Dear Etienne-

Thank you for accepting the role of Editor for our manuscript (Assessment of NASA airborne laser altimetry data using ground-based GPS data near Summit Station, Greenland). I greatly appreciate the time that you have already put into this project.

I have uploaded a point-by-point response to the 2 anonymous reviews and to the comments that you provided as editor. All of these comments substantially improved this manuscript.

Thank you also for the extension. What this time allowed us to do was 1) address a processing glitch that had previously prevented us from DGPS post-processing the 2014 and 2015 data; and 2) compare previously unavailable 2016 ATM data to ground-based data. Therefore, Table 2, which previously had a few 'Rover only' comments, as opposed to results, has been completely filled in and is current through 2016.

Thank you again for your constructive feedback and the time that you have already invested in this manuscript.

Respectfully, Kelly

Response to Anonymous Referee #1:

We thank this anonymous reviewer for their constructive comments. Edits based on your input (and that of the second reviewer) have substantially improved this manuscript.

Here are our responses (in red) to your specific comments (in black):

I think the paper makes a significant contribution to our knowledge of assessment of altimetry data using groundbased GPS data. I believe the paper should be published after minor revision.

Minor comments: Page 2, line 14, concerning satellite-derived time series. Add references to other than Zwally, 2005. This was an oversight. We have added Velicogna et al., 2014, Shepherd et al., 2012, and Zwally et al., 2011; we feel that these references cover various satellite methods for both Greenland and Antarctica.

Page 3, line 11 and 18 (and throughout the paper). 11,000 m and 6,000 m, change to 11 km and 6 km. I Assume the track is not exactly 11,000 m ? We had originally used 'm' throughout for consistency, but the reviewer makes an excellent point. We have changed most references to 1000 – 10,000 m to km. This also includes the caption and scale bar of Figure 1.

Page 3 line 18: After the text "…long and dense in situ observation of icesheet elevation change". Perhaps add reference to other papers combining GPS and ICESat, ATM e.g. Larsen, S. H., et al, J. Geophys. Res. Earth Surf., 121, 241–256, doi:10.1002/2015JF003507.

Our text here was intended to highlight the very unique nature of this in situ dataset, which is a 10-year, monthly, ground-based traverse, that continues to this day (and is expected to continue through the ICESat-2 mission, into the 2020's); thus, this should prove to be a roughly 15-year dataset. We are reluctant to diminish this point with a comparison to a 5-year in situ record, at 4 sites (not a survey line). But to address this point, we have added text that reinforces the uniqueness of the dataset.

Page 3, line 24. Is Trimble R7 receiver and Zephyr antenna used for all years? Yes, the same equipment was used all 4 years. We have added a line that explicitly states this: (" ... ; we note that the kinematic surveys have always been conducted using this equipment."). Further, we added a similar statement about the base station: ("For the duration of the survey time series, the base station has been a dualfrequency Trimble NetRS receiver recording at 1 Hz with a Trimble Zephyr Geodetic antenna..."). Page 3, line 26. If possible add a photo of the antenna mounted on a static metal post on the sled.

This is an excellent suggestion. We have added a new Figure 2, which not only provides a photo of the setup, but also gives approximate numbers for the corrections from the GPS phase center back to the snow surface.

Page 6, line 18-31. I find this section confusing. You have listed names of several software packages used to process GPS data, however, no useful information about how the GPS data is processed is provided. How do you correct for troposphere delay, ionosphere? Which model is used? what cut-off elevation angle do you use? how do you deal with multipath etc...? It is also important that same GPS clock/orbit products are used by the different software packages, otherwise you may add an extra bias to your GPS solutions.

We have added a lengthy paragraph with the details of each of the processing methods: ("Independent of post-processing method, all of the ground-based GPS solutions are based on final precise orbit and clock information from the Crustal Dynamics Data Information System, or CDDIS, at GSFC. Processing using TRACK corrected for errors associated with the ionosphere by incorporating an IGS data product. To mitigate the effect of multipath distortion, all processing methods used a cut-off angle (7.5°, 10°, and 12° for Inertial Explorer, TRACK and GITAR, respectively). Inertial Explorer and TRACK used a Saastamoinen model to correct for tropospheric delay, while GITAR used a gridded reanalysis data product from the National Centers for Environmental Prediction (NCEP). And all processing methods corrected for solid Earth tides based on an Earth Rotation and Reference System Services, or IERS, model.")

Discussion: Potential future work. In addition to surface elevations, you could compare elevation change rates. Here, you could take advantage of the continuously operating GPS base station at Summit Station. The reflected GPS signals from the summit station, can be used to measure GPS reflected height of the surface (see Larson et al, 2015, Journal of Glaciology, Vol. 61, No. 225, 2015 doi: 10.3189/2015JoG14J130).

The idea of investigating change rates is great, and it is exciting that these data are available for such a study. However, at this time this is outside of the scope of this paper, where we wanted to stay focused on aircraft/satellite applications.

Response to Anonymous Referee #2:

We thank this anonymous reviewer for their constructive comments. Edits based on your input (and that of the first reviewer) have substantially improved this manuscript.

Here are our responses (in red) to your specific comments (in black):

This is a short and concise paper on the quality of airborne laser altimetry data over a flat ice sheet surface. The authors calculate error statistics from comparisons with near-coincident surface GPS profiling near the Greenland Summit Station. Considering how often these data are used in ice-sheet change assessments, and how accurate they need to be to detect cm-level elevation changes, I think it is a timely and highly appreciated contribution to the community. It also paves the way for using designated airborne surveys to validate satellite altimetry data, in particular the upcoming ICESat-2 mission.

I have only some smaller comments and questions as given in chronological order below. They all refer to line numbers in the discussion paper, but some are of more general character and could warrant changes also elsewhere in the manuscript.

P1, L21: I think it's worth to mention that you get equally good correspondence with DGPS and PPP techniques. The latter could simplify fieldwork for many applications. We were pleasantly surprised by that result, with respect to this application. We have added text to the abstract (*"Ground-based GPS positions determined both with and without differential post-processing techniques provided consistent solutions."*).

P2, L7: I would also cite Borsa et al. (2014, The Cryosphere) here since the other papers are prior to that do not all account for the Gaussian-Centroid bias. Excellent point; we have added this to the manuscript.

P2, L18: I don't think airplanes can really bridge the gap between satellite missions at the scale of ice sheets, so I would add "...in areas of special interest" or something like that.

Agreed. We have modified the text to capture your comment, while still acknowledging the OIB mission: '... 1) "bridging the data gap" between the satellite missions, with a focus on areas of significant change and interest.'

P2, L31: Write out GEDI. Thanks for catching this; we have added the full name.

P4, L20: I don't see the need for this abbreviation since it is only used a few times. This acronym does show up 2 other times in the text and multiple times in Table 1. So we are inclined to keep it. Further, other publications associated with NASA altimetry (especially when the altimeter is integrated with the ER-2) use ASL, and thus our explicit use of AGL in this manuscript is for clarity. P5, L1: The software incorporates GLONASS, but does any of the actual observations include that? It would be a strength if they did, and in that case you should use the general term GNSS in cases where you do not mean solely the GPS system. The reviewer makes a good point here about non-GPS constellations. The Summit Base Station and the roving receiver associated with the traverse only logged data from the GPS constellation. We have added text to clarify this (*"Both the base station and the rover logged data solely from the GPS constellation."*).

P5, L21: Is GLONASS or GALILEO included in any of this processing? If so, it should be mentioned.

ATM has used GLONASS since 2011; we have added that detail to the text. LVIS (which is what this comment was addressing) uses GPS only; we have added text to clarify this ("*Position information for the 2007 and 2010 LVIS campaigns incorporated data from the GPS constellation only.*").

P5, L22: I don't think the term PPP has been introduced yet.

Excellent catch; it had not been defined. Further, we moved the succinct definitions of both 'DGPS' and 'PPP' methods up to their first usage (originally they were defined at the start of section 3).

P5, L23: Since MABEL is included for reference, I think it's also worth to describe ICESat-2 in a similar fashion as a part of the same section or a brief separate one. In perspective of future ICESat-2 validation, it would be useful to know roughly how many comparison points one would get with the present GPS survey lines. This is a good point, although we don't feel that this is the place for this comment. We note that the pertinent aspects of ICESat-2/ATLAS (e.g., along-track sample spacing of 70 cm) are described in the Introduction. We now recall this information at the end of the Discussion and add the text: (*"The ICESat-2 ice-sheet elevations released on the data product will be validated to 0.025 m. Given this requirement, and the ~0.7 m along-track sampling interval of ICESat-2, long length-scales (1000's of km) of airborne data over the ice sheets will be required for satellite data validation in order to increase the number of realizations of the satellite to airborne comparisons in order to significantly improve precision estimates based purely on an increased sample size (Boas, 1983).").*

P6, L23: Since this PPP software is commercial and many people these days use freely available services like the Canadian CSRS-PPP, it would be nice to see how one of these automatic processors would compare in the validation exercise. The reviewer makes a great point. We experimented with an online service (specifically JPL's GIPSY) and had mixed results. We attribute much of this to the handling of the atmospheric corrections. These black-box resources are fantastic, especially for static applications. However, for cm-level accuracy associated with kinematic surveys, and for direct comparison to the aircraft data (i.e., specifying ITRF00, 05, or 08), we had more success with software that we could customize/control for this application. *We also note that there is variance in*

online PPP services; casual users of these services need to use caution when interpreting results from these systems (this bold/italics statement is not in the online response).

P6, L28: I miss some small details on the processing: Were final IGS orbits used in all processing cases? Same for clock corrections? How were tropospheric and ionospheric errors dealt with? Was a cut-off angle used for satellite elevation to mitigate multipath?

P7, L4: How were these solid earth tides estimated?

Reviewer 1 made a similar comment. We have added details about each of the 3 processing methods: "Independent of post-processing method, all of the ground-based GPS solutions are based on final precise orbit and clock information from the Crustal Dynamics Data Information System, or CDDIS, at GSFC. Processing using TRACK corrected for errors associated with the ionosphere by incorporating an IGS data product. To mitigate the effect of multipath distortion, all processing methods used a cut-off angle (7.5°, 10°, and 12° for Inertial Explorer, TRACK and GITAR, respectively). Inertial Explorer and TRACK used a Saastamoinen model to correct for tropospheric delay, while GITAR used a gridded reanalysis data product from the National Centers for Environmental Prediction (NCEP). And all processing methods corrected for solid Earth tides based on an Earth Rotation and Reference System Services, or IERS, model."

P7, L16: I don't understand this logic. From these numbers I only gather a footprint spacing of 5 m, not the actual size.

You are correct. Our error here was associated with radius/diameter confusion. We have changed this text to read: "We note that the GPS data were collected at 1 Hz, with the snowmobile operating at \sim 5 m s⁻¹, giving the GPS data an effective 5 m diameter footprint."

P8, L5-12: While uncertainty in the ground-based GPS probably influences the inferred lidar precision, it is also worth to mention that the two surface measurement techniques are partly correlated through their common use of GPS (and partly processing techniques) for vehicle positioning. I don't think this will have a large impact, but it is worth to discuss briefly. The problem could be mitigated by additional or isolated use of GLONASS or GALILEO in one of the platforms, but that might not be possible.

