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Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas 

have predominantly relied on remotely sensed snow cover. However this provides no information on the actual amount of 

water stored in a snowpack i.e. the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was 

combined with in situ meteorological observations and a modified version of the seNorge snow model to estimate climate 

sensitivity of SWE and snowmelt runoff in the Langtang catchment in Nepal. Landsat 8 and MOD10A2 snow cover maps 15 

were validated with in situ snow cover observations provided by surface temperature and snow depth measurements 

resulting in classification accuracies of 85.7% and 83.1% respectively. Optimal model parameter values were obtained 

through data assimilation of MOD10A2 snow maps and snow depth measurements using an Ensemble Kalman filter. The 

approach of modelling snow depth in a Kalman filter framework allows for data-constrained estimation of SWE rather than 

snow cover alone and this has great potential for future studies in the Himalayas. Climate sensitivity tests with the optimized 20 

snow model show a strong decrease in SWE in the valley with increasing temperature. However, at high elevation a decrease 

in SWE is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the 

changes in the spatial distribution of precipitation along with changes in temperature. Finally the climate sensitivity study 

revealed that snowmelt runoff increases in winter and early melt season (December to May) and decreases during the late 

melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. 25 

1 Introduction 

In the Himalayas a part of the precipitation is stored as snow and ice at high elevations. This water storage is affected by 

climate change resulting in changes in river discharge in downstream areas (Barnett et al., 2005; Bookhagen and Burbank, 

2010; Immerzeel et al., 2009, 2010). The Himalayas and adjacent Tibetan Plateau are important water towers, and water 

generated here supports the water demands of more than 1.4 billion people through large rivers such as the Indus, Ganges, 30 

Brahmaputra, Yangtze and Yellow (Immerzeel et al., 2010). So far, the main focus has been on effect of climate change on 
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the glaciers and the resulting runoff. However, snow is an important short-term water reservoir in the Himalayas, which is 

released seasonally contributing to river discharge (Bookhagen and Burbank, 2010; Immerzeel et al., 2009). The contribution 

of snowmelt to total runoff is highest in the western part of the Himalayas and lower in the eastern and central Himalayas 

(Bookhagen and Burbank, 2010; Lutz et al., 2014). 

Although Himalayan snow storage is important for the water supply in large parts of Asia, in situ observations of snow 5 

depth are sparse throughout the region. Many studies benefit from the continuous snow cover data retrieved from satellite 

imagery to estimate snow cover dynamics or contribution of snowmelt to river discharge (Bookhagen and Burbank, 2010; 

Gurung et al., 2011; Immerzeel et al., 2009; Maskey et al., 2011). Studies about snowmelt in the Himalayas have 

predominantly relied on remotely sensed snow cover and a modelled melt flux estimating melt runoff resulting from this 

snow cover (e.g. Bookhagen and Burbank, 2010; Immerzeel et al., 2009; Tahir et al., 2011). However, this provides no 10 

information on snow water equivalent (SWE), which is an important hydrologic measure as it indicates the actual amount of 

water stored in a snowpack. Currently there is no reliable information on SWE for the Himalayas (Lutz et al., 2015). SWE 

can be retrieved with passive microwave remote sensing, but the results are highly uncertain, especially for mountainous 

terrain and wet snow (Dong et al., 2005). In addition the spatial resolution is coarse and therefore inappropriate for 

catchment scale studies in the Himalayas. Estimating both the spatial and temporal distribution of SWE and snowmelt is 15 

important for flood forecasting, hydropower and irrigation in downstream areas. The aim of this study is to estimate SWE 

and snowmelt runoff in a Himalayan catchment by assimilating remotely sensed snow cover and in situ snow depth 

observations into a modified version of the seNorge snow model (Saloranta, 2012, 2014, 2016). Climate sensitivity tests are 

subsequently performed to investigate the change of SWE and snowmelt runoff as result of changing air temperature and 

precipitation. The approach of modelling snow depth allows to validate the quantity of simulated snow rather than snow 20 

cover alone and is a new approach in Himalayan snow research. 

2 Methods and data 

2.1 Study area 

The study area is the Langtang catchment, which is located in the central Himalaya approximately 100 km north of 

Kathmandu (Figure 1). The catchment has a surface area of approximately 580 km2 from the outlet near Syabru Besi 25 

upwards. The elevation ranges from 1406 m above sea level (asl) at the catchment outlet to 7234 m asl for Langtang Lirung, 

which is the highest peak in the catchment. The climate is monsoon-dominated and 68% to 89% of the annual precipitation 

falls during the monsoon (Immerzeel et al., 2014). The spatial patterns in precipitation are seasonally contrasting. During the 

monsoon precipitation mainly accumulates at the southern slopes and near the catchment outlet at low elevation. However, 

during the winter precipitation mainly accumulates along high-elevation southern slopes (Collier and Immerzeel, 2015). 30 

Winter westerly events can provide significant snowfall. Snow cover has strong seasonality with extensive, but sometimes 

erratic, winter snow cover and retreat of the snowline to higher elevations during spring and summer and less snow cover. 
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For the upper part of the catchment (upstream of Kyangjin) it has been estimated that snowmelt contributes up to 40% of 

total runoff (Ragettli et al., 2015). 

2.2 Calibration and validation strategy 

Remotely sensed snow cover, in situ meteorological observations, and a modified version of the seNorge snow model were 

combined to estimate SWE and snowmelt runoff dynamics. The remotely sensed snow cover (Landsat 8 and MOD10A2 5 

snow maps) was first validated with in situ snow cover observations provided by surface temperature and snow depth 

measurements. The snow model was used to simulate daily values of SWE and runoff and was forced by daily in situ 

meteorological observations of precipitation, temperature and incoming shortwave radiation. MOD10A2 snow cover and 

snow depth measurements were assimilated to obtain optimal model parameter values using an Ensemble Kalman Filter 

(EnKF; Evensen, 2003). The optimized parameters were used for a simulation without assimilation of the observations 10 

(open-loop). Finally, the model outcome was validated with observed snow depth and Landsat 8 snow cover. 

