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Abstract. We present SEMIC, a Surface Energy and Mass balance model of Intermediate Complexity for snow and ice covered

surfaces such as the Greenland ice sheet. SEMIC is fast enough for glacial cycle applications, making it a suitable replacement

for simpler methods such as the positive degree day method often used in ice sheet modelling. Our model explicitly calculates

the main processes involved in the surface energy and mass balance, while maintaining a simple interface and minimal data

input to drive it. In this novel approach, we parameterise diurnal temperature variations in order to more realistically capture5

the daily thaw-freeze cycles that characterise the ice sheet mass balance. We show how to derive optimal model parameters

for SEMIC to reproduce surface characteristics and day-to-day variations similar to the regional climate model MAR (Modèle

Atmosphérique Régional) and its incorporated multi-layer snowpack model. A validation test shows that SEMIC simulates

future changes in surface temperature and surface mass balance in good agreement with the more sophisticated multi-layer

snowpack model included in MAR. With this paper, we present a physically-based surface model to the ice sheet-modelling10

community that is computationally fast enough for long-term integrations, such as glacial cycles or future climate change

scenarios.

1 Introduction

Currently, surface melt accounts on average for about half of the observed Greenland ice sheet loss; the other half is lost

through basal melt and ice discharge across the grounding line, i.e., calving (van den Broeke et al., 2009). Recent observations15

show that Greenland’s surface mass balance is further declining (Hanna et al., 2013). The positive surface mass balance can no

longer compensate losses via ice discharge and is therefore regarded as a dominant source of Greenland’s total mass loss. The

extreme melt season in 2012 exposed the Greenland ice sheet’s vulnerability to long-lasting temperatures anomalies (Nghiem

et al., 2012). As more marine terminating glaciers further retreat (Thomas et al., 2011), the partitioning of ice loss is likely to

shift further towards the declining surface mass balance.20

Numerical simulations of large land ice masses, such as the Greenland and the Antarctic ice sheets, require numerical models

to be fast because the response time of ice sheets to changes in the surface mass balance is slow, on the order of years to tens of

millennia (Cuffey and Paterson, 2010). Hence, many thousands of years of model integration are required to spin-up the model

or to simulate one or several glacial cycles.
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The simplest, fastest, and still most widely used method to estimate the surface mass balance of glaciers and ice sheets is

the so-called positive-degree-day (PDD) approach (e.g. Reeh, 1991; Ohmura, 2001). It is based on the empirical relationship

between surface melt rate and daily mean surface air temperature. Although PDD parameters are tuned to correctly represent

present-day melting rates, past climates may require different parameter values. For instance, the PDD approach with its

present-day parameter values is not applicable to orbitally-forced climate change (van de Berg et al., 2011; Robinson and5

Goelzer, 2014).

Here, we propose a physically-based model utilising an energy balance approach that is inherently consistent with a variety

of climate states different from today, e.g., future warming, last glacial maximum, or the Eemian interglacial. Our proposed

model not only accounts for temperature changes but also for changes in other climate factors, such as insolation, turbulent

heat fluxes, and surface albedo.10

The Surface Energy and Mass balance model of Intermediate Complexity (SEMIC) is based on a surface scheme that has

already been used to study glacial cycles (Calov et al., 2005). SEMIC provides a process-based relationship between surface

energy and surface mass balance changes. The approach described here guarantees a consistent treatment of melting and

meltwater refreezing; both are important processes for the mass budget of ice sheets (Reijmer et al., 2012).

Compared to more sophisticated multi-layer snowpack models, which include snow metamorphism or vertical temperature15

profile calculations, SEMIC has a reduced complexity, one-layer snowpack. This saves computation time and allows for inte-

grations on multi-millennial time scales. SEMIC calculates the daily surface energy and mass balance throughout the year but

is also fast enough to focus on longer time scales when climatological changes determine the trend of the surface energy and

mass balance.

Numerical ice sheet models need the annual mean surface temperatures and annual mean surface mass balance of ice as20

boundary conditions at the surface. Both are calculated by SEMIC, which can thus be directly coupled to the ice sheet model.

There is a multitude of possible applications for SEMIC, for example, under projections of future warming for the next centuries

or glacial cycle simulations. In this paper, we will discuss the future warming projections of the RCP8.5 scenario (Moss et al.,

2010) to demonstrate the capabilities of our model.

The paper is organised as follows. In the next section, we present the model equations and their parameters. In Sect. 3, we25

describe the calibration procedure used to constrain the free model parameters and we estimate the sensitivity of the calculated

surface mass balance with respect to the model parameters. In Sect. 4, we validate our model against regional climate model

data for a future warming scenario. We discuss our findings in Sect. 5 and conclude in Sect. 6.

