
The Authors would like to thank anonymous reviewer R1 for the very helpful comments, 

following which we have decided to revise the manuscript in order to include more figures 

and discussions concerning the small-scale variability and the soluble/insoluble origin of the 

LA elemental signatures observed. Our replies are here in bold. Relevant changes in text and 

figures are illustrated at the end of this document, where added or modified text is 

highlighted in yellow. 

 

1) This paper presents the application of a new high‐resolution (~200 µm) analytical technique 

to a period of abrupt climate change in the NGRIP ice core (actually a 2.85 m section 

representing about 250 years). I actually find this paper quite hard to review: on the one hand 

the technical achievement is good and worth documenting. On the other hand what we learn 

from it is minimal, and there are many more interesting things the authors could have done. 

 

It is correct that our paper focuses on the methodology and novel calibration with one case-

study, which primarily aims at highlighting the now achievable sub-annual resolution in very 

deep ice cores via cryo-cell LA-ICPMS and which is not possible conventionally. On the other 

hand, our data do provide further evidence for an extremely abrupt mechanism that 

sustainably changes ‘dust’ proxy concentrations across Stadial-Interstadial transitions, and 

which – as R1 also points out – we crucially extend to this ice core depth and for such a short-

lived DO event (GI.21.2 – also defined ‘precursor’ event after Capron et al., 2010, where 

conventional CFA hardly resolves such rapid changes.) Extending this to one of the earliest 

DO-events in conjunction with what had been observed in other DO events (Steffensen et al., 

2008; Thomas et al., 2008), will eventually allow the community to edge closer to identifying 

a mechanism driving these changes. To study especially the early Stadial-Interstadial events, 

we provide both the previously unavailable tool and initial results.  

 

2) I therefore think the authors have two choices. One alternative is that they should shorten 

the paper and just present it as a proof of concept. The other is that they should add to it – 

possibly involving new analyses but certainly new data treatments, to try to give new insights 

into what benefits such a technique might bring. 

 

In keeping with our reply to point 1) we have introduced a new subsection with figures and 

related text that display our 2D mapping of elemental concentration at specific sample cross-

sections. This contribution resulted from several parallel tracks run parallel to the main 

ablation tracks. It helps to clarify the spatial variability of element concentrations at the 

(sub)mm-scale, and therefore allows further discussions about mobility of elements and 

soluble/insoluble impurities.  
 
3) The positive part is that the authors have successfully used laser ablation to determine 5 

elements at 200 µm resolution. They describe the way they cleaned the samples (partly with the 

laser) and the novel way in which they produced quasi‐homogeneous standards. I congratulate 

them on this. 

Thank you.  
 
4) The headline findings from the study are not new: that dust elements change very rapidly 



(annual scale) at the start of a D‐O event (this was already said as far back as Fuhrer et al 1999), 

and that they appear to change before the water isotopes (already covered by Steffensen et al 

and Thomas et al). Sure, this is the oldest section on which such a finding has been confirmed, 

but as only one event is studied it just adds an example rather than offering a generalisation, 

and certainly doesn’t provide evidence to make new ideas about the mechanism. Of course, this 

is not the authors’ fault. On the other hand they could have taken the opportunity to really 

discuss what the advantages and drawbacks of such high resolution might be. I can suggest 

several lines of study they could have taken: 

We consider our contribution relevant not only methodologically but also application-wise as 

we show – as R1 (and indeed also R2) state and acknowledge as novelties – a way to achieving 

sub-annually resolved data for one of the very early Greenland DO-events (or indeed for other 

low accumulation sites). Yes, only one, but at least one of the very early ones. We simply do 

not consider this manuscript space-wise to be the appropriate place to show more DO-

transition data plus an extended discussion; this is planned for another contribution about to 

be submitted for publication.  
 
5)  

1. An obvious issue is how reproducible the data from such narrow tracks are. The authors 

say they ran parallel tracks but then do not show us the data so we can assess. I don’t 

know how far apart the tracks were, but parallel tracks across the core at cm distances 

would have given a crucial clue to reproducibility, which in turn would allow a 

conclusion as to whether the advantages of high resolution are real (providing evidence 

of climate variability) or illusory (providing evidence of depositional noise).  