This is a great point. We don't have the option of GLONASS or GALILEO for the existing time series of ground-based survey data. This might be something that could be incorporated in future logging during that traverse. LVIS and MABEL only use the GPS constellation. ATM has used both GPS and GLONASS since 2011 (the date is now noted in the text); but we suspect that the solutions would be compromised if we were to use solely GLONASS data. That being said, to acknowledge this comment, we have added a note that we are mindful of the correlation issue: (" ... and 5) observational errors such as variable penetration of the sled into the snow along the course of the survey. Further, we note that the existing

ground-based and airborne elevation data are partially correlated, as they are based on similar GPS measurement strategies.").

P9, L16: In case of outliers it would make most sense to use the median value in each zone. Did you also try that? Worth to mention whether or not it makes a difference.

This is a fantastic point and a great addition to the manuscript. We have edited/added the following text to the manuscript: "The zone method may mitigate the impact of spurious outliers that could affect the surface measurement precision; this is potentially evident in a comparison of the nearest-neighbor and zone results for the LVIS data, where precisions systematically improve slightly using the zone method. However, we note that results associated with a median method were all within 1 cm, and generally less than 0.1 cm, of results from the mean method. Thus, the effects of outliers in this analysis are generally negligible. Overall, the zone and nearest neighbor methods display similar results, most likely due to the relatively flat surface at Summit Station."

P9, L18: How flat is 'relatively flat'? It would be good to provide some kind of information about the summit topography, for example elevation range, mean slope, or average elevation impact of a given geolocation error like 5-10 m. We assessed the across- and along-track slope based on an ATM Level 2 data product (both either 0° or near 0°) and also included the difference between the maximum and minimum elevations in this region and the impact at 10 m geolocation error (all good additions to the manuscript). We included this text and a new reference: ("Based on the ATM Level 2 Icessn data product (Krabill, 2010) for all 3 passes associated with the 10 Apr 2014 flight, the slope over the traverse in the along-track direction is 0° and there is a gentle (0.1°) slope in the across-track direction (sloping toward the west); the difference between the maximum and minimum elevations in the vicinity of the traverse, based on the same data product, is only 1.05 m. Given these low slope values, a geolocation error of 10 m is required to achieve a slope-induced elevation error of 0.01 m.")

P9, L27: This is an interesting finding that I think should also be mentioned in the abstract or conclusions.

We have added this to the abstract (see comment above) and now to the conclusions: "Results were consistent given various data processing methods (PPP and DGPS) and data analysis methods (nearest-neighbor or zone analysis)."

We do, however, want to be a little cautious about overstating this result. Our original text does point out that this is the case for 'this application'. We have now also added the following text at the very end of the 'Results' section: "We attribute some of the success of the PPP method to our ground-survey duration, which is sufficient to minimize errors associated with the convergence period (Bisnath and Gao, 2009), but short enough to minimize errors associated with the tropospheric modeling."

P11, L16: Credits to the authors for making all data easily available. Exemplary! Thank you. But this is probably more of a reflection on new requirement from The Cryosphere.

Fig 3: The TRACK solutions seem to infer a higher lidar bias than GITAR and PPP. Is this random or could there be a viable explanation related to processing? We attribute this to the fact that the GITAR solutions use a base-station position that is averaged over 4 days, while for TRACK, the base station positions represent an average recorded over the duration of the ground-based survey (~3 to 4 hours). While we originally noted this in the text (in Section 3.1), we have now added similar text to the caption.

Response to Editor's Comments:

We thank the Editor for his constructive comments. Edits based on your input (and that of 2 anonymous reviewers) have substantially improved this manuscript.

Here are our responses (in red) to your specific comments (in black):

Significance (Impact):

This is maybe the weakness of the paper. Its scope is rather technical for TC with little new glaciological knowledge. On the other hand, I admit that the audience for this study is the ice sheet community (rather than the remote sensing community) given that such an assessment is expected for these widely-used airborne data. One aspect that in my view currently limits the significance of the study is that the error assessment is performed over a very flat area in the central part of the ice sheet which is extremely favourable for laser altimetry measurements. To what extent can the result be extended to other regions of the ice sheets (steeper, crevassed, etc...) and to Arctic glaciers? Something to probably discuss more extensively.

The paper is short and well-structured. The discussion is probably the weakest part. It could be improved by comparing the present results with previous works (if any, maybe on the Antarctic Ice Sheet?) and describing the limitation of the study.

These are fair points. One goal of this manuscript is to provide the ice-sheet community with a reference for ICESat-2/airborne analysis, in preparation for that satellite mission, which will be a phenomenal asset for the whole ice-sheet community. So while the paper is technical, we feel that it is germane to The Cryosphere community.

To address some of these comments, language was added to an early draft of the abstract stating that the results are for the ice-sheet interior ("Surface elevation biases for these altimeters, over the flat, ice-sheet interior, are less than 0.12 m, while assessments of measurement precision are 0.09 m or better."). Further, we added a similar reminder to the conclusions ("We have presented a comparison of airborne lidar data with in situ GPS data, over relatively flat terrain associated with the ice-sheet interior, in preparation for validation efforts associated with ICESat-2."). And based on comments from Reviewer 2, we have added text that specifically quantifies the flat nature of Summit ("Based on the ATM Level 2 Icessn data product (Krabill, 2010) for all 3 passes associated with the 10 Apr 2014 flight, the slope over the traverse in the along-track direction is 0° and there is a gentle (0.1°) slope in the across-track direction (sloping toward the west); the difference between the maximum and minimum elevations in the vicinity of the traverse, based on the same data product, is only 1.05 m. Given these low slope values, a geolocation error of 10 m is required to achieve a slope-induced elevation error of 0.01 m.").

To address the limitations of these results, we added a sentence and modified the last paragraph of the Discussion: (*"Results presented here are limited with respect to*

applicability to the entire ice sheet. As you reach the ice-sheet margins, airborne and satellite laser altimetry data are compromised as a result of, among other environmental variables, surface roughness and slope (Brunt et al., 2010; 2014). However, the ground-based GPS elevation data collected near Summit Station provides a means to characterize airborne elevation data of ATM and LVIS. Comparisons between ATM and LVIS elevations and the ground-based elevations constrain the errors of the airborne datasets. Thus, in situ data, even on short length-scales and over flat surfaces, can form part of a strategy to validate data from airborne, and ultimately satellite, platforms...")

Below I list a few corrections/suggestions that you will hopefully find useful to revise your paper before it can be published for open discussion and formally peerreviewed by expert in the field. Note of course that my own assessment during this rapid access review does not anticipate the formal reviews that will follow.

Editor technical corrections/suggestions (Page.Line)

2.2 Here the reader wonders why the bias/precision differ in the two studies? Type of surface? Slope? Elaborate a bit more, maybe in the discussion? The differences here are associated with 1) terrain and 2) laser campaigns. Language was added to the 'pre-Discuss' draft of this manuscript that addresses this ("Early assessments of GLAS, based on ground-based Global Positioning System (GPS) surveys of a large and stable salt flat in Bolivia, have shown absolute surface elevation bias of less than 0.02 m and precision of less than 0.03 m under ideal conditions (Fricker et al., 2005). However, estimates of GLAS surface elevation bias and precision from the latter half of the satellite mission have been closer to 0.06 and 0.15 m, respectively (Kohler et al., 2013), based on data from a 10,000 km ground-based GPS traverse in East Antarctica, which included the interior and the margin of the ice sheet."). We have subsequently added to this text with some language associated with your previous comment: ("... which included the interior and the margin of the ice sheet, where surface roughness and slope compromise the accuracy and precision of satellite laser altimetry (Brunt et al., 2010; 2014).")

7.10 At some point in the method (or result) section the time difference between the field/airborne measurements should be described, briefly. Right now this is first stated in the discussion. This is one of the strength of the study to have such simultaneity so could be emphasized a bit more.

Excellent suggestion. At the end of Section 2.1, we added a paragraph on this ("When it was logistically possible, the timing of the ground-based survey was coordinated with NASA airborne surveys of the region (Table 1). This allowed for the assessment of airborne lidar performance over ice-sheet interiors (e.g., Brunt et al., 2014). When the timing offset between the airborne and GPS surveys is minimized, assessments of lidar performance are made in the absence of environmental factors (e.g., snow, melt, or wind events) that change the surface and potentially compromise the analysis. From Table 1, six of the airborne campaigns were offset from the ground-based GPS survey by two days or less; however, three of the campaigns were offset by eight days or more, with the maximum offset being 20 days.").

8.1 can these likely errors be quantified even roughly? In other words, how much of the final error is likely due to the reference data itself.

The error statements here were intended to provide a sense of source. However, you are correct; providing bounds would add to the paper. Quantitatively, our expectation is that this error term is probably very close to the spread, or standard deviation, of the GPS data when comparing it to a repeated ground-based pass (reported in our next response). This value is ~ 0.06 m, and we do not believe that it can easily be separated into the error components (1 through 5) listed in the text. We have added text that addresses this comment: ("We compared the second pass to the first pass, using a nearest-neighbor approach, and calculated the mean elevation residual for 1067 points. For the DGPS methods, the TRACK residual was 0.004 m (standard deviation 0.055 m), while the GITAR residual was 0.026 m (standard deviation 0.058 m). For the PPP method, this residual was -0.009 m (standard deviation 0.057 m). Thus, we are confident that the survey methods and data processing techniques associated with the in situ GPS survey provide internally consistent around-based results. While it is hard to isolate or quantify the non-zero errors associated with the ground-based GPS elevation data, we assume that the 0.055 to 0.059 m range of standard deviations is representative of the contribution of all of the terms mentioned in the previous section.")

8.17 Could be useful to also provide the standard deviation about the mean for these values.

These values have been parenthetically added to the text (above); they range from 0.055 to 0.058 m.

8.27-31 very impressive statistics! But, as stated in my general comments, this is also very favourable terrain because precisions of the lidar surveys will scaled with surface slope. A limitation that needs to be discussed. Otherwise, others are going to apply your numbers to every OIB flights even over rough topography... Excellent point. We have added text to the Abstract, Discussion, and Conclusions that points out that these results are on the ice-sheet interior (see response to the general comment).

10.1 "the large surface measurement precision". Do the authors mean high precision or not so good? Ambiguous.

Good point. We changed this phrase to: "...the relatively poorer quality (0.09 m) surface measurement precision..."

10.4 "Table 2..". This is a sentence that belongs to the "results" Good point. We have worked these bias and precision ranges into text within the Results section and removed this sentence from the discussion. 10.16 To what extent a result obtained for a 11 km stripe of data can be extrapolated to 1000s of km? To be discussed

This is a very fair comment; we think it goes with your general comment above. We have added text to the Abstract, Discussion, and Conclusions that points out that these results are on the ice-sheet interior (see response to the general comment). And we have added text that explicitly states why this would break down at the margins (slope/roughness).

11.4 "6000 here "11,000" in the abstract. ???

