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Abstract. Given the substantial variability of snow in complex mountainous terrain, a considerable challenge of 

coarse scale modeling applications is accurately representing the subgrid variability of snowpack properties. The 

snow depth coefficient of variation (CVds) is a useful metric for characterizing subgrid snow distributions but has not 

been well defined by a parameterization for mountainous environments. This study utilizes lidar-derived snow depth 15 

datasets from mountainous terrain in Colorado, USA to evaluate the variability of subgrid snow distributions within 

a grid size comparable to a 1000 m resolution common for hydrologic and land surface models. The subgrid CVds 

exhibited a wide range of variability across the 321 km
2
 study area (0.15 to 2.74) and was significantly greater in 

alpine areas compared to subalpine areas. Mean snow depth was an important factor of CVds variability in both 

alpine and subalpine areas, as CVds decreased nonlinearly with increasing snow depths. This negative correlation is 20 

attributed to the static size of roughness elements (topography and canopy) that strongly influences seasonal snow 

variability. Subgrid CVds was also correlated with topography and forest variables; important drivers of CVds 

included the subgrid variability of terrain exposure to wind in alpine areas and the mean and variability of forest 

metrics in subalpine areas. Two simple statistical models were developed (alpine and subalpine) for predicting 

subgrid CVds that show reasonable performance statistics. The methodology presented here can be used for 25 

parameterizing CVds in snow-dominated mountainous regions, and highlights the utility of using lidar-derived snow 

datasets for improving model representations of snow processes.  

1 Introduction 

Snow plays an important role in hydrological, ecological, and atmospheric processes within much of the Earth 

System, and for this reason, considerable research has focused on understanding the spatial and temporal distribution 30 

of snow depth (ds) and snow water equivalent (SWE) across the landscape (e.g., Clark et al., 2011). Snowpacks 

exhibit substantial spatiotemporal variability (e.g., López-Moreno et al., 2015) that is shaped by processes at varying 

spatial scales (Blöschl, 1999). The variability of the snowpack through space and time at a given scale of interest is 

often driven by meteorology and its interactions with topography and forest features. Mountainous areas, which 

often accumulate large seasonal snowpacks, generally exhibit a high range of snow variability because of these 35 
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effects (Sturm et al., 1995). Given that this variability occurs over relatively short distances (e.g., Fassnacht and 

Deems, 2006; López-Moreno et al., 2011), accurately modeling the distribution of snow in mountainous areas 

requires a detailed understanding of the characteristics of snow variability at the model scale of interest (Trujillo and 

Lehning, 2015).  

 An important challenge of physically-based modeling is often the ability to represent within grid processes, 5 

or the subgrid spatial variability, of critical input parameters (Seyfried and Wilcox, 1995). Accurate representation 

of subgrid snow distribution is critical for reliably simulating energy and mass exchanges between the land and 

atmosphere in snow-covered regions (Liston, 1999), yet various studies have highlighted a deficiency with this 

representation in hydrologic and land-surface models (e.g., Clark et al., 2011; Liston, 2004; Liston and Hiemstra, 

2011; Pomeroy et al., 1998; Slater et al., 2001). Liston (2004) presented an approach of effectively representing 10 

subgrid snow distributions in coarse-scale models by using a lognormal probability density function and an assigned 

coefficient of variation (CV). This approach only requires an estimation of the CV parameter (i.e. standard deviation 

divided by the mean), which has generally been estimated from field data and is a measure of snow variability that 

allows for comparisons that are independent of the amount of snow accumulation. Representative values of the CV 

of snow water equivalent (CVSWE) and snow depth (CVds) have been published by many field studies (refer to Table 15 

1 and Figure 2 from Clark et al., 2011) and have been summarized based on vegetation and landform type (Pomeroy 

et al., 1998) and classified globally, based on air temperature, topography, and wind speed regimes (Liston, 2004). 

However, the range of published CVSWE and CVds in complex mountainous terrain (i.e. the mountain snow class from 

Sturm et al. (1995)) is quite variable and a parameterization has not been well defined.   