We have added a paragraph in the methodology section addressing track 

reproducibility, illustrated by a figure in the supplementary material (new Fig. S3) that 

displays two parallel tracks (2 mm apart) along three consecutive samples for a total 

of 15 cm. The data show that the patterns generally preserve the overall shape and 

the intensities maintain similar absolute values over the entire length, with local 

variations induced by a differential presence on the ablation track of micro-particles 

(possibly) or grain boundaries and triple junctions.  

  
2. A second issue concerns diffusion. It is generally assumed that water isotopes diffuse a 

few cm in the firn and then also in solid ice, sulfate peaks appear to diffuse, while dust 

probably does not diffuse. What about these elements? Here are data apparently 

showing the retention of mm scale structure at 80 ka ago. This is interesting in its own 

right and would be even more so if compared to the structure at the start of DO events 

in the younger part of the record. It might even have been possible to derive diffusion 

coefficients, which might be crucial when investigating even older ice (eg in Antarctica).  

Our 2D maps outline a pattern of elevated elemental concentrations in the proximity 

of grain boundaries (but see also Della Lunga et al., 2014). Furthermore, 2D maps of 

the most soluble (‘sea-salt’) proxies show a closer match between the high 

concentrations zones and the grain boundary network. This could be ascribable to a 

relative difference in the source of the elemental signals, being increasingly related to 

randomly dispersed dust micro-particles going from Na to Fe. A quantitative 

treatment of diffusion coefficients goes beyond what we had intended to present in 

this contribution but is certainly something to be reported in a future publication as it 



is contained in the PhD thesis of the first author already (DDL).    

 

3. What is this method actually analysing and how does that compare to what CFA and IC 

measure? We are shown a comparison only for Na (not counting dust which cannot be 

compared quantitatively). Why? This seems crucial and even if the data are not yet 

available from the CFA for eg Ca (which is odd if Na has been measured), it would have 

been trivial to prepare a few 1 cm samples for IC analysis. This seems critical because 

Fig 5 seems to show unexpectedly poor agreement for Na, which certainly needs 

discussion. But in general the consideration of whether this method measures more of 

the insoluble component than CFA/IC would have been an important analytical 

discussion that could have been included.  

Following on from our previous comment, we introduced further discussions of Na 

data and especially the differences between CFA and LA-ICPMS in terms of 

soluble/insoluble particles analysed. Unfortunately, high resolution Ca (CFA data) is 

not available for the corresponding depth interval. However, we do want to stress 

that this information requested by R1 is in part already contained in the original 

manuscript in form of Fig. S4 (now, former S3), which shows a comparison of cryo-cell-

LA and solution ICPMS data. 

 

I will discuss a few details below, but as already outlined, the issues above could be discussed; if 

the authors prefer not to then the paper should be cut back to an analytical proof of concept. 
 
Detailed comments: 
 
6) Page 2, para 1. You seem to come down on one side of an ongoing discussion about whether 

the cold period enhancement is mainly due to increased transport or to the presence of a sea 

ice source. It would better reflect the science if you left that open. 

We have added a sentence clarifying that the role of salty brines or blowing snow on top of 

sea ice it is still a matter of debate concerning their contribution to the wintertime peak in sea 

salt aerosol.   
 
7) Page 2 line 23. It gives a misleading impression to state that rge resolution is 

“nominally…weekly” because precipitation intermittency and snowdrift mean that weekly 

resolution is certainly not available. I suspect you know that with your use of the word 

“nominally”, and you should explain that. 

We changed the expression to “50 data points per year”, avoiding the misleading 

impression.  
 
8) Page 3, line 1. You say that the section “covers” GI21.2, and then give an age range of 370 

year (84.70‐85.07 ka) for that. But in the abstract you refer to it as a 250 year section, even 

though Fig 1 shows that it is actually wider than GI21.2. This is incompatible – please correct. 

The ages of GI21.2 have now been corrected and clarified. Sorry for the confusion and 

thanks for pointing out the inconsistency. 
 
9) Page 3, line 16. Sorry to be picky but you cite Fig 5 before Figs 2‐4. 
This sentence has been moved towards the end of the methodology section.  
 



10) Eq 1 and line 25 is confusing. If I understand it m_i is the slope of intensity vs time, whereas 

your wording made me think it was the slope of the calibration (intensity vs standard 

concentration). Please clarify. I think Fig 1 would be better shown as linear rather than log plots, 

as the log plot hides the extent of the drift. 

