

- 1 Relationship of Permafrost Cryofacies to Varying Surface and Subsurface Terrain
- 2 Conditions in the Brooks Range and foothills of Northern Alaska, USA
- 3
- 4 Andrew W. Balser, ERDC-CRREL, Fort Wainwright, AK, 99703 USA
- 5
- 6 Jeremy B. Jones, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK,
- 7 99775 USA.
- 8
- 9 M. Torre Jorgenson, Alaska Ecoscience, Fairbanks, AK, 99709 USA.
- 10
- 11 Corresponding Author: A. W. Balser, ERDC-CRREL, Fort Wainwright, AK, 99703 USA
- 12 (Andrew.W.Balser@usace.army.mil)
- 13 Keywords: cryostructures, terrain properties, cryostratigraphy, Brooks Range, Alaska, regional
- 14 scale

15 Abstract

16	Permafrost landscape responses to climate change and disturbance impact local ecology
17	and global greenhouse gas concentrations, but the nature and magnitude of response is linked
18	with vegetation, terrain and permafrost properties that vary markedly across landscapes. As a
19	subsurface property, permafrost conditions are difficult to characterize across landscapes, and
20	modelled estimates rely upon relationships among permafrost characteristics and surface
21	properties. While a general relationship among landscape and permafrost properties has been
22	recognized throughout the Arctic, the nature of these relationships is poorly documented in many
23	regions, limiting modelling capability. We examined relationships among terrain, vegetation and
24	permafrost within the Brooks Range and foothills of northern Alaska using field data from
25	diverse sites and multiple factor analysis ordination. Terrain, vegetation and permafrost
26	conditions were correlated throughout the region, with field sites falling into four statistically-
27	separable groups based on ordination results. Our results identify index variables for honing
28	field sampling and statistical analysis, illustrate the nature of relationships in the region, support
29	future modelling of permafrost properties, and suggest a state factor approach for organizing data
30	and ideas relevant for modelling of permafrost properties at a regional scale.

31

32 **1. Introduction**

33	Permafrost landscapes are critical components of global climate change, but responses and
34	feedbacks depend on ecosystem properties, which vary markedly throughout the Arctic.
35	Permafrost landscape structure develops through a complex interplay among climate, substrate,
36	and surficial processes operating at multiple spatial and temporal scales (Shur and Jorgenson
37	2007). At the interface between the atmosphere and deep permafrost, processes of vegetation,
38	soil, and upper-permafrost cryostructures respond to climate shifts and disturbance (Viereck
39	1973, ACIA 2005, Jorgenson et al. 2010a, Jorgenson et al. 2013), and mediate the influence of
40	climate on deeper permafrost (Shur and Jorgenson 2007, French and Shur 2010). Vegetation and
41	upper permafrost horizon development have been linked with terrain properties and climate
42	(Kreig and Reger 1982, Shur 1988, Shur and Jorgenson 2007, Pastick et al. 2014), and are
43	mutually influential at local and circumarctic scales, though the nature and extent of relationships
44	among vegetation and permafrost is only partially understood (Raynolds and Walker 2008,
45	Walker et al. 2008, French and Shur 2010, Lantz et al. 2010, Kokelj and Jorgenson 2013).
46	In the Brooks Range and foothills of northern Alaska, multiple modes of permafrost
47	degradation appear to be accelerating (Jorgenson et al. 2006, Bowden et al. 2008, Jorgenson et
48	al. 2008a, Balser et al. 2009, Gooseff et al. 2009), but relationships among terrain properties,
49	vegetation, and upper permafrost characteristics are weakly documented (Jorgenson et al. 2008a,
50	Jorgenson et al. 2010b). Region-wide estimates of future landscape resilience and response to
51	climate perturbation depend on spatially-explicit representations of permafrost conditions
52	(Callaghan et al. 2004), but subsurface permafrost properties across the landscape are difficult to
53	observe directly. Determination of permafrost properties in remote, northern Alaska depends on
54	understanding relationships among terrain, vegetation and permafrost, and applying them at a

- regional scale. Determining which specific terrain properties and groups of terrain properties are
- 56 most correlated with vegetation and upper permafrost conditions within this region, and the
- 57 degree to which correlations apply across diverse landscapes, is central to future estimates of
- resilience, responses, and feedbacks to climate in the Brooks Range and foothills of northern
- 59 Alaska.

60 **1.1 Responses and feedbacks to climate**

61 Permafrost degradation rate has been increasing in recent decades throughout the

62 circumarctic and is anticipated to continue or accelerate (ACIA 2005, Hinzman et al. 2005,

63 Schuur and Abbott 2011). Marked impacts and feedbacks are expected across the cryosphere,

64 with shifts in ecosystem structure and function (Callaghan et al. 2004, Osterkamp et al. 2009,

65 Goetz et al. 2011, Myers-Smith et al. 2011), local and global hydrologic cycles (Peterson et al.

66 2002, Hinzman et al. 2006, Frey et al. 2007), and biogeochemistry and carbon release (Tarnocai

67 et al. 2009, Grosse et al. 2011, Schaefer et al. 2011).

Distinct modes of permafrost degradation correlate with specific combinations of surficial 68 landscape properties, each with a different influence on ecological, hydrological, and 69 70 biogeochemical shifts, and characterized by distinct morphologies and processes (Hinzman et al. 2005, Jorgenson and Osterkamp 2005, Schuur et al. 2009, Lafreniere and Lamoureux 2013). 71 72 Modes of permafrost degradation include active-layer deepening, as well as an array of 73 subsidence features broadly termed 'thermokarst' (Hinzman et al. 2005, Jorgenson et al. 2008a). 74 Each mode affects ecosystem properties and processes at different depths, rates, and scales, in 75 turn driving the nature and magnitude of overall impacts (Jorgenson et al. 2013). Modes of permafrost degradation in response to climate perturbation or disturbance are coupled with local 76 77 surficial conditions, including thermal properties, thaw stability, slope, hydrology and ground ice

- racteristics (Leibman et al. 2003, Lewkowicz and Harris 2005, Jorgenson et al. 2008a, Kokelj
- ret al. 2009, Jorgenson et al. 2010a, Lantuit et al. 2012). Thermal properties, thaw stability, and
- 80 hydrology, in turn, are influenced by cryostructure distribution and ground ice content,
- vegetation, and soil composition and organic layer development (Shur and Jorgenson 2007).

82 **1.2 Landscape variability**

83 Vegetation development on the surface and cryostructure development in the upperpermafrost are dynamically linked ecosystem processes organized in complex but potentially 84 generalizable patterns across landscapes. Mutual influences between vegetation and permafrost 85 86 (Raynolds and Walker 2008) are linked with terrain characteristics, surficial thermal properties, and hydrology (Shur and Jorgenson 2007, French and Shur 2010). These may be considered 87 within the 'state factor' framework, which groups terrain properties within five umbrella 88 89 categories: biota, parent material, topography, climate, and time (Jenny 1941, van Cleve et al. 90 1991, Jorgenson et al. 2013).

91 On newly deposited surfaces, topography, surficial geology, climate, and potential 92 recruitment drive initial development of vegetation and new cryostructures, and influence the 93 fate of pre-existing ground ice, such as relict glacial ice (Washburn 1980, Shur 1988, Walker et al. 2008, French and Shur 2010). With time, vegetation and cryostructure development exert 94 95 increasing influence at the surface, mediating heat flux, soil moisture, and decomposition rate of organic matter, which in turn feeds back on vegetation and cryostructure development (Davis 96 97 2001, Hobbie and Gough 2004, Walker et al. 2008). Vegetation, active-layer depth, and the nature and degree of permafrost and cryostructure development across heterogeneous landscapes 98 are a product of these interactions (Shur and Jorgenson 2007, Raynolds and Walker 2008, 99 100 Walker et al. 2008, French and Shur 2010, Walker et al. 2011). Correlations among vegetation

- 101 and permafrost characteristics are recognized from studies at specific sites (Kreig and Reger
- 102 1982, Shur and Jorgenson 2007, Walker et al. 2008, Kanevskiy et al. 2011, Epstein et al. 2012),
- and from regional to circumarctic-scale studies (Raynolds and Walker 2008, Gruber 2012,
- 104 Pastick et al. 2014).
- 105 **1.3 Integrating terrain properties**

106 A general approach describing relationships among terrain properties and permafrost,

107 congruent with the state factor framework (Shur and Jorgenson 2007), has been developed to

108 better estimate permafrost vulnerability among different landscapes. Terrain properties and

109 permafrost characteristics co-vary, and consistency of associations among permafrost, terrain and

110 vegetation enable landscape-scale analysis on that basis (Jorgenson and Kreig 1988, Raynolds

and Walker 2008, Jorgenson et al. 2010a, Jorgenson et al. 2013, Pastick et al. 2014). While the

112 importance of surficial deposits (Kreig and Reger 1982, Jorgenson et al. 2008a) and vegetation

113 (Viereck 1973) to ground ice and permafrost development have long been recognized,

114 landscape-scale methods for integrating terrain factors are not fully developed. Toward improved

terrain factor integration, we hypothesized that: 1) vegetation and permafrost properties

116 consistently correlate with specific terrain conditions across landscapes due to these

117 relationships; 2) that diverse landscapes may fall into general groupings from statistical analysis

of empirical field data for these combined properties; and 3) that these relationships can be used

to help identify which terrain factors, in combination, facilitate spatial characterization of

surficial landscape properties in the Brooks Range and foothills of northern Alaska.

121 Our research tested these ideas statistically using ordination of field survey data collected

122 from sites representing diverse landscapes in the Brooks Range and foothills of northern Alaska.