We have clarified this language. The ground-based component is 11 km; the satellite interests 6 km of the traverse. The language has been changed to: "*The 11 km Summit Station ground-based GPS survey intersects just 6 km of the satellite ground track (Fig. 1).*"

Assessment of NASA airborne laser altimetry data using groundbased GPS data near Summit Station, Greenland

Kelly M. Brunt^{1,2}, Robert L. Hawley³, Eric R. Lutz³, Michael Studinger², John G. Sonntag^{4,5}, Michelle A. Hofton⁶, Lauren C. Andrews^{7,2}, and Thomas A. Neumann²

¹Earth System Science Interdisciplinary Center (ESSIC), University of Maryland, College Park, MD, USA
 ²NASA Goddard Space Flight Center, Greenbelt, MD, USA
 ³Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
 ⁴AECOM Corporation, Wallops Island, VA, USA
 ⁵Wallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, VA, USA

⁶Department of Geographical Sciences, University of Maryland, College Park, MD, USA ⁷Universities Space Research Association (USRA), Columbia, MD, USA Correspondence to: Kelly M. Brunt (kelly.m.brunt@nasa.gov)

Abstract. A series of NASA airborne lidars have been used in support of satellite laser altimetry missions. These airborne laser altimeters have been deployed for satellite instrument development, for spaceborne data validation, and to bridge the

- 15 data gap between satellite missions. We used data from ground-based <u>Global Positioning System (GPS)</u> surveys of an 11, <u>km</u> long track near Summit Station, Greenland, to assess the surface elevation bias and measurement precision of three airborne laser altimeters, including the Airborne Topographic Mapper (ATM), the Land, Vegetation, and Ice Sensor (LVIS), and the Multiple Altimeter Beam Experimental Lidar (MABEL). <u>Ground-based GPS data</u> from the monthly ground-based traverses, which commenced in 2006, allowed for the assessment of <u>9</u> airborne lidar surveys associated with ATM and LVIS
- 20 <u>between 2007 and 2016</u>. Surface elevation biases for these altimeters, over the flat, ice-sheet interior, are less than 0.12 m, while assessments of measurement precision are 0.09 m or better. <u>Ground-based GPS positions determined both with and</u> <u>without differential post-processing techniques provided internally consistent solutions.</u> Results from the analyses of groundbased and airborne data provide validation <u>strategy guidance</u> for ICESat-2 elevation and elevation-change data products.

1 Introduction

- A series of National Aeronautics and Space Administration (NASA) airborne and spaceborne altimeters have a mission to produce a continuous time series of ice-sheet surface-elevation change estimates in an effort to determine the long-term contribution of polar ice sheets to sea-level rise. These missions include the Ice, Cloud, and land Elevation Satellite (ICESat; 2003-2009; Schutz et al., 2005), Operation IceBridge (2009-present; Csatho et al., <u>2014</u>; Koenig et al., 2010), and Ice, Cloud, and land Elevation Satellite 2 (ICESat-2; scheduled to launch in 2018; Abdalati et al., 2010; Markus et al., 2016).
- 30 ICESat's Geoscience Laser Altimeter System (GLAS) was a single-beam instrument that recorded the received laser energy as a waveform. GLAS surface elevations were based on reflected 1064 nm wavelength laser light with a 40 Hz pulse-

1

kelly brunt 11/15/2016 11:10 Deleted: .000-

kelly brunt 12/5/2016 15:03 Deleted: Data kelly brunt 1/6/2017 10:51 Deleted: 8

kelly brunt 1/13/2017 16:53 Deleted: guidance for kelly brunt 1/13/2017 16:54 Deleted: strategies

kelly brunt 1/13/2017 16:54 Deleted: 2013 repetition frequency. GLAS sampled ~70 m diameter footprints every ~170 m along a series of repeated tracks (Schutz et al., 2005). Early assessments of GLAS, based on ground-based <u>Global Positioning System (GPS)</u> surveys of a large and stable salt flat in Bolivia, have shown absolute surface elevation bias of less than 0.02 m and precision of less than 0.03 m under ideal conditions (Fricker et al., 2005). However, estimates of GLAS surface elevation bias and precision from the latter half

- 5 of the satellite mission have been closer to 0.06 and 0.15 m, respectively (Kohler et al., 2013), based on data from a 10,000 km ground-based GPS traverse in East Antarctica, which included the interior and the margin of the ice sheet, where surface roughness and slope compromise the accuracy and precision of satellite laser altimetry (Brunt et al., 2010; 2014). ICESat was operated in 'campaign' mode, with two or three 33-day campaigns occurring annually. Surface elevation biases between the ICESat campaigns ('inter-campaign biases') of up to several centimeters have been found in the data (Borsa et al., 2014;
- 10 Hofton et al., 2013; Urban et al., 2012; Siegfried et al., 2011) and should be accounted for when determining ice sheet elevation change rates.

ICESat-2 is the follow-on mission to ICESat. ICESat-2 will carry the Advanced Topographic Laser Altimeter System (ATLAS), a 6-beam, photon-counting laser altimeter, which uses short (< 2 ns) 532 nm wavelength pulses, with a 10 kHz repetition rate. ATLAS will have a \sim 17 m diameter footprint and a \sim 0.7 m along-track sampling interval (Abdalati et al.,

15 2010; Markus et al., 2016). ICESat-2 mission requirements include the determination of ice-sheet elevation change rates to an accuracy of less than or equal to 0.004 m a⁻¹ (Markus et al., 2016).
 While many large-scale ice-sheet-change studies have been based on a satellite-derived time series (e.g., Velicogna et al., 2016).

<u>2014; Shepherd et al., 2012; Zwally et al., 2011;</u> Zwally et al., 2005), airborne laser altimetry has played a critical role in: 1) "bridging the data gap" between the satellite missions, with a focus on areas of significant change and interest (Csatho et al.,

20 2014; Koenig et al., 2010); 2) satellite data validation (Martin et al., 2005; Hofton et al., 2013); and 3) satellite development (McGill et al., 2013; Brunt et al., 2014; 2016).

Operation IceBridge is bridging the data gap between the ICESat and ICESat-2 missions (Koenig et al., 2010). IceBridge mission requirements include: 1) the measurement of surface elevation with a vertical accuracy of 0.5 m; 2) the accurate detection of annual changes of 0.15 m over sampling distances of 500 m in the ice-sheet interior; and 3) the creation of

- 25 datasets for cross-calibration and validation of ice-sheet elevations from satellite lidars. Since 2009, IceBridge has annually surveyed both the Greenland and Antarctic ice sheets, as well as sea ice and Arctic glaciers, with a suite of instruments from a variety of airborne platforms, including the Airborne Topographic Mapper (ATM) and the Land, Vegetation, and Ice Sensor (LVIS; previously referred to as Laser Vegetation Imaging Sensor).
- Data from airborne laser altimeters also play a critical role in satellite data validation (Martin et al., 2005; Hofton et al.,
 2013). In 2001, prior to its association with IceBridge, ATM was deployed over the western United States and the Antarctic Dry Valleys (Martin et al., 2005) to determine ICESat elevation biases of less than 0.02 m. Similarly, LVIS data were collected over the interior of the Antarctic Ice Sheet in 2009 and 2010 as part of IceBridge to determine ICESat inter-campaign surface_elevation biases (Hofton et al., 2013).

Deleted: 2013 kelly brunt 1/13/2017 16:54 **Deleted:** Brunt et al.,

Airborne laser altimeters also play a critical role in satellite development. LVIS has served as the airborne emulator for several space-based concepts and missions, including Global Ecosystem Dynamics Investigation Lidar (GEDI). The Multiple Altimeter Beam Experimental Lidar (MABEL) was developed as an airborne ICESat-2 simulator (McGill et al., 2013). MABEL enabled the development of ICESat-2 geophysical algorithms (Kwok et al., 2014) and provided error

analysis of the ATLAS measurement strategy (Brunt et al., 2014). Such data sets demonstrate the utility of airborne laser altimetry for both enhancing and extending the space-based record of elevation measurements as well as for calibration and validation of data from such missions. However, a comparison of these altimeters, including surface measurement biases and precisions, has not been made over the same ground-survey area. In order to constrain the accuracy and utility of these instruments over ice surfaces, intermediary ground-based observations

10 must be used. Here, we present an assessment of the ice-sheet surface elevation bias and surface measurement precision of three NASA airborne laser datasets used in the development and validation of satellite missions (ATM, LVIS, and MABEL) by performing a direct comparison of these datasets with in situ GPS surveys that have been conducted near the center of the Greenland Ice Sheet, at Summit Station, from 2006 to the present.

2 Data

5

2.1 Ground-based GPS surveys 15

Since August 2006, an 11 km ground-based kinematic GPS survey has been conducted monthly near Summit Station, Greenland (Fig. 1). The survey has been part of a larger long-term observation program funded through the National Science Foundation (NSF). The survey route was designed to follow an ICESat reference ground track (#0412); the survey route intersects the ICESat reference ground track often to enable a large number of data 'crossovers', for direct comparison of

ground-based and spaceborne elevations. Data from this survey have been used for ICESat surface elevation validation and 20 have provided an assessment of ICESat inter-campaign surface elevation biases (Siegfried et al., 2011). The monthly Summit Station ground-based GPS survey represents the most temporally long and dense in situ observation of ice-sheet elevation change. The survey is expected to continue through the ICESat-2 mission to provide a nearly 15 year ground-based dataset. The 11 km GPS survey intersected just 6 km of the ICESat reference ground track (Fig. 1). However,

25 the high temporal resolution and long time series of the ground-based GPS data provide a robust means of validating satellite-derived estimates of ice-sheet elevation change. As such, the exact orbit of ICESat-2, and the resultant satellite ground track, was defined in part based on the location of this survey; similar to ICESat, the survey will intersect approximately 6km of an ICESat-2 reference ground track (Fig. 1).

The kinematic GPS survey is conducted using a dual-frequency Trimble R7 receiver recording at 0.5 or 1 Hz with a Trimble 30 Zephyr antenna (TRM39105); we note that the kinematic surveys have always been conducted using this equipment. Starting in August 2007, the 'roving' antenna was mounted on a static metal post on a sled towed behind a snowmobile at \sim 5 m s⁻¹ (Siegfried et al., 2011; Fig 2). Current survey protocols call for the survey technician to measure the length of the static

3

Deleted: Global Positioning System (kelly brunt 1/4/2017 11:45 Deleted:)

/ brunt 1/4/2017 11·45

kelly brunt 11/15/2016 11:1 Deleted: .000

kelly brunt 11/15/20 **Deleted:** ,000 kelly brunt 11/15/2016 11 Deleted: 000

kelly brunt 11/15/2016 11: Deleted: 000

antenna post and the depth of the runners of the sled into the snow surface at the beginning and, usually, at the end of each survey (Table 1). These measurements and the appropriate National Geodetic Survey (NGS) antenna model allow for the calculation of the distance from the phase center of the roving antenna to the surface of the snow (Fig. 2). A continuously operating GPS base station has been installed at Summit Station (3_k m east of the start of the survey and 6_k m southeast of

- the end of the survey; Fig. 1). For the duration of the survey time series, the base station has been a dual-frequency Trimble NetRS receiver recording at 1 Hz with a Trimble Zephyr Geodetic antenna (TRM41249; Siegfried et al., 2011). Periodically, that station is moved and the base station name is altered to reflect this change (e.g., SUMM prior to July 2009, SMM1 between July 2009 and August 2013, and SMM2 from October 2013 to the present, although the station was not renamed until July 2014). Both the base station and the rover logged data solely from the GPS constellation. The Summit base station
- 10 GPS data are publicly available for download on the University NAVSTAR Consortium (UNAVCO) Data Archive Interface (http://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html). When it was logistically possible, the timing of the ground-based survey was coordinated with NASA airborne surveys of the region (Table 1). This allowed for the assessment of airborne lidar performance over ice-sheet interiors (e.g., Brunt et al.,
- 2014). When the timing offset between the airborne and GPS surveys is minimized, assessments of lidar performance are made in the absence of environmental factors (e.g., snow, melt, or wind events) that change the surface and potentially
- compromise the analysis. Six of the airborne campaigns were offset from the ground-based GPS survey by two days or less however, three of the campaigns were offset by eight days or more, with the maximum offset being 20 days (Table 1).

