
The Authors would like to thank R2 for the helpful comments that helped to revise and 

improve the manuscript. Our replies are here in bold. Relevant changes in text and 

figures are illustrated at the end of this document, where added or modified text is 

highlighted in yellow. 

1) This is an interesting MS showing the powerful application of LA-ICPMS for high resolution 

(200 um) ice core analysis. This may have a lot of implication especially for low accumulation 

sites and/or abrupt changes.  

We are glad to see that R2 agrees with us that our cryo-cell LA-ICPMS methodology 

not only is powerful but also widely applicable.  

 

2) There are some novelties in this paper on the way the authors prepared the standards to 

convert the count per seconds (intensities) into concentrations. However they use standard 

riverine waters (SLRS) and a suspension of NIST648 leached with ultrapure HNO3, which 

resulted in an ice matrix standard which is far from the real ice matrix. We know that the 

slopes of the calibration curves are highly dependent from the matrix itself and I think 

therefore that the results may be strongly biased by the different ionization of the ice matrix 

compared to the standard ones.  

Ultimately we are ablating the same H2O matrix in both samples and standards, so we 

respectfully disagree with R2 that they are ‘far from the real ice matrix’. Using such 

artificial ice standards to calibrate LA-ICPMS analyses of ice goes back – with 

contrasting results as to the resultant homogeneity - to the pioneering work of 

Reinhard et al (2003), or Sneed et al. (2015).  In fact, 193 nm excimer laser-ablation is 

known to be relatively more matrix-tolerant (Guillong et al., 2003) compared to other 

ns-LA methodology) such that, for example, accurate results can be obtained for as 

contrasting matrixes such as carbonate samples standardized with Na-Ca-Al-Si-

glasses (the NIST61x glass suite). If available, we would appreciate a reference 

supporting the assertion ‘We know that the slopes … are highly dependent from the 

matrix itself…’, to be able to evaluate this ourselves.  

However, we want to stress that our standardization is far from being perfect given the 

problem of making very homogenous ice stds. In the absence of a usable internal std 

(OH-signal is not sufficiently above background), this level of matrix-matching is 

actually state-of-the-art and thus the currently best available. 

 

3) The authors should comment on this and clearly demonstrate how they obtain real 

concentration and not just relative changes that can be easily seen just looking at the 

variation of intensities. 

All of our Ice standards were prepared by dilution between 1:10 and 1:1000 of the 

certified reference material with ultrapure H2O (>18 MΩ·cm); we very mildly acidified 

these solutions with 1% ultrapure HNO3 to stabilize them before freezing and to align 

them with the acidity of the multi-elemental standard solution ICP1 (Sigma-Aldrich), 

which was the only one being originally (before dilution) in 10% HNO3, unlike all of our 

other standard solutions. We believe any bias introduced is contained within the ~ 16-



18 % error involved in the calibration procedure. This has been now clarified in the 

methodology section.  

 

4) In addition, the authors claim to use 24Mg, 27Al, 40Ca, 56Fe. All these masses are highly 

interfered by spectral and matrix interferences in ICPMS. Despite I think they used a SF-ICP-

MS or a collision-cell instrument to reduce the interferences, I think that a better description 

of the methodology should be given. I know that most of the details are given in Della Lunga 

(2014), but a minimal description of the methodology is compulsory.  

We have added several details regarding the methodology, including a description of 

the removal of interferences by the use of H2 in the Agilent 7500cs reaction cell; but 

we also note than these details are provided in our earlier publication in the Journal of 

Glaciology which had been included at the outset (Della Lunga et al., 2014). If the ice 

matrix was contributing to the signals on m/z=24, 27, 40, 56 then we would not obtain 

no resolvable counts from instrumental background for our ice blanks.  

 

5) Then, I do not fully understand the objective of the MS, since most of the findings are not 

new at all. I would have rather focussed the MS into a comparison between LA-ICPMS vs 

CFA, but this would have required a more robust statistical tool. 