123 Identifying statistically-supported linkages between permafrost properties (ground ice content

- and cryostructures), and terrain properties (vegetation and surficial geology), can facilitate
- regional scale estimation of permafrost vulnerability and estimation of ground ice conditions,
- 126 and better inform models examining regional resilience, response and feedbacks to climate
- 127 change.
- 128
- 129 **2. Methods**
- 130 2.1. Study region

131 Our research spanned a gradient of arctic tundra including barren, herbaceous, and shrub landscapes within Alaska's Brooks Range and foothills, from the east-central portion of Alaska's 132 133 North Slope westward through the Noatak Basin to the Mission Lowlands, near the Noatak delta (Figure 1). These periglacial landscapes are within the continuous permafrost zone (Jorgenson et 134 al. 2008b) and are part of Arctic Bioclimate Subzone E (CAVM-Team 2003). The northeast 135 136 portion of the study region was centered around Toolik Field Station on the north slope of Alaska, while the central and western study region followed the Noatak Basin from near its 137 headwaters downstream to the Mission Lowlands, near the Noatak River delta. 138 139 Toolik Field Station is located in the northern Brooks Range foothills within a mosaic of

140 landscapes of varying glacial ages and ecotypes. Physiography ranges from low mountains at 141 the edge of the Brooks Range to subtle foothills stretching more than 75 km from the mountains 142 to the edge of the Arctic Coastal Plain. Date since most recent glaciation ranges from early 143 Pleistocene to Holocene for field sites surrounding Toolik Field Station, with acidic and 144 nonacidic, graminoid and shrub tundra vegetation reflecting duration of ecosystem development 145 and local site conditions (Walker et al. 1994, Walker et al. 1995, Hamilton 2003, Walker and

146	Maier 2008). Lake and stream density is variable by landscape age-class and related with glacial
147	and periglacial landforms (Hobbie et al. 1991, Kling 1995, Hamilton 2003).
148	The Noatak River flows 730 km along a westward course at approximately 67.5° N (Figure
149	1). Most of the 33,100-km ² basin falls within the Noatak National Preserve (U.S. National Park
150	Service) and is recognized as a UNESCO Biosphere Reserve. The Noatak Basin was
151	periodically glaciated throughout the Pleistocene and contains a patchwork of glacial and
152	periglacial landforms ranging in age from early Pleistocene to contemporary (Hamilton 2010,
153	Hamilton and Labay 2011). Physiographic provinces include high mountains of the east-central
154	Brooks Range, through foothills and valley bottoms to the Mission Lowlands at the arctic-boreal
155	ecotone near the Noatak mouth (Wahrhaftig 1965, Young 1974). Land cover spans a gradient of
156	vegetation and ecotypes including arctic and alpine tundra, shrublands and lowland boreal forest
157	(Young 1974, Viereck et al. 1992, Parker 2006, Jorgenson et al. 2010b).
158	Landscape conditions throughout this 500-km-wide region represent a broad range of
159	typical low-arctic landscapes (Figure 2). Alpine, foothill, and valley bottom settings include
160	many characteristic ecotypes of the North American Low Arctic, a suite of periglacial landforms,
161	diverse surficial geology and lithology, and a broad continuum of permafrost characteristics and
162	cryostructures. While a geographic gap exists between the Toolik and Noatak subregions,
163	substantial overlap among terrain properties and permafrost cryostratigraphy link them
164	conceptually. Our study deliberately included a wide range of conditions over a large
165	geographic area to represent a diversity of low-arctic landscapes in the region.
166	2.2 Field surveys

167	Our regional surveys identified areas of surface-exposed and degrading permafrost
168	distributed among diverse landscapes, from which we selected field sites representing a range of
169	low-arctic conditions. Aircraft-supported field campaigns and airphoto analysis in 2006, 2007,
170	and 2008 were used to identify watersheds with actively degrading permafrost exposures
171	representing different modes of degradation (and by proxy, differing ground-ice conditions).
172	Several thousand permafrost degradation feature locations were recorded in an ArcGIS
173	GeoDatabase, which was later expanded and augmented through a subsequent National Park
174	Service survey, which included both Gates of the Arctic National Park and Preserve and Noatak
175	National Preserve, using high-resolution satellite imagery to census these features throughout
176	both park units (Balser et al. 2009, Swanson and Hill 2010). These data drove spatial analyses
177	identifying diverse combinations of ecotype, lithology and surficial geology among
178	subwatersheds accessible by helicopter from field camps at Kelly River, Feniak Lake, and Toolik
179	Field Station (Figure 1). During subsequent helicopter-based visits in 2009, 2010, and 2011,
180	field sites were chosen for detailed examination based on: 1) best accessibility to exposures of
181	permafrost; and 2) inclusive representation among terrain properties including ecotype, lithology,
182	and surficial geology.

At each of 54 field sites, we measured and described general landscape characteristics and specific conditions at the site of permafrost exposure. A subset of categorical and quantitative data collection protocols and field codes were adopted from Jorgenson et al. (2010b) to characterize ambient surface properties (within approximately 100 m of the permafrost exposure) and to catalog the specific combination of vegetation, soil, surficial geology and cryostratigraphy immediately at the site of permafrost exposure (Table 1). Basic geomorphology, lithology, surficial geology, topography, and landforms were recorded to represent the area within

- approximately 100 m of the permafrost exposure. Vegetation was recorded both by class
- 191 (Viereck et al. 1992) and as a list of predominant overstory and understory species of vascular
- 192 plants, and functional groups of bryophytes within 20 m of the permafrost exposure.
- 193 Permafrost profile exposures were described in detail to characterize and quantify 194 properties of the live vegetative mat, contemporary soil (organic and mineral), parent material 195 and archaic soils, coarse fraction, ice content, cryostratigraphy, and interpretations of 196 mechanisms of cryogenesis. Permafrost exposures were predominantly composed of vertical scarps at actively degrading edges of retrogressive thaw slumps, active layer detachment slides 197 198 and thermo-erosional gullies (Figure 3). Permafrost exposures were prepared using hand tools to 199 remove previously thawed material and expose an intact permafrost profile from the top (ground 200 surface) down to the greatest accessible depth within the thaw feature (Figure 4). Exposures were prepared to a width of at least 1 m, with categorical and quantitative tabular data taken for 201 202 each discernible layer in the profile (Figure 4) from vegetation at the surface to the bottom of the 203 exposure. Data from each discernible subsurface layer were weighted by layer thickness and 204 integrated to generate overall values for: 1) contemporary soil; and 2) archaic soil layers and parent material (Table 2). Hand-drawn cryostratigraphic maps roughly following Kanevskiy et 205 al. (2011), and detail photos for each permafrost profile complement data and general site photos 206 207 and were used for interpretation and summarization.
- 208 2.3 Data analysis
- 209 **2.3.1 Data reduction**

To statistically analyze data from our 46 field sites by terrain and permafrost properties, we began with data reduction to eliminate extraneous independent variables with minimal contribution to our model and to reduce redundancy in the data. We employed Pearson (r)

213	correlations in two separate steps to examine redundancy and to identify variables with minimal
214	contribution to ordination results. In the first step, a Pearson correlation analysis of all variables
215	against one another with R statistical software was used to examine inter-variable relationships
216	and identify groups of variables that might be represented by a single integrator variable. Where
217	a set of variables was grouped by Pearson scores > 0.60 for all pairings, the group was
218	considered a candidate for integration.
219	In the second step, all variables went through a pilot, three-axis non-metric
220	multidimensional scaling (NMS) ordination with 50 runs of 250 iterations in PC-ORD to
221	generate Pearson correlation values for each variable against each ordination axis. This
222	ordination was used to examine the contribution of each variable to the ordination and eliminate
223	those with minimal analytical value. For this analysis, categorical data were transformed to
224	binary numbers for each categorical unit of each categorical variable, while continuous and
225	ordinal data were scaled 0 to 1 (precision to the hundredth) to conform with NMS analysis
226	assumptions for a valid distance matrix (McCune and Grace 2002, McCune 2013). Those
227	variables with NMS Pearson scores < 0.30 for each axis were deemed extraneous and excluded
228	from subsequent ordination. From each grouping of highly correlated variables identified in step
229	one, a single integrator variable was chosen from the group based on highest cumulative Pearson
230	score across all axes in step two.

231 2.3.2 Multiple factor analysis ordination

Relationships among permafrost and terrain properties were examined using multiple factor analysis (MFA) ordination of 46 surveyed field sites. Traditional ordination is conducted on datasets where all variables are comparable and of the same type (e.g., vegetative species by percent cover). While the goals of our analysis were similar to outcomes derived from

- traditional ordination (e.g., site similarity and clustering in multidimensional space as determined
- by a distance matrix), our dataset comprised different logical groupings of data for each site
- 238 (e.g., ice, substrate and vegetation) and dissimilar data types, such as coarse fragment size class
- 239 (ordinal), vegetation type (categorical), and ice percentage (continuous).

240 MFA, a recent adaptation of principal component analysis (PCA), was chosen for this 241 application of ordination because it is designed to integrate dissimilar data types and different logical groupings of data (termed 'blocks') for each observation within a single ordination run 242 (Escofier and Pagès 1994). While other ordination techniques, such as NMS, can also be applied 243 244 after data transformation and scaling (McCune and Grace 2002, McCune 2013), MFA offers two distinct advantages over NMS and other ordination techniques under these conditions. First, 245 end-user data transformation is unnecessary because MFA performs data normalization in an 246 247 initial PCA step, using the square root of the first eigenvalue in a manner comparable to Z-score 248 normalization (Abdi et al. 2013). These normalized data are then merged to form the analysis 249 matrix, enabling valid distance matrices to be calculated from what were initially incongruous 250 variables. Second, MFA provides the option to define blocks of data, which are conceptually coherent groups of variables pertaining to all observations (Abdi et al. 2013). The chief 251 advantage of a block approach is that individual blocks of data (e.g., vegetation, substrate, ice) 252 253 are inhibited from dominating the ordination results while other blocks become de-emphasized. MFA achieves this parity by normalizing the input data by block, and by handling each block as 254 255 a sub-matrix of the whole. The first principal component of each block is scaled to 1 in the 256 normalization step, which ensures that no block will dominate the model through disproportionate inertia in the final ordination (Abdi et al. 2013). Finally, each block must 257

contain variables of the same data type for the normalization step to produce valid results. Thus,

conceptual blocks containing multiple data types were split by type.