2.2 Airborne Topographic Mapper (ATM)

ATM (Krabill et al., 2002) is one of the two main airborne laser altimetry systems used by NASA's Operation IceBridge. The current ATM configuration generally consists of a dual instrument configuration, with a wide-scan lidar and a narrow-

- 20 The current ATM configuration generally consists of a dual instrument configuration, with a wide-scan lidar and a narrow-scan lidar integrated simultaneously. The wide-scan lidar has a full scanning angle of 30° and is generally used over the ice sheets; the narrow-scan lidar, which was first integrated with IceBridge in 2012, has a full scanning angle of 5° and is generally used over sea ice but has also been used for high-altitude land-ice flights. Both ATM lidars are conically scanning, full-waveform systems that transmit 532 nm wavelength 6 ns pulses with a 3 or 5 kHz repetition rate.
- 25 ATM has been in operation since 1993. Components of ATM, such as the data system and scanner assembly, have been improved over time. The details of the version of the data system (e.g., '4B'), scanner assembly (e.g., 'T2'), and scanning angle (e.g., '30°') that were used for each airborne survey are captured in Table 2.

ATM surveys over Summit Station were generally conducted using the NASA P-3, but <u>ATM has also been integrated with</u> the NASA C-130 (<u>2015</u> Arctic, campaign; Table 1) and the National Oceanic and Atmospheric Administration (NOAA) P-3

30 (2016 Arctic campaign; Table 1). Surveys were conducted at a nominal aircraft speed of ~100 m s⁻¹, and with a nominal altitude of ~450 m above ground level (AGL). At this air speed, altitude, and repetition frequency, the wide-scan ATM lidar generates a 1-m diameter footprint and a scanning swath width of ~250 m and the narrow-scan ATM lidar generates approximately the same footprint with a scanning swath width of ~40 m (Fig. 2). ATM elevation bias and precision, for the

_	kelly brunt 11/15/2016 11:12
	Deleted: 000
	kelly brunt 11/15/2016 11:13
	Deleted: 00
	kelly brunt 1/5/2017 10:29
	Deleted: The
	kelly brunt 1/5/2017 10:30
	Deleted: is
	kelly brunt 1/13/2017 16:56
	Deleted: slightly
	kelly brunt 12/5/2016 15:49
	Deleted: July
	kelly brunt 12/2/2016 12:42
	Deleted: 4
	kelly brunt 12/5/2016 15:49
	Deleted: July
	kelly brunt 12/2/2016 12:42
	Deleted: 4
	kelly brunt 1/4/2017 11:47
	Deleted: re
	kelly brunt 1/13/2017 16:57
	Deleted: From Table 1, s
	kelly brunt 1/13/2017 16:57
	Deleted: ;

_	kelly brunt 1/6/2017 10:53
	Deleted: in one instance
	kelly brunt 1/6/2017 10:53
	Deleted: was
	kelly brunt 1/13/2017 16:58
	Deleted: 2015
/	kelly brunt 11/15/2016 16:29
	Deleted: 2

dual instrument configuration, has been assessed based on crossover analysis and comparisons with elevations derived from ground-based GPS surveys of airport departure aprons. ATM elevation bias and precision estimates are 0.07 m and 0.03 m, respectively (Martin et al., 2012).

We obtained the ATM Level-1B Qfit Elevation and Return Strength data (Krabill, 2013) through the National Snow and Ice

- 5 Data Center (NSIDC) Operation IceBridge Data Portal (http://nsidc.org/icebridge/portal/) for the fights over the Summit Station GPS ground-survey area (Table 1; Fig. 1). The data files include position information of the surface reflection (latitude, longitude, and elevation) that is derived from the combination of data from the laser systems with data from onboard GPS (Javad) and inertial systems (either Applanix POS AV 510 or 610 systems). Positioning information is derived using differential GPS (DGPS) post-processing techniques. DGPS solutions require both a roving GPS receiver and a static
- 10 base station. ATM position solutions were determined relative to data from a base station that was installed at the departure airport, and was accomplished in a software package developed by the ATM team at NASA Goddard Space Flight Center (GSFC) called GITAR (GPS Inferred Trajectories for Aircraft and Rockets; Martin, 1991). GITAR is optimized for the polar environment and long baselines. It incorporates data from GPS and GLONASS (since 2011) satellites, as well as data from multiple ground stations, for improved satellite geometry, especially at high latitudes.

15 2.3 Land, Vegetation, and Ice Sensor (LVIS)

LVIS (Blair et al., 1999) is the second main airborne laser altimeter used by Operation IceBridge. It is a swath scanning, fullwaveform laser altimeter that transmits 1064 nm wavelength 9 ns pulses, with a 500 to 1500 Hz repetition rate (Blair et al., 1999) and using a scan angle that varies between $\pm 6^{\circ}$. LVIS surveys over Summit Station (Table 1) were conducted using both the NASA P-3 (2007) and the DC-8 (2010) at a nominal aircraft speed of ~100 m s⁻¹, and an altitude over Summit

- Station of ~4600 m AGL. At this air speed, altitude, and repetition frequency, LVIS generates a ~10 m diameter footprint and a scanning swath width of ~1000 m (Hofton et al., 2008; Fig. 3). LVIS long-term (e.g., GPS-related) elevation biases, assessed along 2 repeated several hundred-kilometer-long transects over the Greenland Ice Sheet were found to be better than ±0.05 m with precision estimates at multiple crossover locations that are better than 0.07 m (Hofton et al., 2008). There were two LVIS flights over the Summit Station GPS ground-survey area (Table 1; Fig. 1): one associated with
- 25 Operation IceBridge (14 Apr 2010) and one as part of a demonstration dataset for future spaceborne concepts (20 Sept 2007). Similar to ATM, we obtained the IceBridge L2 Geolocated Surface Elevation Product, Version 1.1 (Blair and Hofton, 2015), through the NSIDC Operation IceBridge Data Portal (http://nsidc.org/icebridge/portal/). We obtained the Pre-IceBridge LVIS L2 Geolocated Ground Elevation and Return Energy Quartiles, Version 1 (Blair and Hofton, 2011), through the NSIDC (http://nsidc.org/data/blvis2). These files include position information (latitude, longitude, and elevation) of the
- 30 lowest reflecting surface in the footprint that is obtained from the combination of laser ranges with laser positioning and pointing information (Hofton et al., 2000). Laser positioning and pointing information are derived from an integrated GPS (either Javad, NovAtel, or Ashtech receivers) and inertial system (either Applanix POS AV 510 or 610 systems) and processed using the commercially-available GrafNav (GPS) and POSPac (inertial) software. The 2007 data used DGPS post-

kelly brunt 1/6/2017 10:55

Deleted: 5

kelly brunt 12/5/2016 15:32 Deleted:

kelly brunt 11/15/2016 16:29 Deleted: 2 processing techniques relative to a base station at Kangerlussuaq, Greenland. The 2010 data utilized <u>Precise Point</u> <u>Positioning (PPP)</u> techniques, which do not require a base station, but rather rely on more precise satellite orbit and clock information to determine the position of the roving GPS receiver. Position information for the 2007 and 2010 LVIS campaigns incorporated data from the GPS constellation only.

5 2.4 Multiple Altimeter Beam Experimental Lidar (MABEL)

10

For completeness, we note that a third NASA laser altimeter has flown over the Summit Station GPS ground-survey area. MABEL is a photon-counting laser altimeter that was developed in support of ICESat-2. In April 2012 it surveyed the Greenland Ice Sheet and Arctic sea ice based out of Keflavik, Iceland; data from this campaign, including analysis of data over the Summit Station ground survey, is presented in Brunt et al. (2014). MABEL is distinct from the other two lidars assessed here in that it has as many as 24 beams profiling in a linear array (as opposed to the swath methods of ATM and

- LVIS), perpendicular to the direction of flight. MABEL transmits 532 and 1064 nm wavelength ~1.5 ns pulses with a variable repetition rate (5 to 25 kHz; McGill et al., 2013). MABEL surveys were conducted using the NASA ER-2 at a nominal aircraft speed of ~200 m s⁻¹, and with an altitude over Summit Station of ~16,000 m AGL. At this air speed, altitude, and <u>a 5 kHz</u> repetition frequency, MABEL
- 15 generates a 2 m diameter footprint every 0.04 m with a swath width of as much as 2000 m. Based on an error analysis, Brunt et al. (2014) estimate MABEL elevation uncertainty for the Summit Station region to be 0.15 m. MABEL surface elevation bias and measurement precision has been assessed based on direct comparisons of MABEL surface elevations with digital elevation models derived from ground-based GPS data collected on airport departure aprons. MABEL surface measurement
- precision assessments are generally 0.11 to 0.14 m, but have been as high as 0.24 m (Brunt et al., 2014; Brunt et al., 2016;
 Magruder and Brunt, 2016). MABEL surface elevation bias is generally on the order of 1 m; while this bias is relatively large, it is within the mission design goals of MABEL (ICESat-2 algorithm development and error analysis), which focus on
- surface measurement precision. MABEL data files include position information derived from a GPS integrated with a NovAtel HG1700 AG58 inertial system and are available via the NASA ICESat-2 website (http://jcesat-2.gsfc.nasa.gov).
- Because MABEL is a multibeam profiling (rather than scanning) lidar, there are relatively few intersections between MABEL beams and the ground-based GPS survey, ultimately resulting in poor quality statistics (Fig. 3), based on small sample size and poor spatial distribution. These limited areas of airborne and ground-based data intersection are highly clustered in the few places where the MABEL profile crossed the GPS survey, and therefore do not represent a spatially diverse assessment of MABEL instrument performance. Consequently, we exclude MABEL from further discussion, as the dataset is fundamentally different than that of the other scanning lidars considered here.