We have added in brackets the reference to Fig S1 to clarify that the mstd_i coefficient refers to 

the slope of instrumental drift. This figure was changed and now shows a linear y-axis. 
 
11) Page 4, line 25. Is this the R^2 of lin‐lin or log‐log plots? You show log plots but then 

describe it as a linear regression. Please clarify. 

R2 and linear regression slopes were calculated from lin-lin plots. The plot utilizes log-log axis 

for the sake of display only. It has been now clarified in the text how the R2 values and slope 

coefficient were derived.  
 
12) Page 4, line 31. Here is where you say you analysed two parallel tracks to assess 

reproducibility but then you never do so. 

New Fig S3 now displays two parallel tracks on three consecutive samples to assess 

reproducibility. A paragraph in the text was added to illustrate the figure.  
 
13) Results, page 5‐6, seems repetitive (last para page 5 and first para page 6). Combine them 

into something clearer? 

The Results section has been revised; we removed some of the repetition in the first part 

and added a paragraph towards the end to describe the figures added after this revision. 
 
14) Page 6, line 9, should be Figs 6 and 7 not 8 and 9. 
Noted and changed. 
 
15) Page 6, data comparison, lines 27‐32. It is clearly not true that Na is comparable between 

the two techniques. While they match OK at 2689.7‐2690.0, they are at least a factor 3 off in 

the shallower section. This needs a better and more correct discussion. (And of course I would 

like to see the same for Ca). 

Discussion concerning Na data and soluble/insoluble origin of ‘sea-salt’ and ‘dust’ proxies 

has been added to address some of the discrepancy between CFA and LA-data and what can 

be concluded from that.  
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Introduction 

[……] This mechanism, which is thought to be the primary reason for sea-salt enrichment in ice cores 

during cooling events, receives further contributions of sea salt from another source.  When sea ice is 

formed, highly saline brine and fragile frost flowers form on top of the frozen surface. This brine represents 

a further source of aerosol, carried over land by the wind (Wolff et al, 2003). However, a quantitative 

assessment of the contribution of brine, frost flowers, and blowing snow to the wintertime peak in sea salt 

aerosol it is still a matter of debate (Huang and Jaegle, 2016).   

[……]The aim of the present study is to assess the sensitivity and the phasing of dust/sea-salt proxies as 

Na
+
, Fe

2+
, Al

3+
, Ca

2+
 and Mg

2+
 at a resolution of ~200 µm (providing approximately 50 data points per 

calendar year at this depth) across the abrupt warming into and cooling out of the precursor event GI-21.2. 

Furthermore, we present an updated fully quantitative calibration for the elements under investigation, 

following Della Lunga et al. (2014) and Müller et al. (2011). 

Methods and Calibration 

This section corresponds to more than two hundred years, given the observed layer thickness of ~10 mm 

(Vallelonga et al., 2012). In the flow-model-based GICC05modelext timescale, the section covers an age 

range of 85.09 – 84.86 ka b2k and includes the 100-year long GI-21.2 and the transitions in and out of this 

period (Wolff et al., 2010; Rasmussen et al., 2014). We utilized samples from a similar position within the 

ice core cross section as in Della Lunga et al. (2014). 

[……] The adopted methodology includes the acquisition of the following mass/charge ratios: 23(Na), 

24(Mg), 27(Al), 34(S), 39(K), 40(Ca), 44(Ca), 55(Mn), 56(Fe), 65(Cu), 85(Rb), 88(Sr), 89(Y), 138(Ba), 

139(La), 140(Ce), 141(Pr), 147(Sm), 153(Eu), 157(Gd), 172(Yb), 208(Pb), with dwell times ranging from 

5 to 40 ms (see Della Lunga et al., 2014), and a total sweep time of 550 ms. Among these, only the 

following usually show resolvable signal/background ratio and will be displayed as results: 24(Mg), 27(Al), 

40(Ca), 56(Fe). All elements were acquired in reaction mode, utilizing 4.5 ml/min of H2 in the octopole 

cell, allowing the removal of conventional plasma interferences via charge transfer reaction, particularly 



significant on mass 40(Ca) and 56(Fe) from 
40

Ar and 
40

Ar
16

O. Mass 39(K), despite resolvable 

signal/background ratio, is affected by a potentially significant interference of 
38

ArH resulting from adding 

H2 in the reaction cell, and therefore will not be considered further. Formation of other hydrides has been 

monitored on specific isobaric-free masses (210, 233) in no gas and H2 mode and resulted in no significant 

formation of such compounds in both cases.  Rare Earth Elements were monitored as indicator of further 

possible contamination due to smoothing and were not the main target of this study.  