I would therefore suggest the authors to readdress the MS to a specific target: i) analytical (in 

this case the paper lacks of many details), describing in detail the new advancement of this 

powerful technique and duly comparing the data with CFA results; in this case the 

reproducibility of the analysis on different sections is a key parameter, but as far as I can see 

there are no evidence of this in the paper; ii) more oriented toward a climatic/environmental 

interpretation; in this case the real benefit of the LA-ICP-MS approach should have been 

better explained. 

As we also state in the reply to R1, the focus of the manuscript was predominantly 

methodological yet with one integral case study of deep ice to illustrate the power of 

the significantly improved, in fact unprecedented, spatial resolution. To make this 

focus clearer, the revised manuscript now presents a stronger methodological section 

and a more detailed description of the signal emerging from ablation with 193 nm laser 

and its possible interpretation. The climatic picture emerging from our analysis of 

GI21.2 is intended to demonstrate the capability of the technique to recover extremely 

small scale variability together with Stadial-Interstadial fingerprint in dust and sea salt 

proxies for one of the most abrupt and short lived transitions in deep ice where ice 

layer thickness is becoming very small.  
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Introduction 

[……] This mechanism, which is thought to be the primary reason for sea-salt enrichment in ice cores during 

cooling events, receives further contributions of sea salt from another source.  When sea ice is formed, highly 

saline brine and fragile frost flowers form on top of the frozen surface. This brine represents a further source of 

aerosol, carried over land by the wind (Wolff et al, 2003). However, a quantitative assessment of the contribution 

of brine, frost flowers, and blowing snow to the wintertime peak in sea salt aerosol it is still a matter of debate 

(Huang and Jaegle, 2016).   

[……]The aim of the present study is to assess the sensitivity and the phasing of dust/sea-salt proxies as Na
+
, 

Fe
2+

, Al
3+

, Ca
2+

 and Mg
2+

 at a resolution of ~200 µm (providing approximately 50 data points per calendar year 

at this depth) across the abrupt warming into and cooling out of the precursor event GI-21.2. Furthermore, we 

present an updated fully quantitative calibration for the elements under investigation, following Della Lunga et 

al. (2014) and Müller et al. (2011). 

Methods and Calibration 

This section corresponds to more than two hundred years, given the observed layer thickness of ~10 mm 

(Vallelonga et al., 2012). In the flow-model-based GICC05modelext timescale, the section covers an age range 

of 85.09 – 84.86 ka b2k and includes the 100-year long GI-21.2 and the transitions in and out of this period 

(Wolff et al., 2010; Rasmussen et al., 2014). We utilized samples from a similar position within the ice core 

cross section as in Della Lunga et al. (2014). 



[……] The adopted methodology includes the acquisition of the following mass/charge ratios: 23(Na), 24(Mg), 

27(Al), 34(S), 39(K), 40(Ca), 44(Ca), 55(Mn), 56(Fe), 65(Cu), 85(Rb), 88(Sr), 89(Y), 138(Ba), 139(La), 

140(Ce), 141(Pr), 147(Sm), 153(Eu), 157(Gd), 172(Yb), 208(Pb), with dwell times ranging from 5 to 40 ms (see 

Della Lunga et al., 2014), and a total sweep time of 550 ms. Among these, only the following usually show 

resolvable signal/background ratio and will be displayed as results: 24(Mg), 27(Al), 40(Ca), 56(Fe). All elements 

were acquired in reaction mode, utilizing 4.5 ml/min of H2 in the octopole cell, allowing the removal of 

conventional plasma interferences via charge transfer reaction, particularly significant on mass 40(Ca) and 

56(Fe) from 
40

Ar and 
40

Ar
16

O. Mass 39(K), despite resolvable signal/background ratio, is affected by a 

potentially significant interference of 
38

ArH resulting from adding H2 in the reaction cell, and therefore will not 

be considered further. Formation of other hydrides has been monitored on specific isobaric-free masses (210, 

233) in no gas and H2 mode and resulted in no significant formation of such compounds in both cases.  Rare 

Earth Elements were monitored as indicator of further possible contamination due to smoothing and were not the 

main target of this study.  