6

kelly brunt 1/4/2017 16:19 **Deleted:** and

kelly brunt 1/17/2017 14:31 Deleted: kelly brunt 1/17/2017 14:31 Deleted: /icesat2/ kelly brunt 11/15/2016 16:29 Deleted: 2

3 Methods

3.1 Ground-based GPS survey data processing

Ground-based position solutions from three GPS post-processing software packages, using both PPP and DGPS methods,

- were compared with airborne elevation data. PPP solutions were acquired using Inertial Explorer v.8.60, a commercial GPS
 post-processing software package developed by NovAtel. One set of ground-based DGPS solutions was acquired using TRACK (Trajectory Calculation with Kalman filter), the kinematic DGPS component of GAMIT, a GPS utility that was partially developed and supported by the Massachusetts Institute of Technology. Kinematic GPS positions from TRACK v.1.28 software (Chen, 1998) were determined by carrier-phase differential processing relative to the Summit GPS base station, A second set of ground-based DGPS solutions was acquired using ATM's GITAR post-processing software (Martin,
- 10 1991). For the DGPS results, the positions of the Summit GPS base station were obtained using GIPSY (GNSS-Inferred Positioning System and Orbit Analysis Simulation Software). For the GITAR solutions, the base station positions represent an average of four days of data, centered on the timing of the ground survey. For the TRACK solutions, the base station positions represent an average recorded over the duration of the ground-based survey.

Independent of post-processing method, all of the ground-based GPS solutions are based on final precise orbit and clock information from the Crustal Dynamics Data Information System (CDDIS) hosted at GSFC. Processing using TRACK corrected for errors associated with the ionosphere by incorporating an IGS data product. To mitigate the effect of multipath distortion, all processing methods used a cut-off angle (7.5°, 10°, and 12° for Inertial Explorer, TRACK and GITAR, respectively). Inertial Explorer and TRACK used a Saastamoinen model to correct for tropospheric delay, while GITAR used a gridded reanalysis data product from the National Centers for Environmental Prediction (NCEP). And all processing

- 20 methods corrected for solid Earth tides based on an Earth Rotation and Reference System Services, or IERS, model, All of the ground-based GPS data were solved to the phase center of the antenna. TRACK and PPP solutions used the L1 antenna phase center, while GITAR used the LC phase center. The solutions were then referenced to the ellipsoid (WGS84) and datum of the matching airborne data (either ITRF00, ITRF05, or ITRF08, indicated in Tables 1 and 2). The GPS phasecenter elevation solutions were then reduced to the snow surface (Fig. 2) using data from the field (Table 1) and the
- 25 appropriate NGS antenna model phase-center offsets. Specifically, the calculation of the height of the surface of the snow (*h*) is:

$h = GPS_{PC} - h_{AntPost} - h_{NGSmodel} + h_{RunnerDepth} ,$

(1)

where GPS_{PC} is the surveyed position solution to the phase center of the ground-based roving antenna, $h_{AntPost}$ is the height of the antenna post (1.785 or 1.797 m, depending on the survey; Table 1), $h_{NGSmodel}$ is the NGS model distance between the antenna phase center and the antenna base plane (0.056 or 0.061 m for the L1 or LC phase centers, respectively), and $h_{RunnerDepth}$ is the depth of the sled runners in the snow surface (variable, ranging from 0.0125 to 0.02 m; Table 1). We note that the ground-based GPS data were collected at 1 Hz, with the snowmobile operating at ~5 m s⁻¹, giving the GPS data an effective 5 m diameter footprint.

7

kelly brunt 12/5/2016 15:34

Deleted: Post-processing of the ground-based kinematic GPS data was accomplished using both DGPS and PPP methods. DGPS solutions require both a 'roving' GPS receiver and a static base station. Alternatively, PPP methods do not require a base station; these solutions are based on more precise satellite orbit and clock information to determine the position of the roving GPS receiver. kelly brunt 12/5/2016 18:14

Deleted: DGPS

kelly brunt 12/5/2016 18:14 Deleted: PPP

kelly brunt 1/4/2017 11:05

Deleted. III

kelly brunt 12/5/2016 18:11 Deleted: using final International GNSS Service (IGS) satellite orbits (made available at https://igscb.jpl.nasa.gov)

Deleted: data kelly brunt 1/4/2017 10:56 Deleted: , and the airborne lidar surface-elevation data, were kelly brunt 12/5/2016 18:15 Deleted: e kelly brunt 1/4/2017 10:57 Deleted: , kelly brunt 1/4/2017 10:57 Deleted: which can range globally by ±0.4 m, but vary in our study area by approximately ±0.1 m. kelly brunt 12/5/2016 17:50 Deleted: Further, all

kelly brunt 12/5/2016 16:00 Deleted: of 2.5 m

3.2 Ground-based GPS and airborne lidar elevation comparison strategies

- Once the kinematic GPS data were post-processed and reduced to the snow surface, we compared the ground-based GPS surface elevation data directly to the airborne surface elevation data. We used two different approaches: a 'nearest-neighbor' analysis and a 'zone' analysis.
- 5 We note that the footprint sizes of the altimeters are different: for the data used in these analyses, ATM has a ~1 m diameter
 footprint and LVIS has a ~10 m diameter footprint. When comparing the ground-based GPS data with the lidar data, we chose a search radius around each lidar data point that was equal to the size of the given lidar footprint; this was intended to ensure that the ground elevation data were representative of what the lidar was sampling.

In the nearest-neighbor analysis, we determined the closest single ground-based GPS data point for every lidar data point. 10 Then we limited our analysis to points where the lidar and GPS measurements were within the search radius that was appropriate for the given lidar. We then assessed the difference between the lidar surface elevation and the closest GPS surface elevation for the data that met the search criteria.

In the zone analysis, we identified every ground-based GPS data point within the appropriate search radius around the lidar data coordinates (which represent the center of the lidar footprint); not every lidar data point had GPS data that met this

15 search criteria. Then we determined the mean of the GPS elevations within this 'zone'. Similar to the nearest-neighbor analysis, we then assessed the difference between the lidar surface elevation data point and the mean of the GPS surface elevations within the zone.

For each airborne mission analysis, once the ground-based GPS surface elevation data ($GPS_{elevation}$) were associated with the lidar surface elevation data ($Lidar_{elevation}$), the mean elevation difference is the lidar elevation bias (B):

20 $B = \frac{\sum (Lidar_{elevation} - GPS_{elevation})}{N},$

where N is the total number of either the nearest-neighbor data points, or the total number of zones, that met the distance criteria. This lidar bias is relative to the <u>ground-based</u> GPS elevation data, which we are taking to be the <u>truth</u>. By assuming that the ground-based GPS data represent truth, for these analyses we assume their errors are zero. In actuality, these errors are not zero and are a function of several terms, including: 1) formal errors, which vary based on processing methods and

- 25 include factors such as ephemeris and clock errors; 2) atmospheric errors, associated with both the ionosphere and troposphere; 3) multipath errors; 4) the precision of the base station estimate to which the survey is related (in the case of the DGPS processing methods); and 5) observational errors such as variable penetration of the sled into the snow along the course of the survey. We note that the existing ground-based and airborne elevation data are likely correlated, as they are based on similar GPS measurement and, in the case of GITAR, processing strategies. The standard deviation of the bias (*B*)
- 30 in Equation 2 is the spread of the data about the mean, taken to be the lidar surface measurement precision. Surface measurement precision is defined here as the vertical dispersion of the lidar measurements about the mean surface and takes into account properties of the surface that will affect the measurement (e.g., slope and roughness) and altimeter precision,

8

kelly brunt 1/4/2017 11:53 Deleted: ground-based

kelly brunt 1/4/2017 11:57 Deleted: ground

(2)

which is a function of several terms, including: 1) geolocation errors, which are a function of all of the GPS terms described above, inertial measurement errors, altitude, and horizontal uncertainty; 2) errors in altimeter timing; 3) the size of the footprint on the surface, which is a function of altitude and beam divergence; and 4) lidar data processing errors. Over the relatively smooth and flat ice found in the Summit Station region, these surface effects and instrument effects are not easily

5 distinguished from one another in the lidar surface measurement data.

4 Results

To assess the ground-based GPS post-processing methods used in this analysis, we compared data from a unique groundbased survey that conducted two separate passes of the traverse route on 5 May 2009 (Table 1). We compared the second pass to the first pass, using a nearest-neighbor approach, and calculated the mean elevation residual for 1067 points. For the

- 10 DGPS methods, the TRACK residual was 0.004 m (standard deviation 0.055 m), while the GITAR residual was 0.026 m (standard deviation 0.058 m). For the PPP method, this residual was -0.009 m (standard deviation 0.057 m). Thus, we are confident that the survey methods and data processing techniques associated with the in situ GPS survey provide internally consistent ground-based results. While it is hard to isolate or quantify the non-zero errors associated with the ground-based GPS elevation data, we assume that the 0.055 to 0.059 m range of standard deviations is representative of the contribution of
- 15 all of the terms mentioned in the previous section. The residuals presented here compare well with similar results from Siegfried et al. (2011) based on a dual traverse on 18 June 2009; their residual, based on differential post-processed techniques, was 0.009 m. Siegfried et al. (2011) also point out that the nearest-neighbor approach introduces new errors sources, and thus refrain from further interpretation, such as precision estimates.

kelly brunt 1/4/2017 18:21 Deleted: These kelly brunt 1/4/2017 18:21 Deleted: values

Table 2 lists elevation bias and surface measurement precision relative to ground-based GPS survey data (i.e., lidar
 elevations - GPS elevations) for ATM and LVIS. The table lists results for both the nearest-neighbor and zone analysis.
 Further, the table presents two methods using DGPS post-processing techniques and one using the PPP method of post-processing.

The surface measurement precisions in Table 2, for both ATM and LVIS, are all less than 0.09 m and ranged from 0.039 to 0.087 m. The surface measurement biases in Table 2, for both ATM and LVIS, are all less than 0.12 m, with all of the

- IceBridge-related data collections (2009-2016) having measurement biases that range from -0_008 to +0.067 m. The overall largest measurement bias is associated with the 2007 LVIS airborne campaign, which was collected before the advent of IceBridge and as such did not undergo the comprehensive instrument calibration procedures now employed on IceBridge flights. The -0.108 m difference between the 2016 ATM and PPP GPS surface elevations is slightly larger than the other ground-based and airborne comparisons. During the ground survey, severe ionospheric activity had an impact on both the
- 30 roving and base station GPS receivers for a period of 5 minutes. The resulting cycle slips were manually corrected in the GITAR DGPS processing, but not in the PPP processing, which could explain the better agreement between the GITAR and ATM comparison relative to the PPP and ATM comparison.