 The recent developments of snow depth mapping capabilities from ground-based and airborne lidar (e.g., 20 

Deems et al., 2013) as well as digital photogrammetry (e.g., Bühler et al., 2015; Nolan et al., 2015) have provided a 

high definition view of snow depth distributions, albeit at fixed locations in space and time, that have not been 

historically available by traditional field measurements. These detailed snow depth datasets have aided in an 

improved understanding of the scaling properties of snow distributions (e.g., Deems et al., 2006; Trujillo et al., 

2007), the temporal evolution of snow distributions (e.g., Grünewald et al., 2010; López-Moreno et al., 2015), the 25 

relation of snow depth with topography (e.g., Grünewald et al., 2013; Kirchner et al., 2014; Revuelto et al., 2014) 

and canopy (e.g., Broxton et al., 2015; Revuelto et al., 2015; Zheng et al., 2016) characteristics, as well as the nature 

of fine scale subgrid variability of snow depth (López-Moreno et al., 2015). Grünewald et al. (2013) present a novel 

study in which lidar-derived snow depth datasets are aggregated to coarse scale grids to evaluate the drivers of snow 

distribution at the catchment scale. Evaluations of lidar snow depth datasets within coarser scale grid resolutions can 30 

be analogous to the grid resolution of many modeling applications, thus lidar-derived snow datasets have potential to 

serve as an important tool for evaluating the representation of subgrid snow distributions within physically-based 

models.   

 In this study, we use the snow depth coefficient of variation (CVds) as a metric of subgrid snow variability 

within complex mountainous terrain similarly to López-Moreno et al. (2015), however we use a grid size 35 

comparable to a 1000 m resolution common for hydrologic and land surface models. The objectives of this research 

were to (1) determine the range of CVds values that are observed within varying grid resolutions throughout the study 
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area, (2) evaluate the effects of mean snow depth, forest, and topography characteristics on subgrid CVds, and (3) 

develop a methodology for parameterizing CVds within complex mountainous terrain. This research aims to help 

advance understanding of the variability of subgrid snow distributions, and support the development of more 

accurate representations of subgrid snow variability that can be used within physically-based models. 

2 Methods 5 

2.1 Site description 

The study area is in the Front Range Mountains of north-central Colorado, located in the western United States 

(Figure 1). Spatial lidar datasets collected by the Boulder Creek Critical Zone Observatory (CZO) 

(http://criticalzone.org/boulder/, accessed 17 April 2016) were investigated in this study. The study area (321 km
2
) 

ranges in elevation from 2190 m to 4117 m and is dominated by ponderosa pine (Pinus ponderosa) and lodgepole 10 

pine (Pinus contorta) at lower elevations, Engelmann spruce (Picea engelmannii) and subalpine fir (Abies 

lasiocarpa) forests at higher elevations, and alpine tundra at the highest elevations (Figure 1). The mean winter (1 

October to 1 May) precipitation and temperature for water years 2006 - 2010 at the Niwot SNOTEL site (3021 m; 

Figure 1) is 452 mm and 2.7°C (Harpold et al., 2014). The mountainous terrain in this region is complex, varying 

from gentle topography at lower elevations to steep and rugged slopes closer to the Continental Divide. The majority 15 

of the study area has a southeastern aspect and is located on the eastern side of the Continental Divide (Figure 1). 

The Front Range Mountains are characterized by a continental seasonal snowpack (Trujillo and Molotch, 2014), 

with the persistent snow zone at elevations greater than 3050 m (Richer et al., 2013), generally exhibiting peak snow 

accumulation during the springtime months of April and May each year. 

2.2 Spatial datasets 20 

This analysis uses publically available lidar-derived snow depth (ds), elevation (z), and vegetation height (VH) raster 

datasets (1 m resolution) from the Boulder Creek CZO (ftp://snowserver.colorado.edu/pub/ 

WesternCZO_LiDAR_data, accessed 27 August 2015) that are described in detail by Harpold et al. (2014). Airborne 

lidar campaigns were completed during snow-covered (May 2010) and snow free (August 2010) periods across the 

study area and lidar surfaces were differenced to derive ds (Harpold et al., 2014). The snow-covered lidar returns 25 

were collected on two dates, 05 May 2010 and 20 May 2010, and the combined snow-covered lidar extent is 321 

km
2
 (Figure 1). Snow-covered lidar collections were carried out during this time of the year to capture the near-peak 

snow accumulation (Harpold et al., 2014), and the two survey dates (15 days apart) required to cover the study area 

extent were a result of weather challenges and equipment failures (http://czo.colorado.edu/geGIS/ 

