

1 **Brief Communications: Observations of a Glacier Outburst Flood**
2 **from Lhotse Glacier, Everest Area, Nepal**

3 **David R. Rounce¹, Alton C. Byers², Elizabeth A. Byers³, and Daene C. McKinney¹**

4 [1] {Center for Research in Water Resources, University of Texas at Austin, Austin, TX, USA}

5 [2] {Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO,
6 USA}

7 [3]{Appalachian Ecology, Elkins, WV, USA}

8 Correspondence to: David R. Rounce (david.rounce@utexas.edu)

9 Keywords: Glacier outburst flood, Supraglacial lake, Englacial conduit, Everest, Nepal

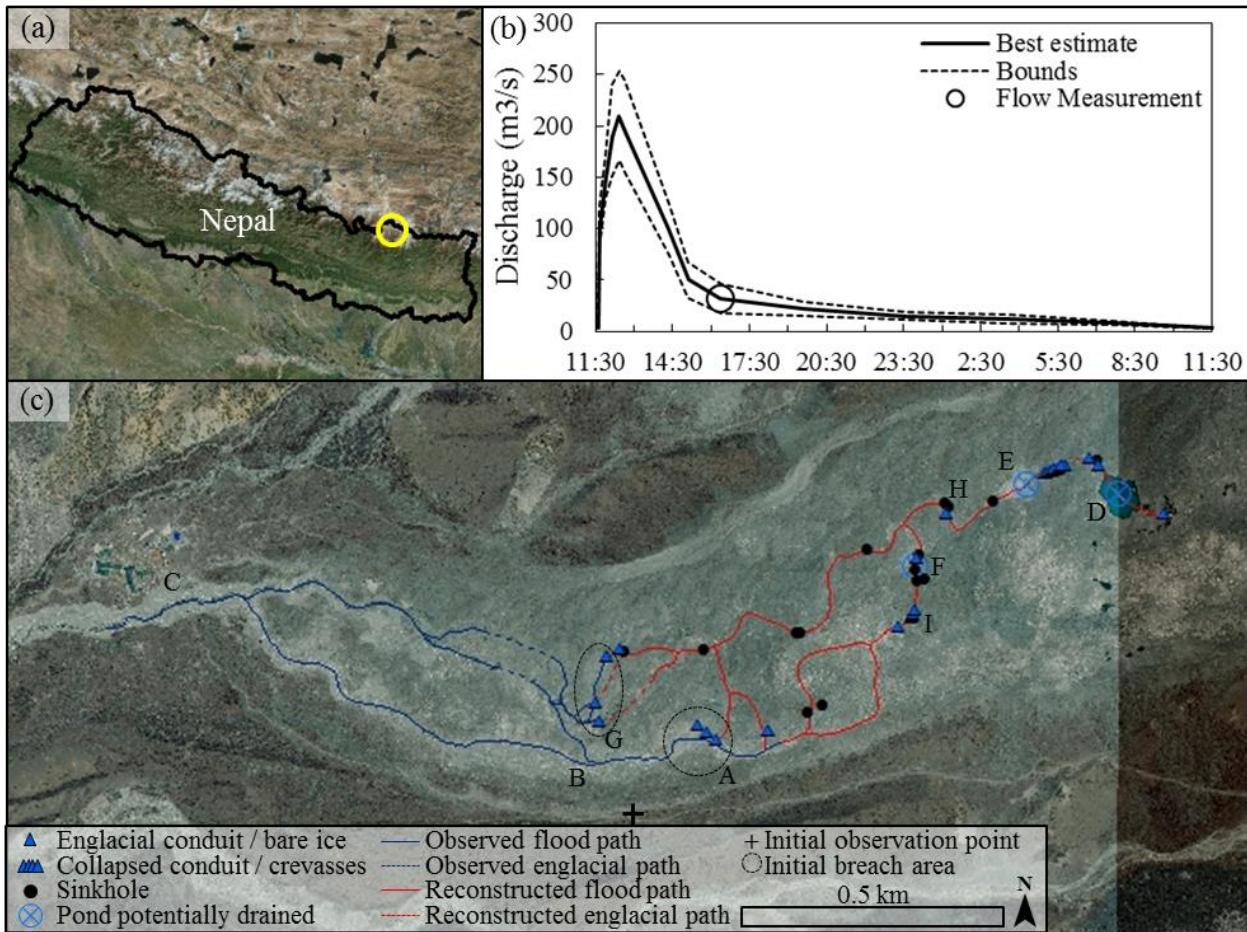
10 **Abstract**

11 Glacier outburst floods with origins from Lhotse Glacier, located in the Everest region of Nepal,
12 occurred on 25 May 2015 and 12 June 2016. The most recent event was witnessed by
13 investigators, which provided unique insights into the magnitude, source, and triggering
14 mechanism of the flood. The field assessment and satellite imagery analysis following the event
15 revealed that most of the flood water was stored englacial and the flood was likely triggered by
16 dam failure. The flood's peak discharge was estimated to be $210 \text{ m}^3 \text{ s}^{-1}$.