9

kelly brunt 1/6/2017 11:11 Deleted: 5 kelly brunt 1/6/2017 11:47 Deleted: 064 For both the nearest-neighbor and the zone analyses, N from Equation 2 was generally consistent for the airborne lidars considered here. For ATM, N for both the nearest-neighbor and zone analyses ranged from 20 to 494 per campaign, with an average of 351; for LVIS, N for both the nearest-neighbor and zone analyses, ranged from 497 to 1219 per campaign, with an average of 858. For the zone analyses, the average number of GPS data points within the ATM 1 m diameter zone, or

- 5 search radius, ranged from 3 to 193 per campaign, with the mean being 27. The average number of GPS data points within the LVIS 10 m diameter zone ranged from 33 to 575 per campaign, with the mean being 304. Our analysis indicates that there were no significant differences between results associated with the nearest-neighbor and zone methods of comparing the ground-based GPS and altimetry surface elevations (Table 2). The zone method may mitigate the impact of spurious outliers that could affect the surface measurement precision; this is potentially evident in a
- 10 comparison of the nearest-neighbor and zone results for the LVIS data, where precisions systematically improve slightly using the zone method. <u>However, we note that results associated with a median method were all within 1 cm, and generally</u> less than 0.1 cm, of results from the mean method. Thus, we consider the effects of outliers in this analysis to be negligible. Overall, the zone and nearest neighbor methods display similar results, most likely due to the relatively flat surface at Summit Station. Based on the ATM Level 2 ICESSN data product (Krabill, 2010) for all 3 passes associated with the 10
- 15 April 2014 flight, the slope over the traverse in the along-track direction is 0° and there is a gentle (0.1°) slope in the acrosstrack direction (sloping toward the west); the difference between the maximum and minimum elevations in the vicinity of the traverse, based on the same data product, is only 1.05 m. Given these low-slope values, a geolocation error of 10 m is required to achieve a slope-induced elevation error of 0.01 m.
- For this application, there are only small differences between the results associated with DGPS and PPP post-processing
- 20 methods associated with the ground-based GPS surveys. Results from each GPS processing method are statistically indistinguishable from one another and do not display a systematic pattern over the <u>8</u> observational periods that included both DGPS and PPP processing techniques. The similarity in relative bias between DGPS and PPP processing techniques is encouraging as there <u>may be</u> times when base station GPS data are unavailable for DGPS post-processing. Table 2, and the comparison of the residuals associated with the 5 May 2009 ground-based GPS data, suggest that, for this application, results
- 25 using PPP methods can be used to derive results that are as accurate and precise as those derived using DGPS methods for this small-scale ground-based GPS survey. We attribute some of the success of the PPP method to the ground-survey duration, which is sufficient to minimize errors associated with the convergence period (Bisnath and Gao, 2009), but short enough to minimize errors associated with the tropospheric modeling.

5 Discussion

30 The Summit Station ground-based GPS survey methods and data post-processing techniques are appropriate for airborne data validation. The three methods of data post-processing are internally consistent based on the difference between the two separate GPS surveys conducted on 5 May 2009. Further, for this application, there are only small differences between the

10

kelly brunt 1/10/2017 11:00 Deleted: 223 kelly brunt 1/12/2017 15:41 Deleted: 355 kelly brunt 1/5/2017 17:36 Deleted: 192 kelly brunt 1/12/2017 15:42 Deleted: 37

kelly brunt 1/5/2017 10:42
Deleted: w
kelly brunt 1/5/2017 10:42
Deleted: potentially
kelly brunt 12/5/2016 16:29
Deleted: most
kelly brunt 12/5/2016 16:30
Deleted: due to the relatively flat surface at

kelly brunt 1/6/2017 11:44

kelly brunt 1/4/2017 11:21

Deleted: are kelly brunt 1/4/2017 11:2

Summit Station

Deleted: Starting in May 2014, the Summit GPS base station (SMM2) has shown signs of hardware issues that make the DGPS processing option unavailable.

results associated with DGPS and PPP post-processing methods. The results presented here suggest that, given only rovingreceiver GPS data, ground-based surface elevation data are still sufficiently accurate and precise for airborne elevation data validation.

Airborne and ground-based surveys should be coordinated with respect to timing. Two-thirds of the airborne lidar campaigns

5 discussed here were within 2 days of the ground-based survey, which is a testament of the coordination between the airborne and ground-based teams. While we are limited with respect to observations, and we cannot state with certainty that the 20-day timing offset between the airborne and ground-based surveys was the unique source for the relatively poorer quality (0.09 m) surface measurement precision of the wide-scan lidar data for the 09 Apr 2015 flight, any elevation differences derived from environmental factors (e.g., snow, melt, or wind events) can be easily mitigated by closely coordinating the 10 ground-based and airborne surveys.

Results for ATM and LVIS at Summit Station associated with the IceBridge campaigns date back to 2009 and provide an understanding and characterization of how these instruments perform and how that performance may evolve over time (Table 2, Fig. 4). ICESat-2 is scheduled to launch in 2018 and has a 3-year mission requirement; thus, for ICESat-2 post-launch validation activities that will utilize airborne sensors, it is essential to identify instruments now that are well

- 15 characterized and well understood with respect to both accuracy and precision and to develop standardized survey, processing, and analytical techniques to ensure meaningful satellite data validation and interpretation.
 As stated in the introduction, ICESat-2 mission requirements include the determination of ice-sheet elevation-change rates to an accuracy of less than or equal to 0.004 m a⁻¹ (Markus et al., 2016). This stringent requirement can only be met through
- 20 on the data product will be validated to 0.025 m. Given this requirement, and the ~0.7 m along-track sampling interval of ICESat-2, Jong length-scales (1000's of km) of airborne data over the ice sheets will be required for satellite data validation in order to increase the number of realizations of the satellite to airborne comparisons in order to significantly improve precision estimates based purely on an increased sample size (Boas, 1983). Therefore, ICESat-2 ice-sheet elevations will be validated using long length-scales of well-characterized airborne elevation data.

statistical analysis of ICESat-2 elevation data at satellite ground-track crossovers. The ICESat-2 ice-sheet elevations released

- 25 Results presented here are limited with respect to applicability to the entire ice sheet. Near the ice-sheet margins, airborne and satellite laser altimetry data are compromised due to increased surface roughness and slope, among other environmental variables (Brunt et al., 2010; 2014). However, the ground-based GPS elevation data collected near Summit Station provides a means to characterize airborne elevation data of ATM and LVIS. Comparisons between ATM and LVIS elevations and the ground-based elevations constrain the errors of the airborne datasets. Thus, in situ data, even on short length-scales and over
- 30 flat surfaces, can form part of a strategy to validate data from airborne, and ultimately satellite, platforms. Further, the Summit Station survey has been conducted monthly since August 2006. The long, dense time series associated with the ground-based survey will ultimately provide the seasonal information required to derive meaningful surface-elevation-change interpretation of ICESat-2 data. This reinforces the importance of long-duration, high-frequency, ground-based observations in linking in situ, airborne, and satellite observations.

11

kelly brunt 1/4/2017 11:22

Deleted: This is ideal given that for two airborne surveys (2 May 2014 and 9 Apr 2015), base station data are unavailable.

kelly brunt 11/15/2016 16:29 Deleted: 3

kelly brunt 1/4/2017 17:01 Deleted: This will require

kelly brunt 1/4/2017 17:43 Deleted: The

6 Conclusions

It is often difficult to collect sufficient length scales of in situ elevation data to provide meaningful statistics for satellite laser altimetry validation. Therefore, a nested approach for validation of satellite elevation is commonly employed. In a nested approach, ground-based GPS data are collected to constrain the elevation bias and measurement precision of the airborne

- 5 lidar data. Airborne surveys can then be designed and conducted on longer length-scales to provide the amount of airborne data required to make statistically meaningful assessments of satellite elevation accuracy and precision.
 We have presented a comparison of airborne lidar data with in situ GPS data, over relatively flat terrain associated with the ice-sheet interior, in preparation for validation efforts associated with ICESat-2. <u>Results were consistent given various data processing methods (PPP and DGPS) and data analysis methods (nearest-neighbor or zone analysis).</u> The 11_vkm Summit
- Station ground-based GPS survey intersects just 6 km of the satellite ground track (Fig. 1). Therefore, to make statistically robust assessments of ICESat-2 elevations, a nested approach will need to be employed for data validation. However, the Summit Station survey provides a means to characterize airborne instruments, which will in turn collect sufficient amounts of data required for satellite data validation. Further, results presented here date back to 2007, providing a characterization of how airborne instrument performance may evolve over time. For ATM our analysis spans four generations of instrument and
- 15 data systems (Table 2) documenting long-term data consistency and accuracy. Long-term data consistency will be crucial for producing a cross-calibrated and validated surface elevation change time series using ICESat and ICESat-2 data. From this comparison of airborne and ground based data collected under standardized protocols, we find that both ATM and LVIS are sufficiently characterized and thus well poised to be integrated with an ICESat-2 data validation strategy.

7 Data availability

- 20 Summit ground-based GPS data associated with the airborne lidar data are available online, as the supplement related to this article (doi:10.5194/tc-2016-214-supplement). The base station GPS data are publicly available on the UNAVCO Data Archive Interface (http://www.unavco.org/data/gps-gnss/data-access-methods/dai2/app/dai2.html) and are included in the supplement related to this article (doi:10.5194/tc-2016-214-supplement). NASA ATM and the LVIS (2010) data are publicly available on the NSIDC Operation IceBridge Data Portal (http://nsidc.org/icebridge/portal/). The Pre-IceBridge LVIS data
- 25 (2007) are also publicly available at the NSIDC (https://nsidc.org/data/blvis2). MABEL lidar data are publicly available on the NASA ICESat-2 data page (<u>http://icesat-2.gsfc.nasa.gov/icesat2/data/mabel/mabel_docs.php</u>). The NASA GSFC surfacefinding algorithm is available from the authors upon request (kelly.m.brunt@nasa.gov).

Acknowledgements

We thank the NASA ICESat-2 Project Science Office for funding this data analysis and for MABEL data collection, processing, and distribution. Further, we thank the NASA Armstrong Air Operations Facility for MABEL data collection

12

kelly brunt 11/15/2016 11:11 Deleted: ,000 kelly brunt 11/15/2016 11:12 Deleted: 000

kelly brunt 1/17/2017 14:31 Deleted: http://icesat.gsfc.nasa.gov/icesat2 (specifically pilots T. Williams and D. S. Broce). We thank Operation IceBridge for the data collection and processing associated with the ATM and LVIS airborne components of this project. We thank the National Science Foundation and the Summit Station Science Coordination Office (SCO) (NSF PLR 1042358) for support for the ground-based field component of this project. Further, this project would not have been possible without the work of many Summit Station Science

5 Technicians, who collected the in-situ GPS data. We thank K. Krabill (NASA GSFC WFF), C. Brooks, and D. Rabine (NASA GSFC) for GPS support. We thank the National Snow and Ice Data Center (NSIDC) for IceBridge data distribution. Finally, we thank our editor (Etienne Berthier) and 2 anonymous reviewers for insightful and constructive comments to earlier drafts of this manuscript.

kelly brunt 11/15/2016 11:03 Deleted: And we

References

10 Abdalati, W., Zwally, H., Bindschadler, R., Csatho, B., Farrell, S., Fricker, H., Harding, D., Kwok, R., Lefsky, M., Markus, T., Marshak, A., Neumann, T., Palm, S., Schutz, B., Smith, B., Spinhirne, J., and Webb, C.: The ICESat-2 laser altimetry mission, Proc. IEEE, 98, 735–751, 2010.

Bisnath, S. and Gao, Y.: Current state of precise point positioning and future prospects and limitations, In Observing our changing Earth (615–623), Springer Berlin Heidelberg, 2009

15 Blair, J., and Hofton, M.: IceBridge LVIS-GH L2 Geolocated Surface Elevation Product, Boulder, Colorado USA, NASA NSIDC DAAC, 2015.

Blair, J., and Hofton, M.: Pre-IceBridge LVIS L2 Geolocated Ground Elevation and Return Energy Quartiles, Version 1, Boulder, Colorado USA, NASA NSIDC DAAC, 2011.