[.…] Each element has been externally calibrated using a set of four custom-made ice standards chosen 

from a total of five (SLRS-5, SLRS-5_10, ICP-20, NIST1648a and Water Low), prepared at RHUL from 

four different standard solutions at different concentrations and different dilutions (Table S1, see 

supplementary material). All of our Ice standards except SLRS-5 were prepared by dilution between 1:10 

and 1:1000 of the certified reference material with ultrapure H2O (>18 MΩ·cm); we very mildly acidified 

these solutions with 1% ultrapure HNO3 to stabilize them before freezing and to align them with the acidity 

of the multi-elemental standard solution ICP1 (Sigma-Aldrich), which was the only one being originally 

(before dilution) in 10% HNO3, unlike all of our other standard solutions..  

This external calibration assumes overall comparable ablation characteristics of NGRIP ice and ice 

standards, which in view of their similar matrix are a satisfactory assumption. Furthermore, using m/z=17 

(OH) as an internal standard following Reinhardt et al. (2003), is not feasible because the significantly 

lower sample consumption of UV-LA relative to IR-LA (Müller et al., 2011) does not result in a 

background-resolved ICPMS signal at m/z=17.  

[….] For each element, the slope of the equation of the regression line fitting all four standards in the linear 

plot has been calculated (together with the corresponding R
2
 value) and utilized to convert net-intensities 

into concentrations. For the sake of display Fig. 4 show all the regression lines in a log-log plot. 

Results 

[….]Figures 9 and 10 show a collection of maps of calibrated concentrations of the elements under 

investigation from a 4x4 mm cross section at depth of 2689.78 and 2689.55 m. These sections were chosen 

specifically from depths were concentrations were high and presented a considerable degree of small scale 

variability as inferred from our laser ablation profiles.  

LA-ICPMS-CFA data comparison 

For comparison, our cryo-cell LA-ICPMS data have been plotted together in Fig 5-8 with previously 

published CFA results from the same NGRIP depths (Vallelonga et al., 2012). In contrast to the cryo-cell 

LA-ICPMS resolution of ~0.2 mm, the CFA profiles of Na, δ
18

O, CFA-dust and conductivity have a 

resolution of 3.5, 50, 1.5 and 1.5 mm respectively. The two datasets show some similarities: between a 

depth of 2691.50 and 2691.20 m the dust, and partly also the conductivity profiles present relatively high 

values, similar to what is observed for our elemental proxies, typical of the stadial GS-22 phase. At 2691.20 

CFA-dust and LA data are both characterized by a decrease in concentrations, although the LA data show 

much clearer and abrupt features, marking the start of the GI-21.2 warm phase. Furthermore, minima for 



the entire section are located between depths of 2690.95 and 2690.15 m in both datasets. Also, both 

datasets agree in the shallowest part of the section, showing a more increasing trend starting at 2690.00 m. 

In Fig.5, Na data from CFA and LA-ICPMS analyses have been plotted together on the same y-scale. The 

two datasets show overall analogous patterns in most of the section and in some sections broadly 

comparable average values, such as between 2690.00 – 2689.25 m (70 ppb and 67 ppb in the CFA and LA-

ICPMS profile, respectively). However, LA-ICPMS-Na characteristically is more variable and differs from 

CFA data in the intervals 2689.20 – 2688.65 m and 2691.5 – 2691.5 m, where LA-ICPMS Na is either 

higher or lower relative to CFA-Na, respectively. This seems to indicate that there is not an overall 

systematic shift between the two techniques (see below). In general, the difference between LA-Na and 

CFA-Na, could derive from the tendency of Na to show higher concentrations in the proximity of grain 

boundaries and junctions, as it is described in the following section. Therefore, laser ablation tracks show 

much higher variability as a result of scanning across several boundaries and junctions at small scale, 

introducing a factor of differentiation that is also reflected in our calibration since it reduces the 

homogeneity of our ice standards.  