17 **1 Introduction**

18 Glacier outburst floods occur when stored glacier water is suddenly unleashed. Triggering
19 mechanisms of these outburst floods include landslides, ice falls, and/or avalanches entering a
20 proglacial lake resulting in a wave that overtops the dam leading to dam failure, dam failure due
21 to settlement, piping, and/or the degradation of an ice-cored moraine, heavy rainfall that can alter
22 the hydrostatic pressures placed on the dam, and many others (Richardson and Reynolds, 2000;
23 Carrivick and Tweed, 2016). In the Himalaya, a specific subset of outburst floods called glacial
24 lake outburst floods (GLOFs) has received the most attention with respect to hazards, likely
25 because of their potentially large societal impact (e.g., Vuichard and Zimmermann, 1987). In
26 contrast, glacier outburst floods in the Himalaya, herein referring to outburst floods that are not
27 generated by a proglacial lake, have received relatively little attention likely due to their
28 seemingly unpredictable nature, which has resulted in these events rarely being observed

1 (Fountain and Walder, 1998). While they are a known hazard and discussed in the literature (e.g.,
2 Richardson and Reynolds, 2000), few studies in Asia have investigated these hazards in detail
3 (Richardson and Quincey, 2009).


4 Glacier outburst floods can occur sub-, en-, or supra-glacially when the hydrostatic pressure of
5 the stored water exceeds the structural capacity of the damming body, when stored water is
6 connected to an area of lower hydraulic potential, when englacial channels are progressively
7 enlarged in an unstable manner, and/or when catastrophic glacier buoyancy occurs (Fountain and
8 Walder, 1998; Richardson and Reynolds, 2000; Gulley and Benn, 2007). For debris-covered
9 glaciers, the drainage of supraglacial ponds commonly occurs through englacial conduits, which
10 facilitate connections to areas of lower hydraulic potential (Gulley and Benn, 2007). These
11 englacial conduits develop on debris-covered glaciers in the Himalaya through cut-and-closure
12 mechanisms associated with meltwater streams, the exploitation of high permeability areas that
13 provide alternative pathways to the impermeable glacier ice, and through hydrofracturing
14 processes (Gulley and Benn, 2007; Benn et al., 2009; Gulley et al., 2009a; Gulley et al., 2009b).

15 During the last half century, debris-covered glaciers in the Everest region have experienced
16 significant mass loss (e.g., Bolch et al., 2011), which has led to the development of glacial lakes
17 and supraglacial ponds (Benn et al., 2012). Proglacial lakes may develop if the surface gradient
18 of the glacier is gentle ($< 2^\circ$), while steeper gradients ($> 2^\circ$) will help drain these ponds (Quincey
19 et al., 2007). This causes supraglacial ponds to have large temporal and spatial variations as they
20 frequently drain and fill (Horodyskyj, 2015; Miles et al., 2016; Watson et al., 2016). This
21 drainage can occur on the glacier's surface and/or subsurface (Benn et al., 2012).

22 Lhotse Glacier ($27^\circ 54' 12''$ N, $86^\circ 52' 40''$ E) is an avalanche-fed debris-covered glacier that
23 extends 8.5 km from the peak of Lhotse at 8501 m to the glacier's terminus at 4800 m (Figure
24 1a). The lowest 3.5 km of the glacier is relatively stagnant and contains many supraglacial ponds.
25 The upper 4 km, located beneath the headwall of Lhotse, is still quite active (Quincey et al.,
26 2007), which can be seen by its highly crevassed features and its transient supraglacial ponds
27 indicating frequent changes in the glacier's subsurface (Watson et al., 2016). Lhotse Glacier is
28 one of the few glaciers in the region that lacks a steep bounding terminal moraine; instead, the
29 terminus of the glacier is relatively steep ($> 6^\circ$), which facilitates the drainage of supraglacial
30 ponds and prevents the development of a large proglacial lake (Quincey et al., 2007). As these

1 supraglacial ponds drain and fill, they can cover up to 1.3-2.5% of the debris-covered glacier's
 2 surface at any time (Watson et al., 2016). Speleological surveys conducted at Lhotse Glacier
 3 found that cut-and-closure mechanisms and the exploitation of high permeability areas were the
 4 main contributors to the development of englacial conduits and the drainage of supraglacial
 5 ponds (Gulley and Benn, 2007).