2.3 Datasets 

2.3.1 Remotely sensed snow cover 

MOD10A2 

MOD10A2 is a Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover product available at 15 

http://reverb.echo.nasa.gov/. The online sub-setting and reprojection utility was used to clip and project imagery for the 

Langtang catchment. MOD10A2 provides the 8-day maximum snow extent with a spatial resolution of ~500 m. If there is 

one snow observation within the 8-day period then the pixel is classified as snow. The 8-day maximum extent offered a good 

compromise between the temporal resolution and the interference of cloud cover. The snow mapping algorithm used is based 

on the Normalized Difference Snow Index (NDSI; Hall et al., 1995). The NDSI is a ratio of reflection in short-wave infrared 20 

(SWIR) and visible wavelengths and takes advantage of the properties of snow i.e. snow strongly reflects visible light and 

strongly absorbs SWIR. The NDSI is calculated with spectral bands 4 (0.545-0.565 μm) and 6 (1.628-1.652 μm) following 

Eq. (1): 

 

𝑁𝐷𝑆𝐼 =
𝐵𝑎𝑛𝑑 4−𝐵𝑎𝑛𝑑 6

𝐵𝑎𝑛𝑑 4+𝐵𝑎𝑛𝑑 6
             (1) 25 

 

Pixels are classified as snow when the NDSI ≥ 0.4. Water and dark targets typically have high NDSI values, and to prevent 

pixels from being incorrectly classified as snow, the reflection should exceed 10% and 11% for bands 2 (0.841-0.876 μm) 

and 4 respectively for a pixel to be classified as snow (Hall et al., 1995). A full description of the snow mapping algorithm is 

given by Hall et al. (2002). 30 
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Landsat 8 

Landsat 8 imagery from 15 April 2013 to 5 November 2014 was downloaded from http://earthexplorer.usgs.gov/. Cloud free 

scenes, based on visual inspection, were used to derive daily snow maps with high spatial resolution (30 m). For each image 

digital numbers were converted to top of atmosphere reflectance. For Landsat 8 the NDSI was calculated with Eq. (1) with 

spectral bands 3 (0.53-0.59 μm) and 6 (1.57-1.65 μm). The chosen threshold value was equal to that used for the MOD10A2 5 

snow cover product. The NDSI has proven to be a successful snow mapping algorithm for various sensors with a threshold 

value around 0.4 (Dankers and De Jong, 2004). Although the spectral bands have slightly different band widths and spectral 

positions, a threshold value of 0.4 gave satisfactory results when compared with in situ snow observations. In addition, the 

reflection in near-infrared light should exceed 11% to prevent water from being incorrectly classified as snow (Dankers and 

De Jong, 2004). Therefore, a pixel is classified as snow when the NDSI value ≥ 0.4 and the reflectance in near-infrared light  10 

> 11%. 

2.3.2 In situ observations 

Different types of snow and meteorological observations were available for the study period (January 2013 – September 

2014; Table 1, Figure 1). Two transects of surface temperature measurements on a north and south facing slope provided 

information on snow cover. The 13 temperature sensors (Hobo Tidbits) were positioned on the surface and covered by a 15 

small cairn and recorded temperature with 10 minute sampling intervals. Snow depths were measured with sonic ranging 

sensors at 4 locations along the transects at 15 minute intervals. Hourly measurements of snow depth were also made at the 

Kyangjin automatic weather station (AWS; Fig. 1). Hourly means (or totals) of air temperature, liquid and solid 

precipitation, and incoming shortwave radiation were also recorded at AWS Kyangjin (Shea et al., 2015). Air temperature 

data was also acquired at several locations with 10 and 15 minute recording intervals. 20 

2.4 Model forcing 

The snow model was forced with daily average and maximum air temperature, cumulative precipitation and average 

incoming shortwave radiation for the time period January 2013 – September 2014. Hourly measurements of air temperature, 

precipitation and incoming shortwave radiation at AWS Kyangjin were therefore aggregated to daily values. This study 

period was chosen based on availability of forcing data and observations. Daily temperature lapse rates were interpolated 25 

from the air temperature measurements throughout the catchment and used to extrapolate (average and maximum) daily air 

temperature observed at AWS Kyangjin. The daily observed precipitation and temperature lapse rates were corrected in the 

modified seNorge snow model with the correction factors 𝑝𝑟𝑒𝑐𝑖𝑝 and 𝑇𝑙𝑎𝑝𝑠𝑒  respectively to account for measurement 

uncertainty (Table 2). 

Collier and Immerzeel (2015) modelled the spatial distribution of precipitation in Langtang using an interactively 30 

coupled atmosphere and glacier mass balance model (Collier et al., 2013). Their study revealed seasonally contrasting spatial 

patterns of precipitation within the catchment. Monthly modelled precipitation fields from this study were therefore 
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normalized and used to distribute the observed precipitation at AWS Kyangjin. Similarly, a radiation model (Dam, 2001; 

Feiken, 2014) was used to extrapolate observed incoming shortwave radiation. The radiation model takes into account the 

aspect, slope, elevation and shading due to surrounding topography. 

The model initial conditions for January 2013 (i.e. SWE and snow depth) were set by simulating year 2013 three 

times. 5 

2.5 Modified seNorge model 

The seNorge snow model (Saloranta, 2012, 2014, 2016) was rewritten from its original code into the environmental 

modelling software PCRaster-Python (Karssenberg et al., 2010) to allow spatio-temporal modelling of the SWE and runoff 

within the catchment. The snow is modelled as a single homogeneous layer with a spatial resolution of 100 m and a daily 

time step. The seNorge model was further improved by implementing a different melt algorithm, albedo decay and 10 

avalanching. These novel model components are described hereafter and the model parameters used are given in Table 2. 

2.5.1 Water balance and snowmelt 

Precipitation in the model is partitioned as rain or snow based on an air temperature threshold 𝑡ℎ𝑟𝑠𝑛𝑜𝑤 (°C). The snowpack 

consists of a solid component and possibly a liquid component. Meltwater and rain can be stored within the snowpack until 

its water holding capacity is exceeded and has the possibility to refreeze within the snowpack. The original melt algorithm of 15 

the seNorge snow model is substituted by the Enhanced Temperature-Index approach (Pellicciotti et al., 2005, 2008). When 

air temperature (𝑇; °C) exceeds the temperature threshold for melt onset (𝑇𝑇; °C) the potential melt (𝑀𝑝𝑜𝑡; mm d-1) is 

calculated by Eq. (2): 

 

𝑀𝑝𝑜𝑡 = 𝑇 ∗ 𝑇𝐹 + 𝑆𝑅𝐹 ∗ (1 − 𝛼) ∗ 𝑅𝑖𝑛𝑐 ,         (2) 20 

 

where 𝑆𝑅𝐹 (m2 mm W-2 d-1) is a radiative melt factor, 𝑇𝐹 (mm °C-1 d-1) is a temperature melt factor, 𝛼 (-) is the albedo of 

the snow cover and 𝑅𝑖𝑛𝑐 (W m-2) is the incoming shortwave radiation. In case that the threshold temperature is negative, the 

potential melt can become negative when the radiation melt component is not positive enough to compensate for the negative 

temperature melt component. When the potential melt is negative it is set to zero to prevent negative values.  25 