260 Data were originally recorded by segment of the study site (Tables 1 and 2), but were reorganized for statistical analysis into response variables and independent variables, and by 261 262 block. To effectively address the hypothesis that terrain properties consistently influence 263 cryostructure, ground ice, and vegetation across sites, we divided the dataset into response variables and independent variables from the perspective of the current ecosystem. Site 264 characteristics that predate and may potentially influence the current ecosystem (e.g., surficial 265 266 geology) were classed as independent variables, while properties influenced by contemporary ecosystem processes (e.g., vegetation, microtopography and upper permafrost cryostructures) 267 268 were classed as response variables and assigned to blocks. Response variables, termed 'active' 269 variables in MFA, were the basis of ordination calculations. Potential explanatory or 270 'supplemental' variables were employed as overlays on graphs of analysis results to illustrate 271 underlying drivers of statistically demonstrated relationships among permafrost, substrate and vegetation. The final set of variables, selected through Pearson score analyses and reorganized 272 for MFA, were assigned to blocks (Table 3) and ordinated by MFA with three dimensions using 273 the FactoMineR package within R statistical software (Le et al. 2008). 274

Finally, ordination results were used for hierarchic clustering in FactoMineR to produce a dendrogram depicting relative similarity/dissimilarity among sites, and to delineate statistical groupings of sites. Euclidean distance and Ward's method (0.75 inertia level) were used to generate the dendrogram and delineate groupings (Husson et al. 2010).

279

280 **3. Results**

281	MFA ordination revealed complex but consistent patterns of correlation among terrain and
282	permafrost properties across sites, and subsequent hierarchical clustering analysis produced four
283	primary groupings, two of which were further divided into subgroups based on subtle but
284	consistent differences among sites. Correspondence among categorical variables within the
285	ordination spanned across different MFA blocks (Figure 5), indicating that factors across the
286	three blocks of vegetative, substrate, and permafrost/ice properties were co-varying among sites.
287	Coarse and fine fraction (substrate), primary permafrost cryostructure (permafrost/ice), and
288	ecotype (vegetative) all contributed to consistent, statistical separation among sites, while
289	specific values for these variables were distributed across sites in complex combinations.
290	While co-varying, factors organized by block were not redundant in the ordination. Each

of the first three ordination axes were driven by differential influences from each block, with axis

one driven most by substrate then vegetation, axis two driven most by permafrost/ice then by

- vegetation, and axis three driven by roughly equivalent influence of all three blocks (Figure 6).
- 294

3.1. Hierarchically clustered groupings

Hierarchical clustering of ordination results produced four groupings from 46 sites in the study region (Figure 7). Group E1 contained six sites, E2 comprised 22 sites, E3 had five sites, and group E4 was made up of 13 sites. Groups E2 and E4 were further subdivided, based upon statistical differences driven by identifiable single factors within the ordination. Each group was characterized by combinations of terrain and permafrost properties.

300 Group E1.

301 The E1 grouping was found on late-Pleistocene moraine deposits where: 1) carbonate 302 lithologies comprise more than 10% of clast composition in the substrate; 2) the surface soils 303 were well-drained, nonacidic, and had thin organic layers, and low percentages of massive and 304 segregation ice, and 3) vegetation was dominated by calciphilic species (Table 4 and Figure 9). 305 Substrates were characterized by glacial till overlain by silt, and were generally ice-poor throughout the profile, with low content of massive and segregation ice. Approaching the 306 307 bottom of profile exposures, glacial till occasionally contained isolated masses of relict glacial 308 ice, and rarely ice-wedges, with combined massive and segregated ice content generally less than 309 10% by volume throughout the substrate profile. Clasts typically comprised more than 30% of 310 the parent substrate, and often included stone to boulder size rocks (250 - 950 mm). Where proglacial lakes were once present, a mantle of glaciolacustrine deposits occasionally flanked the 311 moraine atop the glacial till with increasing thickness from the moraine crest downward. Thin, 312 313 post-glacial loess deposits comprised the uppermost substrate, with no evidence of colluvial redeposition contributing to the profile at any of the sites examined, and minimal buried organic 314 material (3.5% average, by volume). While the active layer was comparatively well drained, the 315 316 upper permafrost horizon was typically saturated with pore ice. Small lenticular and thin layered cryostructures were usually present, though sparsely dispersed near the top of the permafrost. 317 Total organic-layer depth averaged 7.3 cm and was primarily composed of graminoid detritus. 318 Vegetation was dominated by upland and alpine graminoid dwarf shrub vegetation, and 319 320 non-tussock forming sedges and Dryas integrifolia dominated all sites. Common calciphilic 321 species included Oxtropis nigrescens, and the ericad Rhododendron lapponicum. Eriophorum 322 vaginatum was present at half of the sites, but occurred at low density lacking tussock

- 323 morphology. Dwarf willow species (primarily Salix reticulata), along with Geum rossii,
- 324 Astragalus umbellatus and Pedicularis capitata were also prevalent at all sites.
- 325 Group E2.

E2 sites were found on gentle hill slopes where drainage was moderate, uppermost 326 327 substrates were > 90% silt, shallow surficial deposits overlie bedrock or till sheets, and acidic 328 tundra was underlain by cryofacies assemblages of primarily syngenetic, segregated-ice cryostructures (Table 4 and Figure 9). Contemporary soils averaged 99% silt layers with 329 minimal microtopography on slopes averaging 5° (sd = 2.5°). At least two landscape settings 330 331 were associated with class E2: 1) mid and lower hill slope settings in broad valleys on glacial till sheets with a loess cap, and 2) on upper hill slope settings where a loess cap sits atop highly 332 fractured, noncarbonate, near-surface bedrock. Primarily syngenetic cryofacies within the parent 333 334 material occasionally included isolated lenses of intrusive, massive, or epigenetic cryostructures, 335 or were (rarely) ice-poor. Upper substrates were greater than 90% silt (by particle size distribution) regardless of setting or evidence of colluvial processes. Upper permafrost within 336 337 loess contained 25 to 70% segregated ice by volume, primarily including reticulate, ataxitic, and bedded cryostructures, with occasional lenticular structures or veins. 338 Vegetation was dominated by moist acidic tundra (Walker and Maier 2008), almost 339 340 exclusively of the Upland Dwarf Birch-Tussock Shrub ecotype, which has an average soil pH of 4.7 (0.7 standard deviation reported for sites in northern foothills of the Brooks Range in Alaska 341 (Jorgenson et al. 2010b). Organic layer depth averaged 21 cm (min 15 cm, max 23 cm), with 342 343 moss-dominated peat. Dominant vegetation included Eriophorum vaginatum, Betula nana and dwarf and low willow and ericaceous species with a Sphagnum and feathermoss understory. 344

345	Subgroups 'a' and 'b' were distinguished by total organic layer depth (O_a). Subgroup 'a'
346	had an average total organic-layer depth of 15 cm (sd = 4.5 cm) whereas subgroup 'b' averaged
347	22 cm (sd = 7.7 cm). The two subgroups partially coincide with regional geography (Figure 8)
348	and strongly correlate with estimated time since last deglaciation. More than 85% of landscapes
349	containing sites in subgroup 'a' occurred on late-Pleistocene/Holocene surfaces. Those of
350	subgroup 'b' occurred on mid to late-Pleistocene surfaces, with more than 40% estimated as
351	mid-Pleistocene (Hamilton 2003, Hamilton 2010).

352 Group E3.

353 E3 occurred on thin deposits of silty colluvium over near-surface bedrock, typically on 354 upper hill slopes near exposed-bedrock hilltops, where ambient slope averaged 5.4° (sd = 1.3° ; Table 4 and Figure 9). Nonacidic, primarily herbaceous vegetation occurred atop one to many 355 356 deposits of colluvial material and syngenetic cryostructures, with interleaved layers or turbated 357 fragments of relict vegetation. In contrast with other groups, substrate composition was relatively similar and consistent among sites. Colluvial surficial deposits were an admixture of 358 silt and angular rubble, with silt generally comprising most of the material in the contemporary 359 360 soil (mean = 90%; sd = 9%) versus a more even proportion in the parent material (mean = 68%; 361 sd = 19%). Most sites occurred on hill slopes below exposed outcrops of micaceous shales 362 containing < 1% quartzite in thin veins. The silt component frequently derived from some proportion of Pleistocene and Holocene loess (Hamilton 2010) mixed with silts from weathered 363 364 shale, though the proportion is unknown either for any specific site or for these sites as a whole. 365 Clast lithology was a mixture of shale and quartzite. Generally, increased distance from exposed bedrock correlated with increased proportion of weathering-resistent fragments of quartzite. 366 Permafrost profiles were almost exclusively composed of syngenetic cryostructures, with an 367

368	average 29 % (sd = 16 %) segregated ice by volume (visible ice). Ataxitic and reticulate
369	cryostructures were typically co-dominant, with ice-rich transition zones at both current and
370	relict permafrost tables. Vegetation was nonacidic, with a community gradient appearing to
371	correlate with surface hydrology. Communities situated near or within preferential surface
372	flowpaths contained higher proportions of non-tussock forming sedges (Eriophorum
373	angustifolium, Carex spp.) with sparse cover of dwarf shrub (e.g., Cassiope tetragona, Dryas
374	spp. Salix spp.) and low shrub (Salix spp.), and an understory of feathermosses. The wettest sites
375	supported relatively deep surface organic layers of up to 33 cm of feathermoss-dominated
376	material, with up to 20 cm of diffusely-flowing water on the ground surface. Dwarf shrub, forb
377	and low shrub cover increases moving away from the hydric end of the gradient, with rapidly
378	decreasing E. angustifolium cover. This group was distributed primarily in the Noatak Basin
379	(Figure 8), with only one site found in the North Slope foothills.