6

7
 8 Figure 1. (a) Location of Lhotse Glacier in Nepal, (b) hydrograph of the glacier outburst flood
 9 from Lhotse Glacier on 12 June 2016, and (c) map of observations and the reconstructed flood
 10 path down to the village of Chukhung with letters corresponding to key features in Figure 2.
 11

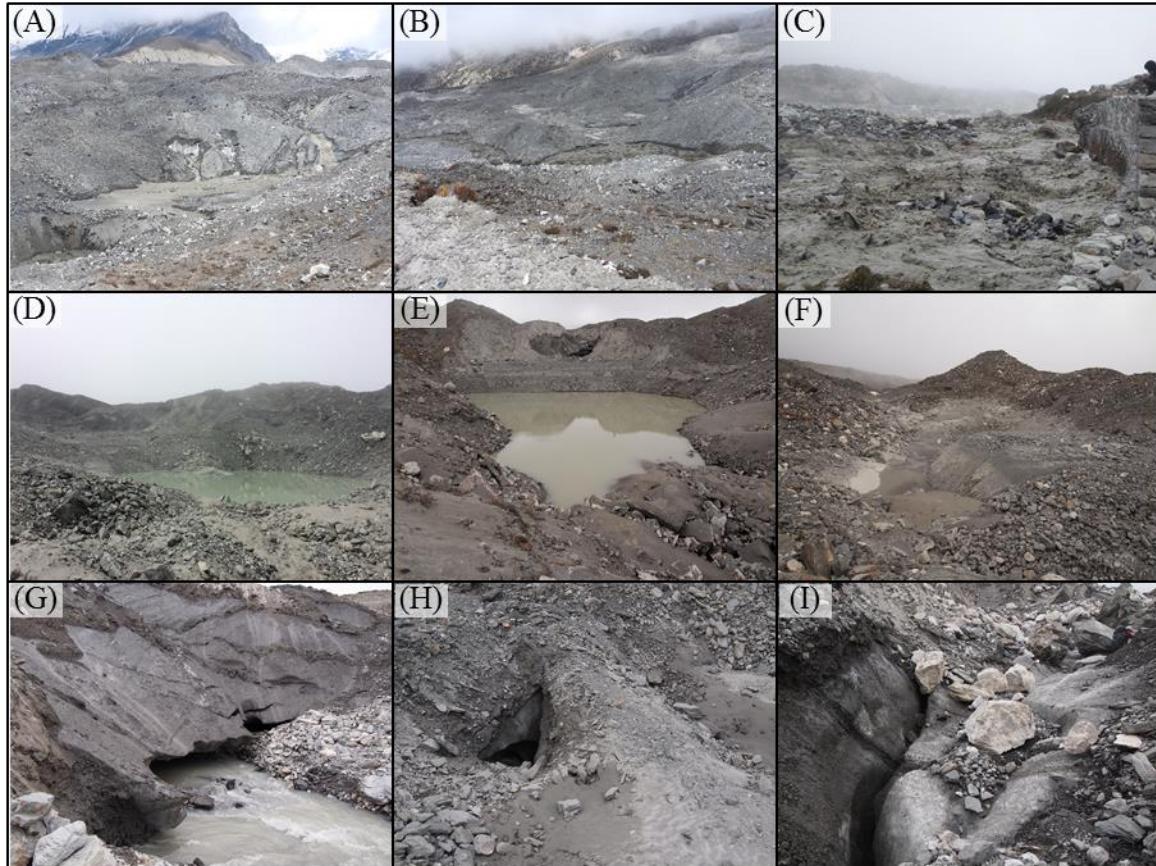
12 2 Methods

13 Glacier outburst floods with origins from Lhotse Glacier occurred on 12 June 2016 and 25 May
 14 2015. The 2015 event was reported by local community members, while the 2016 event was
 15 observed by the investigators from the southern lateral moraine of Lhotse Glacier (Figure 1c).
 16 This provided a rare opportunity to photograph, record, and observe the outburst flood as it

1 unfolded. Flow measurements at 4:22 p.m., approximately four hours after the peak discharge,
2 were estimated from cross sectional areas and float velocities using bundles of sticks in a
3 relatively straight section of the channel below the village of Chukhung (27°54'03" N, 86°51'46"
4 E). Average velocity for the flow measurements was estimated to be 85% of the float velocity
5 (Rantz et al., 1982). Uncertainty associated with the flow measurements comprised errors in
6 river width (± 1 m), depths (± 0.3 m), float distance (± 1 m), and time (± 1 s). Peak flow was
7 conservatively estimated using the same average velocity with cross sectional areas derived from
8 high water marks.

9 During 14-21 June 2016, investigators conducted a field assessment on Lhotse Glacier to
10 reconstruct the flood path. Key features, which included bare ice faces, entrances and exits of
11 englacial conduits, sinkholes, collapsed tunnels, and ponds, were examined, photographed, and
12 measured using a handheld GPS (Garmin Montana) and a laser range finder (Nikon Forestry Pro).
13 Bio-indicators were also documented to assist reconstruction efforts. These indicators included
14 visual observations of recently uprooted and displaced alpine shrubs providing insight into the
15 surficial flood path. The presence of high water marks or wet, fine sediment that indicated
16 potential sinkholes or drained ponds were also recorded.