With this paper we acknowledge, support, and encourage research that follows standards with respect to scientific repro-

ducibility, transparency, and data availability. The model source code and the authors’ manuscript source is freely available and30

accessible online.
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2 Model Description

SEMIC is based on the calculation of the mass and energy balance of the snow and/or ice surface. We assume that the surface

temperature Ts responds to changes in the surface energy balance according to

ceff
dTs

dt
= (1−α)SW ↓+LW ↓−LW ↑−HS −HL−QM/R (1)

where α is the surface albedo, SW ↓ is the downwelling shortwave radiation, LW ↓ is the downwelling longwave radiation,5

LW ↑ is the upwelling longwave radiation, HS and HL are the sensible and latent heat flux to the atmosphere, and QM/R is the

residual heat flux available for melting or refreezing of snow and ice. The parameter ceff denotes the effective heat capacity of

the snowpack. In a strict sense of the term “energy balance” the left-hand-side of Eq. (1) should be zero. Here, we assume that

surface temperature and the energy are not in equilibrium because the snowpack or surface exerts some thermal inertia.

Temperatures of snow- and ice-covered surfaces cannot exceed 0° C. However, for computational purposes, we initially10

assume that Ts represents the potential temperature, which would be observed in the absence of phase transitions, i.e., melting

or refreezing. Once, melting and refreezing has been computed (see Sect. 2.3), the residual heat flux QM/R in Eq. (1) keeps

track of any heat flux surplus or deficit and is added back to the energy balance. This way, Ts never exceeds 0° C.

For coupling to an ice sheet model, the surface mass balance for ice (SMBi) is computed by SEMIC. It separates the total

surface mass balance into the surface mass balance for snow and for ice:15

SMB = SMBs +SMBi = Ps−SU −M +R, (2)

SMBs = Ps−SU −Msnow−Csi, (3)

SMBi = Csi−Mice +R. (4)

Here, Ps is the snowfall rate and SU is the sublimation rate which is related to the latent heat flux via HL/ρwLs. The model

variable M is the total melting rate, i.e., the sum of snow and ice melt (denoted by the subscripts), R is the refreezing rate of20

liquid water (rain or melt water), and Csi is the compaction rate of snow which is turned into ice.

Changes in snowpack height hs (in m water equivalent) are determined by the surface mass balance of snow:

dhs

dt
= SMBs, with hs ∈max(0,hs,max). (5)

If the snow height hs exceeds a certain threshold hs,max (here set to 5 m) snow is transformed into ice—in a simple way

resembling snow compaction:25

∆t∫

0

Csi dt= max(0,hs−hs,max). (6)

The described equations are solved using an explicit time-step scheme. For faster computation we use a time step of one day.

In principle, the use of monthly input data is also supported but would require interpolation to daily time steps.
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2.1 Surface heat fluxes

We describe the outgoing longwave radiation as a function of surface temperature according to the Stefan–Boltzmann law:

LW ↑ = σT 4
s . (7)

For the turbulent heat exchange (sensible and latent) we use a standard bulk formulation

HS = CSρacp,aus(Ts−Ta) (8a)5

HL = CLρaLsus(qs− qa) (8b)

with sensible and latent heat exchange coefficients CS and CL, air density ρa, specific heat capacity of air cp,a, surface wind

speed us, air temperature Ta, latent heat of sublimation/deposition Ls, and air specific humidity qa. Specific humidity over the

snow or ice surface (qs) is assumed to be saturated and depends on surface pressure ps and saturation water vapour pressure e∗

qs =
e∗ε

e∗(ε− 1) + ps
, where (9)10

e∗ = 611.2exp
(
a

Ts−T0

Tb +Ts−T0

)

with ε = 0.62197, the ratio of the molar weights of water vapour and dry air, and coefficients a, Tb, which are prescribed for

vapour pressure over water (a = 17.62, Tb = 243.12 K) or ice/snow (a = 22.46, Tb = 272.62 K). T0 denotes the freezing point

of water, 273.15 K. See, Gill (1982) for details.

2.2 The diurnal cycle of thawing and freezing15

Because we use daily time steps, processes on time scales shorter than one day cannot be resolved explicitly. Hence, we cannot

explicitly account for the thawing during daytime and the freezing during nighttime which is quite usual for the melting season

on Greenland. The absorbed shortwave radiation, for example, can exhibit large diurnal variations, especially when the surface

albedo is low (Cuffey and Paterson, 2010). During the day, near surface temperatures may rise above freezing temperature and

snow or ice starts to melt. During the night, temperatures drop below freezing and any liquid water such as previously melted20

water can refreeze within the snowpack.

To account for this process we introduce a parametrisation for the diurnal cycle of thawing and freezing. We simply assume

a sinusoidal temperature curve T (t) throughout the day (here, units of time t are hours h) around a given mean surface

temperature Ts (here, we refer to Ts with units in °C) with amplitude A, i.e., a cosine function (Fig. 1):

T (t) = Ts−Acos(
2π
24
t) (10)25

For the sake of simplicity we use a single constant A, although in reality it is spatially and temporally dependent as shown in

Fig. 1.

Melting and refreezing may then occur on the same day if (potential, not actual) Ts exceeds 0°C. The amount of melting

and refreezing then depends on the amplitude A and the mean daily temperature Ts (Fig. 1). Fortunately, an analytical solution
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to this problem exists. We calculate the roots of the cosine function and then integrate between the roots to solve for average

above- and below-freezing mean surface temperatures T+
s and T−s . The roots are

t1 =
24
2π

arccos(
Ts

A
), t2 = 24− t1.