0README_BcCZO_LiDAR.pdf, accessed 02 September 2016). Given that studies have observed inter-annual 30 

consistency in snow accumulation patters (e.g., Deems et al., 2008; Erickson et al., 2005; Sturm and Wagner, 2010), 

we expect the 2010 lidar surveys to be somewhat representative of snow variability and CVds near peak snow 

accumulation across the study area. A comparison of the lidar ds dataset to in-situ ds sensors within research 
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catchments in the Boulder Creek CZO showed a root mean squared error (RMSE) of 27 cm and 7 cm at the Como 

Creek catchment (16 sensors) and Gordon Gulch catchment (5 sensors), respectively (Harpold et al., 2014). 

 The lidar-derived digital elevation model (DEM) was resampled from a 1 m to a 10 m resolution for 

representation of the resolution of commonly available DEMs (USGS National Elevation Dataset, 

http://ned.usgs.gov) and was subsequently used to derive topography variables for each 10 m cell that have been 5 

shown to influence ds distributions (e.g., Elder et al., 1998; Erickson et al., 2005; Kerr et al., 2013; Revuelto et al., 

2014; Winstral et al., 2002) using a Geographic Information System (GIS). Surface slope (S) was calculated by 

fitting a plane to a 3 x 3 cell window around each DEM cell. Winter clear-sky incoming solar radiation (Qsw↓) was 

determined using the Area Solar Radiation tool in ArcGIS, which calculates mean incoming solar radiation for clear-

sky conditions across a DEM surface for a specified time interval based on solar zenith angle and terrain shading. 10 

The time interval used for the calculation of Qsw↓ was 01 October through 01 May. Aspect was not considered 

because it was highly correlated with Qsw↓. Maximum upwind slope (Sx) (Winstral et al., 2002), which can be used 

as a measure of the exposure to or sheltering from wind, was calculated for each cell as: 
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where α is the azimuth of the search direction, dmax is the maximum distance for the search direction, z is elevation, 15 

and (xv, yv) are all cells along the vector defined by α and dmax. Given the prevailing westerly winds within the 

study area (Erickson et al., 2005; Winstral et al., 2002), an average Sx was calculated for a dmax of 200 m and a 

range of α from 240° to 300° at 5° increments (e.g., Molotch et al., 2005). Topographic position index (TPI) (Weiss, 

2001), which is a measure of the relative position of the cell to surrounding topography, was calculated for each cell 

as: 20 
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where z0 is the elevation of the cell and z  is the average elevation of the surrounding cells within a specified cell 

window (R). TPI was calculated for 3 x 3 (i.e. 30 m resolution), 11 x 11, and 21 x 21 windows around each cell.  

 Additional forest canopy spatial datasets were also used in this study. WorldView-2 (WV2) satellite 25 

imagery (DigitalGlobe, Inc., USA) from a cloud free sky condition on 26 September 2013 was acquired. The WV2 

imagery has a high spatial (3 m) and spectral resolution (8 multispectral bands) and was used to compute the 

Normalized Difference Vegetation Index (NDVI) for the study area at a 3 m resolution. Additionally, a 30 m 

resolution 2011 canopy density (CD) dataset was acquired for the study area (http://www.mrlc.gov/nlcd2011.php, 

accessed 04 December 2015). 30 

2.3 Aggregation of study grids 

Operational snow models (e.g., Carroll et al., 2006) often have a 1000 m horizontal grid resolution and snow 

representations within land surface models (e.g., Slater et al., 2001) have generally been designed for a coarser 
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resolution (e.g., Yang et al., 1997) but are being developed to operate at finer scales (e.g., Bierkens et al., 2015; 