Blair, J., Rabine, D., and Hofton, M.: The laser vegetation imaging sensor (LVIS): A medium-altitude, digitation-only, airborne laser altimeter for mapping vegetation and topography, ISPRS Journal of Photogrammetry & Remote Sensing, 54,

20 airborne laser altimeter for mapping vegetation and topography, ISPRS Journal of Photogrammetry & Remote Sensing, 5 115–122, 1999.

Boas, M.L.: Mathematical Methods in the Physical Sciences (ed. 2), 1983.

Borsa, A., Moholdt, G., Fricker, H., and Brunt, K.: A range correction for ICESat and its potential impact on ice-sheet mass balance studies, The Cryosphere, 8, 345–357, doi:10.5194/tc-8-345-2014, 2014.

25 Brunt, K., Neumann, T., Amundson, J., Kavanaugh, J., Moussavi, M., Walsh, K., Cook, W., and Markus, T.: MABEL photon-counting laser altimetry data in Alaska for ICESat-2 simulations and development, The Cryosphere, <u>10</u>, <u>1707–1719</u>, <u>doi:10.5194/tc-10-1707-2016</u>, 2016.

Brunt, K., Neumann, T., Walsh, K., and Markus, T.: Determination of local slope on the Greenland Ice Sheet using a multibeam photon-counting Lidar in preparation for the ICESat-2 Mission, IEEE Geosci. Remote S., 11, 935–939, 2014.

30 Brunt, K., Fricker, H., Padman, L., Scambos, T., and O'Neel, S.: Mapping the grounding zone of the Ross Ice Shelf, Antarctica, using ICESat laser altimetry, Ann. Glaciol., 51, 71–79, 2010. kelly brunt 12/5/2016 13:12 Deleted: Discuss. kelly brunt 12/5/2016 13:13 Deleted: 1–31

Chen, G.: GPS kinematic positioning for airborne laser altimetry at Long Valley, California, PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.

Csatho, B., Schenk, A., van der Veen, C., Babonis, G., Duncan, K., Rezvanbehbahani, S., van den Broeke, M., Simonsene, S., Nagarajanf, S., and van Angelen, J.: Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics, P. Natl.

- Acad. Sci. USA, 111, 18478–18483, 2014.
 Fricker, H., Borsa, A., Minster, B., Carabajal, C., Quinn, K., and Bill, B.: Assessment of ICESat performance at the salar de Uyuni, Bolivia, Geophys. Res. Lett., 32, L21S06, doi:10.1029/2005GL023423, 2005.
 Hofton, M., Luthcke, S., and Blair, J.: Estimation of ICESat intercampaign elevation biases from comparison of lidar data in East Antarctica, Geophys. Res. Lett., 40, 5698–5703, doi:10.1002/2013GL057652, 2013.
- 10 Hofton, M., Blair, J., Luthcke, S., and Rabine, D.: Assessing the performance of 20–25 m footprint waveform lidar data collected in ICESat data corridors in Greenland, Geophys. Res. Lett., 35, doi:10.1029/2008GL035774, 2008.

Koenig, L., Martin, S., Studinger, M., and Sonntag, J.: Polar airborne observations fill gap in satellite data, EOS Trans. AGU, 91, 333-334, 2010.

- Kohler, J., Neumann, T., Robbins, J., Tronstad, S., and Melland, G.: ICESat elevations in Antarctica along the 2007–09
 Norway–USA traverse: Validation with ground-based GPS, IEEE T. Geosci. Remote, 51, 1578–1587, 2013.
- Krabill, W.: IceBridge ATM L1B Qfit Elevation and Return Strength, Version 1. Boulder, Colorado USA, NASA NSIDC DAAC, 2013.

Krabill, William B.: IceBridge ATM L2 Icessn Elevation, Slope, and Roughness, Version 2, Boulder, Colorado USA: NASA NSIDC DAAC, 2010.

20 Krabill, W., Abdalati, W., Frederick, E., Manizade, S., Martin, C., Sonntag, J., Swift, R., Thomas, R. and Yungel, J.: Aircraft laser altimetry measurement of elevation changes of the Greenland ice sheet: Technique and accuracy assessment, J. Geodyn., 34, 357–376, 2002.

Kwok, R., Markus, T., Morison, J., Palm, S., Neumann, T., Brunt, K., Cook, W., Hancock, D., and Cunningham, G.: Profiling sea ice with a multiple altimeter beam experimental Lidar (MABEL), J. Atmos. Oceanic Tech., 31, 1151–1168,

25 2014.

Magruder, L., and Brunt, K.: Performance analysis of airborne photon-counting lidar data in preparation of ICESat-2, IEEE Geosci. Remote S., in review, 2016

Markus, T., Neumann, T., Martino, A., Abdalati, W., Brunt, K., Csatho, B., Farrell, S., Fricker, H., Gardner, A., Harding, D., Jasinski, M., Kwok, R., Magruder, L., Lubin, D., Luthcke, S., Morison, J., Nelson, R., Neuenschwander, A., Palm, S.,

Popescu, S., Shum, C., Schutz, R., Smith, B., Yang, Y., Zwally, H.: The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation, Remote Sens. Environ., in review, 2016.
 Martin, C., Krabill, W., Manizade, S., Russell, R., Sonntag, J., Swift, R., and Yungel, J.: Airborne topographic mapper calibration procedures and accuracy assessment, NASA Technical Memorandum, 215891, 2012.

14

kelly brunt 12/5/2016 13:14 **Deleted:** submitted Martin, C., Thomas, R., Krabill, W., and Manizade, S.: ICESat range and mounting bias estimation over precisely-surveyed terrain, Geophys. Res. Lett., 32, doi:10.1029/2005GL023800, 2005.

Martin, C.: GITAR Program Documentation, NASA contract #NAS5-31558 program document, Goddard Space Flight Center, Wallops Flight Facility, Wallops Island, VA. 1991.

5 McGill, M., Markus, T., Scott, V., and Neumann, T.: The multiple altimeter beam experimental Lidar (MABEL): An airborne simulator for the ICESat-2 mission, J. Atmos. Oceanic Tech., 30, 345–352, 2013. NASA Goddard Space Flight Center: MABEL lidar data, MABEL ICESat-2 simulation data, Version 9, Greenbelt,

Maryland USA, http://icesat-2.gsfc.nasa.gov/data/mabel/mabel_docs.php.11/1/2014, 2014.

Schutz, B., Zwally, H., Shuman, C., Hancock, D., and DiMarzio, J.: Overview of the ICESat Mission, Geophys. Res. Lett., 32, L21S01, doi:10.1029/2005GL024009, 2005.

- Shepherd, A., Ivins, E., Geruo, A., Barletta, V., Bentley, M., Bettadpur, S., Briggs, K., Bromwich, D., Forsberg, R., Galin, N., Horwath, M., Jacobs, S., Joughin, I., King, M., Lenaerts, J., Li, J., Ligtenberg, S., Luckman, A., Luthcke, S., McMillan, M., Meister, R., Milne, G., Mouginot, J., Muir, A., Nicolas, J., Paden, J., Payne, A., Pritchard, H., Rignot, E., Rott, H., Sørensen, L., Scambos, T., Scheuchl, B., Schrama, E., Smith, B., Sundal, A., van Angelen, J., van de Berg, W., van den
- 15 Broeke, M., Vaughan, D., Velicogna, I., Wahr, J., Whitehouse, P., Wingham, D., Yi, D., Young, D., and Zwally, H.: A reconciled estimate of ice-sheet mass balance, Science, 338, 6111, 1183–1189, 2012.

Siegfried, M., Hawley, R., and Burkhart, J.: High-resolution ground-based GPS measurements show intercampaign bias in ICESat elevation data near Summit, Greenland, IEEE T. Geosci. Remote, 49, 3393–3400, 2011.

Velicogna, I., Sutterley, T., and van den Broeke M.: Regional acceleration in ice mass loss from Greenland and Antarctica

using GRACE time-variable gravity data, J. Geophys. Res. Space Physics, 119, 8130–8137, doi:10.1002/2014GL061052.
 Urban, T., Borsa, A., Brunt, K., Felikson, D., Fricker, H., Hawley, B., Hofton, M., Luthcke, S., Pie, N., Schutz, B., Shuman, C., Yi, D., and Zwally, J.: Summary of ICESat-1 inter-campaign elevation biases and detection methods, Fall Meeting, AGU, San Francisco, CA, 3–7 December, 2012.

Zwally, H., Jun, L., Brenner, A., Beckley, M., Cornejo, H., DiMarzio, J., Giovinetto, M., Neumann, T., Robbins, J., Saba, J.
 and Donghui, Y.: Greenland ice sheet mass balance: distribution of increased mass loss with climate warming; 2003–07 versus 1992–2002, J. Glaciol., 57, 88-102, 2011.

Zwally, H., Giovinetto, M., Li, J., Cornejo, H., Beckley, M., Brenner, A., Saba, J., and Yi, D.: Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992-2002, J. Glaciol., 51, 509–527, 2005.

kelly brunt 1/17/2017 14:33

Deleted: icesat2/

Table 1: Airborne laser altimetry and ground-based GPS survey dates and comments.

Lidar		Survey altitude	Lidar survey date	GPS survey date	Offset (days)	$h_{AntPost}(m)$	$h_{RunnerDepth}(m)$	Comments
ATM	2	450 m AGL	05 May 2009	05 May 2009	0	1.785	0.02 <u>00</u>	2 GPS surveys; OIB
ATM		450 m AGL	11 Apr 2012	11 Apr 2012	0	1.785	0.0175	OIB
ATM		450 m AGL	10 Apr 2014	02 Apr 2014	-8	1.797	0.0175	3 ATM passes; OIB
ATM		450 m AGL	02 May 2014	13 May 2014	+11	1.797	0.015 <u>0</u>	OIB
ATM	A, *	450 m AGL	09 Apr 2015	29 Apr 2015	+20	1.797	0.0125	OIB
ATM	В	450 m AGL	<u>19 May 2016</u>	19 May 2016	<u>0</u>	<u>1.797</u>	0.0350	<u>OIB</u>
LVIS	1	~4600 m AGL	20 Sept 2007	18 Sept 2007	-2	1.785	0.0175	2 LVIS passes; Pre-OIB
LVIS	1, <u>C</u>	~4600 m AGL	14 Apr 2010	14 Apr 2010	0	1.785	0.015 <u>0</u>	OIB
MAB	EL 💆	~16,000 m AGL	08 Apr 2012	08 Apr 2012	0	1.785	0.015 <u>0</u>	3 MABEL passes; IS-2
MAB	EL 🗸	~16,000 m AGL	12 Apr 2012	11 Apr 2012	-1	1.785	0.0175	2 MABEL passes; IS-2

¹ Indicates ITRF00 as the airborne data post-processing datum; ² indicates ITRF05; all others are ITRF08. ^A Indicates that the instrument was integrated with a C-130; ^B indicates that the instrument was integrated with the NOAA P-3; ^C indicates that the instrument was integrated with the NASA DC-8; ^D indicates that the instrument was integrated with the

5

NASA ER-2; all others surveys were flown on the NASA P-3. * Indicates that both narrow- and wide-scanning lidar data are available; all other ATM analysis is associated solely with I wide-scan lidar data.

OIB in the 'Comments' field indicates that data are from IceBridge and that they are available via the NSIDC Operation IceBridge Data Portal (http://nsidc.org/icebridge/portal).