Thus, the time span for temperatures above and below freezing is

∆t+ = t2− t1 = 24− 2t1, and ∆t− = 2t1.5

This leads us to an expression for averages of above- and below-freezing temperatures T+
s and T−s . These are the integrals of

the cosine function

T+
s =

1
∆t+

t2∫

t1

T (t)dt (11a)

=
24

π∆t+

[
−Ts arccos(

Ts

A
) +A

√
1− T 2

s

A2
+πTs

]

T−s =
1

∆t−

t1∫

0

T (t)dt+

24∫

t2

T (t)dt (11b)10

=
24

π∆t−

[
Ts arccos(

Ts

A
)−A

√
1− T 2

s

A2

]
.

This parameterisation depends on on the prescribed diurnal cycle amplitude, A, which affects the amount of melting and

refreezing and, thus, the surface mass balance. Note, melt energy Qm and “cold content” Qc in the following Eq. (12) are

calculated by using T+
s and T−s , respectively. Without this parametrisation or with A set to zero melting and refreezing cannot15

occur at the same time step and instead, the actual surface temperature Ts must be used.

2.3 Melting and refreezing

Additional processes that affect the snowpack temperature are melting and refreezing. During 24 h the energy available for

melt Qm and refreezing (the so-called “cold content”) Qc are defined as

Qm =





(T+
s −T0) ceff

∆t if T+
s > T0,

0 if T+
s ≤ T0,

(12a)20

and

Qc =





0 if T−s ≥ T0,

(T0−T−s ) ceff
∆t if T−s < T0.

(12b)
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Thus, the potential melt is

Mpot =
Qm

ρwLm
(13)

with water density ρw, latent heat of melting (or fusion) Lm, and time step ∆t. Actual melt depends on how much solid water,

i.e., snow or ice, is available for melt. If potential melt is larger than the current snow height all snow melts down and the

excess melt energy is used to melt the underlying ice. Ice-free land is treated differently and the excess melt energy is used to5

warm the surface. The actual melt M is then the sum of melted snow and melted ice

Msnow = min(Mpot,hs/∆t) (14a)

Mice =Mpot−Msnow (14b)

M =Msnow +Mice (14c)

The refreezing rate depends on the potential liquid water to be refrozen, i.e., the actual melt rate M and rainfall Pr. Analo-10

gous to the melt rates, the potential refreezing is given by

Rpot =
Qc

ρwLm
. (15)

Suppose some liquid water, i.e., rain or melt water, exists within the snow pack. The “cold content”Qc is then used to (virtually)

turn liquid water into frozen water, i.e., snow or ice. We distinguish between refrozen rain and refrozen melt water

Rpot,rain = min(Rpot,Pr) (16a)15

Rpot,melt = min(max(Rpot−Rpot,rain,0),Msnow) (16b)

R=Rrain +Rmelt =Rpot,rain +Rpot,melt. (16c)

We neglect refreezing of melted ice and treat ice melt as runoff.

As noted in the beginning of this section, melting consumes internal energy of the snowpack, while refreezing releases

internal energy. SEMIC accounts for both melting and refreezing, and therefore the associated temperature change in Eq. (1)20

via QM/R—the residual energy for refreezing or melting.

QM/R = ρwLm(M −R) (17)

Here, we see how tightly the mass balance and the energy balance are coupled and that great care must be taken when the

underlying surface processes are incorporated into one model.

2.4 Snow albedo parametrisation25

We use a modified version of an albedo parametrisation for snow that depends on snow temperature (Slater et al., 1998). The

original version describes albedos for the near-infrared and the visible band. Because the dependence on temperature of both

albedo terms are similar, we combined these two into one albedo term.
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The reasoning of a temperature-dependent snow albedo is as follows: Albedo declines if snow starts to melt and melting is

much more likely for higher temperatures. The snow albedo above a certain temperature threshold, here Tmin, is temperature

dependent and starts to decline to the albedo of old snow, i.e., αs,min as temperatures approach the melting point T0. Below the

temperature threshold Tmin, we assume that snow does not change and has an albedo of fresh snow, i.e. αs,max. The relationship

between snow albedo and temperature can, therefore, be described according to5

αs = αs,max− (αs,max−αs,min)tm3 with (18a)

tm =





0 if Ts < T0,

Ts−Tmin
T0−Tmin

if Tmin ≤ Ts < T0,

1 if Ts > T0.

(18b)

Tmin is set to 263.15 K as originally proposed (Slater et al., 1998).

The actual surface albedo α is then the average of snow albedo αs and the prescribed background albedo αi for ice-covered

or αl for ice-free land and depends on the critical snow height hcrit10

α= αs− fa(αs−αbg) where αbg =




αi for ice-covered or

αl for ice-free land
(19)

and fa = exp(−hs/hcrit).

Although the snow albedo depends on temperature only, the grid-averaged albedo includes snow height as well as the charac-

teristics of the underlying surface (i.e., ice or bare land), thus providing enough degrees of freedom to capture the variety of

surface conditions over ice- and snow-covered regions.15

2.5 Boundary conditions, initial conditions, and model performance

To drive the model we need as input: incoming short- and longwave radiation, near-surface air temperature, surface wind speed,

near-surface specific humidity, surface pressure, snowfall, and rainfall either computed by an atmosphere model or prescribed

as atmospheric forcing. For example, these fields can also be obtained from an interactive coupling to an atmospheric model.