[.…] Each element has been externally calibrated using a set of four custom-made ice standards chosen from a 

total of five (SLRS-5, SLRS-5_10, ICP-20, NIST1648a and Water Low), prepared at RHUL from four different 

standard solutions at different concentrations and different dilutions (Table S1, see supplementary material). All 

of our Ice standards except SLRS-5 were prepared by dilution between 1:10 and 1:1000 of the certified reference 

material with ultrapure H2O (>18 MΩ·cm); we very mildly acidified these solutions with 1% ultrapure HNO3 to 

stabilize them before freezing and to align them with the acidity of the multi-elemental standard solution ICP1 

(Sigma-Aldrich), which was the only one being originally (before dilution) in 10% HNO3, unlike all of our other 

standard solutions..  

This external calibration assumes overall comparable ablation characteristics of NGRIP ice and ice standards, 

which in view of their similar matrix are a satisfactory assumption. Furthermore, using m/z=17 (OH) as an 

internal standard following Reinhardt et al. (2003), is not feasible because the significantly lower sample 

consumption of UV-LA relative to IR-LA (Müller et al., 2011) does not result in a background-resolved ICPMS 

signal at m/z=17.  

[….] For each element, the slope of the equation of the regression line fitting all four standards in the linear plot 

has been calculated (together with the corresponding R
2
 value) and utilized to convert net-intensities into 

concentrations. For the sake of display Fig. 4 show all the regression lines in a log-log plot. 

Results 

[….]Figures 9 and 10 show a collection of maps of calibrated concentrations of the elements under investigation 

from a 4x4 mm cross section at depth of 2689.78 and 2689.55 m. These sections were chosen specifically from 

depths were concentrations were high and presented a considerable degree of small scale variability as inferred 

from our laser ablation profiles.  

LA-ICPMS-CFA data comparison 

For comparison, our cryo-cell LA-ICPMS data have been plotted together in Fig 5-8 with previously published 

CFA results from the same NGRIP depths (Vallelonga et al., 2012). In contrast to the cryo-cell LA-ICPMS 

resolution of ~0.2 mm, the CFA profiles of Na, δ
18

O, CFA-dust and conductivity have a resolution of 3.5, 50, 1.5 



and 1.5 mm respectively. The two datasets show some similarities: between a depth of 2691.50 and 2691.20 m 

the dust, and partly also the conductivity profiles present relatively high values, similar to what is observed for 

our elemental proxies, typical of the stadial GS-22 phase. At 2691.20 CFA-dust and LA data are both 

characterized by a decrease in concentrations, although the LA data show much clearer and abrupt features, 

marking the start of the GI-21.2 warm phase. Furthermore, minima for the entire section are located between 

depths of 2690.95 and 2690.15 m in both datasets. Also, both datasets agree in the shallowest part of the section, 

showing a more increasing trend starting at 2690.00 m. 

In Fig.5, Na data from CFA and LA-ICPMS analyses have been plotted together on the same y-scale. The two 

datasets show overall analogous patterns in most of the section and in some sections broadly comparable average 

values, such as between 2690.00 – 2689.25 m (70 ppb and 67 ppb in the CFA and LA-ICPMS profile, 

respectively). However, LA-ICPMS-Na characteristically is more variable and differs from CFA data in the 

intervals 2689.20 – 2688.65 m and 2691.5 – 2691.5 m, where LA-ICPMS Na is either higher or lower relative to 

CFA-Na, respectively. This seems to indicate that there is not an overall systematic shift between the two 

techniques (see below). In general, the difference between LA-Na and CFA-Na, could derive from the tendency 

of Na to show higher concentrations in the proximity of grain boundaries and junctions, as it is described in the 

following section. Therefore, laser ablation tracks show much higher variability as a result of scanning across 

several boundaries and junctions at small scale, introducing a factor of differentiation that is also reflected in our 

calibration since it reduces the homogeneity of our ice standards.  

As a further test, we compared the cryo-cell UV-LA-ICPMS data acquired in the frozen state with results from 

the same three NGRIP samples analysed via solution-ICPMS after melting (10 ml). The three samples 

correspond to three different depths in the immediate vicinity of GI-21.2 and representing a wide range of 

concentrations: early GS-22 (sample 4940A11), late GS-22 (sample 4900A3) and GI-21.1 (sample 4882B4). 