As a further test, we compared the cryo-cell UV-LA-ICPMS data acquired in the frozen state with results 

from the same three NGRIP samples analysed via solution-ICPMS after melting (10 ml). The three samples 

correspond to three different depths in the immediate vicinity of GI-21.2 and representing a wide range of 

concentrations: early GS-22 (sample 4940A11), late GS-22 (sample 4900A3) and GI-21.1 (sample 

4882B4). Results show that calibrated solution data are consistent with our LA-ICPMS data and differ by 5 

– 20 %, which is essentially within our margin of error. Sample 4882B4, representing the last part of GS-

21.2, shows the lowest concentrations amongst the three samples and also the consistently largest 

differences between solution and laser data (see Fig. S4 in the supplementary material). 

Origin of Laser ablation elemental signal 

The intensity of the LA-signal associated to a certain mass/charge ratio, characteristic to one element, is 

built up by two different contributions: one from soluble ions present in the ice matrix and the other one 

from dispersed insoluble mineral particles containing the element in their structure. Micro-particles in the 

NGRIP ice core have a mean grain size between 1 and 2 µm (Ruth et al., 2003) and therefore are too small 

to be identified unequivocally with our laser camera. Visual inspection of the sample before, after, and 

during ablation indicated that no residual spatter of the ablation process was deposited back onto the ice 

surface after the laser hit the sample, indicating a complete digestion of the material removed by the 

ablation pulses. This suggests that no fractionation between soluble and insoluble particle is taking place by 

effect of the laser sampling.  

We investigated the spatial distribution of Na, Mg, Al, Ca and Fe over two small horizontal planes (i.e, 

perpendicular to the core length axis) by analysing 2D maps of concentrations across two of these specific 

cross sections (Fig 9 and 10). These sections were constructed interpolating several acquisition points 

obtained via static laser drilling. Fig 9 and 10 both show concentrations spanning over a range of several 

tens of ppb for each element across the entire sections.  The cross-sections intersect few grain boundaries 

and junctions (as observable in the laser camera image). The grain boundary net has been overlaid in black 

onto the elemental maps and shows that, in most of the cases, high concentrations areas are located in the 



proximity of boundaries and junction, broadly mimicking their pattern.  In both cases, these patterns are 

somehow clearer for element like Na and Mg, related to sea salt, and become less defined going from Ca to 

Al and Fe. This might be associated with the fact that the elemental signal has a relative increasing 

contribution from micro-particles going from Ca to Al, to Fe, whereas the contribution from micro-particles 

to the Na and Mg signal would be minimal. This would also suggest that micro-particles are slightly less 

inclined to be aligned on boundaries and junctions compared to soluble impurities and therefore generate a 

less defined pattern of concentrations in our maps.  

Discussion 

[….] Most of the differences between CFA and LA-ICPMS proxies are observed at a small scale and are 

mainly influenced by few factors, the first of which is the effect of sample volume. In fact, we estimate that 

every LA-ICPMS data point corresponds to ~120 ng of ablated ice (based on scanning speed and ice crater 

depth) whereas CFA sampling resolution is about 0.1-1 g for each data point (Vallelonga et al., 2012). This 

introduces a difference in the sampling volume between the two datasets that can also be influenced by 

surface effects and especially by the wavy nature of layers at this scale and core depth. This is particularly 

important for Na, whose lateral variability induced by any non-horizontal layering is also affected by 

diffusion of Na that has been observed at this depth, resulting in a smoothing of the CFA annual signal 

(Vallelonga et al., 2012). Furthermore, the CFA insoluble dust data presented here refer to measurements of 

particles of size >1 µm and therefore do not account for insoluble impurities of sub-micron size (Vallelonga 

et al., 2012).  