The simulated runoff in the seNorge snow model is the total runoff, i.e. the sum of snowmelt and rain. As the focus 

of this study is on snowmelt runoff it is necessary to split the runoff in snowmelt and rain runoff. Meltwater and rain fill up 

the snowpack until its water holding capacity is exceeded. The surplus is defined as snowmelt and rain runoff respectively. If 

both rain and snowmelt occur it is assumed that rain saturates the snowpack first. Rain falling on snow-free portions of the 

basin is included in the rain runoff totals. 30 
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2.5.2 Albedo decay 

Decay of the albedo of snow is calculated with the algorithm developed by Brock et al. (2000) in which the albedo is a 

function of cumulative maximum daily air temperature 𝑇max (°C). When maximum air temperature is above 0 °C the air 

temperature is summed as long snow is present and no new snow has fallen. Albedo decay is calculated differently for deep 

snow (SWE ≥ 5 mm) and shallow snow (SWE < 5 mm). The albedo decay for deep snow is a logarithmic decay whereas the 5 

decay for shallow snow is exponential. This results in a gradual decrease of the albedo for several weeks, which agrees with 

reality (Brock et al., 2000). When new snow falls the albedo is set to its initial value. In Langtang the observed albedo of 

fresh snow is 0.84 and the observed minimum precipitation rate to reset the snow albedo is 1 mm d-1 (Ragettli et al., 2015). 

2.5.3 Avalanching 

After snowfall events, avalanching occurs regularly on steep slopes in the catchment. Therefore snow transport due to 10 

avalanching is considered to be an important process for redistribution of snow in the Langtang catchment (Ragettli et al., 

2015). Snow avalanching is implemented in the model using the SnowSlide algorithm (Bernhardt and Schulz, 2010). For 

each cell a maximum snow holding depth 𝑆𝑊𝐸𝑚𝑎𝑥 (m), depending on slope 𝑆  (°), is calculated using an exponential 

regression function following Eq. (3):  

 15 

𝑆𝑊𝐸𝑚𝑎𝑥 = 𝑆𝑆1 + 𝑒−𝑆𝑆2∗𝑆 ,          (3) 

 

where 𝑆𝑆1 and 𝑆𝑆2 are empirical coefficients. If SWE exceeds 𝑆𝑊𝐸𝑚𝑎𝑥  and the slope exceeds the minimum slope 𝑆𝑚𝑖𝑛 for 

avalanching to occur, then snow is transported to the adjacent downstream cell. Snow can be transported through multiple 

cells within one time step. 20 

As the snowpack is divided into an ice and liquid component, both the ice and liquid component should be 

transported downwards. Separate transport and redistribution of both the liquid and ice component is beyond the scope of 

this study. Avalanches in Langtang catchment mainly occur at high elevations where temperatures are low and (almost) no 

liquid water is present in the snowpack. It is therefore assumed that avalanches are dry avalanches and that no liquid water is 

present in the avalanching snow. When there is, in rare circumstances, liquid water present in avalanching snow, the liquid 25 

water is converted to the ice component to ensure water balance closure. 

2.5.4 Compaction and density 

The compaction module is described in detail in Saloranta (2012, 2014, 2016). In this module SWE is converted into snow 

depth. Change in snow depth occurs due to melt, new snow and viscous compaction. The change in snow depth due to new 

snow is adapted such that an increase in snow depth can occur due to both snowfall and deposition of avalanching snow. The 30 
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increase in snow depth due to deposition of avalanching snow is calculated using a constant snow density for dry avalanches 

(200 kg m-3; Hopfinger, 1983). 

2.6 Data assimilation 

2.6.1 Sensitivity analysis 

In order to assess which model parameters to calibrate, a local sensitivity analysis was performed by varying the value of one 5 

parameter at a time while holding the values of other parameters fixed. This gives useful first order estimates for parameter 

sensitivity, although it cannot account for parameter interactions. Plausible parameter values were based on literature (Table 

2). The model was run in Monte-Carlo (MC) mode with 100 realizations for each parameter. The values for the parameters 

were randomly chosen from a uniform distribution with defined minimum and maximum values for the parameters. The 

sensitivity of the modelled mean snow extent and mean snow depth were compared to the changes in parameter values. All 10 

the parameters were varied independently per run, except for the melt factors (𝑇𝐹 and 𝑆𝑅𝐹) as these are known to be 

dependent on each other (Ragettli et al., 2015). Therefore, 𝑇𝐹 and 𝑆𝑅𝐹 were varied simultaneously in the sensitivity analysis 

using a linear relation between these melt factors. 

2.6.2 Parameter calibration 

Using the Ensemble Kalman filter (EnKF; Evensen, 1994) data assimilation of snow extent and snow depth observations was 15 

used to calibrate model parameters using the framework developed by Wanders et al. (2013). An advantage of the EnKF 

calibration framework is that it allows obtaining an uncertainty estimate for the calibrated parameters. The EnKF obtains the 

simulation uncertainty by using a MC framework, where the spread in the ensemble members represent the combined 

uncertainty of parameters and input data. Unfortunately, the EnKF does not allow to reduce and estimate the model structure 

uncertainty, since it relies on the assumption that the ensemble members are normally distributed. This assumption is no 20 

longer valid if multiple model schematizations are used. Therefore, it is assumed that the model is capable to accurately 

simulate the processes, when provided with the correct parameters. Besides the parameter and model uncertainty there is 

uncertainty in the observations which are assimilated. The EnKF finds the optimal solution for the model states and 

parameters, based on the observations and modelled predicted values and their respective uncertainties. With sufficient 

observations the parameters will convert to a stable solution with an uncertainty estimate that is dependent on the 25 

observations error and the ability of the model to simulate the observations. It was found that 50 ensemble members are 

sufficient to obtain stable parameter solutions and correctly represent the parameter uncertainty. 

 The EnKF was applied for each time step that observations were available. The MOD10A2 snow extent was 

divided into 6 elevation zones. The snow extent per elevation zone was derived from the MOD10A2 snow cover and used 

for assimilation to include more information on spatial distribution of snow. The elevation zone breakpoints are at 3500, 30 

4000, 4500, 5000 and 5500 m asl. Snow maps with more than 30% cloud cover and with obvious miss-classification of snow 
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were exempted from assimilation (3 snow maps out of 88). Only for cloud free pixels comparisons were made between 

modelled and observed snow extent. Two snow depth observation locations (Pluvio Langshisha and AWS Kyangjin; Figure 

1) were also assimilated. 