In order to evaluate the model, we choose to run the model offline using prescribed atmospheric forcing. Forcing fields are20

listed in Table 3.

In this paper, we use daily mean data from the regional climate model MAR, version 2 (Fettweis et al., 2013) to tune

and optimise our model parameters. At its lateral boundaries MAR is forced by the general circulation model CanESM2

under historical conditions and under the global warming scenario RCP 8.5 (for details, see Fettweis et al., 2013). As input

to SEMIC, we use the output of the last three model years of the 21st century scenario, i.e., 2098-2100, because they are25

representative of more extreme climatic conditions for the Greenland ice sheet. First, its associated surface mass balance

exhibits the strongest seasonal variability at the end of the 21st century in RCP 8.5. And second, because those three years also

capture substantial year-to-year variability. The model requires several years of spinup—especially the snow pack height hs and
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hence the associated surface albedo α (see Eq. 19) responds rather slowly. We refrain to use more than three years because of

the expected larger computational overhead1, which likely increases the overall computation time given that several thousands

of calibration iterations are to be expected. Therefore, we loop 20 times over those three years to advance the variables from

their initial conditions. The last iteration over the three years is then used for the comparison with MAR output.

On a modern laptop (e.g., MacBook Pro with an Intel Core i7, 2.8 GHz), 100 years of integration with daily time steps on5

a grid with 6,720 points (i.e., the MAR grid with 25 km horizontal resolution) take about 40 seconds. Of course, in coupled

and stand-alone applications there is overhead for exchanging the variables and writing the output, thus, adding to the overall

computation time. However, SEMIC is a fast model and therefore well suited for multi-millennial integration such as glacial

cycles.

3 Model parameter calibration10

To calibrate our free model parameters we minimise errors with respect to MAR output. Afterwards the optimised parameters

are used to compare SEMIC with results for the whole historical period from 1970–2005 and for the warming scenario RCP

8.5 from 2006–2100.

At the model initialisation, Ts and αs are prescribed with values from MAR output of the first day, i.e., Jan 1 2098 and we

set hs = 1 m. After a few time steps the fast responding variables Ts and αs are close their expected trajectories. However,15

response time for hs is much longer and difficult to quantify because it depends on the slowly varying and highly sensitive

mass balance terms. Therefore, several years of integration can be necessary for the model spinup. To account for the longer

response time of hs we loop 20 times over the three years, 2098–2100, creating an effective integration period of 60 years.

From those 20 loops, the last iteration, i.e., the last loop, is used to estimate the error between SEMIC and MAR. The model

initialisation and spinup is done every time SEMIC uses a new model parameter set, in order to treat each of those parameter20

settings in a comparable way.

The quality of our parameters is measured with the normalised centred root mean square error E. It is a good way to

estimate how closely a test field (SEMIC output in our case) resembles a reference field (MAR output) in terms of correlation

and variance (Taylor, 2001) while also allowing to assess variables with different units:

E =

√√√√ 1
N

N∑

n=1

[
(Xn−X)− (Yn−Y )

σY

]2

+ [σX/σY − 1]2 (20)25

Here, X is some SEMIC time series with N time steps. This could be any model variable, for example, averaged surface

temperature Ts, net shortwave radiation SWnet = (1−α)SW ↓, or surface mass balance SMB = Ps−SU −M +R. The

symbol Y represents the corresponding MAR time series and the σ’s are the standard deviations of the time series. Overbars

denote temporal averages of the time series.

1Three years of MAR data amounts already to 3.7Gb.
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3.1 Minimising the cost function

To include Greenland’s diverse climate zones, we choose the time series (i.e., the Xn’s and Yn’s) as being spatial averages over

ice-free land and over three different ice-covered regions, all shown in Fig. 2. The three ice-covered regions crudely represent

the main ablation zones at the ice-sheet margins (region 1), the main accumulation zone at ice-sheet interior (region 3), and a

mixed zone in between the main accumulation and ablation zones (region 2). We therefore calculate four different E values,5

one over ice-free land (EL) and three over the different ice-covered regions (Eb1,Eb2,Eb3).

For our cost function we regard the following variables as important for the surface energy and mass balance: surface

temperature Ts, net shortwave radiation SWnet, cumulative melt Mcum, and cumulative surface mass balance SMBcum. The

magnitude of this vector then defines our cost function J

J =
∥∥∥(EL,Ts

,Eb1,Ts
, . . . ,EL,SWnet

, . . . ,Eb3,SMBcum
)T
∥∥∥ (21)10

which we want to minimise. Note that we assign different weights to each of the regions based on their area.

The cost function J is minimised with a method called Particle Swarm Optimisation, described below. Using these calibra-

tion steps, we derive these optimal parameters values: A = 3.1 K, αs,min = 0.77, αs,max = 0.80, and hcrit = 0.09 m which are also

listed in Table 1.