Results show that calibrated solution data are consistent with our LA-ICPMS data and differ by 5 – 20 %, which 

is essentially within our margin of error. Sample 4882B4, representing the last part of GS-21.2, shows the lowest 

concentrations amongst the three samples and also the consistently largest differences between solution and laser 

data (see Fig. S4 in the supplementary material). 

Origin of Laser ablation elemental signal 

The intensity of the LA-signal associated to a certain mass/charge ratio, characteristic to one element, is built up 

by two different contributions: one from soluble ions present in the ice matrix and the other one from dispersed 

insoluble mineral particles containing the element in their structure. Micro-particles in the NGRIP ice core have 

a mean grain size between 1 and 2 µm (Ruth et al., 2003) and therefore are too small to be identified 

unequivocally with our laser camera. Visual inspection of the sample before, after, and during ablation indicated 

that no residual spatter of the ablation process was deposited back onto the ice surface after the laser hit the 

sample, indicating a complete digestion of the material removed by the ablation pulses. This suggests that no 

fractionation between soluble and insoluble particle is taking place by effect of the laser sampling.  

We investigated the spatial distribution of Na, Mg, Al, Ca and Fe over two small horizontal planes (i.e, 

perpendicular to the core length axis) by analysing 2D maps of concentrations across two of these specific cross 

sections (Fig 9 and 10). These sections were constructed interpolating several acquisition points obtained via 

static laser drilling. Fig 9 and 10 both show concentrations spanning over a range of several tens of ppb for each 



element across the entire sections.  The cross-sections intersect few grain boundaries and junctions (as 

observable in the laser camera image). The grain boundary net has been overlaid in black onto the elemental 

maps and shows that, in most of the cases, high concentrations areas are located in the proximity of boundaries 

and junction, broadly mimicking their pattern.  In both cases, these patterns are somehow clearer for element like 

Na and Mg, related to sea salt, and become less defined going from Ca to Al and Fe. This might be associated 

with the fact that the elemental signal has a relative increasing contribution from micro-particles going from Ca 

to Al, to Fe, whereas the contribution from micro-particles to the Na and Mg signal would be minimal. This 

would also suggest that micro-particles are slightly less inclined to be aligned on boundaries and junctions 

compared to soluble impurities and therefore generate a less defined pattern of concentrations in our maps.  

Discussion 

[….] Most of the differences between CFA and LA-ICPMS proxies are observed at a small scale and are mainly 

influenced by few factors, the first of which is the effect of sample volume. In fact, we estimate that every LA-

ICPMS data point corresponds to ~120 ng of ablated ice (based on scanning speed and ice crater depth) whereas 

CFA sampling resolution is about 0.1-1 g for each data point (Vallelonga et al., 2012). This introduces a 

difference in the sampling volume between the two datasets that can also be influenced by surface effects and 

especially by the wavy nature of layers at this scale and core depth. This is particularly important for Na, whose 

lateral variability induced by any non-horizontal layering is also affected by diffusion of Na that has been 

observed at this depth, resulting in a smoothing of the CFA annual signal (Vallelonga et al., 2012). Furthermore, 

the CFA insoluble dust data presented here refer to measurements of particles of size >1 µm and therefore do not 

account for insoluble impurities of sub-micron size (Vallelonga et al., 2012).  

The elemental maps shown in Fig. 9 and 10 demonstrate that, at sub-cm scale, the concentrations of impurities it 

is strongly influenced by the presence of boundaries and junctions even when considering horizontal planes, 

whose original impurity-input is therefore assumed to be roughly identical. This introduces a main source of 

differentiation between LA and CFA sampling and can account for some of the small-scale variability we 

observe in the LA-profiles. This is particularly relevant for element like Na and Mg whose 2D distribution seems 

to follow closely the grain boundary net, presenting higher concentrations in the proximity of boundary and 

junction. On the other hand, ‘dust’-proxies as Ca, Al and Fe, do not show such a closer overlap of high intensity 

and presence of boundaries or junctions, possibly as a result of being increasingly associated with insoluble 

micro-particles dispersed in the ice matrix, which indeed constitutes the CFA-Dust signal. This suggests that 

micro-particles in the ice matrix are less inclined to reside on boundaries and junction compared to soluble ions 

and is consistent with previous studies of deep ice cores (Della Lunga et al., 2014; Eichler et al., 2016).  As a 

result, the averaging of LA-signal between two or more parallel tracks spaced by few mm is not only desirable 

but necessary.   
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Figures Captions 