 The EnKF framework allows for the inclusion of an uncertainty in the assimilated observations. For the snow depth 

measurements a variance of 25 cm was chosen to represent the uncertainty of point snow depth measurements. The 5 

MOD10A2 snow extent was assigned an uncertainty based on the classification accuracy determined with the in situ snow 

observations (Sect. 3.1.2 Remotely sensed snow cover). The uncertainty is dependent on the snow extent 𝑆𝐸 (m2), i.e. an 

increase in uncertainty for an increase in snow extent. To prevent the uncertainty to become zero when there is no snow 

cover, the minimum variance for each zone was restricted to the average snow extent 𝑆𝐸̅̅̅̅
𝑧𝑜𝑛𝑒 (m2) times the 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (-). 

Therefore the variance 𝜎2
 per elevation zone is defined following Eq. (4): 10 

 

σ2 = max ((𝑆𝐸𝑧𝑜𝑛𝑒 ∗ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)2, (𝑆𝐸̅̅̅̅
𝑧𝑜𝑛𝑒 ∗ 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦)2 )        (4) 

 

The four most sensitive parameters (𝑇𝑇, 𝑇𝑙𝑎𝑝𝑠𝑒 , 𝑝𝑟𝑒𝑐𝑖𝑝 and 𝐶6) resulting from the sensitivity analysis were optimized based 

on the assimilation of snow depth and MOD10A2 snow extent. The first three parameters (𝑇𝑇, 𝑇𝑙𝑎𝑝𝑠𝑒 and 𝑝𝑟𝑒𝑐𝑖𝑝) influence 15 

both snow depth and snow extent, and were optimized by assimilating MOD10A2 snow extent. The fourth parameter (𝐶6) 

only influences snow depth, and was optimized by assimilating snow depth observations and taking into account the full 

uncertainty in the previously determined parameters. The two-step approach was chosen to restrict the degrees of freedom 

and to prevent unrealistic parameter estimates. 

2.7 Climate sensitivity 20 

Climate sensitivity tests were performed to investigate changes in SWE and snowmelt runoff as a result of temperature and 

precipitation changes. Climate sensitivity was tested by perturbing daily average air temperature and daily cumulative 

precipitation. The changes in temperature and precipitation were based on an envelope of projected changes in temperature 

and precipitation for RCP4.5 for the Langtang catchment as in Immerzeel et al. (2013). Four climate sensitivity tests were 

performed ranging from dry to wet and cold to warm (Table 3). 25 

3 Results and discussion 

3.1 Validation of snow maps with in situ observations 

3.1.1 In situ snow observations 

Surface temperature is an indirect measure of presence of snow. Figure 2 shows observed surface temperature for two 

locations. Snow cover is distinguishable based on the low diurnal variability in surface temperature when snow is present 30 
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due to the isolating effect of snow (Lundquist and Lott, 2008). An optimal threshold for distinguishing between snow/no 

snow was determined to be 2°C difference between daily minimum temperature and maximum temperature. The use of a 

larger temperature interval as threshold value was explored, however as diurnal temperature variability is small during 

monsoon (Immerzeel et al., 2014) setting the diurnal cycle temperature threshold above 2°C may result in incorrect monsoon 

snow observations.  5 

3.1.2 Remotely sensed snow cover 

Both observed surface temperature and snow depth measurements were converted to daily and 8-day maximum binary snow 

cover values to validate Landsat 8 and MOD10A2 snow cover respectively. We find that the classification accuracy of 

MOD10A2 and Landsat 8 snow maps based on all in situ snow observations is 83.1% and 85.7% respectively. The 

classification accuracy is defined as the number of correctly classified pixels divided by the total number of pixels. Table 4 10 

shows the confusion matrices. Misclassification can be a result of variability of snow conditions within a pixel and 

classification of ice clouds or high cirrus clouds as snow (Parajka and Blöschl, 2006). MOD10A2 has a lower spatial 

resolution than Landsat 8 which likely causes the slightly lower accuracy for the MOD10A2 snow cover product (Hall et al., 

2002). Visual inspection of MOD10A2 snow maps also revealed that some clouds are erroneously mapped as snow cover.  

The accuracy of MODIS daily snow cover products are reported to be 95% for mountainous Austria (Parajka and Blöschl, 15 

2006) and 94.2% for the Upper Rio Grande Basin (Klein and Barnett, 2003). The lower accuracy presented in this study is 

likely a result of more extreme relief and consequently larger variability in snow cover. Besides classification errors, 

uncertainty in the in situ snow observations should be considered as well. For the in situ snow cover observations provided 

by surface temperature there are relatively many observations for which snow is not observed in situ, while the MOD10A2 

and Landsat 8 snow maps indicate that snow should be present (Table 5). This may be caused by the fact that a thin snow 20 

layer may not result in sufficient isolation to reduce the diurnal temperature fluctuations for observation as snow (Lundquist 

and Lott, 2008). This observation bias in the temperature-sensed snow cover data would indicate that MOD10A2 and 

Landsat 8 snow maps possibly have even higher accuracies than presented here based on this validation approach. 

3.2 Model calibration 

The results of the sensitivity of mean snow extent and mean snow depth to parameter variability are shown in Table 2. The 25 

sensitivity analysis shows that the threshold temperature for melt onset (𝑇𝑇), precipitation bias (𝑝𝑟𝑒𝑐𝑖𝑝), temperature lapse 

rate bias (𝑇𝑙𝑎𝑝𝑠𝑒) and the coefficient for conversion for viscosity (𝐶6) are the most sensitive parameters. For the snow 

compaction parameters, snow depth is most sensitive for changes in 𝐶6 which is in agreement with Saloranta (2014). The 

melt parameters 𝑆𝑅𝐹 and 𝑇𝐹 influence melt directly but show small sensitivity as these parameters are dependent on each 

other. A higher value for 𝑇𝐹 coincides with a lower value for 𝑆𝑅𝐹 where the value of both parameters is climate zone 30 

dependent (Ragettli et al., 2015).  
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Only the four most sensitive parameters were chosen to be calibrated by the EnKF to limit the degrees of freedom 

and to prevent the absence of convergence in the solutions for the parameters. Table 6 shows the prior and posterior 

parameter distribution resulting from the assimilation of snow extent per zone and snow depth. The parameter values for 