3.2 Particle Swarm Optimisation15

Because of the high dimensionality of the parameter space, a random search for the optimal parameters would need a large

sample size in the order of O(105−6). One optimisation technique that overcomes the problem of large sample sizes is the

so-called Particle Swarm Optimisation (PSO) (Poli et al., 2007). PSO is based on social interaction among particles of the

’swarm’. Initially, each particle is placed randomly in the parameter space and has a random velocity. For all particles the

cost function J is calculated (Eq. (21)) . This determines the “fitness” of each individual and of the swarm as a whole. Now,20

each particle updates its current position and velocity in the parameter space depending on its current and current-best fitness

position, and also on the global best-fitness position, with some random perturbations. The next iteration starts after all particles

have moved. Eventually, the swarm as a whole moves to the minimum of the cost function J . For our parameter calibration we

let 30 particles freely swarm within the four-dimensional parameter space. The global best-fitness solution found within 100

iterations2 is then regarded as optimal.25

3.3 Calibration results

The ice-sheet surface temperature is very well constrained by the atmospheric forcing fields. Therefore, the surface temperature

in SEMIC is similar to the one calculated by MAR, as the annual mean differences and the ice-sheet averaged time series show

(Fig. 3 and 5). The annual mean difference between SEMIC and MAR is about -0.2 K over the ice sheet and -0.2 K over ice-free

2Note, 100 iterations are a pre-defined upper limit and usually solutions tend to converge earlier.
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land. While large parts of the ice sheet are slightly colder in SEMIC, temperatures at the ice divides are slightly warmer in

SEMIC (see Fig. 3).

The surface mass balance is also well captured by SEMIC. The largest differences occur in the ablation zones of region 1

and 2 around the margin of the ice sheet. While melting over the northern part of the ice sheet is overestimated by SEMIC,

it is underestimated over the southern part of the ice sheet. Nonetheless, the overall surface mass balance difference over the5

ice sheet between SEMIC and MAR is 0.13 mm/day, with SEMIC having an average surface mass balance of -1.38 mm/day

(-1.51 mm/day in MAR). The relative difference between SEMIC and MAR is about 9% over the whole ice-sheet.

In regions where surface mass balance is positive, errors are small because accumulation is mainly prescribed by snowfall

and to a lesser extent by sublimation/evaporation. Therefore, differences in ablation are more important because they arise

dynamically from SEMIC. The introduced diurnal cycle parameterisation is critical here; it allows melting and refreezing10

within one time step which would be prohibited otherwise.

SEMIC produces less melt than MAR by 0.11 mm per day, with an average annual ice-sheet melt rate of 3.38 mm per day,

which corresponds to a relative difference of about 5% compared to MAR. This is a result of more refreezing and larger

sublimation rates in the ablation zone of the ice sheet.

SEMIC is able to capture both, the increase and decrease of surface mass balance as well as the seasonal melting as shown15

for the different regions in Fig. 4. As can be seen from Fig. 4, errors in melt rates and the surface mass balance accumulate over

time. Particularly, over land and around the ice sheet margin (region 1 and partly region 2), the surface mass balance is slightly

too large. This will have an effect on SEMIC’s performance for the historical simulation and for RCP 8.5 (2005–2100).

The Taylor diagram in Fig. 7 summarises the performance of SEMIC compared to MAR and its multi-layer snowpack model.

Except the surface mass balance in the interior of the Greenland ice sheet (region 3), all variables are reasonably close to the20

reference value of each regions’ time series in terms of their variability, measured via their standard deviation and their match

to the corresponding MAR variables, via their correlation. A detailed look into each time series (Fig.5) further supports our

results that SEMIC and MAR variables are reasonably close to each other, especially during the whole melt season.

We find that the overall differences between SEMIC and MAR temperature and surface mass balance are reasonably small.

SEMIC’s annual mean values of surface temperature and surface mass balance are well suited for applications of interactive ice25

sheet models. The optimisation guarantees that the regionally averaged MAR and SEMIC time series are as close as possible

(as defined by the cost function). Still, SEMIC is sensitive to the choice of parameters. Next we show how perturbed parameters

around their optimal values affect the surface energy and mass balance of the ice sheet.

3.4 Parameter Sensitivity

We identified parameters that dominate model uncertainties and tested the parameter sensitivity on the model performance30

(e.g., Fitzgerald et al., 2012). We addressed the sensitivity of each SEMIC parameter listed in Table 1 (Fig. 6). Therefore, we

varied each parameter freely while keeping the others at their optimal value. In this way, we estimated the contribution of each

individual parameter on the cost function J . The effect of parameter variations on the individual cost function for surface
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temperature Ts, surface mass balance SMB, surface melt, shortwave radiation SWnet is also calculated because each variable

responds differently to different model parameters.

As can be seen for all parameter sensitivity graphs in Fig. 6, the Particle Swarm Optimisation was able to find the optimal

value for each parameter, i.e., PSO minimises J . Therefore, we are confident that this optimal parameters set provides us with

a globally optimised model setup.5

The sensitivity to the diurnal cycle amplitude A is largest for melting because A directly defines the magnitude of daily melt

rates. IfA is too low, melt would be underestimated in SEMIC compared to MAR; and vice versa for too largeA. However, the

surface mass balance itself is less sensitiveA than melting. The reason is that even if melting would be enhanced or suppressed,

refreezing would almost compensate for that because it depends on the available meltwater.