380 Group E4.

381 Sites in group E4 were distributed across a highly variable suite of lowland sites where

deep, ice-rich, non-carbonate glacial deposits underlie acidic or nonacidic low shrub

communities. The most prominent common characteristic of this group was a deep deposit of

ice-rich, diamictous, glacial till of primarily or exclusively noncarbonate lithology. At more than

half of these sites, glacial till was overlain by, or interspersed with, glaciolacustrine,

386 glaciofluvial, fluvial, or aeolian deposits, and typically appeared within kettle topography, on

lower hill slopes, or along contemporary or relict river bluffs. The coarse fraction varied from 1

388 % to 75 % of the parent material by volume, including clast sizes from gravel to 2 m wide

- boulders (Table 4 and Figure 9). Massive ice was typically present in at least one form,
- including relict glacial ice, injection ice, and ice wedges. Ice wedges ranged from absent to

- dominant (> 90 % by volume) within the permafrost profile. Contemporary soils frequently
- included a loess cap, or less frequently appeared to develop directly from glacial deposits.
- 393 Ataxitic and reticulate cryostructures were common, indicative of syngenetic permafrost
- 394 development in the upper horizons. Vegetation was typically dominated by low shrubs, with
- 395 both acidic and nonacidic vegetation observed. While low shrubs tended to dominate across
- 396 sites, community composition and organic-layer depth varied markedly among these sites.
- 397 Tussock cover ranged from absent to > 50 % cover.
- Subgroupings were driven by outlier values for specific site properties. Subgroup 'a' represents the general characteristics of sites in this group. Subgroup 'b' included sites where ice wedges comprise > 40 % of the permafrost by volume. Subgroup 'c' was restricted to two sites within the same glacial deposit in the North Slope foothills containing > 75 % coarse fraction in the permafrost, with multiple boulder size clasts up to 1.9 m.
- 403

3.2 Relationships among sites and groups

Spatial distribution of groups of sites partially corresponded with regional geography 404 405 (Figure 8). While sites from all four groups occurred both on the North Slope and within the 406 Noatak Basin, all groupings exhibited regional tendencies. E1 sites had the strongest geographic affiliation, with five out of six sites concentrated within a 25-km radius in the upper Noatak 407 Basin. Sites grouped E2 were more common on the North Slope, with only two examples in the 408 409 Noatak Basin, while E3 was distributed throughout the Noatak Basin, but occurred only once on 410 the North Slope. E4 sites occurred across the study region, however, only one of its three subgroups (E4a) was evenly distributed, with E4b primarily located in the Noatak Valley bottom, 411 and E4c comprised of only two sites, both located within the same surficial geologic deposit on 412 413 the North Slope.

414	The two sites grouped E4c behaved as outliers within the initial run of the MFA
415	ordination, and were removed in the final ordination. These two sites were distinct in the
416	sample, containing > 75% boulder-sized (600–1900mm) clasts by volume in the near-surface
417	parent material, which was characteristic of that local moraine deposit. Removal of these two
418	sites produced a more even spread of the remaining sites along graphed ordination axes,
419	indicating a better representation of total variability among all sites. These two sites (36 and 38)
420	were added back into the final grouping hierarchy as a subgroup, because all other site properties
421	were comparable to those of the primary group with which they were associated in the pilot
422	ordination.

423 4. Discussion

Broad-scale modelling of permafrost and terrain properties is frequently limited by the 424 variability of relationships among regions, which is difficult to quantify and describe due to the 425 cost of field sampling to characterize conditions and relationships within regions (Riseborough et 426 427 al. 2008). As a result, maps of permafrost distribution and properties are either broad in scale but very general in content, or more specific in content but limited in spatial scale (Jorgenson et al. 428 2008b, Gruber 2012, Jorgenson et al. 2014, Pastick et al. 2014). Results from this study should 429 support and inform future modelling of permafrost conditions in the central and western Brooks 430 Range by providing further evidence of the relationship between permafrost conditions and 431 432 landscape characteristics, and by illustrating the nature of these relationships for this region.

No single terrain factor emerged as the dominant driver of permafrost conditions in our
study region. For example, while soil coarse fraction was a strongly influential factor driving the
ordination, considered alone it failed to explain key differences among sites and groupings.
Groups E1 and E3 (Figure 5) both comprised sites with gravelly surficial substrates, but sites

437	grouped E1 occurred in xeric to mesic conditions with Dryas-dominated vegetation and ice-poor
438	permafrost, while E3 sites were located in more hydric settings with wet sedge meadow
439	vegetation and primarily reticulate and syngenetic cryostructures, frequently including an ice-
440	rich transition zone. As no single factor was identified as a dominant driver of the ordination,
441	estimation of upper permafrost conditions by proxy should incorporate multiple terrain factors.
442	Gradients and divisions among sites and site groupings were driven by terrain properties
443	that generally correspond with state factors, suggesting that examination of properties organized
444	by state factor may provide better insight and more complete, parsimonious information for
445	estimating landscape permafrost conditions. MFA blocks representing vegetative and substrate
446	factors were important, complementary drivers in the ordination, and correspond with two of the
447	five state factors (biota and parent material). The data reduction step in our analyses revealed
448	key index variables in the data, which were correlated with multiple variables organized within
449	logical data blocks. At landscape to regional scales, selection of the most statistically relevant
450	and representative index variables from groups of variables defined by state factors may offer the
451	most parsimonious method for analyzing terrain properties driving upper-permafrost
452	characteristics. The complexity, broad diversity, and remote nature of landscapes throughout the
453	Low Arctic present difficult challenges for estimating subsurface conditions, such as permafrost,
454	which are fundamental to landscape processes and critical to understanding climate change
455	impacts and feedbacks at regional scales. Exploiting relationships among terrain and permafrost
456	properties within a state factor framework may offer the most effective and efficient approach for
457	estimation of permafrost-related properties and processes in remote, arctic regions.

458 Results of this analysis are also suggestive of the spatial distribution of prevalent ecological459 processes including paludification and development of the permafrost intermediate layer through

quasi-syngenetic permafrost aggradation (Shur 1988), and support the idea that these 460 461 relationships may be modelled to better understand landscape distributions of cryofacies (French 1998, Shur and Jorgenson 2007, Jorgenson et al. 2014). Together, these provide insights for 462 conceptual models of landscape development and response (Jorgenson et al. 2010a), which in 463 turn can be empirically tested at landscape to regional scales using structural equation modeling, 464 integrated terrain unit analysis, and other approaches which rely upon a-priori knowledge from 465 which to construct initial models. Also, the results help identify which permafrost, vegetation 466 and terrain properties may be most germane for modelling within this region, enabling more 467 efficient and targeted field data collection. 468

Results of this study further support prior findings correlating permafrost properties and 469 vegetation with terrain conditions (Kreig and Reger 1982, Pullman et al. 2007, Kanevskiy et al. 470 471 2011), identifying which permafrost, vegetation and terrain factors are most closely correlated, 472 and illustrating specific examples of these relationships from landscapes within our study region. 473 The correlations of terrain conditions across a diversity of sites may provide for proxy estimation 474 of certain permafrost properties within this region (Figures 5 - 7). Whereas our groupings of sites were at least partially a product of biased sampling, the groupings demonstrate that specific 475 terrain properties are correlated with surficial conditions across a diversity of landscapes in the 476 477 region, and that they likely influence surficial conditions in a generally consistent manner along landscape gradients. Relative estimates of some subsurface properties should therefore be 478 possible across landscapes in the study region. 479

480 These results are generally consistent with those obtained from studies of other, differing 481 permafrost regions and studies conducted at different scales, and offer detail for this region to 482 support modelled estimates of permafrost properties. General relationships among terrain,

- 483 vegetation, active layer and upper permafrost horizon properties and cryostructures have been
- described for regions throughout the Arctic (Wolfe et al. 2001, Shur and Jorgenson 2007,
- 485 Raynolds and Walker 2008, French and Shur 2010, Daanen et al. 2011, Jorgenson et al. 2013,
- 486 Mishra and Riley 2014, Pastick et al. 2014) and for specific localities (Viereck 1973, Murton and
- 487 French 1994, French 1998, Walker et al. 2008), and support early assertions of a general
- 488 correlation between upper permafrost conditions and landscape characteristics throughout the
- 489 Arctic (Washburn 1980, Shur 1988). While inter-related correlations among terrain, vegetation,
- 490 and permafrost have been found at broad scales throughout the Arctic (Shur and Jorgenson 2007,
- 491 Raynolds and Walker 2008, Kokelj and Jorgenson 2013), the nature and strength of relationships
- 492 among terrain, vegetation and permafrost vary significantly by region (Shur and Jorgenson 2007,
- 493 Jorgenson et al. 2010a, Pastick et al. 2014).

494 5. Conclusions

495 Correlations among terrain and permafrost properties offer opportunities to better understand distributions of ground ice and cryostructures, and provide evidence of cryogenic 496 processes across landscape gradients. Statistically-supported groupings of sites across a broad 497 diversity of landscapes suggest consistent, though complex, inter-relationships among terrain and 498 permafrost properties in the study region. These are a potential basis for improved spatially-499 500 explicit, proxy estimations of conditions in upper permafrost horizons, and for identifying areas prone to particular modes of permafrost degradation in response to climate warming and 501 502 disturbance across the study region. In the Brooks Range and foothills of northern Alaska, 503 where diverse landscapes abutting the arctic-boreal ecotone may be especially prone to multiple 504 modes of permafrost degradation with climate change, and where remote settings severely limit direct observation of permafrost properties, this multi-factor approach facilitates better 505

- so estimation of extents, trajectories and magnitudes of different permafrost degradation modes and
- 507 their future impacts.