17 High resolution (0.5 m) satellite imagery (DigitalGlobe, Inc.) was used to assess the draining and
18 filling of supraglacial ponds around the 2015 and 2016 events based on manual delineations.
19 Specifically, imagery from 14 May 2016 (WorldView-2) and 29 October 2016 (WorldView-2)
20 were used to assess the 2016 event, and imagery from 08 May 2015 (GeoEye-1), 25 May 2015
21 (WorldView-2), and 07 June 2015 (WorldView-1) were used to assess the 2015 event. The
22 image from 14 May 2016 was also used as a background image for the reconstruction of the
23 2016 glacier outburst flood.


24 **3 Results**

25 **3.1 Direct observations:** At 11:40 a.m. on 12 June 2016, three landslide-like features began
26 flowing almost simultaneously down a south-facing slope of Lhotse Glacier, followed by large
27 amounts of discharging water from three apparent englacial conduits and one supraglacial stream
28 (Figure 1c, 2A). At the same time, approximately 200 m northwest of these landslide-like
29 features, large amounts of sediment-laden water was observed to be discharging into the main
30 channel from multiple englacial conduits and supraglacial channels (Figure 2B). Around 12:10

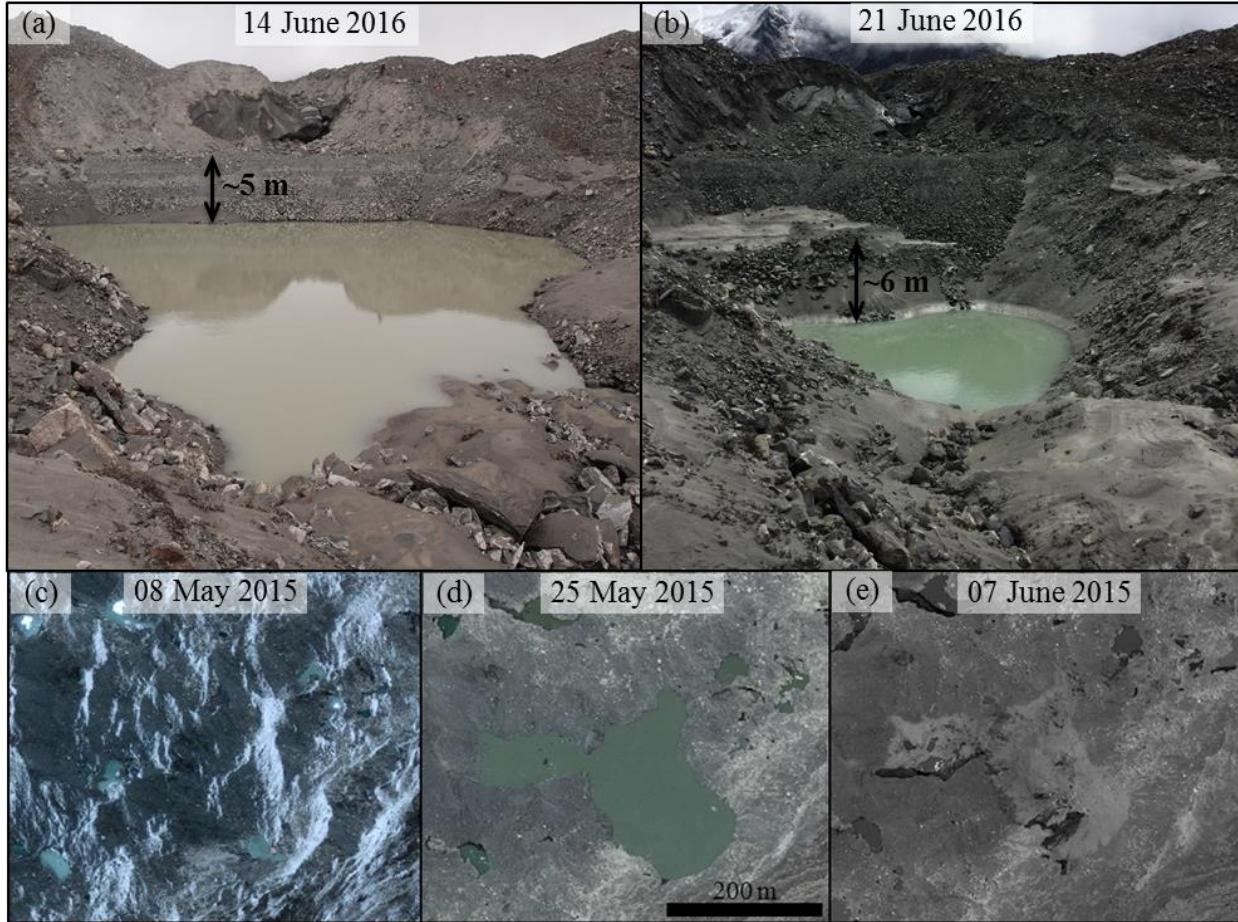
1 p.m., an additional supraglacial torrent and two supraglacial streams, located upglacier and to the
2 east of the initial observations, joined the floodwater discharging from this initial area. The
3 discharging water immediately began ponding and quickly breached the pond allowing the
4 floodwater to propagate downstream and join the pre-existing main channel in addition to
5 creating a secondary channel down the southern lateral moraine (Figures 1c, 2B). During this
6 time, channel banks composed of ice and debris were severely undercut as the floodwater melted
7 the surrounding ice as well.