The elemental maps shown in Fig. 9 and 10 demonstrate that, at sub-cm scale, the concentrations of 

impurities it is strongly influenced by the presence of boundaries and junctions even when considering 

horizontal planes, whose original impurity-input is therefore assumed to be roughly identical. This 

introduces a main source of differentiation between LA and CFA sampling and can account for some of the 

small-scale variability we observe in the LA-profiles. This is particularly relevant for element like Na and 

Mg whose 2D distribution seems to follow closely the grain boundary net, presenting higher concentrations 

in the proximity of boundary and junction. On the other hand, ‘dust’-proxies as Ca, Al and Fe, do not show 

such a closer overlap of high intensity and presence of boundaries or junctions, possibly as a result of being 

increasingly associated with insoluble micro-particles dispersed in the ice matrix, which indeed constitutes 

the CFA-Dust signal. This suggests that micro-particles in the ice matrix are less inclined to reside on 

boundaries and junction compared to soluble ions and is consistent with previous studies of deep ice cores 

(Della Lunga et al., 2014; Eichler et al., 2016).  As a result, the averaging of LA-signal between two or 

more parallel tracks spaced by few mm is not only desirable but necessary.   
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Figures Captions 

 

Figure 1: δ18O profile across the transition from GS-22 to GI-21.1 (modified from Vallelonga et al., 2012). 

Stadial and interstadial periods are highlighted in blue and red, respectively. The black box and arrow indicate 

the corresponding section of ice core analysed for this study.  

 



 

Figure 2: Ice standard preparation at RHUL. a) 1 ml of aqueous standard solution is pipetted into the inner 

volume of a PTFE mould featuring a removable glass surface at the bottom to allow the solution to spread 

uniformly creating a thin layer of water. b) The mould is dipped into liquid nitrogen to instantaneously shock-

freeze the solution. This procedure is repeated five times to build up an ice volume by shock-freezing layer by 

layer of 5 ml total volume resulting in an ice volume approximately 45x10x10 mm. Each ice standard was then 

surface-cleaned using our PTFE vice before analysis (see text). 



 

Figure 3: Example of raw intensity data of NIST612 glass (first and last peak) compared to one of the ice 

standards prepared for this study (ICP-20). Standard data were acquired following three cleaning runs, and 

show that the ice standard appears rather homogeneous with typical RSD values between ± 10 and 15 %. See 

text for details. 



 

Figure 4: Calibration lines for elements under investigation obtained utilizing the ice standards listed in Table 

S1 (supplementary material). LOD indicates limits of detection. See text for details. 



 

Figure 5: Cryo-cell-LA-ICPMS element concentration profiles of Na, Mg, Al, Ca, and Fe and corresponding Na, 

δ18O and CFA-dust profiles at 3.5, 50 and 1.5 mm resolution respectively (the latter three from Vallelonga et al., 

2012) across 2.85 m of NGRIP ice core that spans from approximately 85090 to 84860 a b2k (±20 a) and contains 

GI-21.2. The coloured lines are individual LA-ICPMS data points; black lines represent adjacent-element 

moving average (period 200). It should be noted that cryo-cell-LA-ICPMS Na LOD is 48.3 ppb, which renders 

most of the interstadial and some stadial Na data undetectable. Overall, Na is mainly shown to allow some 

comparability with existing CFA Na data (Vallelonga et al., 2012). See text for details. 



 

Figure 6: Zoomed-in cryo-cell LA-ICPMS profiles of a 200 mm window from the deepest part of the GI-21.2 

section (cold/warm transition), analysed for the most significant elements and spanning about two decades 

around 85.1 ka b2k.  Coloured lines represent LA data, black lines are 30-points moving averages. A switch 

between stadial and interstadial typical concentrations is observable around 2691.20 m, happening over the 

space of just ~10 mm. Conductivity and CFA-dust are from Vallelonga et al. (2012). 



 

Figure 7: Zoomed-in cryo-cell LA-ICPMS profiles of a 300 mm window from the middle part of the GI-21.2 

section analysed for the most significant elements and spanning about two decades around 85.0 ka b2k (cold-

warm transition). Coloured lines represent LA data, black lines are 30-points moving averages. A gradual 

increase in dustiness is observable starting from a depth of 2689.95 m going towards shallower depths, 

representing the GI-21.2 – GS-21.2 transition, which in this case takes place over the space of ~150 mm. 

Conductivity and CFA-dust are from Vallelonga et al. (2012). 