508 6. Acknowledgments

- 509 This work was supported by a University of Alaska Fairbanks Center for Global Change
- 510 (CGC) Student Research Grant, by U.S. National Science Foundation grant ARC-0806465, and
- 511 by U.S. Department of Energy Biological and Environmental Research Program grant
- 512 3ERKP818. A portion of this work was performed at Oak Ridge National Laboratory (ORNL).
- 513 ORNL is managed by UT–Battelle, LLC, for the DOE under contract DE-AC05-00OR22725.
- 514 We gratefully acknowledge Erin Trochim and Teresa Hollingsworth for discussion of statistical
- 515 methods, and Steven B. Young for invaluable discussion of landscape development and for field
- 516 expertise. The aviation skill and safety of pilots Tom George, Stan Hermens, Christian
- 517 Cabanilla, Tommy Levanger, Terry Day, Jim Kincaid, and Buck Mackson were indispensable to
- 518 the success of this research.

519 7. References

- 520 Abdi, H., L. J. Williams, and D. Valentin. 2013. Multiple factor analysis: principal component
- 521 analysis for multitable and multiblock data sets. WIREs Computational Statistics.
- 522 ACIA. 2005. Arctic Climate Impact Assessment. Cambridge University Press.
- 523 Balser, A., M. N. Gooseff, J. Jones, and W. B. Bowden. 2009. Thermokarst distribution and
- 524 relationships to landscape characteristics in the Feniak Lake region, Noatak National
- 525 Preserve, Alaska; Final Report to the National Park Service, Arctic Network (ARCN).
- 526 Fairbanks, AK.
- 527 Beikman, H. M. 1980, Geologic Map of Alaska: scale 1:2,500,000., U. S. Geological Survey,
- 528 Reston, VA.

- 529 Bowden, W. B., M. N. Gooseff, A. Balser, A. Green, B. J. Peterson, and J. Bradford. 2008.
- 530 Sediment and nutrient delivery from thermokarst features in the foothills of the North
- 531 Slope, Alaska: Potential impacts on headwater stream ecosystems. Journal of
- 532 Geophysical Research 113. G02026. doi:10.1029/2007JG000470.
- 533 Callaghan, T. V., L. O. Bjorn, Y. Chernov, T. Chapin, T. R. Christensen, B. Huntley, R. A. Ims,
- 534 M. Johansson, D. Jolly, S. Jonasson, N. Matveyeva, N. Panikov, W. Oechel, G. Shaver,
- S. Schaphoff, and S. Sitch. 2004. Effects of changes in climate on landscape and regional
 processes, and feedbacks to the climate system. Ambio 33:459-468.
- 537 CAVM-Team. 2003. Circumpolar Arctic Vegetation Map, Scale 1:7,500,000. Conservation of
- Arctic Flora and Fauna (CAFF) Map No. 1. U.S. Fish and Wildlife Service, Anchorage,
 Alaska.
- 540 Daanen, R. P., T. Ingeman-Nielsen, S. S. Marchenko, V. E. Romanovsky, N. Foged, M. Stendel,
- 541 J. H. Christensen, and K. H. Svendsen. 2011. Permafrost degradation risk zone

assessment using simulation models. The Cryosphere 5:1043-1056.

- 543 Davis, N. 2001. Permafrost: A Guide to Frozen Ground in Transition. University of Alaska
- 544 Press, Fairbanks, AK.
- 545 Epstein, H. E., M. K. Raynolds, D. A. Walker, U. S. Bhatt, C. J. Tucker, and J. E. Pinzon. 2012.
- 546 Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past 547 three decades. Environmental Research Letters 7.
- Escofier, B. and J. Pagès. 1994. Multiple factor analysis. Computational Statistics & Data
 Analysis 18:121-140.
- French, H. and Y. Shur. 2010. The principles of cryostratigraphy. Earth-Science Reviews
 101:190-206.

- 552 French, H. M. 1998. An appraisal of cryostratigraphy in north-west Arctic Canada. Permafrost
- and Periglacial Processes 9:297-312.
- 554 Frey, K. E., J. W. McClelland, R. M. Holmes, and L. C. Smith. 2007. Impacts of climate
- 555 warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the
- 556 Kara Sea. Journal of Geophysical Research G Biogeosciences [J Geophys Res (G
- 557 Biogeosci)] Vol 112.
- 558 Gallant, A. L., E. F. Binnian, J. M. Omernik, and M. B. Shasby. 1995, Ecoregions of Alaska:
- 559 U.S. Geological Survey Professional Paper 1567., Washington, DC.
- 560 Goetz, S. J., H. E. Epstein, U. S. Bhatt, G. J. Jia, J. O. Kaplan, H. Lischke, Q. Yu, A. Bunn, A. H.
- 561 Lloyd, D. Alcaraz-Segura, P. S. A. Beck, J. C. Comiso, M. K. Raynolds, and D. A.
- 562 Walker. 2011. Recent Changes in Arctic Vegetation: Satellite Observations and563 Simulation Model Predictions.
- 564 Gooseff, M., A. Balser, W. Bowden, and J. Jones. 2009. Effects of hillslope thermokarst in
- northern Alaska., 90: 29-31. Eos, Transactions of the American Geophysical Union
 90:29-31.
- 567 Grosse, G., J. Harden, M. Turetsky, A. D. McGuire, P. Camill, C. Tarnocai, S. Frolking, E. A. G.
- 568 Schuur, T. Jorgenson, S. Marchenko, V. Romanovsky, K. P. Wickland, N. French, M.
- 569 Waldrop, L. Bourgeau-Chavez, and R. G. Striegl. 2011. Vulnerability of high-latitude
- soil organic carbon in North America to disturbance. J. Geophys. Res. 116:G00K06.
- 571 Gruber, S. 2012. Derivation and analysis of a high-resolution estimate of global permafrost
- zonation. The Cryosphere 6:221-233.
- Hamilton, T. D. 2003. Surficial geology of the Dalton Highway (Itkillik-Sagavanirktok rivers)
- 574 area, southern Arctic foothills, Alaska: Alaska Division of Geological & Geophysical

575	Surveys Professional Report 121. Pages 1-32. Alaska Division of Geological &
576	Geophysical Surveys, Fairbanks, AK.
577	Hamilton, T. D. 2010. Surficial Geologic Map of the Noatak National Preserve, Alaska. U.S.
578	Geological Survey (in cooperation with U.S. National Park Service) Scientific
579	Investigations Map 3036, 1: 250,000 scale, and accompanying report: 21p.
580	Hamilton, T. D. and K. A. Labay. 2011. Surficial Geologic Map of the Gates of the Arctic
581	National Park and Preserve, Alaska. U.S. Geological Survey (in cooperation with U.S.
582	National Park Service) Scientific Investigations Map 3125, 1: 300,000 scale, and
583	accompanying report:19p.
584	Hinzman, L., N. Bettez, W. Bolton, F. Chapin, M. Dyurgerov, C. Fastie, B. Griffith, R. Hollister,
585	A. Hope, H. Huntington, A. Jensen, G. Jia, T. Jorgenson, D. Kane, D. Klein, G. Kofinas,
586	A. Lynch, A. Lloyd, A. McGuire, F. Nelson, W. Oechel, T. Osterkamp, C. Racine, V.
587	Romanovsky, R. Stone, D. Stow, M. Sturm, C. Tweedie, G. Vourlitis, M. Walker, D.
588	Walker, P. Webber, J. Welker, K. Winker, and K. Yoshikawa. 2005. Evidence and
589	Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions.
590	Climatic Change 72:251-298.
591	Hinzman, L. D., W. R. Bolton, K. Petrone, J. Jones, K. Yoshikawa, and J. P. McNamara. 2006.
592	Permafrost Degradation and Effects on Watershed Chemistry and Hydrology.in
593	American Geophysical Union Fall Meeting, San Francisco (USA), 11-15 Dec 2006.
594	Hobbie, J. E., B. J. Peterson, G. R. Shaver, and W. J. O'Brien. 1991. The Toolik Lake Project:
595	terrestrial and freshwater research on change in the Arctic. Pages 378-383 in V. II, editor.
596	Proceedings of the University of Alaska Confrence, "International Conference on the

- 597 Role of Polar Regions in Global Change", June 1990. University of Alaska, Fairbanks,
- 598 Alaska.
- Hobbie, S. E. and L. Gough. 2004. Litter decomposition in moist acidic and non-acidic tundra
 with different glacial histories. Oecologia 140:113-124.
- 601 Hulten, E. 1968, Flora of Alaska and Neighboring Territories: A Manual of the Vascular Plants,
- 602 Standford University Press, Stanford, CA.
- 603 Husson, F., J. Josse, and J. Pages. 2010. Principal component methods hierarchical clustering -
- 604 partitional clustering: why would we need to choose for visualizing data? , Applied
- 605 Mathematics Department, Agro Campus Ouest, Rennes, France.
- 606 Jenness, J. 2006, Topographic Position Index (tpi_jen.avx) extension for ArcView,
- 607 *http://www.jennessent.com/arcview/tpi.htm*
- 608 Jenny, H. 1941. Factors of Soil Formation: A System of Quantitative Pedology. Dover
- 609 Publications, Inc., New York, NY.
- 610 Jorgenson, M. T., J. Harden, M. Kanevskiy, J. O'Donnell, K. P. Wickland, S. Ewing, K. L.
- 611 Manies, Q. Zhuang, Y. Shur, R. G. Striegl, and J. Koch. 2013. Reorganization of
- 612 vegetation, hydrology and soil carbon after permafrost degradation across heterogeneous
- boreal landscapes Environmental Research Letters 8:1-14.
- Jorgenson, M. T., M. Kanevskiy, Y. Shur, J. Grunblatt, C. Ping, and G. Michaelson. 2014.
- 615 Permafrost Database Development, Characterization, and Mapping for Northern Alaska.
- 616 U.S. Fish & Wildlife Service, Arctic Landscape Conservation Cooperative.
- 617 Jorgenson, M. T. and R. A. Kreig. 1988. A Model for Mapping Permafrost Distribution Based on
- 618 Landscape Component Maps and Climatic Variables. Pages 176-182 *in* 5th International
- 619 Conference on Permafrost, August 2-5, 1988. Tapir Publishers, Trondheim, Norway.