The sensitivity to the maximum snow albedo αs,max is, as to be expected, largest for the net shortwave radiation because it10

directly limits the amount of radiation absorbed in the snowpack. Melting is also sensitive to the amount of shortwave radiation

entering the snowpack. If more energy is available to raise the snowpack temperature the likelihood for melting is of course

larger as well. Melt is also sensitive to changes in the minimum snow albedo αs,min but the surface mass balance exhibits an

extraordinarily larger sensitivity.

Almost all cost functions show a sensitivity to variations of critical snow height hcrit. As before, the surface mass balance15

shows the largest sensitivity to changes in hcrit. Because hcrit determines how much weight we put on the snow albedo or the

background albedo, i.e., bare ice or land albedo, it directly influences how much shortwave radiation is absorbed.

The parameter sensitivities reveal that our previously calibrated parameters are close to the calculated local minima for each

of the individual cost functions.

4 Model validation20

As a final step of the full model analysis, we use the optimised model parameters for the following two model validation

runs: a) A historical run from 1970–2005 and b) an RCP8.5 scenario run from 2006–21003. This time, we compare SEMIC

with MAR for a whole time series instead of just a few years as done for the calibration. We take a closer look into the

regional differences of surface temperature, surface melt, and surface mass balance over the four previously defined regions

and calculate the corresponding time series of their annual mean values, as shown in Fig. 8.25

Annual mean surface temperatures correspond well with MAR results and both time series are hard to distinguish from

each other. To a lesser extent but still reasonably well, surface melt and surface mass balance are captured by SEMIC. The

decline of surface mass balance throughout the 21st century in the RCP8.5 scenario is evident over the three ice-sheet regions,

while the mass balance remains close to zero over ice-free land. Furthermore, SEMIC captures the year–to–year variations

throughout the historical and the RCP8.5 period. This tells us that the newly introduced diurnal cycle parameterisation makes30

SEMIC more realistic and thus comparable to more comprehensive and complex multi-layer snowpack models. We believe

3Data is available at ftp://ftp.climato.be/fettweis/MARv2/
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that a representation of the diurnal thawing and freezing cycle is essential for SEMIC and for physically correct mass balance

modelling in general, and thus represent an important advance.

The overall performance of SEMIC with respect to the more sophisticated regional climate model MAR is satisfactory, given

its intended use for long time-scale simulations. In the validation test we show that SEMIC is able to capture long-term trends

of the Greenland ice sheet under the RCP8.5 scenario, while also reproducing the interannual variability exhibited by MAR.5

5 Discussion

The definition of a cost function for the model calibration is a non-trivial task. SEMIC computes several variables which, in

principle, could all be included in the cost function. We choose to take into account, first, the net shortwave radiation which

is determined by the albedo parametrisation and its parameters and which in turn determines surface temperatures. Second

and third, the surface mass balance and the surface temperature are considered, in anticipation of the interactive coupling to10

an ice-sheet model. And fourth, melting to account for the newly introduced diurnal cycle parameterisation of thawing and

freezing. Still, it is clear that the choice of the cost function and the variables considered is subjective.

In the model calibration and validation we weighted each of the regions on the area. The area of the ice-free land and region

1, for example, is nearly as large as either region 2 or 3. Consequently, the influence of the smaller regions—here, land and

region 1—is much smaller than that of the larger ones, such as regions 2 or 3, despite region 1 being a major driver of surface15

melting.

For the calibration of model parameters, we explicitly chose the last three years, 2098–2100, of the RCP8.5 scenario because

those years exhibit the largest year-to-year variability as well as the largest surface melt rates/lowest mass balance rates for the

available period from 1970–2100 (see Fig. 8). Pushing SEMIC to its limits in terms of forcing it with the most extreme climate

conditions on record, is good evidence that our model can also represent less extreme climate conditions, such as, for example,20

the historical period or other any other RCP scenario.

There are two main reasons why surface temperature is better represented in SEMIC than the surface mass balance: 1)

Surface temperature is determined by the driving atmospheric processes, which in our case are prescribed by MAR atmospheric

forcing. Therefore changes in the atmosphere are directly reflected at the surface in terms of energy balance. 2) Surface

mass balance is harder to constrain because the processes within the snowpack are more complex. Mass can be added by the25

atmosphere via rain and snowfall, and mass can be removed via melting. Within the snowpack melted water can refreeze if

the temperature allows that. Refreezing depends on the available liquid water, i.e., rain or melted ice/snow, and on the energy

budget, i.e., the “cold content”. The multitude of feedbacks involved in the surface mass balance makes it far less constrained

by external forcing variables than surface temperature.

We only describe the large-scale effects of changes in the snowpack and we omit a microscopic description of snow physics30

(e.g., Vionnet et al., 2012). SEMIC can therefore be thought of as a surrogate of a more complex multi-layer snowpack

model. We have developed SEMIC as a coupler between interactive ice sheet models and EMICs (Earth-System Models of

Intermediate Complexity) or coarse resolution GCMs (General Circulation Models). SEMIC realistically represents the energy
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transfer between atmosphere and surface as radiation and turbulent mixing of heat and water vapour, thus providing a general

solution to the surface energy balance that is applicable for different climates and time scales.