8 The main channel continued to flow downstream until it re-entered englacial conduits (Figure
9 1c), which created an “ice bridge” that allowed investigators to cross the secondary and main
10 channel after the peak flow started subsiding around 12:26 p.m. At 4:22 p.m., discharge below
11 Chukhung was measured to be $32 \pm 14 \text{ m}^3 \text{ s}^{-1}$. Peak discharge was estimated retroactively to be
12 $210 \pm 43 \text{ m}^3 \text{ s}^{-1}$. This estimate is considered to be conservative since it uses average velocity
13 measurements taken four hours after peak discharge. Interestingly, this estimate agrees well with
14 an empirical approach for predicting peak discharge based on glacier-bed area (Fountain and
15 Walder, 1998), which predicts the peak discharge to be $38 - 1500 \text{ m}^3 \text{ s}^{-1}$ based on a glacier area
16 of 6.825 km^2 for Lhotse Glacier (Arendt et al., 2015). A best-estimate hydrograph (Figure 1b)
17 was reconstructed based on the photos of the water level at the ice bridge showing a peak flow of
18 $210 \pm 43 \text{ m}^3 \text{ s}^{-1}$ at 12:26 p.m. followed by a gradual falling limb such that the discharge returned
19 to normal conditions within 24 hours. The shape and timing of the hydrograph is consistent with
20 the 1985 glacial lake outburst flood from Dig Tsho (Vuichard and Zimmerman, 1987), although
21 the peak flow from Lhotse Glacier was significantly smaller. Based on this hydrograph, the
22 overall flood volume was estimated to be $2.65 \times 10^6 \text{ m}^3$ ($1.88 - 3.45 \times 10^6 \text{ m}^3$ for the estimated
23 low and high bounds, respectively). Minimal damage was caused to the community of
24 Chukhung, which community members credited to the recently constructed gabions (Figure 2C).
25 The main damage was the loss of a pedestrian bridge, an outbuilding, and small amounts of
26 floodwater in the courtyard of one lodge. Supplementary material provides footage of the
27 observed events.

28

1
2 Figure 2. Key features of the glacier outburst flood from Lhotse Glacier: (A) subsurface and
3 supraglacial flooding where the event was first observed, (B) main channels of flood path during
4 the flood's peak, (C) flood undercutting the gabions at Chukhung, at 2:19 p.m., (D) potentially
5 drained pond with large bare ice faces behind it, (E) potentially drained pond with a collapsed
6 englacial conduit behind it, (F) potentially drained pond with sinkholes, (G) meltwater exiting
7 the glacier into the main channel via a large englacial conduit, (H) a vertical englacial conduit
8 and sinkholes with wet, fine sediment indicating a drainage pathway, and (I) large vertical
9 crevasses with clean ice likely from the supraglacial flood path.
10

11 **3.2 Post-flood observations:** A detailed field assessment of Lhotse Glacier was conducted to
12 reconstruct the glacier outburst flood by identifying potential flood pathways, englacial conduits,
13 sinkholes, and drained ponds (Figure 1c). Satellite imagery from 14 May 2016 revealed a
14 sizeable supraglacial pond ($27^{\circ}54'20''$ N, $86^{\circ}53'27''$ E) with an area of 4900 m^2 located directly
15 beneath a large bare ice face (~10-20 m) that was considerably smaller during our field
16 assessment (Figure 2D). This pond also had fine, wet sediment along its slopes in addition to a
17 series of bare ice, sinkholes, and englacial conduits located immediately downstream, which
18 could have facilitated its drainage. This was the pond located the furthest upglacier that


1 appeared to have recently drained, although a detailed assessment of all the supraglacial ponds
2 and terrain upglacier was not possible due to time limitations.