620	Jorgenson, M. T. and T. E. Osterkamp. 2005. Response of boreal ecosystems to varying modes
621	of permafrost degradation. Canadian Journal of Forest Research 35: 2100-2111.
622	Jorgenson, M. T., V. Romanovsky, J. Harden, Y. Shur, J. O'Donnell, E. A. G. Schuur, M.
623	Kanevskiy, and S. Marchenko. 2010a. Resilience and vulnerability of permafrost to
624	climate change. Canadian Journal of Forest Research-Revue Canadienne De Recherche
625	Forestiere 40:1219-1236.
626	Jorgenson, M. T., J. E. Roth, P. F. Miller, M. J. Macander, M. S. Duffy, A. F. Wells, G. V. Frost,
627	and E. R. Pullman. 2010b. An ecological land survey and landcover map of the Arctic
628	Network. Natural Resource Technical Report NPS/ARCN/NRTR-2009/270. National
629	Park Service, Fort Collins, Colorado.
630	Jorgenson, M. T., Y. L. Shur, and T. E. Osterkamp. 2008a. Thermokarst in Alaska. Pages 869-
631	876 in Ninth International Conference on Permafrost. National Academy Press,
632	Washington, DC, Fairbanks, AK.
633	Jorgenson, M. T., Y. L. Shur, and E. R. Pullman. 2006. Abrupt increase in permafrost
634	degradation in Arctic Alaska. Geophysical Research Letters 33:1 - 4.
635	Jorgenson, T., K. Yoshikawa, V. Romanovsky, M. Kanevskiy, J. Brown, Y. Shur, S. Marchenko,
636	G. Grosse, and B. Jones. 2008b. Map of Permafrost Characteristics in Alaska.
637	Proceedings of the Ninth International Conference on Permafrost (NICOP), Fairbanks,
638	AK June 30 - July 4, 2008.
639	Kanevskiy, M., Y. Shur, D. Fortier, M. T. Jorgenson, and E. Stephani. 2011. Cryostratigraphy of
640	late Pleistocene syngenetic permafrost (yedoma) in northern Alaska, Itkillik River
641	exposure. Quaternary Research 75:584-596.
642	Karlstrom, T. N. V., 1964, Surficial geology of Alaska, 2 sheets, scale 1:1,584,000.

643	Kling, G. W. 1995. Land-water linkages: the influence of terrestrial diversity on aquatic systems.
644	Pages 297-310 in F. S. Chapin and C. Korner, editors. The role of biodiversity in arctic
645	and alpine tundra ecosystems. Springer-Verlag, Berlin.
646	Kokelj, S. V. and M. T. Jorgenson. 2013. Advances in Thermokarst Research. Permafrost and
647	Periglacial Processes 24:108-119.
648	Kokelj, S. V., T. C. Lantz, J. Kanigan, S. L. Smith, and R. Coutts. 2009. Origin and Polycyclic
649	Behaviour of Tundra Thaw Slumps, Mackenzie Delta Region, Northwest Territories,
650	Canada. Permafrost and Periglacial Processes 20:1-12.
651	Kreig, R. A. and R. D. Reger. 1982. Airphoto Analysis and Summary of Landform Soil
652	Properties along the Route of the Trans-Alaska Pipeline System, Geologic Report 66,
653	Alaska Division of Geological and Geophysical Surveys. Page 149.
654	Lafreniere, M. J. and S. F. Lamoureux. 2013. Thermal Perturbation and Rainfall Runoff have
655	Greater Impact on Seasonal Solute Loads than Physical Disturbance of the Active Layer.
656	Permafrost and Periglacial Processes 24:241-251.
657	Lantuit, H., W. H. Pollard, N. Couture, M. Fritz, L. Schirrmeister, H. Meyer, and H. W.
658	Hubberten. 2012. Modern and Late Holocene Retrogressive Thaw Slump Activity on the
659	Yukon Coastal Plain and Herschel Island, Yukon Territory, Canada. Permafrost and
660	Periglacial Processes 23:39-51.
661	Lantz, T. C., S. E. Gergel, and S. V. Kokelj. 2010. Spatial Heterogeneity in the Shrub Tundra
662	Ecotone in the Mackenzie Delta Region, Northwest Territories: Implications for Arctic
663	Environmental Change. Ecosystems 13:194-204.
664	Le, S., J. Josse, and F. Husson. 2008. FactoMineR: An R Package for Multivariate Analysis.
665	Journal of Statistical Software 25:1-18.

- Leibman, M. O., A. I. Kizyakov, L. D. Sulerzhitsky, and N. E. Zaretskaya. 2003. Dynamics of
- the landslide slopes and mechanism of their development on Yamal peninsula, Russia. .in
- 668 Proceedings of the Eight International Conference on Permafrost. A.A.Balkema
- 669 Publishers, Rotterdam, Netherlands Zurich 21-25 July 2003.
- 670 Lewkowicz, A. G. and C. Harris. 2005. Morphology and geotechnique of active-layer
- 671 detachment failures in discontinuous and continuous permafrost, northern Canada.
- 672 Geomorphology 69:275-297.
- 673 McCune, B. 2013. Non-metric multidimensional scaling analysis personal communication.
- 674 McCune, B. and J. B. Grace. 2002. Ch. 16: Nonmetric Multidimensional Scaling. Pages 125-142
- 675 in Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR.
- 676 Mishra, U. and W. J. Riley. 2014. Active-Layer Thickness across Alaska: Comparing
- 677 Observation-Based Estimates with CMIP5 Earth System Model Predictions. Soil Science
 678 Society of America Journal 78:894-902.
- 679 Murton, J. B. and H. M. French. 1994. CRYOSTRUCTURES IN PERMAFROST,
- TUKTOYAKTUK COASTLANDS, WESTERN ARCTIC CANADA. Canadian Journal
 of Earth Sciences 31:737-747.
- 682 Myers-Smith, I. H., B. C. Forbes, M. Wilmking, M. Hallinger, T. Lantz, D. Blok, K. D. Tape, M.
- 683 Macias-Fauria, U. Sass-Klaassen, E. Levesque, S. Boudreau, P. Ropars, L. Hermanutz,
- 684 A. Trant, L. S. Collier, S. Weijers, J. Rozema, S. A. Rayback, N. M. Schmidt, G.
- 685 Schaepman-Strub, S. Wipf, C. Rixen, C. B. Menard, S. Venn, S. Goetz, L. Andreu-
- 686 Hayles, S. Elmendorf, V. Ravolainen, J. Welker, P. Grogan, H. E. Epstein, and D. S. Hik.
- 687 2011. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities.
- 688 Environmental Research Letters 6.

- 689 Osterkamp, T. E., M. T. Jorgenson, E. A. G. Schuur, Y. L. Shur, M. Z. Kanevskiy, J. G. Vogel,
- and V. E. Tumskoy. 2009. Physical and Ecological Changes Associated with Warming
- 691 Permafrost and Thermokarst in Interior Alaska. Permafrost and Periglacial Processes692 20:235-256.
- 693 Parker, C. L. 2006. Vascular plant inventory of Alaska's Arctic National Parklands: Bering Land
- 694 Bridge National Preserve, Cape Krusenstern National Monument, Gates of the Arctic
- 695 National Park & Preserve, Kobuk Valley National Preserve, and Noatak National

696 Preserve. ARCN I&M, National Park Service, Alaska Region Final Report:142p.

- Pastick, N. J., M. T. Jorgenson, B. K. Wylie, J. R. Rose, M. Rigge, and M. A. Walvoord. 2014.
- 698 Spatial variability and landscape controls of near-surface permafrost within the Alaskan
- 699Yukon River Basin. Journal of Geophysical Research-Biogeosciences 119:1244-1265.
- 700 Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I.
- Shiklomanov, I. A. Shiklomanov, and S. Rahmstorf. 2002. Increasing river discharge to
 the Arctic Ocean. Science 298:2171-2173.
- Pullman, E. R., M. T. Jorgenson and Y. Shur. 2007. Thaw settlement in soils of the Arctic
 Coastal Plain, Alaska. Arctic, Antarctic, and Alpine Research 39 (3): 468-476.
- 705 Raynolds, M. K. and D. A. Walker. 2008. Circumpolar Relationships Between Permafrost
- 706 Characteristics, NDVI, and Arctic Vegetation Types. Pages 1469-1474 in D. Kane,
- 707 editor. Ninth International Conference on Permafrost. National Academy Press,
- 708 Washington, DC, Fairbanks, Alaska.
- Raynolds, M. K., J. C. Comiso, D. A. Walker, and D. Verbyla 2008b, Relationship between
- satellite-derived land surface temperatures, arctic vegetation types, and NDVI, *Remote*
- 711 Sensing of Environment, 112(4), 1884-1894.

712	Riseborough, D., N. Shiklomanov, B. Etzelmuller, S. Gruber, and S. Marchenko. 2008. Recent
713	advances in permafrost modelling. Permafrost and Periglacial Processes 19:137-156.
714	Schaefer, K., T. Zhang, L. Bruhwiler, and A. P. Barrett. 2011. Amount and timing of permafrost
715	carbon release in response to climate warming. Tellus Series B-Chemical and Physical
716	Meteorology.
717	Schuur, E. A. G. and B. Abbott. 2011. Climate change: High risk of permafrost thaw. Nature
718	480:32-33.
719	Schuur, E. A. G., J. G. Vogel, K. G. Crummer, H. Lee, J. O. Sickman, and T. E. Osterkamp.
720	2009. The effect of permafrost thaw on old carbon release and net carbon exchange from
721	tundra. Nature 459:556-559.
722	Shur, Y. L. 1988. The upper horizon of permafrost soil. Pages 867-871 in Proceedings of the
723	Fifth Intern. Conf. on Permafrost. Tapir Publishers, Trondheim, Norway.
724	Shur, Y. L. and M. T. Jorgenson. 2007. Patterns of Permafrost Formation and Degradation in
725	Relation to Climate and Ecosystems. Permafrost and Periglacial Processes 18:7 - 19.
726	Swanson, D. K. and K. Hill. 2010. Monitoring of Retrogressive Thaw Slumps in the Arctic
727	Network, 2010 Baseline Data: Three-dimensional Modeling with Small-format Aerial
728	Photographs. Page 58. U.S. Department of the Interior, National Park Service, Natural
729	Resource Data Series NPS/ARCN/NRDS-2010/123, Natural Resource Program Center,
730	Fort Collins, CO.
731	Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov. 2009. Soil
732	organic carbon pools in the northern circumpolar permafrost region. Global
733	Biogeochemical Cycles 23:1-11.