Ice-free land and ice-covered land are treated differently in SEMIC because of the different physical processes involved. For

example, the surface temperature of ice- and snow-free land has no upper limit as is the case for surface temperatures of ice,

which is always lower than or equal to the freezing point. Generally, land albedo is much more variable than as described by5

the single bare land albedo used in SEMIC. Different land and vegetation types have different effects on the radiation budget.

Consequently, net shortwave radiation errors in SEMIC are larger over ice-free land than over the ice sheet (Fig. 3).

Details in model representation also reveal differences between SEMIC and MAR. However, these differences are not so

much related to the underlying physical principles, i.e., the assumption of energy and mass balance of the snow- and ice-covered

surface, as to the choice of parameters made in order to match SEMIC variables to MAR variables.10

SEMIC makes use of two simple but effective parameterisations that are important for its good performance: One is the

surface albedo for which we already discussed the problem of the net shortwave radiation budget over ice-free land. Although

the net shortwave radiation has an effect on the surface energy balance, errors do not translate directly into errors in the surface

temperature (Fig. 3). One reason is that the contribution of sensible and latent heat flux is larger over ice-free land because of

the larger temperature contrast. Latent heat flux, for example, is about 10 times larger over ice-free land than over the ice sheet.15

Another reason for SEMIC’s good performance is the diurnal cycle parametrisation, which allows for faster computation

while adding the daily thaw–freeze cycle during melt season. The representation of the diurnal cycle of the whole ice sheet by a

single constant value is somewhat problematic because in reality, it changes over time and location, depending on the climatic

conditions, e.g., cloud cover and its effect on downwelling longwave radiation. Still, the overall results of SEMIC with respect

to surface mass balance are satisfactory. The diurnal cycle opens many new aspects which could improve model results, e.g.,20

a spatial dependence such as height-dependent amplitude or a direct calculation of the amplitude by the coupled atmospheric

model, but this is beyond the scope of this paper. Also, a different or a more realistic albedo scheme could replace the current

temperature-dependent implementation based on the work by Slater et al. (1998).

Our results underpin the consistent representation of the dominant processes involved in the complex interactions between

snow- or ice-covered surfaces and the atmosphere. SEMIC incorporates simpler dynamics compared to multi-layer snowpack25

models, but represents the essential surface energy and mass balance processes, and is still fast in terms of computational time.

SEMIC is well suited for long-term integrations up to several millennia and has been successfully tested for the last 78,000

years (data taken from Heinemann et al., 2014, personal communication). From the 100 year run-time estimate we can assume

that computation of the surface mass balance on every single day during one glacial cycle (of about 100 k years) would take

about 11 h. Current state-of-the-art multi-layer snowpack models are not able to perform such long integrations but they also30

do not serve this purpose. Under these circumstances, using a much simpler model—such as SEMIC—is advised.

SEMIC is well suited for applications with global climate models which have just started to master glacial time scales (e.g.,

Heinemann et al., 2014). SEMIC will be part of the next version of the regional energy and moisture and balance model

REMBO (Robinson et al., 2010) and is also ready to be coupled to an interactive ice-sheet model. SEMIC is considered as
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an open-source project, therefore contributions are welcome, and we encourage and support the integration of SEMIC into

ice-sheet models.

6 Conclusions

We have presented a new Surface Energy and Mass balance model of Intermediate Complexity (SEMIC) for snow- and ice-

covered surfaces that is simple and fast enough for long-term integrations up to glacial time scales. SEMIC is a physically5

based model that accounts for energy and mass balance and it can be used as a surrogate for computationally intensive regional

climate models with their multi-layer snowpack models. The most important features of SEMIC are a simple but effective

surface albedo parameterisation and a parametrisation of the daily thaw-freeze cycle that allows partitioning between melting

and refreezing. Compared to the more sophisticated regional climate model MAR, SEMIC represents surface temperature

and surface mass balance considerably well. SEMIC matches climatological trends, e.g., the RCP8.5 warming scenario, while10

preserving realistic interannual variability. It incorporates a minimum number of free model parameters and a large effort was

made to balance the complexity of the represented processes in favour of faster computation.

7 Scientific Reproducibility, Transparency, and Data Availability

We hereby acknowledge, support, and encourage research that follows standards with respect to scientific reproducibility,

transparency, and data availability. Any model source code and the authors’ manuscript source (typeset in LATEX) is freely15

available and accessible online.