𝑇𝑙𝑎𝑝𝑠𝑒 , 𝑝𝑟𝑒𝑐𝑖𝑝 , and 𝐶6 show a narrow posterior distribution (i.e. small standard deviation) indicating that parameter 

uncertainty is small. 𝑇𝑙𝑎𝑝𝑠𝑒  and 𝑝𝑟𝑒𝑐𝑖𝑝account for measurement uncertainty of the model input. After calibration the 5 

modelled precipitation is increased and the temperature lapse rate is slightly steeper (more negative) than derived. The 

calibrated value of 𝑇𝑇 shows a large standard deviation indicating absence of convergence in parameter solutions. This can 

be either a result of insufficient data to determine the parameter value or insensitivity of the model to the parameter value. A 

negative value for 𝑇𝑇 is plausible as melt can occur with air temperatures below 0 °C when incoming shortwave radiation is 

sufficient. Especially at low latitudes and high elevation, solar radiation is an important cause of snowmelt (Bookhagen and 10 

Burbank, 2010). 𝑇𝑇 is reported to be as negative as -6 °C for Pyramid, Nepalese Himalayas (Pellicciotti et al., 2012). Here 

𝑇𝑇 lies in a range which is even more negative than -6 °C. This is likely to be partly a result of the model structure. When 

𝑇𝑇 is negative the melt algorithm (Eq. (1)) can give negative values. This is prevented by restricting the melt algorithm to a 

minimum value of zero. This can lead to no melt or refreezing at negative temperatures higher than 𝑇𝑇. The restriction 

makes the algorithm therefore insensitive for very low temperatures and results in absence of convergence in the parameter 15 

solutions. The EnKF however does not restrict the parameter values, which allows 𝑇𝑇 to become too negative. 

3.3 Model validation 

3.3.1 Snow cover  

Both the modelled and MOD10A2 snow extent show strong seasonality of snow cover in the catchment (Figure 3). After 

calibration modelled snow extent shows notable improvement in elevation zone 3500-4000 m asl during the melt season in 20 

2014. After calibration the threshold temperature for melt onset is lower, resulting in more and earlier onset of snowmelt. 

Consequently there is a decreased snow extent. The zones in the lower areas are expected to show most improvement as this 

is the area where snow cover is ephemeral and considerable improvements of the modelled snow extent in elevation zone 

3500 – 4000 m asl are indeed observed (Figure 3). The root mean square error (RMSE) decreased from 14.2 to 11.2 km2 

after calibration. 25 

The model classification accuracy of snow cover after calibration is 85.9% based on pixel comparison between 

modelled 8-day maximum snow extent and MOD10A2 snow extent. The classification accuracy is the average classification 

accuracy over all members. There is only a slight increase of 0.2% in accuracy after calibration, however the performance 

was already high (85.7%) before calibration. The classification accuracy is lower on slopes in the northern part of the 

catchment (Figure 4). This area contains steep slopes where avalanching is common, and as the snow extent in avalanching 30 

zones is highly dynamic this is not well captured in the model. Calibration of parameters that influence avalanching might 

overcome this discrepancy to some degree, however a more advanced approach to avalanche modelling may be required. In 
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addition the spatial resolution of the remotely sensed snow cover is likely to be insufficient to detect the avalanche dynamics. 

After calibration the accuracy increased in the lower area of the northern slopes which corresponds to the improvement of 

snow extent in elevation zone 3500-4000 m asl (Figure 4). 

Landsat 8 derived snow extent is lower in winter than the modelled snow extent and the MOD10A2 snow extent 

(Figure 3). Distinct differences between the Landsat 8 instantaneous snow cover observations and the MOD10A2 8-day 5 

maximum snow cover extents (Figure 3) can be attributed to (i) the sensitivity of the Landsat 8 snow cover maps to 

misclassified snow pixels in shaded area, (ii) the much higher spatial resolution of Landsat 8 (Hall et al., 2002) and (iii) the 

difference between an instantaneous image and an 8-day composite.  

The model classification accuracy, based on pixel comparison with Landsat 8 snow maps, increased from 74.7% to 

78.2% after calibration. In Table 7 individual model classification accuracy is given based on comparison with each Landsat 10 

8 snow map. Relative low accuracies occur in winter (especially at 20-12-2013 and 05-01-2014) and the model 

overestimates snow cover compared to the Landsat 8 snow maps (Figure 3). The overestimation of snow cover by the model 

on 20-12-2013 is particularly large and it can be explained by a small snow event a few days before the acquisition day of 

2.3 mm measured at Kyangjin. Given the below zero temperatures the model reveals a large snow cover extent, but based on 

a very small amount. Snow redistribution by wind, a patchy snow cover and/or sublimation may therefore explain the 15 

mismatch with the Landsat 8 snow cover in this particular case. 

3.3.2 Snow depth 

The observed and modelled snow depths at three locations are shown in Figure 5. At all locations the modelled snow depth 

decreased after calibration due to decrease in the threshold temperature for melt onset after calibration. In addition, the 

parameter relating snow density to snow depth is lowered after calibration, leading to reduced snow depth. Comparison of 20 

modelled and observed snow depth at Langshisha shows good agreement. Especially after calibration the timing of the melt 

onset during spring is improved. For Yala the agreement between modelled and observed snow depth is also good, though 

improvement of the timing of melt onset is limited. For Kyangjin the modelled snow depth agrees less well with observed 

snow depth in spring 2013, but it improves in 2014. 

Yala is the only location which serves as an independent validation of snow depth as this station is not used for the 25 

assimilation. The simulated melt onset in spring is later compared to what is observed. The diurnal variability of air 

temperature is high during the pre-monsoon season (March to mid-June; Immerzeel et al., 2014). Though daily average air 

temperatures are  below zero, positive temperatures and snowmelt can occur in the afternoon above 5000 m asl (Shea et al., 

2015; Ragettli et al., 2015). This explains the difference between simulated and observed melt onset. Using an hourly time 

step might therefore improve the simulation of snowmelt in spring (Ragettli et al., 2015). While the timing of snowpack 30 

depletion at Yala is offset from the observations, the modelled quantity of snow is in the same order of magnitude for both 

modelled and observed time series. Hence there is no substantial overestimation or underestimation of SWE. 
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While this study shows an approach in using snow depth observations for assimilation and validation, only three 

locations with snow depth observations were available. This is insufficient for systematic assimilation and independent 

validation. However, our approach is useful and is recommended for future studies in the Himalayas in particular when more 

point observations of snow depth are available. 

3.4 Snow processes 5 

The snow model contains modules with snow processes such as avalanching, albedo decay and compaction. These processes 

are shown and discussed in this section. The cumulative basin-wide mean snowfall is 1222 mm for the simulation period. 