 

Figure 8: CFA conductivity, CFA dust, LA-Fe, LA-Ca, LA-Al and LA-Mg direct comparison across a detailed 3-

cm zoom. In this case, laser ablation data have not been smoothed. Conductivity and CFA-dust are from 

Vallelonga et al. (2012). The profiles show sub-annual variations that contribute to the CFA annual signal. 

 

 

 

 

 

 

 

 

 

 



 

Figure 9: 2D maps of calibrated concentrations of elements under investigation (Na, Mg, Ca, Al, Fe) across a 4x4 

mm cross section with overlaid grain boundary net in black as observed in transmitted light (upper right ) from 

a depth of 2689.78 m.   

 



 

Figure 10: 2D maps of calibrated concentrations of elements under investigation (Na, Mg, Ca, Al, Fe) across a 

4x4 mm cross section with overlaid grain boundary net in black as observed in transmitted light (upper right ) 

from a depth of 2689.65 m.   



Supplementary material 

 

 

Figure S1: LA-ICPMS instrumental drift correction. The data points represent NIST612 
values acquired in between the ice samples during a single run (axes are color-coded). 
Sensitivity typically decreases slightly during the analysis and the slope of each element‘s 
regression line has been utilized to correct instrumental drift according to eq.1 (See text 
for details). 



 

Figure S2: UV-LA-ICPMS analysis of an ice blank. The analysis includes three passages of 
the laser with 280 µm spot size, 25 Hz repetition rate and 8 mm/min speed, while the last 
acquisition track has been performed with 212 µm spot size, 20 Hz repetition rate and 3 
mm/min speed where no analytes are above ICPMS background anymore. Analytes are the 
most abundant isotopes for each element. Table 1 lists the calibrated concentration (in 
ppb) of the major elements under investigation in the ultrapure water utilized to create ice 
blanks. See text for details.  

 

 

 

 

 

 

 



 

Figure S3: Reproducibility of LA tracks: example of raw intensities (cps) of main elements 
from 2 mm apart parallel ablation tracks acquired over 15 cm (3 samples) between depths 
of 2691.45-2691.30 m (left to right).  



 

Figure S4: Comparison between solution data and cryo-cell UV-LA-ICPMS data on three 
different samples corresponding to three different 50-mm depth intervals: 4940A11 (depth 
range: 2716.45 – 2716.50 m), 4900A3 (depth range: 2694.85 – 2694.90 m) and 4882B4 (depth 
range: 2684.875 – 2684.925 m), representing small sections of early GS-22, late GS-22 and 
GI-21.1, respectively. Results show that LA and solution data differ of only 5 – 20% and 
therefore are within error margins. See text for details. 

 

 

 

 

 

 

 

 

 

 

 



Table S1: Concentration of elements under investigation in aqueous reference materials used for ice standard 
preparation: SLRS-5-“River water reference material for trace metals” (National Research Council of Canada, 
diluted 10 times [SLRS-5_10] when not specified), Water low (RHUL internal standard), 90243 Multi-element 
standard solution 1 for ICP (Sigma Aldrich, diluted 20 times), and NIST SRM 1648 Urban Particulate reference 
material (in suspension, see text for details). Blank concentrations (in ppb) of ultrapure water at RHUL were 
obtained in solution mode and are shown on the right column. Limit of detection (LOD) refer to cryo-cell LA-
ICPMS analyses only. 

 Standard name   

SLRS-5_10 ICP-20 Water Low NIST1648a  RHUL 

Deionized 
water 

Element concentration 

(ppb) 

concentration 

(ppb) 

concentration 

(ppb) 

concentration 

(ppb) 

LODs  

LA-

ICPMS 

(ppb) 

(ppb) 

 

Al 4.95 ± 0.5 

49.5 ± 4.8 

(SLRS-5) 

2525±2.5 9.8±0.1 1683±16 1.12 0.012 

Fe 9.1 ± 0.6 

91 ±6 (SLRS-5) 

505±0.5 9.8±0.1 1924±20 1.06 0.627 

Ca 1050 ± 40 

10510±380 

(SLRS-5) 

505±0.5 48.9±0.3 3126±15 0.63 0.606 

Mg 254 ± 16 

2541±155 

(SLRS-5) 

505±0.5 48.9±0.3 394±5 0.92 0.021 

Na 538 ± 10 

5380±105 

(SLRS-5) 

2525±2.5 244±1.5 209±4 48.3 - 

 

 