3 This ponded water likely entered a series of englacial conduits and potentially supraglacial
4 pathways before entering another supraglacial pond located ~200 m down-glacier (Figure 1c).
5 This second supraglacial pond had similar indicators of having recently drained (Figure 2E),
6 although the satellite image does not show a large supraglacial pond. It is possible that
7 meltwater filled the pond between the time that the satellite image was acquired and the glacier
8 outburst flood. A collapsed englacial conduit was observed between these two ponds (Figure 1c)
9 in addition to a series of sinkholes along with an entrance to an englacial conduit located
10 immediately downstream of the pond (Figure 2H). Based on recently uprooted and displaced
11 alpine shrubs, the flood appeared to continue downstream where it branched into multiple paths
12 (Figure 1c). The southern branch appears to have entered a third supraglacial pond (Figure 2F),
13 which had similar indicators and large sinkholes. Downstream of this third pond was a small
14 valley that was littered with areas of clean ice and deep crevasses (Figure 2I). It appears that this
15 supraglacial pathway and englacial conduits fed into the flood torrent that joined the initial
16 discharge at 12:10 p.m. (Figure 1c). The other branch showed signs of supraglacial and englacial
17 pathways in the form of bio-indicators, sinkholes, and englacial conduits as well, which appear
18 to have contributed to the heavy flow that was observed discharging into the main channel as
19 well (Figure 2G).

20 **3.3 Satellite imagery analysis:** Satellite imagery provides unique opportunities to observe the
21 contribution of supraglacial ponds to these glacier outburst flood events; however, it is important
22 that this imagery is acquired immediately before and after the event as these supraglacial ponds
23 experience large temporal and spatial changes (Figure 3). In order to estimate the potential flood
24 volume associated with the drainage of supraglacial ponds, an area-to-volume relationship was
25 used (Cook and Quincey, 2015). Based on the change in areal extent between 14 May 2016 and
26 29 October 2016, the drained volume from the furthest supraglacial pond upglacier (Figure 1c,
27 Figure 2D) was $0.01 \times 10^6 \text{ m}^3$. This volume is two orders of magnitude less than the estimated
28 flood volume of $2.65 \times 10^6 \text{ m}^3$, which suggests that the drainage of a single supraglacial pond
29 contributes very little to the overall flood volume. In fact, if all of the 274 supraglacial ponds
30 (0.21 km^2) that were present on Lhotse Glacier on 14 May 2016 drained completely, the

1 potential flood volume would only be $0.52 \times 10^6 \text{ m}^3$. This provides strong evidence that a
2 significant amount of the flood water was stored in the glacier's subsurface.

3

4
5 Figure 3. Images showing the temporal changes of supraglacial ponds (a, b) following the 2016
6 glacier outburst flood and (c, d, e) around the 2015 glacier outburst flood.
7

8 The glacier outburst flood on 25 May 2015 also originated from Lhotse Glacier and occurred
9 overnight (Sherpa, L., personal communication, 09 June 2015). Satellite imagery from 08 May
10 2015, 25 May 2015, and 07 June 2015 reveals a large supraglacial pond (0.036 km^2) filling
11 between 08 – 25 May and draining completely between 25 May – 07 June (Figure 3c, d, e). The
12 drainage of this supraglacial pond could have contributed up to $0.17 \times 10^6 \text{ m}^3$ to the 2015 glacier
13 outburst flood. Community members reported that the 2016 event was larger than the 2015
14 event. A similar outburst event was also reported to have occurred in early May 2016 in the
15 vicinity of the “crampon put-on point” (5600 m) of Island Peak (6189 m) that damaged sections
16 of the high and low basecamp regions (Sherpa, P.T., personal communication, 18 June 2016).

1 **4 Discussion**

2 **4.1 Source of the flood water:** The field observations immediately following the 2016 glacier
3 outburst flood suggest that some of the source water was from the drainage of supraglacial
4 ponds; however, the satellite imagery analysis revealed that the drainage of supraglacial ponds
5 alone could not account for the entire flood volume. Therefore, the water that was unleashed
6 during the 2016 glacier outburst flood was likely stored in both the glacier's subsurface and in
7 supraglacial ponds. Once the flood was initiated, the melting of ice from both the channel banks
8 and in the englacial conduits caused these outlet pathways to grow, which likely contributed
9 more water to the total flood volume in addition to opening more efficient pathways for the
10 stored water to drain.

11 **4.2 Triggering mechanisms:** Potential triggering mechanisms for these glacier outburst floods
12 include dam failure, the rapid drainage of stored lake water through hydraulically efficient
13 pathways, and/or catastrophic glacier buoyancy. The sudden discharge observed during the 2016
14 event (Figure 1b) suggests that the trigger was most likely dam failure or the rapid drainage of
15 stored lake water, since catastrophic glacier buoyancy typically has a hydrograph with a more
16 gradual rising limb (Fountain and Walder, 1998).