The project infrastructure covering individuals step starting from data download and preparation, model source code com-

pilation, running the optimisation, running the calibrated model, running the model with historical and RCP8.5 scenario

data, as well as the source code of this manuscript with its figures can be downloaded from the repository website https:

//gitlab.pik-potsdam.de/krapp/semic-project. See the project website’s README.md for details. The project can also be cloned20

using git:

git clone -b v1.0 git@gitlab.pik-potsdam.de:krapp/semic-project.git
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symbol range value description

A 0.0–5.0 3.1 amplitude of diurnal cycle (in K)

αs,max 0.78–0.90 0.80 maximum snow albedo, i.e., fresh dry snow

αs,min 0.60–0.78 0.77 minimum snow albedo, i.e., old or wet snow

hcrit 0.001–0.5 0.09 snow height for which the grid-average snow cover fraction is 1/e (in m)
Table 1. Model parameters with their initial range and their optimal value in bold face.

symbol value description

∆t 86,400 s time step of one day

ceff 2·106J m−3 effective heat capacity snow/ice (volumetric)

CS 2.0·10−3 sensible heat exchange coefficient

CL 0.5·10−3 latent heat exchange coefficient

cp,a 1000 J kg−1K−1 specific heat capacity of air

σ 5.67·10−8 W m−2K−4 Stefan–Boltzmann constant

T0 273.15 K freezing point of water

ρw 1000 kg m−3 density of liquid water

Ls 2.83·106 J kg−1 latent heat of sublimation

Lv 2.5·106 J kg−1 latent heat of vaporisation

Lm 3.3·105 J kg−1 latent heat of melting (Ls −Lv)

Tmin 263.15 K minimum temperature threshold for albedo parametrisation

hs,max 5.0 m maximum snow height (cut-off)

αi 0.45 bare ice albedo, i.e., clean or blue ice

αl 0.15 bare land albedo
Table 2. Model constants and their description.
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symbol description

SW ↓ downwelling shortwave radiation (in W m−2)

LW ↓ downwelling longwave radiation (in W m−2)

ρa air density (in kg m−3)

us surface wind speed (in m s−1)

Ta near-surface air temperature (in K)

qa near-surface specific humidity (in kg kg−1)

ps surface pressure (in Pa)

Ps snowfall rate (in m s−1)

Pr rainfall rate (in m s−1)
Table 3. Atmospheric forcing fields needed as input for this model.

SEMIC MAR ∆ min∆ max∆

ic
e

sh
ee

t

Ts (in K) 255.6 255.4 -0.2 -0.7 2.7

SWnet (in W/m2) 30.6 31.3 -0.7 -9.6 7.7

SMB (in mm/day) -1.38 -1.51 0.13 -3.15 5.12

Melt (in mm/day) 3.38 3.57 -0.19 -4.66 2.94

la
nd

Ts (in K) 267.3 267.1 -0.2 -0.9 2.2

SWnet (in W/m2) 62.2 65.7 -3.5 -14.3 8.2

SMB (in mm/day) 0.15 -0.05 0.20 -0.09 1.20

Melt (in mm/day) 1.38 1.27 0.11 -1.00 0.63
Table 4. Comparison of SEMIC and MAR. Shown are multi-year (2098–2100) mean averages over the ice sheet and ice-free land, their

mean difference, and the minimum and maximum differences. Compare also to Fig. 3.
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Figure 1. Left: The diurnal cycle parametrised as cosine function with amplitude A around the mean temperature Ts. The dashed horizontal

line marks the analytical solution of the average above-mean temperature T+
s and the solid horizontal lines mark the below-mean temperature

T−s (see Eq. 11a and b). The circles denote the roots of the sinusoidal temperature cycle curve. Right: The mean diurnal cycle amplitude of

air temperature for the summer season (JJA) in MAR for the years 2098–2100.
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1

3

2

land

Figure 2. This region mask is used to estimate the region-averaged time series for the model calibration. Region 1 represents the ice margin,

while the other regions represent areas with seasonal melt (2) or almost no melt (3). This mask is readily available from the MAR model data

(named MSK).
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Figure 3. Comparison of modelled multi-year (2098–2100) mean surface temperature, net shortwave radiation, surface mass balance, as

well as surface melt between SEMIC (after model optimisation) and MAR. Differences between SEMIC and MAR are depicted in tho lower

panels. The outlined contour shows the boundaries of the three ice-covered MAR regions as shown in Fig. 2. See Table 4 for values of

minimum and maximum differences.
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Figure 5. Time series of ice–sheet averaged surface temperature (in K), net shortwave radiation (in W/m2), surface mass balance (in mm/day),

snow height (standardised by σ), surface melt (in mm/day), refreezing (in mm/day), latent heat flux (in W/m2), and sensible heat flux (in

W/m2) as calculated by MAR and by SEMIC with optimal parameters from Table 1 for the years 2098–2100 (= 36 months) of RCP8.5.

Note that hs is scaled via its standard deviation because SEMIC and MAR incorporate a different criterion of maximum snow height (5 m in

SEMIC; more than 10 m in MAR). The annotated number on the top left of each frame is the computed centered root mean square error as

defined in Eq. (20) and it marks the distance to the reference field as shown in the Taylor diagram Fig. 7.
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Figure 7. Taylor diagram of normalised surface temperature (TS), net shortwave radiation (SW), surface mass balance (SMB), and surface

melt (ME) averaged over the whole Greenland ice sheet (as in Fig. 5). The black star denotes the reference field, which has (per definition) a

standard deviation and a correlation coefficient of 1.
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Figure 8. Left: Annual-mean, region-averaged surface temperature, surface mass balance, and surface melt for SEMIC (thick lines) and

MAR (thin lines) using the optimal parameter values from Table 1. Right: Point-to-point comparison of the two models; variables and units

as in the left panel.
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