ten 

15-year periods from 1850-2000 for each model. The mean 2m air temperature over the terrestrial Northern Hemisphere 20 

north of 55°N for the cooling period (Oct-Mar) was computed for each 15-year period for each model. As a measure of 

changing climates, the minimum and maximum of these 15-year averages was differenced per model, resulting in a span of 

1.25°C to 4.15°C, with a mean of 2.15°C. Despite these climatic changes, the SHTM maintains a fairly constant value for 

each land model. Over the 150 years, all models return a SHTM standard deviation of less than 0.021, which is substantially 

less than the typical SHTM difference between models and indicates a general invariance to climate variability (Figure 6). 25 

 

Due to noise in the data (both model and observed) the SHTM can only be used as a broader indicator of model ability. 

Based on the standard deviation of scores and observational uncertainty, values within 0.05 of each other may not be 

significantly different and incremental improvements to the snow insulation schemes may not necessarily result in 

meaningful changes in the SHTM score. Additionally, the SHTM does not evaluate the ability of models to simulate snow 30 

accumulation or ablation; additional datasets and metrics are needed to assess these processes.  
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5 Conclusions 

Model evaluation is an important aspect of the overall modeling process: e.g., development, application and/or prediction. 

Land, hydrology and ecology models can range in complexity from simpler, more conceptually-based, formulations through 

to highly explicit representations that incorporate a multitude of processes. Regardless of their complexity, it is important 

that the underlying physical processes are represented correctly. 5 

 

Deriving the relationship between a normalized temperature amplitude difference between air and soil, Anorm, and the 

seasonal effective snow depth, Sdepth,eff, we have shown that observations are consistent with heat transfer theory. Analysis of 

observed results suggests that the marginal impact of snow insulation diminishes beyond a Sdepth,eff of about 50cm. Structural 

weaknesses in several models have been exposed by examining their ability to represent the atmosphere-land heat transfer 10 

process in the presence of snow. To quantitatively compare model performance, a snow and heat transfer metric, SHTM, was 

designed. The SHTM value per model changed little when calculated for different periods over 150 years of climate change, 

suggesting it can fairly unambiguously provide an indication of whether model structural/parameter deficiencies exist by 

negating other areas of uncertainty, such as the model forcing data. The SHTM is a useful model diagnostic that can be added 

to existing land model analysis / benchmarking systems.   15 
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Figure 1: Effective snow depth (Sdepth,eff, dashed lines) of three different snow regimes that have equal mean values over the period 
October-March. Earlier snowfall receives greater weighting as it represents greater insulation; data in green thus has the greatest 
effective depth. 
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Figure 2: Locations with co-located observations of air temperature, 20cm soil temperature, and snow depth. 
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Figure 3: Observed relation between Anorm and effective mean snow depth (Sdepth, eff) along with the resulting exponential fit (dashed 
line). The grey shading shows the median fit plus/minus the mean error (Oerr) of all fits. 
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Figure 4: Model fits to equation (5), showing large differences in how heat is transferred though the snowpack to the soil. Data 
from the CMIP5 comparison period 1986-2005 is used. The dashed black line is the observational fit with grey shading being its 
error. 
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Figure 5: Cumulative distribution curves for climatological effective snow depths (Sdepth,eff) as a percentage of all seasonally snow 
covered area in the Northern Hemisphere. The observed and model climatologies span a minimum of 10 years in the last quarter 
of the 20th century. The bold lines show the median values of the curves for both observations and models; shading shows the total 5 
range of curves. Note that the absolute snow covered area can be quite different amongst models and observational estimates. 
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Figure 6: Mean value of the Snow and Heat Transfer Metric (SHTM) for each model. Values closer to 1.0 indicate better 
agreement with observations. SHTM values are relatively stable over 150 years of climate for each model. 
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