31.4% of the snowfall is transported to lower elevations due to avalanching, and 16.2% of the snowfall is transported to 

elevations lower than 5000 m. Transport of snow to lower elevations contributes to snowmelt runoff and has been estimated 

to be 4.5% of the total water input for the upper part of the Langtang catchment (Ragettli et al., 2015).  10 

The simulated compaction and albedo decay at Yala (location of snow depth observation) for an accumulation and 

ablation period (left and right panel respectively) are shown in Figure 6. During the ablation period, snow depth declines 

through time while snow density shows an inversed similar trend. Reduction of snow depth is a result of both melt and 

compaction. A decrease in snow depth on days without melt is a result of viscous compaction i.e. compaction due to weight 

of overlying snow, which increases the snow density. Increases in snow density are greater on days with snowmelt, as 15 

snowmelt influences the viscosity of snow due to presence of liquid water in the snow. When liquid water is present within a 

snowpack the viscosity of the snowpack decreases and enhances compaction (Vionnet et al., 2012). Therefore the decrease in 

snow depth on days with melt is a result of both compaction and melt. Snow depth increases during the accumulation period 

due to snowfall. New snow has a lower density than the snowpack and therefore lowers the density of the single layer 

snowpack. The snow density is for example low in January due to series of snow events, whereas in November a prolonged 20 

melt period resulted in a higher snow density.  

At low latitudes and high elevation incoming shortwave radiation is an important cause of snowmelt (Bookhagen 

and Burbank, 2010). The albedo of snow there has a strong impact on snow melt. For the ablation period the albedo initially 

decays rapidly (Figure 6). Next the albedo remains constant before the albedo declines again. The albedo decay of snow is 

modelled as a function of cumulative maximum temperature above 0 °C (Sect. 2.5.2 Albedo decay). The albedo remains 25 

constant on days with a maximum air temperature below 0 °C. The rapid decay after snowfall is caused by maximum air 

temperature above 0 °C and a logarithmic decay function. The logarithmic function also explains the more gradual decay in 

albedo from 23 November onwards. An initial rapid decrease in albedo after a snow event as well as a more gradual decay 

over time is characteristic for the decay of albedo (Brock et al., 2000). For the accumulation period the albedo increases 

occasionally as result of snowfall. 30 
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3.5 Climate sensitivity of SWE and snowmelt runoff 

The simulation of the SWE for the reference scenario shows a pattern of increasing SWE with increasing elevation (Figure 

7). At higher elevation air temperature is lower with more snow accumulation than melt, resulting in a higher gain in SWE 

over time. The glaciers Langtang and Lansgshisha are positioned at approximately the same elevation (Ragettli et al., 2015), 

though the SWE is considerable higher at Langshisha glacier (Figure 7). Total precipitation is highest along the southern 5 

ridge of the catchment and at high elevation in winter (Collier and Immerzeel, 2015) and therefore explains the difference 

between the SWE at Langtang and Langshisha glacier. Also, some areas at higher elevation show less SWE than surrounding 

areas at the same elevation. These areas represent the steep slopes in the catchment where avalanching occurs regularly. The 

transported snow accumulates below these steep slopes. The snow is transported via single stream paths, resulting in a few 

pixels with extreme accumulation of SWE. This is mainly visible in the northeastern part of the catchment. Modelling the 10 

divergence of transported snow might improve the extreme accumulation simulated for some pixels. 

Figure 8 shows the results of the change in SWE for different climate sensitivity tests. All climate sensitivity tests 

show a decrease in SWE, but the change is greatest at low elevations in the valley. We also observe a strong gradient of 

decreased SWE change with increased elevation. An increase in temperature leads to an increase in melt and more 

precipitation in form of rain instead of snow. Both processes result in decreased change of SWE with elevation. Near the 15 

catchment outlet there is an area with 100% decrease in SWE as precipitation will only fall as rain instead of snow.  

A slight deviation from the elevational trend in SWE change occurs in elevation zone (3000-4000 m asl) that could 

be sensitive to the transition of the elevation at which snowfall occurs. The combination of snowfall at higher elevations due 

to higher temperature and the monthly differing spatial patterns in precipitation are likely to explain the banded patterns. 

Changes in SWE and the spatial distribution of SWE will also be affected by changes in total precipitation. The 20 

influence of precipitation can be determined based on comparison of the two wet and dry climate sensitivity tests. A decrease 

in precipitation results in decreased SWE as there is less snowfall. However, the increased precipitation for the wet/cold and 

wet/warm climate sensitivity tests (+12.1 and +12.4%, respectively) does not compensate for the temperature-related 

increase in melt and decrease in snow falling in the valley.  

Reduced warming under the wet/cold climate sensitivity test results in a smaller decrease of SWE compared to the 25 

wet/warm climate sensitivity test, even in the valley. At higher elevations changes in SWE are weakly negative and in some 

areas positive. Snowpack sensitivity to temperature change decreases with elevation (Brown and Mote, 2009). The increased 

SWE under both wet climate sensitivity tests occurs in the southeastern part of the catchment where relatively large amounts 

of precipitation occur in winter (Collier and Immerzeel, 2015). The compensating effect of increased precipitation at high 

elevations is important for glacier systems, and emphasizes the importance of accurate estimations of both change in 30 

precipitation and its spatial distribution. 

The modelled snowmelt and rain runoff at the catchment outlet is greatest during the monsoon and low during 

winter (Figure 9). Peak snowmelt and rain runoff occur in June and July respectively. The snowmelt season starts in March 
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when temperatures and insolation are rising, and continues until October. Snowmelt runoff contributes most to total runoff 

during pre-monsoon and early-monsoon (March-June), which is in agreement with Bookhagen and Burbank (2010). 

Validation of the simulated runoff with observed runoff was impossible, because (i) there was no reliable runoff data 

available for the study period as there was no reliable rating curve and (ii) the model focusses on rain and snowmelt runoff, 

however glacier runoff and delay of runoff due to groundwater and glacier storage is not incorporated in the model structure.  5 

The climate sensitivity of snowmelt and rain runoff is shown in Figure 9. All climate sensitivity tests show an 

increase in snowmelt runoff from October to May. In contrast, snowmelt runoff decreases from June to September. Higher 

temperatures result in more snowmelt and less snowfall during winter and an early melt season which leads to a shift in the 

peak of snowmelt runoff. Immerzeel et al. (2009) showed that in the upper Indus Basin the peak in snowmelt runoff appears 

one month earlier by 2071-2100 as result of an increase in temperature and precipitation. However, Immerzeel et al. (2012) 10 

showed that total snowmelt runoff remains more or less constant under positive temperature and precipitation trends in the 

upper part of the Langtang catchment. In their study snowmelt on glaciers is not defined as snowmelt runoff and is therefore 

a minor component of total runoff, leading to different results. 