17 Dam failure would require an englacial conduit to be temporarily blocked, which could occur if
18 meltwater refroze in the conduits over the winter (Gulley et al., 2009) or if passage closure
19 processes caused an englacial conduit to close (Benn et al., 2012). The former blockage scenario
20 seems more likely since these glacier outburst floods have occurred in back-to-back years and
21 the refreezing of meltwater is an annual process. During the early melt season the subsurface
22 drainage system is distributed and inefficient, which provides opportunities for water to
23 accumulate englacial (Fountain and Walder, 1998). Dam failure may then occur if the
24 hydrostatic pressures in the englacial conduits exceed the cryostatic pressure that was previously
25 constraining the stored water thereby causing the dam to rupture (Richardson and Reynolds,
26 2000). Alternatively, as water accumulates in the englacial conduits, the changes in water
27 pressure can cause these conduits to grow in an unstable manner thereby causing drainage to
28 occur (Fountain and Walder, 1998). This progressive enlargement is similar to piping failures
29 and the failures of ice dammed lakes (Richardson and Reynolds, 2000).

1 The rapid drainage of stored lake water through hydraulically efficient pathways is another
2 plausible triggering mechanism that commonly occurs for supraglacial ponds in the Everest
3 region (Benn et al., 2012). Field observations of supraglacial ponds (Figure 2D, E) revealed that
4 there were englacial conduits located at the end of both of these lakes that likely helped facilitate
5 their drainage. This link between the englacial conduits and supraglacial ponds is not surprising
6 as near-surface water storage on glaciers can result from water accumulating in englacial
7 conduits (Fountain and Walder, 1998). Once these ponds come in contact with an englacial
8 conduit or a highly permeable layer, the warm pond water can cause significant internal ablation
9 that helps facilitate the drainage of additional stored water. The drainage of supraglacial ponds
10 that was observed for the 2015 and 2016 events supports this theory; however, as previously
11 discussed, the drainage of supraglacial ponds alone likely accounts for a small fraction of the
12 total flood volume.

13 This suggests that the most feasible triggering mechanism is likely some form of dam failure
14 resulting from the material blocking the englacial conduits being overburdened or failure
15 resulting from the progressive enlargement of englacial conduits. The timing of these events,
16 which occurred around the start of the monsoon season, further supports this triggering
17 mechanism as this provides ample time for these englacial conduits to fill with meltwater or
18 precipitation prior to dam failure. It should not come as a surprise that this time of year is also
19 when supraglacial pond cover is at its highest (Miles et al., 2016) as this may be indicative of the
20 amount of water stored englacial as well. In fact, it is possible that the large supraglacial pond
21 that filled immediately before the 2015 glacier outburst flood (Figure 3c, d) was the surficial
22 expression of the englacial conduits accumulating too much water, which could explain the
23 pond's short lifespan once the englacial conduits drained. This may also explain how the second
24 supraglacial pond (Figure 1c, 2E) was not apparent in satellite imagery on 24 May 2016, but
25 appeared to have drained recently based on field observations (Figure 3a, b), i.e., the pond likely
26 filled between 24 May 2016 and the glacier outburst flood. On the other hand, the most
27 upglacier supraglacial pond (Figure 1c, 2D) was present in the imagery and had been growing
28 since 2011 (Watson et al., 2016), which indicates that the rapid drainage of supraglacial ponds
29 through hydraulically efficient pathways may also be contributing to these glacier outburst floods
30 as well, albeit contributing a smaller volume than the water stored englacial.

1 **5 Conclusions**

2 The direct observations of the glacier outburst flood on 12 June 2016 from Lhotse Glacier
3 provide unique insight into the magnitude, source, and trigger mechanisms associated with these
4 rarely observed events. The flood occurred suddenly and reached a peak discharge of $210 \text{ m}^3 \text{ s}^{-1}$
5 only 45 minutes after the flood began. The detailed field assessment conducted in the days
6 immediately following the event in conjunction with the satellite imagery analysis was used to
7 determine that most of the flood water originated from the glacier's subsurface. Based on the
8 sudden discharge and magnitude of the event, the flood appeared to be triggered by dam failure
9 due to the englacial conduits rupturing from being overburdened or from the englacial conduits
10 progressively enlarging in an unstable manner until failure occurred. Community members
11 reported that another glacier outburst flood originating from Lhotse Glacier occurred on 25 May
12 2015, which suggests that Lhotse Glacier may provide unique opportunities to study these
13 complex events in more detail in the future. Future work should seek to improve our
14 understanding of the triggering mechanisms and size of these events through detailed field
15 surveys assessing both the glacier's surface and subsurface combined with methodically tasked
16 high resolution satellite imagery. This work is necessary as improving our understanding of the
17 frequency and magnitude of these events has important economic and social implications for
18 downstream communities and hydropower companies.

19 **Acknowledgements**

20 The authors acknowledge the support of the NSF-CNH program (award no. 1516912) for the
21 support of David Rounce, Alton Byers, and Daene McKinney. Dhananjay Regmi of Himalayan
22 Research Expeditions provided important logistical support during fieldwork. Bidhya Sharma
23 provided additional images and videos for this study. The authors would also like to thank
24 Duncan Quincey and the anonymous reviewer for their comments that helped improve the
25 manuscript.