734	van Cleve, K., F. S. Chapin, III, C. T. Dyrness, and L. A. Viereck. 1991. Element Cycling in
735	Taiga Forests: State-Factor Control. Bioscience 41:78-88.
736	Viereck, L. 1973. Ecological effects of river flooding and forest fires on permafrost in the taiga
737	of Alaska. Pages 60-67 in Permafrost: The North American contribution to the Second
738	International Conference. National Academy of Sciences, Yakutsk, USSR.
739	Viereck, L. A., C. T. Dyrness, A. R. Batten, and K. J. Wenzlick. 1992. The Alaska Vegetation
740	Classification. Page 278 in U. S. D. o. A. F. Service, editor. Gen. Tech. Rep. PNW-GTR-
741	286, Portland, OR.
742	Wahrhaftig, C. 1965. Physiographic Divisions of Alaska. U.S.G.S. Professional Paper 482. 52
743	pp.
744	Walker, D. A., N. A. Auerbach, and M. M. Shippert. 1995. NDVI, biomass, and landscape
745	evolution of glaciated terrain in northern Alaska. Polar Record 31:169-178.
746	Walker, D. A., H. E. Epstein, V. E. Romanovsky, C. L. Ping, G. J. Michaelson, R. P. Daanen, Y.
747	Shur, R. A. Peterson, W. B. Krantz, M. K. Raynolds, W. A. Gould, G. Gonzalez, D. J.
748	Nicolsky, C. M. Vonlanthen, A. N. Kade, P. Kuss, A. M. Kelley, C. A. Munger, C. T.
749	Tamocai, N. V. Matveyeva, and F. J. A. Daniels. 2008. Arctic patterned-ground
750	ecosystems: A synthesis of field studies and models along a North American Arctic
751	Transect. Journal of Geophysical Research-Biogeosciences 113.
752	Walker, D. A., P. Kuss, H. E. Epstein, A. N. Kade, C. M. Vonlanthen, M. K. Raynolds, and F. J.
753	A. Daniëls. 2011. Vegetation of zonal patterned-ground ecosystems along the North
754	America Arctic bioclimate gradient. Applied Vegetation Science:no-no.

- 755 Walker, D. A. and H. A. Maier. 2008. Vegetation in the vicinity of the Toolik Field Station,
- Alaska. Biological Papers of the University of Alaska, No. 28, Insitute of Arctic Biology,
- 757 Fairbanks, AK.
- 758 Walker, D. A., et al. 2005, The Circumpolar Arctic vegetation map, Journal of Vegetation
- 759 *Science*, *16*(3), 267-282, doi:10.1111/j.1654-1103.2005.tb02365.x.
- 760 Walker, M. D., D. A. Walker, and N. A. Auerbach. 1994. Plant Communities of a Tussock
- 761 Tundra Landscape in the Brooks Range Foothills, Alaska. Journal of Vegetation Science762 5:843-866.
- 763 Washburn, A. L. 1980. Geocryology: A survey of periglacial processes and environments.
- 764 Halsted Press, John Wiley & Sons, Inc., New York, USA.
- 765 Wolfe, S. A., E. Kotler, and S. R. Dallimore. 2001. Surficial characteristics and the distribution
- of thaw landforms (1970-1999), Shingle Point to Kay Point, Yukon Territory. Geological
- 767Survey of Canada, Open File 4115, 2001.
- Young, S. B. 1974. The environment of the Noatak River basin, Alaska., Contributions of the
- 769 Center for Northern Studies, Wolcott, VT.

Table 1. Variables characterizing conditions in the vicinity of each permafrost profile exposure.

Segment	Name	Туре		Source
Landscape	Physiographic position	Categorical	*	Jorgenson et al., (2010b)
Landscape	Surficial Geology	Categorical	*	Hamilton, (2003 & 2010)
Landscape	Lithology	Categorical	*	Jorgenson et al., (2010b)
Landscape	Bedrock Geology	Categorical	§	Beikman (1982)
Landscape	Glacial Geology	Categorical	§	Hamilton, (2003 & 2010)
Site Surface	Elevation	Quantitative	*	Garmin eTrex GPS
Landscape	Elevation	Quantitative	§	ASTER DEM
Site Surface	Slope	Quantitative	*	Brunton inclinometer
Landscape	Slope	Quantitative	§	ASTER DEM
Site Surface	Aspect	Quantitative	*	Brunton compass (declination adjusted)
Landscape	Aspect	Quantitative	§	ASTER DEM
Landscape	Topographic Position Index	Quantitative	§	ASTER DEM, Jenness (2006)
Landscape	Macrotopography	Categorical	*	Jorgenson et al., (2010b)
Site Surface	Microtopography	Categorical	*	Jorgenson et al., (2010b)
Landscape	Geomorphic unit	Categorical	*	Jorgenson et al., (2010b)
Site Surface	Permafrost degradation mode	Categorical	*	Jorgenson et al., (2008a)
Site Surface	Vegetation	Categorical	*	Viereck et al., (1992); Jorgenson et al., (2010b)
Landscape	Vegetation complex	Categorical	§	Walker et al., (2005); Jorgenson et al., (2010b)
Site Surface	Dominant flora [over & understory]	Species	*	Hulten (1968) & Parker (2006)
Landscape	Summer Warmth Index	Quantitative	§	Raynolds et al., (2008b)
Site Surface	Ecotype	Categorical	*	Jorgenson et al., (2010b)
Site Surface	Acidic (from mean pH per Ecotype)	Categorical	*	Jorgenson et al., (2010b)

* assessed and recorded in the field

§ derived from spatial (GIS & remote sensing) analyses

37

Table 2. Variables characterizing soil and permafrost properties in the vicinity of each permafrost profile exposure.

Name	Segment	Туре		Integrator Variable	Units / Source
Depth of Active Layer	Profile	Quantitative			cm
Total Depth of Profile	Profile	Quantitative			cm
Wedge/Intrusive Ice Percentage	Profile	Quantitative			% of profile exposure
Fibric/Hemic Thickness (O _i / O _e)	Soil	Quantitative			cm
Sapric Thickness (O _a)	Soil	Quantitative			cm
Depth of Contemporary Soil	Soil	Quantitative			cm
Coarse Fraction Percentage	Soil	Quantitative	§	Coarse & Fine Fraction	% of profile exposure
Maximum Clast Size	Soil	Quantitative	*		cm
Segregated Ice Percentage	Soil	Quantitative	*		% of profile exposure
Segregated Ice Max. Width	Soil	Quantitative	*		cm
Lithofacies	Soil	Categorical	§	Coarse & Fine Fraction	Jorgenson et al., (2010b)
Coarse & Fine Fraction	Soil	Categorical			Jorgenson et al., (2010b)
Coarse Fraction Shape	Soil	Ordinal	*		Jorgenson et al., (2010b)
Peat Type	Soil	Categorical	*		Jorgenson et al., (2010b)
Primary Cryostructures	Parent	Categorical			Jorgenson et al., (2010b)
Secondary Cryostructures	Parent	Categorical	*		Jorgenson et al., (2010b)
Lithofacies	Parent	Categorical	§	Coarse & Fine Fraction	Jorgenson et al., (2010b)
Coarse & Fine Fraction	Parent	Categorical			Jorgenson et al., (2010b)
Coarse Fraction Shape	Parent	Ordinal			Jorgenson et al., (2010b)
Buried Organics Percentage	Parent	Quantitative			% of profile exposure
Primary Cryostructures	Parent	Categorical			Jorgenson et al., (2010b)
Secondary Cryostructures	Parent	Categorical			Jorgenson et al., (2010b)
Coarse Fraction Percentage	Parent	Quantitative	§	Coarse & Fine Fraction	% of profile exposure
Maximum Clast Size	Parent	Quantitative	§	Coarse & Fine Fraction	cm
Segregation Ice Percentage	Parent	Quantitative			% of profile exposure
Segregation Ice Max. Width	Parent	Quantitative			cm

* excluded from MFA analysis; Pearson's r < .300 in pilot ordination

§ excluded from MFA analysis; information captured within a separate integrator variable (Pearson Correlation)

38

Table 3. Active (response) and supplemental (explanatory) variables used for statistical analysis, and subsequent grouping by hierarchical clustering. Active variables drive ordination results, while supplemental variables are used as overlays on ordination graphs to examine correspondence of that variable with ordination results.

Name	Block	Туре	Class
Vegetation class	Vegetative	Categorical	Active
Acidic	Vegetative	Categorical	Active
Litter Layer Thickness (O _i)	Vegetative	Quantitative	Active
Organic Layer Thickness (O _a)	Vegetative	Quantitative	Active
Buried Organics Percentage	Vegetative	Quantitative	Active
Depth of Contemporary Soil	Substrate	Quantitative	Active
Depth of Active Layer	Substrate	Quantitative	Active
Coarse Fraction Percentage (contemporary soil)	Substrate	Quantitative	Active
Microtopography	Substrate	Categorical	Active
Coarse & Fine Fraction (contemporary soil)	Substrate	Categorical	Active
Coarse & Fine Fraction (archaic soil/parent material)	Substrate	Categorical	Active
Ice percentage	Ice	Quantitative	Active
Segregated Ice Maximum Lens Width	Ice	Quantitative	Active
Wedge/Intrusive Ice Percentage	Ice	Quantitative	Active
Total Depth of Profile	Ice	Quantitative	Active
Primary Cryostructures	Ice	Categorical	Active
Secondary Cryostructures	Ice	Categorical	Active
Acidity (mean Ecotype pH)	n/a	Quantitative	Supplemental
Elevation	n/a	Quantitative	Supplemental
Aspect	n/a	Quantitative	Supplemental
Topographic Position Index	n/a	Quantitative	Supplemental
Summer Warmth Index	n/a	Quantitative	Supplemental
Slope	n/a	Quantitative	Supplemental
Surficial Geology	n/a	Categorical	Supplemental
Bedrock Geology	n/a	Categorical	Supplemental
Glacial Geology	n/a	Categorical	Supplemental
Vegetation Complex	n/a	Categorical	Supplemental
Ecotype	n/a	Categorical	Supplemental
Lithology	n/a	Categorical	Supplemental
Macrotopography	n/a	Categorical	Supplemental
Permafrost Degradation Mode	n/a	Categorical	Supplemental
Lithofacies	n/a	Categorical	Supplemental

39

Table 4. Summary values for field-estimates characterizing soil and permafrost properties in the vicinity of each permafrost profile exposure, presented by grouping from hierarchical clustering of MFA ordination results.