10 Pre-OIB in the 'Comments' field indicates that data are pre-IceBridge; they are available via NSIDC (http://nsidc.org/data/blvis2).

IS-2 in the 'Comments' field indicates that data are available via the ICESat-2 website (http://icesat-2.gsfc.nasa.gov).

_	kelly brunt 1/6/2017 12:16	Ì
	Deleted: ^B	
	kelly brunt 1/6/2017 12:16	Ì
	Deleted: ^c	
	kelly brunt 1/6/2017 12:16	Ì
	Deleted: ^c	
	kelly brunt 1/6/2017 12:17	Ì
	Deleted: ^B	
()	kelly brunt 1/6/2017 12:17	Ì
	Deleted: ^c	
	kelly brunt 1/13/2017 10:29	Ì
	Deleted: s	
_	kelly brunt 1/17/2017 14:33	

Deleted: /icesat2

Table 2: Airborne lidar elevation bias and surface measurement precision (in m) relative to ground-based GPS survey data (i.e., lidar elevations - GPS elevations) using 'nearest-neighbor' and 'zone' analysis.

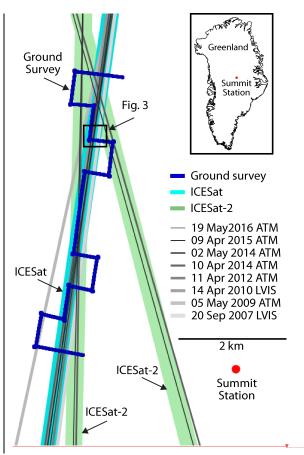
		DGPS1 bias ± precision:	DGPS2 bias ± precision:	PPP bias ± precision:
Lidar Survey	Lidar Version	nearest-neighbor (m)	nearest-neighbor (m)	nearest-neighbor (m)
Liuai Suivey	(scan angle)	zone (m)	zone (m)	zone (m)
			· · · ·	
ATM 05 May 2009 2	4B/T2 (30°)	$0.055 \pm 0.074; N = 255$	$0.005 \pm 0.073; N = 254$	$-0.026 \pm 0.075; N = 253$
711W 05 Way 2007	<u>4B/12(50)</u>	$0.055 \pm 0.074; N = 255$	$0.005 \pm 0.074; N = 254$	$-0.026 \pm 0.075; N = 253$
ATM 11 Apr 2012	4B/T4 (30°)	$0.067 \pm 0.045; N = 320$	$-0.014 \pm 0.055; N = 323$	0.008 ±0.039; N = 321
ATM 11 Api 2012	$\frac{4D}{14}(30^{-})$	$0.067 \pm 0.045; N = 320$	$-0.014 \pm 0.055; N = 323$	$0.008 \pm 0.039; N = 321$
ATM 10 Apr 2014	4D/T4 (209)	0.018 ±0.076; N = 491	$0.040 \pm 0.077; N = 491$	$-0.021 \pm 0.075; N = 494$
ATM 10 Apr 2014	<u>4B/T4 (30°)</u>	$0.018 \pm 0.076; N = 491$	$0.040 \pm 0.077; N = 491$	$-0.021 \pm 0.075; N = 494$
ATM 02 May 2014	4B/T4 (30°)	$0.005 \pm 0.054; N = 220$	$0.037 \pm 0.051; N = 221$	$-0.005 \pm 0.052; N = 223$
ATIM 02 May 2014	$4D/14(30^{-})$	$0.005 \pm 0.054; N = 220$	$0.037 \pm 0.051; N = 221$	$-0.005 \pm 0.052; N = 223$
ATM 09 Apr 2015	5A/T3 (30°)	$0.004 \pm 0.088; N = 470$	$-0.026 \pm 0.087; N = 476$	$-0.064 \pm 0.087; N = 472$
ATM 09 Apr 2015	<u>3A/13 (30°)</u>	$0.004 \pm 0.088; N = 470$	$-0.026 \pm 0.087; N = 476$	$-0.064 \pm 0.087; N = 472$
ATM 09 Apr 2015	5D/T5 (59)	$0.043 \pm 0.068; N = 365$	$0.015 \pm 0.070; N = 366$	$-0.021 \pm 0.068; N = 368$
	<u>5B/T5 (5°)</u>	$0.043 \pm 0.068; N = 365$	$-0.015 \pm 0.070; N = 366_{\text{V}}$	$-0.021 \pm 0.068; N = 368$
ATTA 10 A 2016 B	5 A (TO (200)	$-0.070 \pm 0.075; N = 331$	$-0.043 \pm 0.073; N = 329$	$-0.108 \pm 0.059; N = 336$
ATM 19 Apr 2016 B	<u>5A/T2 (30°)</u>	$-0.070 \pm 0.075; N = 331$	$-0.043 \pm 0.072; N = 329$	$-0.108 \pm 0.059; N = 336$
LVIS 20 Sept 2007 1	Dro OID	$0.115 \pm 0.061; N = 1219$	0.085 ±0.059; N = 1219	$0.081 \pm 0.061; N = 1218$
LV15 20 Sept 2007	Pre-OIB	0.116 ± 0.057 ; N = 1219	0.086 ±0.056; N = 1219	0.082 ± 0.057 ; $N = 1218$
LVIS 14 Apr 2010 1,C	OIB	0.037 ±0.064; N = 497	-0.004 ±0.064; N = 497	$-0.024 \pm 0.061; N = 497$
L VIS 14 Apr 2010 🦕	UIB	$0.035 \pm 0.060; N = 497$	$-0.006 \pm 0.060; N = 497$	$-0.027 \pm 0.058; N = 497$
E1	· · · · · · · · · · · · · · · · · · ·	DC 1	and an and the second	DODGI : TDACK G

Elevation bias (lidar elevation - GPS elevation) and surface measurement precision are in m. DGPS1 is TRACK software processing results, processed to the L1 phase center, 0.056 m above the base plane; DGPS2 is GITAR software processing results, processed to the LC phase center, 0.061 m above the base plane; PPP is Inertial Explorer software processing results,

processed to the L1 phase center, <u>0.056 m above the base plane</u>. Indicates ITRF00 as the post-processing datum; ² indicates ITRF05; all others are ITRF08.

^A Indicates that the instrument was integrated with a C-130; ^B indicates that the instrument was integrated with the NOAA P-3; ^c indicates that the instrument was integrated with the NASA DC-8; all others surveys were flown on the NASA P-3.

17


10

÷

5

kelly brunt 1/3/2017 16:13 Deleted: Rover only kelly brunt 1/5/2017 17:14 Deleted: Rover only kelly brun<u>t 1/6/2017 12:15</u> Deleted: (wide-scan lidar) kelly brunt 1/6/2017 12:18 Deleted: * kelly brunt 1/3/2017 15:40 Deleted: Rover only kelly brunt 1/5/2017 16:36 Deleted: Rover only kelly brunt 1/6/2017 12:15 Deleted: (narrow-scan lidar) kelly brunt 1/6/2017 12:18 Deleted: kelly brunt 1/3/2017 15:59 Deleted: Rover only kelly brunt 1/5/2017 16:50 Deleted: Rover only kelly brunt 1/6/2017 12:18 Deleted: ^B kelly brunt 1/13/2017 10:31 Deleted: airborne data kelly brunt 1/6/2017 12:18

Deleted: * Indicates that both narrow- and widescanning lidar data are available; all others ATM analysis is associated solely with wide-scan lidar data

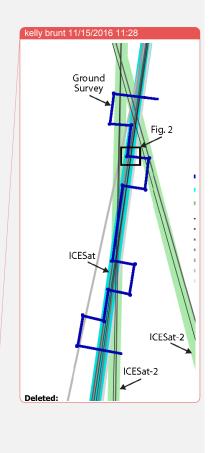
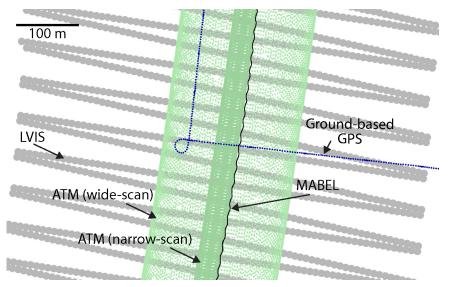



Figure 1: Map of the Summit Station area, including: representative ground-based GPS survey line (blue line); airborne lidar surveys (gray lines, thicker lines occur earlier); ICESat ground track #0412 (cyan line); ICESat-2 ground tracks (green lines); and Summit Station (red dot). The distance between Summit Station and the southern end of the traverse is ~3, km; the distance between Summit Station and the northern end of the traverse is ~6,5, km. Relative to the trend of ICESat track #0412, the ground-based GPS survey line is oriented both along-track and across-track in order to better characterize the surface slope.

kelly brunt 11/15/2016 11:11 Deleted: 000 kelly brunt 11/15/2016 11:11 Deleted: 00

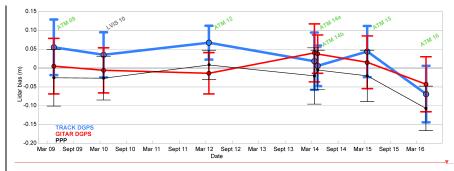
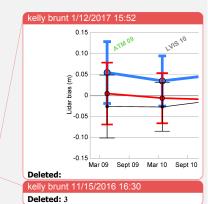

Figure 2: The roving GPS antenna, sled, and snowmobile configuration. GPS_{PC} is the surveyed position solution to the phase center of the antenna, $h_{NGSmodel}$ is the NGS model distance between the antenna phase center and the antenna base plane, $h_{AutPost}$ is the height of the antenna post (Table 1), $h_{RummerDepth}$ is the depth of the sled runners in the snow surface (Table 1), and h is the snow surface (Equation 1).

Figure 2: Schematic representation of the lidar measurement strategies and ground-based GPS sample spacing. LVIS measurements (gray): ~10 m diameter footprint and a 1000 m across-track swath width. ATM measurements (green): ~1 m diameter footprint and either a 40 m (narrow-scan; post 2012) or a 250 m (wide-scan) across-track swath width. Ground-based GPS data (blue points) indicate sample spacing. MABEL measurements (black dots) are included to illustrate the limitations of a profiling lidar for this application.


5

kelly brunt 11/15/2016 16:30 Deleted: 2 kelly brunt 1/13/2017 10:34 Deleted: 2010

5

Figure 4: Performance of ATM and LVIS over Summit Station through time. Date versus lidar surface bias (m), for ATM and LVIS, for the IceBridge campaigns. Error bars represent surface measurement precision. TRACK DGPS (blue), GITAR DGPS (red), and Inertial Explorer PPP (black) GPS post-processing results are presented. ATM 15 represents the narrow-scan lidar system only. We note that for the GITAR solutions, the base station positions represent an average of four days of data; while for the TRACK solutions, the base station positions represent an average recorded over the duration of the ground-based survey. This may account for the slight offset associated with the TRACK solutions.

kelly brunt 1/4/2017 11:25

Deleted: ATM 14b and ATM 15 (2 May 2014 and 9 Apr 2015, narrow-scan, respectively; Tables 1 and 2) lacked GPS base station data and were only postprocessed using PPP methods.