26 **References**

27 Arendt, A. et al.: Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version
28 5.0, Digital Media, Global Land Ice Measurements from Space, Boulder Colorado, USA,
29 2015.

1 Benn, D., Gulley, J., Luckman, A., Adamek, A., and Glowacki, P.S.: Englacial drainage systems
2 formed by hydrologically driven crevasse propagation, *J Glaciol*, 55(191):513-523, 2009.

3 Benn, D.I., Bolch, T., Hands, K., Gulley, J., Luckman, A., Nicholson, L.I., Quincey, D.,
4 Thompson, S., Toumi, R., Wiseman, S.: Response of debris-covered glaciers in the Mount
5 Everest region to recent warming, and implications for outburst flood hazards, *Earth-Sci Rev*
6 114:156–174, doi:10.1016/j.earscirev.2012.03.008, 2012.

7 Bolch, T., Pieczonka, T., and Benn, D.I.: Multi-decadal mass loss of glaciers in the Everest area
8 (Nepal Himalaya) derived from stereo imagery, *The Cryosphere*, 5, 349-358, doi:10.5194/tc-
9 5-349-2011, 2011.

10 Carrivick, J.L. and Tweed, F.S.: A global assessment of the societal impacts of glacier outburst
11 floods, *Global Planet Change*, 144:1-16, <http://dx.doi.org/10.1016/j.gloplacha.2016.07.001>,
12 2016.

13 Cook, S.J. and Quincey, D.J.: Estimating the volume of Alpine glacial lakes, *Earth Surface
14 Dynamics*, 3:559-575, doi:10.5194/esurf-3-559-2015, 2015.

15 Fountain, A.G. and Walder, J.S.: Water flow through temperate glaciers, *Rev Geophys*,
16 36(3):299-328, 1998.

17 Gulley, J. and Benn, D.I.: Structural control of englacial drainage systems in Himalayan debris-
18 covered glaciers, *J Glaciol*, 53(182):399-412, 2007.

19 Gulley, J.D., Benn, D.I., Müller, D., and Luckman, A.: A cut-and-closure origin for englacial
20 conduits in uncrevassed regions of polythermal glaciers, *J Glaciol*, 55(189):66-80, 2009a.

21 Gulley, J.D., Benn, D.I., Screamton, E., and Martin, J.: Mechanisms of englacial conduit formation
22 and their implications for subglacial recharge, *Quaternary Sci Rev*, 28:1984-1999,
23 doi:10.1016/j.quascirev.2009.04.002, 2009b.

24 Horodyskyj, U.N.: Contributing factors to ice mass loss on Himalayan debris-covered glaciers,
25 PhD Thesis, University of Colorado, 2015.

1 Miles, E.S., Willis, I.C., Arnold, N.S., Steiner, J., and Pellicciotti, F.: Spatial, seasonal and
2 interannual variability of supraglacial ponds in the Langtang Valley of Nepal, 1999-2013, *J.*
3 *Glaciol.*, 1-18, doi:10.1017/jog.2016.120, 2016.

4 Quincey, D.J., Richardson, S.D., Luckman, A., Lucas, R.M., Reynolds, J.M., Hambrey, M.J.,
5 and Glasser, N.F.: Early recognition of glacial lake hazards in the Himalaya using remote
6 sensing datasets, *Global Planet Change*, 56:137-152, doi:10.1016/j.gloplacha.2006.07.013,
7 2007.

8 Rantz, S.E.: Measurement and computation of streamflow: volume 1, measurement of stage and
9 discharge, No. 2175, USGPO, 1982.

10 Richardson, S.D. and Reynolds, J.M.: An overview of glacial hazards in the Himalayas, *Quatern*
11 *Int*, 65/66:31-47, 2000.

12 Richardson, S.D. and Quincey, D.J.: Glacier outburst floods from Ghulkin Glacier, upper Hunza
13 Valley, Pakistan, *Geophysical Research Abstracts from EGU General Assembly 2009* held in
14 Vienna, Austria, 19-24 April 2009.

15 Vuichard, D. and Zimmermann, M.: The 1985 catastrophic drainage of a moraine-dammed lake,
16 Khumbu Himal, Nepal: cause and consequences, *Mt Res Dev*, 7:91-110, 1987.

17 Watson, C.S., Quincey, D.J., Carrivick, J.L., and Smith, M.W.: The dynamics of supraglacial
18 ponds in the Everest region, central Himalaya, *Global Planet Change*, 142:14-27,
19 <http://dx.doi.org/10.1016/j.gloplacha.2016.04.008> 2016\, 2016.

20 **Supplementary Material**

21 Video footage of the glacier outburst flood from 12 June 2016 may be found at
22 http://www.crwr.utexas.edu/video/Lhotse_Flood_Supplement_V3.mp4.