	Units	Segment	E1		E2		E3		E4	
			mean	std	mean	std	mean	std	mean	std
Elevation	m	Site	576	70	633	240	657	167	469	314
Slope	0	Site	5.7	0.8	5.0	2.5	5.4	1.3	9.4	4.0
Aspect	0	Site	251	102	216	110	128	109	165	119
Depth of Active Layer	cm	Profile	156	55	58	16	82	21	64	23
Total Depth of Profile	cm	Profile	432	230	133	45	175	66	382	272
Wedge/Intrusive Ice	%	Profile	16	16	3	7	0	0	23	25
Litter Layer Thickness (Oi)	cm	Soil	1.5	0.5	9.3	5.6	6.1	4.6	3.9	2.1
Organic Layer Thickness (O _a)	cm	Soil	7.3	6.6	20.6	7.8	21.2	8.6	10.9	7.3
Depth of Contemporary Soil	cm	Soil	63	31	42	13	57	9	52	33
Coarse Fraction	%	Soil	15	9	1	3	10	9	9	20
Maximum Clast Size	cm	Soil	50	18	8	17	42	44	63	118
Segregated Ice	%	Soil	0	0	3	8	0	0	1	4
Segregated Ice Max.Width	mm	Soil	0	0	3	7	0	0	7	28
Buried Organics	%	Parent	3.5	6.2	8.8	6.9	7.0	8.7	6.3	7.3
Coarse Fraction	%	Parent	32	4	12	16	32	19	32	22
Maximum Clast Size	cm	Parent	501	332	41	41	88	46	559	483
Segregated Ice	%	Parent	9	15	29	19	29	16	56	24
Segregated Ice Max.Width	mm	Parent	75	86	65	107	52	55	947	1017

a die 5. Site groupings compared by permanost degradation mode.										
Site Grouping	Permafrost Degradation Mode									
	ALDS	Soil Pit	RTS	TEG	Total					
E1	0	0	6	0	6					
E2a	4	0	1	2	7					
E2b	2	1	6	8	17					
E3	7	0	2	0	9					
E4a	0	0	3	0	3					
E4b	0	0	9	1	10					
E4c	0	0	2	0	2					
Total	13	1	29	11						

Table 5. Site groupings compared by permafrost degradation mode.

ALDS = Active Layer Detachment Slide RTS = Retrogressive Thaw Slump

TEG = Thermo-Erosional Gulley

Table 6.	Field	sites	by	group	with	ground	coordina	tes (Geographi	c decimal	degrees,	NAD83).

Site	Name	Group	Subgroup	Latitude	Longitude
19	Third Twin A	E1		67.95835	-156.81985
20	Third Twin B	E1		67.95835	-156.81985
21	Third Twin C	E1		67.95835	-156.81985
22	Good Twin	E1		67.95929	-156.78624
23	Woodpile	E1		67.89927	-156.48472
34	Itkillik-2	E1		68.66615	-149.81720
6	Sushi	E2	a	67.86342	-161.48044
9	Bear Patch	E2	а	67.73697	-161.42747
25	Cotton Hollow	E2	а	68.98551	-150.71714
26	VoTK	E2	а	68.96278	-150.67086
47	GTH89	E2	а	68.52534	-149.54644
50	I-Minus-2 A	E2	а	68.54345	-149.52273
53	TRTK A	E2	а	68.69177	-149.20751
24	Helios	E2	b	68.91054	-150.74004
27	VoTK	E2	b	68.96067	-150.66970
28	VoTK Control	E2	b	68.96210	-150.66755
31	Ptarmigan Bluff	E2	b	68.87620	-150.54552
32	Horn Lake A	E2	b	68.96068	-150.31443
33	Horn Lake B	E2	b	68.96068	-150.31443
39	Nstk-3u A	E2	b	68.87147	-149.57768
40	Nstk-3u B	E2	b	68.87148	-149.57768
41	GTH88 A	E2	b	68.50785	-149.57474
42	GTH88 B	E2	b	68.50806	-149.57433
43	I-Minus-1 A	E2	b	68.55244	-149.57229
44	I-Minus-1 B	E2	b	68.55253	-149.57169
45	I-Minus-1 C	E2	b	68.55231	-149.57081
49	GTH89 A	E2	b	68.52510	-149.53815
51	I-Minus-2 B	E2	b	68.54337	-149.52260
52	GTH86	E2	b	68.61919	-149.42786
54	TRTK H	E2	b	68.69360	-149.20430
5	Remora	E3		67.64853	-161.60562
7	Saddle	E3		67.81790	-161.44655
8	Eli	E3		67.71618	-161.43026
10	Slopbucket	E3		67.92515	-161.41811
14	Old Ironslides	E3		68.27005	-157.68447
16	Mafic Monks	E3		68.26651	-157.47338
17	Jaded Plover	E3		67.98045	-157.07511
18	Bloodslide	E3		68.28070	-157.05966
37	GTH88 C	E3		68.50267	-149.58873
2	Rainbucket	E4	а	67.94305	-162.35649
4	Loon Lake A	E4	a	67.92730	-161.96506
12	Ouebec	E4	a	68.08735	-158.04102
13	Gavia Familia	E4	а	68.08324	-158.02727
15	Cutler Ice	E4	a	67.87649	-157.53053
29	Lobelia A	E4	a	68.87938	-150.55647
30	Lobelia B	E4	a	68.87938	-150.55647
35	NE-14	E4	a	68.67904	-149.62320
46	I-Minus-1 D	E4	a	68.55272	-149,56517
48	GTH89 B	E4	a	68.52585	-149.54500
1	Wulik	E4	b	67.84770	-163.88159
3	Loon Lake B	E4	b	67.92794	-161.97230
11	Grandaddy	F4	b	68.03481	-159,29156
36	GTH88 D	F4	c	68 50268	-149 58901
50	OTHOUD	1.7	v	00.20200	117.50701

Figure 1. Study region in northern Alaska. Field sites were identified and selected through aerial survey, with ground visits by helicopter from Feniak Lake Camp and Kelly River Ranger Station in the Noatak National Preserve, and by helicopter and on foot from Toolik Field Station on Alaska's North Slope.

Figure 2. Generalized landscape characteristics of the study region. All field sites (red dots) are within the continuous permafrost zone (Jorgenson et al. 2008b), within Arctic Bioclimate Subzone E (CAVM-Team 2003), and are generally Climate-driven Ecosystem-modified permafrost landscapes (Shur and Jorgenson 2007). While these ancillary data sets provide valuable insight into regional landscape composition, this study is focused on terrain and upper permafrost horizon properties at finer scales.

Figure 3. Permafrost degradation features providing access to permafrost profile exposures. Photos show (upper, a) general morphology from oblique airphotos and (lower, b) unprepared permafrost exposures from ground photos. Retrogressive thaw slumps (1), thermo-erosional gullies (2) and active layer detachment slides (3) were the predominant permafrost degradation features in the study area and comprised all feature types examined in this study. Photos 2a and 2b courtesy W. B. Bowden.

Figure 4. Upper permafrost profile exposure. Photos show (a) profile preparation, (b) a profile prepared for examination, and (c) schematic cryostratigraphic map of the permafrost profile, substrate and vegetation, which complements tabular data for each profile layer.

Figure 5. Field sites displayed by grouping (box, upper left), and with active categorical variables overlain on graphed MFA results. Colors of groupings correspond with the dendrogram and map (Figures 7 &8).

Figure 6. Influence of quantitative variables, shown by block, on the 3-dimensional MFA ordination driving clustered site groupings. Variables are shown by MFA block: VQ (red) = Vegetative, SQ (green) = substrate, IQ (blue) = Ice/Permafrost. MFA dimensions 1 and 2 are shown on left; MFA dimensions 1 and 3 are on the right.

Figure 7. Dendrogram from hierarchic clustering of MFA results, showing groupings E1-E4. Colors correspond with ordination group overlay graph (Figure 5), and with map of sites by grouping (Figure 8).

Figure 8. Distribution of field sites by grouping. E2a and E2b are similar sub-groups, differentiated mainly by the effects of a deeper organic horizon for E2a. E2 is found predominantly on the North Slope, with the two occurrences in the Noatak Basin of subtype 'a', possibly associated with warmer, drier conditions compared with a stronger maritime influence promoting cooler and damper summertime conditions on the north slope. E3 is found only once on the north slope, but is more common in the Noatak Basin associated with noncarbonate colluvial deposits prevalent on upper hill slopes there. We consider all of these sites to occur within Climate-Driven Ecosystem-Modified permafrost landscapes proposed by Shur and Jorgenson (2007), and all occur within Arctic Bioclimate Subzone E (CAVM-Team 2003).

Figure 9. Photos of sites from groups E1, E2, E3 and E4. 'a' = substrate and upper permafrost profile, 'b' = vegetation. E1. is Site 19; E2. is Site 25; E3. is Site 18; E4. is Site 15.