For the wet climate sensitivity tests total runoff (i.e. the sum of snowmelt and rain runoff) increases throughout the 

year. The decrease in melt runoff during late melt season is compensated by the increase in rain runoff as there is more 15 

precipitation. The future hydrology of the central Himalayas largely depends on precipitation changes as it is dominated by 

rainfall runoff during the monsoon (Lutz et al., 2014). As we perturb the model with a percentage change in precipitation 

that is constant through the year, the absolute change in precipitation is greater in the monsoon than in winter. For climate 

sensitivity tests with decreased precipitation, total runoff from June to September decreases, but from October to May it 

increases as a result of increased snowmelt. Estimates of seasonal changes in precipitation are thus critical to determine 20 

whether rain and snowmelt runoff increases or decreases during monsoon.  

4 Conclusions 

Remotely sensed snow cover, in situ meteorological observations and a modified seNorge snow model were combined to 

estimate climate sensitivity of SWE and snowmelt runoff in the Langtang catchment. Validation of remotely sensed snow 

cover (Landsat 8 and MOD10A2 snow maps) show high accuracies (85.7% and 83.1% respectively) against in situ snow 25 

observations provided by surface temperature and snow depth measurements. Data assimilation of MOD10A2 snow cover 

and snow depth measurements using an EnKF proves to be successful for obtaining optimal model parameter values. The 

applied methodology of simultaneous assimilation of snow cover and snow depth allows for the calibration of important 

snow parameters and validation of the SWE rather than snow cover alone.  This opens up new possibilities for future snow 

assessments and sensitivity studies in the Himalayas. 30 

 The spatial distribution of SWE averaged over the simulation period (January 2013-September 2014) shows a 

strong gradient of increasing SWE with increasing elevation. In addition the SWE is considerably higher in the southeastern 
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part of the catchment than the northeastern part of the catchment as a result of the spatial and temporal distribution of 

precipitation. Climate sensitivity tests show a strong decrease in SWE in the valley with increasing temperature due to more 

snowmelt and less precipitation as snow. At higher elevations an increase in precipitation partly compensates for increased 

melt due to lower temperatures. The compensating effect of precipitation emphasizes the importance and need for accurate 

prediction of change in spatial and temporal distribution of precipitation. 5 

All climate sensitivity tests used in this study show an increase in snowmelt runoff from October to May. This is 

explained by increased temperature resulting in more snowmelt and less snowfall in winter and an earlier melt season. In 

contrast, snowmelt totals decrease during the monsoon (June to September) as snow cover and snow depths are reduced. 

Under wetter scenarios, decreased snowmelt in monsoon is partly offset by increased precipitation. This indicates that 

changes in monsoon intensity and duration will ultimately determine future changes in rainfall and snowmelt totals. 10 
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Figure 1: Study area with the locations of the in situ observations. Langtang and Langshisha refer to two glaciers. 
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Figure 2: Observed surface temperature with 10 minute interval at two locations. The blue vertical lines indicate the start and end 

of the snow cover. 
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Figure 3: Modelled 8-day maximum snow extent before and after calibration (ensemble mean), Landsat 8 snow extent and 

MOD10A2 snow extent per elevation zone. The RMSE (km
2
) is given per zone for the fit between modelled (before and after 

calibration) and MOD10A2 snow extent. 5 
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Figure 4: Accuracy per pixel based on comparison between MOD10A2 snow extent and modelled 8-day maximum snow extent a) 

before calibration and b) after calibration. 

 

Figure 5: Observed snow depth and modelled snow depth before calibration and after calibration (ensemble mean) at three 5 
locations. The RMSE (mm) is given for the fit between modelled (before and after calibration) and observed snow depth. 
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Figure 6: Snow processes at Yala. SD is the snow depth, ρ is the density, α is the albedo of the snow cover, Mact is the actual 

snowmelt. The plotted variables represent the ensemble mean. 

 

Figure 7: Spatial distribution of ensemble mean annual average snow water equivalent (SWE). 5 
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Figure 8: Change in SWE averaged over the simulation period and all members for each climate sensitivity test: a) dry and cold b) 

dry and warm c) wet and cold d) wet and warm. 
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Figure 9: Modelled runoff at catchment outlet for the reference scenario (January 2013 – September 2014) and change in runoff 

compared to the reference scenario for the climate sensitivity tests.  
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Table 1: Overview of the in situ observations and their specifications. Locations are shown in Fig. 1. 

Description Code Data availability Latitude Longitude Elevation (m asl) Observations
1
 

Yala 1 Y1 06/05/13 – 03/05/14 28.22645 85.56878 4117 ST 

Yala 2 Y2 06/05/13 – 03/05/14 28.22897 85.57391 4214 ST 

Yala 3 Y3 06/05/13 – 03/05/14 28.2298 85.58051 4328 ST 

Yala 4 Y4 06/05/13 – 02/03/14 28.22932 85.58492 4441 ST 

Yala 5 Y5 06/05/13 – 03/05/14 28.22894 85.5908 4541 ST 

Yala 6 Y6 06/05/13 – 03/05/14 28.22635 85.5918 4656 ST 

Yala 7 Y7 06/05/13 – 02/03/14 28.22635 85.59246 4759 ST 

Yala 8 Y8 06/05/13 – 02/03/14 28.23342 85.59921 4960 ST 

Ganjala 1 G1 03/11/13 – 11/10/14 28.20305 85.56405 3908 ST 

Ganjala 2 G2 03/11/13 – 06/09/14 28.20155 85.56577 3998 ST 

Ganjala 3 G3 03/11/13 – 11/10/14 28.19899 85.56617 4094 ST 

Ganjala 4 G4 03/11/13 – 30/04/14 28.1938 85.56916 4201 ST 

Ganjala 5 G5 03/11/13 – 11/10/14 28.18831 85.57001 4300 ST 

Pluvio Yala Pluvio Y 01/01/13 – 30/06/13 

26/10/13 – 16/10/14 

28.22900 85.59700 4831 T, SD 

Pluvio Ganjala Pluvio G 20/01/14 – 03/05/14 28.18625 85.56961 4361 SD 

Pluvio 

Langshisha 

Pluvio L 29/10/13 – 01/07/14 28.20265 85.68619 4452 SD 

Pluvio Morimoto Pluvio M 17/05/13 – 09/10/14 28.25296 85.68152 4919 T, SD 

Lama Hotel T1 01/01/13 – 07/10/14 28.16212 85.43073 2492 T 

Langtang T2 01/01/13 – 07/10/14 28.21398 85.52745 3557 T 

Jathang T3 01/01/13 – 07/10/14 28.1958 85.6132 3947 T 

Numthang T4 01/01/13 – 07/10/14 28.20213 85.64313 3983 T 

AWS Kyangjin AWS K 01/01/13 – 07/10/14 28.2108 85.5695 3862 T, SD, P, IR 

 

1 ST, surface temperature; SD, snow depth; T, air temperature; P, precipitation; IR, incoming shortwave radiation 
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Table 2: Parameters in the snow model. Value indicates the uncalibrated parameter value and the value range indicates the range which is used for the 

sensitivity analysis. Sensitivity of snow depth (SD) and snow extent (SE) represent the difference between the 90
th

 and 10
th

 percentile of mean snow 

depth and snow extent resulting from the sensitivity analysis. 