 

Figure 1: δ18O profile across the transition from GS-22 to GI-21.1 (modified from Vallelonga et al., 2012). Stadial and 

interstadial periods are highlighted in blue and red, respectively. The black box and arrow indicate the corresponding 

section of ice core analysed for this study.  

 

 

Figure 2: Ice standard preparation at RHUL. a) 1 ml of aqueous standard solution is pipetted into the inner volume of 

a PTFE mould featuring a removable glass surface at the bottom to allow the solution to spread uniformly creating a 

thin layer of water. b) The mould is dipped into liquid nitrogen to instantaneously shock-freeze the solution. This 

procedure is repeated five times to build up an ice volume by shock-freezing layer by layer of 5 ml total volume 

resulting in an ice volume approximately 45x10x10 mm. Each ice standard was then surface-cleaned using our PTFE 

vice before analysis (see text). 



 

Figure 3: Example of raw intensity data of NIST612 glass (first and last peak) compared to one of the ice standards 

prepared for this study (ICP-20). Standard data were acquired following three cleaning runs, and show that the ice 

standard appears rather homogeneous with typical RSD values between ± 10 and 15 %. See text for details. 



 

Figure 4: Calibration lines for elements under investigation obtained utilizing the ice standards listed in Table S1 

(supplementary material). LOD indicates limits of detection. See text for details. 



 

Figure 5: Cryo-cell-LA-ICPMS element concentration profiles of Na, Mg, Al, Ca, and Fe and corresponding Na, δ18O 

and CFA-dust profiles at 3.5, 50 and 1.5 mm resolution respectively (the latter three from Vallelonga et al., 2012) 

across 2.85 m of NGRIP ice core that spans from approximately 85090 to 84860 a b2k (±20 a) and contains GI-21.2. 

The coloured lines are individual LA-ICPMS data points; black lines represent adjacent-element moving average 

(period 200). It should be noted that cryo-cell-LA-ICPMS Na LOD is 48.3 ppb, which renders most of the interstadial 

and some stadial Na data undetectable. Overall, Na is mainly shown to allow some comparability with existing CFA 

Na data (Vallelonga et al., 2012). See text for details. 



 

Figure 6: Zoomed-in cryo-cell LA-ICPMS profiles of a 200 mm window from the deepest part of the GI-21.2 section 

(cold/warm transition), analysed for the most significant elements and spanning about two decades around 85.1 ka 

b2k.  Coloured lines represent LA data, black lines are 30-points moving averages. A switch between stadial and 

interstadial typical concentrations is observable around 2691.20 m, happening over the space of just ~10 mm. 

Conductivity and CFA-dust are from Vallelonga et al. (2012). 



 

Figure 7: Zoomed-in cryo-cell LA-ICPMS profiles of a 300 mm window from the middle part of the GI-21.2 section 

analysed for the most significant elements and spanning about two decades around 85.0 ka b2k (cold-warm 

transition). Coloured lines represent LA data, black lines are 30-points moving averages. A gradual increase in 

dustiness is observable starting from a depth of 2689.95 m going towards shallower depths, representing the GI-21.2 – 

GS-21.2 transition, which in this case takes place over the space of ~150 mm. Conductivity and CFA-dust are from 

Vallelonga et al. (2012). 



 

Figure 8: CFA conductivity, CFA dust, LA-Fe, LA-Ca, LA-Al and LA-Mg direct comparison across a detailed 3-cm 

zoom. In this case, laser ablation data have not been smoothed. Conductivity and CFA-dust are from Vallelonga et al. 

(2012). The profiles show sub-annual variations that contribute to the CFA annual signal. 