Para-

meter 

Unit Description Initial 

Value  

Value range Sensitivity 

SD [mm] 

Sensitivity  

SE [km
2
] 

TT [°C] Threshold temperature for onset of melt or refreezing 0 6 -6 – 2 4, 5, 6 157.3 57.25 

SRF [m2 mm W-2 d-1] Melt factor dependent on incoming shortwave radiation 0.15 6 0.13 – 0.19 4, 6 9.486 2.721 

TF [mm °C-1 d-1] Melt factor dependent on temperature  4.32 6 2.54 – 5.19 4, 6 9.486 2.721 

thrsnow [°C] Threshold for partitioning in rain or snow 0 6 -1 – 1 6,7 35.82 11.99 

Crf [mm °C-1 d-1] Degree-day refreezing factor 0.16 7 0.08 – 0.40 7 8.188 0.3248 

aini [-] Decay of albedo deep snow (initial) 0.713 2 - - - 

αu [-] Albedo of surface underlying snow (ground, ice) 0.15, 0.25 6 - - - 

a1 [-] Decay of albedo deep snow 0.112 2 0.112 – 0.34 2,6 56.39 7.279 

a2 [-] Decay of albedo shallow snow 0.442 2 0.3 – 0.5 0.2410 0.2818 

a3 [-] Decay of albedo shallow snow (exponent) 0.058 2 0.03 – 0.1 0.2001 0.2132 

rmax [-] Maximum allowed fraction of liquid water in 

snowpack  

0.1 7 0.05 – 0.20 7 31.66 0.3278 

d* [cm] Scaling length for smooth transition albedo from deep 

snow to shallow snow 

2.4 2 1 – 25 0.0012 0.0007 

SS1 [m] Regression function parameter snow holding depth 

dependence on slope angle 

250 6 200 – 300 10.86 2.033 

SS2 [-] Regression function parameter snow holding depth 

dependence on slope angle 

0.172 6 0.16 – 0.19 26.45 7.170 

Smin [°] Minimum slope for avalanching to occur 25 1 15 – 35 34.00 1.640 

ρav [kg L-1] Density of avalanching snow 0.200 3 - - - 

ρmin [kg L-1] Minimum density of new snow due to snowfall 0.050 7 0.050 – 0.150 7  - 

ans  Coefficient for density of new snow 100 7 - - - 

η0 [MN s m-2] Coefficient related to viscosity of snow (at zero 

temperature and density) 

7.6 7 1 – 10 7 75.75 - 

C5 [°C-1] Coefficient for temperature effect on viscosity 0.1 7 0.04 – 0.12 7 10.44 - 

C6 [L kg-1] Coefficient for density effect on viscosity 21 7 15 – 35 7 268.8 - 

kcomp [-] Compaction factor 0.5 7 - - - 

precip [-] Precipitation correction factor 1 0.6 – 1.4 320.1 14.17 

Tlapse [-] Temperature lapse rate correction factor 1 0.9 – 1.1 116.0 24.63 
 

1 Bernhardt and Schulz, 2010 3 Hopfinger, 1983    5 Ragettli et al., 2013  7 Saloranta, 2014 5 
2 Brock et al., 2000  4 Pellicciotti et al., 2012   6 Ragettli et al., 2015  
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Table 3: Changes in temperature (ΔT) and precipitation (ΔP) for the climate sensitivity tests (same as Immerzeel et al. (2013)). 

Sensitivity scenario ΔT (°C) ΔP (%) 

Dry, cold 1.5 -3.2 

Dry, warm 2.4 -2.3 

Wet, cold 1.3 12.4 

Wet, warm 2.4 12.1 
 

Table 4: Confusion matrices for comparison of Landsat 8 snow maps and MOD10A2 snow maps with in situ snow observations.  

  MOD10A2  Landsat 8  

  Snow No snow Snow No Snow 

In situ      Snow 83 31 20 3 

No Snow 75 438 18 106 

 5 

Table 5: Confusion matrices for comparison of in situ snow observations provided by snow depth and surface temperature 

observations with remotely sensed snow maps (MOD10A2 and Landsat 8 combined). 

  In situ snow depth In situ surface temperature 

  Snow No snow Snow No Snow 

Remotely 

sensed 

Snow 52 16 51 77 

No Snow 17 80 17 464 

 

Table 6: Parameter value range prior to calibration and after calibration. The standard deviation of posterior parameter values is 

based on the standard deviation of all members. 10 

Parameter Prior (min-max) Posterior mean Posterior std. 

TT -6 – 2 -8.18 1.66 

Tlapse 0.9 – 1.10 1.10 0.01 

Precip 0.6 – 1.4 1.31 0.02 

C6 15 – 35  16.07 0.52 

 

  

The Cryosphere Discuss., doi:10.5194/tc-2016-216, 2016
Manuscript under review for journal The Cryosphere
Published: 26 October 2016
c© Author(s) 2016. CC-BY 3.0 License.



28 

 

Table 7: Classification accuracy of modelled snow extent based on pixel comparison with Landsat 8 snow maps. Calibrated 

accuracies are averaged over all members and the standard deviation represents the standard deviation in individual member 

accuracies (after calibration). 

Date  Accuracy 

uncalibrated (%) 

Accuracy 

calibrated (%) 

Std. dev. 

accuracy (%)   

02/11/13 80.96 84.41 0.12 

18/11/13 78.43 79.15 0.11 

04/12/13 77.41 77.10 0.05 

20/12/13 54.97 60.38 0.08 

05/01/14 63.46 67.07 0.07 

20/01/14 74.30 81.33 0.04 

06/02/14 65.55 73.24 0.05 

10/03/14 84.94 89.67 0.05 

26/03/14 87.03 86.90 0.04 

11/04/14 80.29 82.92 0.05 

 

 5 
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