 

 

 

 

 

 

 

 

 

 



 

Figure 9: 2D maps of calibrated concentrations of elements under investigation (Na, Mg, Ca, Al, Fe) across a 4x4 mm 

cross section with overlaid grain boundary net in black as observed in transmitted light (upper right ) from a depth of 

2689.78 m.   

 



 

Figure 10: 2D maps of calibrated concentrations of elements under investigation (Na, Mg, Ca, Al, Fe) across a 4x4 mm 

cross section with overlaid grain boundary net in black as observed in transmitted light (upper right ) from a depth of 

2689.65 m.   



Supplementary material 

 

 

Figure S1: LA-ICPMS instrumental drift correction. The data points represent NIST612 values 
acquired in between the ice samples during a single run (axes are color-coded). Sensitivity 
typically decreases slightly during the analysis and the slope of each element‘s regression line 
has been utilized to correct instrumental drift according to eq.1 (See text for details). 



 

Figure S2: UV-LA-ICPMS analysis of an ice blank. The analysis includes three passages of the 
laser with 280 µm spot size, 25 Hz repetition rate and 8 mm/min speed, while the last 
acquisition track has been performed with 212 µm spot size, 20 Hz repetition rate and 3 
mm/min speed where no analytes are above ICPMS background anymore. Analytes are the 
most abundant isotopes for each element. Table 1 lists the calibrated concentration (in ppb) of 
the major elements under investigation in the ultrapure water utilized to create ice blanks. See 
text for details.  

 

 

 

 

 

 

 



 

Figure S3: Reproducibility of LA tracks: example of raw intensities (cps) of main elements from 
2 mm apart parallel ablation tracks acquired over 15 cm (3 samples) between depths of 
2691.45-2691.30 m (left to right).  



 

Figure S4: Comparison between solution data and cryo-cell UV-LA-ICPMS data on three 
different samples corresponding to three different 50-mm depth intervals: 4940A11 (depth 
range: 2716.45 – 2716.50 m), 4900A3 (depth range: 2694.85 – 2694.90 m) and 4882B4 (depth 
range: 2684.875 – 2684.925 m), representing small sections of early GS-22, late GS-22 and GI-
21.1, respectively. Results show that LA and solution data differ of only 5 – 20% and therefore 
are within error margins. See text for details. 

 

 

 

 

 

 

 

 

 

 

 



Table S1: Concentration of elements under investigation in aqueous reference materials used for ice standard 
preparation: SLRS-5-“River water reference material for trace metals” (National Research Council of Canada, diluted 10 
times [SLRS-5_10] when not specified), Water low (RHUL internal standard), 90243 Multi-element standard solution 1 
for ICP (Sigma Aldrich, diluted 20 times), and NIST SRM 1648 Urban Particulate reference material (in suspension, see 
text for details). Blank concentrations (in ppb) of ultrapure water at RHUL were obtained in solution mode and are 
shown on the right column. Limit of detection (LOD) refer to cryo-cell LA-ICPMS analyses only. 

 Standard name   

SLRS-5_10 ICP-20 Water Low NIST1648a  RHUL 

Deionized 
water 

Element concentration 

(ppb) 

concentration 

(ppb) 

concentration 

(ppb) 

concentration 

(ppb) 

LODs  

LA-

ICPMS 

(ppb) 

(ppb) 

 

Al 4.95 ± 0.5 

49.5 ± 4.8 

(SLRS-5) 

2525±2.5 9.8±0.1 1683±16 1.12 0.012 

Fe 9.1 ± 0.6 

91 ±6 (SLRS-5) 

505±0.5 9.8±0.1 1924±20 1.06 0.627 

Ca 1050 ± 40 

10510±380 

(SLRS-5) 

505±0.5 48.9±0.3 3126±15 0.63 0.606 

Mg 254 ± 16 

2541±155 

(SLRS-5) 

505±0.5 48.9±0.3 394±5 0.92 0.021 

Na 538 ± 10 

5380±105 

(SLRS-5) 

2525±2.5 244±1.5 209±4 48.3 - 

 

 