Kumar et al., 2006; Wood et al., 2011). This study attempts to evaluate the subgrid variability of ds at a comparable 

grid resolution to this 1000 m model grid size. The study area was automatically divided into square grids of equal 

size (Figure 1), hereinafter referred to as study grids, and the subgrid variability of ds was computed for each study 

grid. We tested a range of study grid sizes including 100 m, 200 m, 300 m, 400 m, 500 m, 750 m, and 1000 m to 5 

determine how similar the subgrid ds characteristics of each of the grid sizes were to that of 1000 m. Although the 

direct evaluation of subgrid snow variability at the 1000 m grid size was provided, the use of a smaller grid size with 

similar characteristics to 1000 m grid size provides a greater number of grids for statistical analysis (i.e. greater 

sample size). Therefore, the goal of this testing was to identify an appropriate grid size for evaluation that exhibited 

similar characteristics of snow variability to the 1000 m resolution grids, but maximized the number of grids 10 

available for analysis within the study area. Study grids were required to have at least 80% coverage by the lidar ds 

datasets, and the ds dataset with the greatest coverage was utilized for cases of the overlapping snow-covered lidar 

datasets (Figure 1). When the 05 May 2010 and 20 May 2010 lidar ds datasets were overlapping and both datasets 

had 100% study grid coverage, the 05 May 2010 dataset was used. In order to assess the influence of using lidar-

derived snow depth from two different days, the snow depth distributions within the overlapping area of the two 15 

lidar campaigns (7.92 km
2
; Figure 1) were compared.   

 For each study grid, the mean and standard deviation of ds were determined and used to calculate CVds. The 

mean and standard deviation of each of the topography and vegetation datasets outlined above were also calculated 

for each study grid. A categorical variable representing ecosystem type was also determined for each study grid. The 

alpine ecosystem type was assigned to study grids that had a mean elevation greater than 3300 m and a mean VH 20 

less than 0.5 m, while the remaining study grids were assigned to the subalpine ecosystem type (Figure 1); treeline 

elevation in this area generally varies between 3400 m and 3700 m (Suding et al., 2015). Lastly, only study grids 

with a mean elevation greater than 3000 m (i.e. the persistent snow zone) were evaluated in this study (Figure 1).   

2.4 Statistical analysis 

Pairwise relations between CVds and ds, topography variables (mean and standard deviation), and vegetation 25 

variables (mean and standard deviation) were explored for both alpine and subalpine study grids to evaluate drivers 

of subgrid ds variability. CVds was expected to have a strong nonlinear relation with ds (Fassnacht and Hultstrand, 

2015); therefore, the influence of ds on CVds was removed (i.e. detrended) using a best-fit power function for both 

the alpine and subalpine study grids, and residuals were used to evaluate further topography and vegetation effects 

on CVds using Pearson’s r coefficient. Additionally, multiple linear regression models were developed to predict 30 

CVds for both alpine and subalpine study grids. We evaluated a range of independent variables to be included within 

the multiple linear regression models (refer to variables in Table 1). However, given that the goal of the model 

analysis was to provide a methodology for parameterizing CVds, some of the variables were deemed unsuitable and 

excluded from model testing. For example, mean z was not included in model testing as it was believed to be a site 

specific variable that may not have been transferable to independent data. Additionally, VH was not tested within the 35 

models as spatial datasets of this variable are not commonly available, unlike the USGS National Land Cover 
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Database (http://www.mrlc.gov/index.php) canopy density product or remote sensing forest metrics such as NDVI. 

Variables included in the models were selected by an all-subsets regression procedure in which both Mallows’ Cp 

(Mallows, 1973) and Akaike information criterion (AIC) (Akaike, 1974) were used as a measure of relative 

goodness of fit of the models (e.g., Sexstone and Fassnacht, 2014). Final independent variables within the models 

were required to be statistically significant (p value < 0.05) and not exhibit multicollinearity. Multicollinearity was 5 

defined as model parameters exhibiting a variance inflation factor greater than 2. Given that a non-normal 

distribution of snow depth (Liston, 2004) and other topography and vegetation variables was expected, various 

transformations of model variables were explored. Model diagnostics of residuals were used to ensure the model 

assumptions of normality, linearity, and homoscedasticity. Model performance was evaluated using the Nash-

Sutcliffe efficiency (NSE) and RMSE. Additionally, model verification was assessed using a 10-fold cross-10 

verification procedure which runs 10 iterations of removing a randomly-selected 10 percent of the dataset, fitting the 

regression to the remainder of the data, and subsequently comparing modeled values to the independent observations 

that were removed. 

3 Results 

3.1 Snowpack conditions 15 

In this study, an evaluation of the snowpack conditions was important for assessing if the subgrid CVds may have 

been influenced by a melting snowpack. In a hypothetical uniform snowmelt scenario (e.g., Egli and Jonas, 2009), 

the subgrid mean ds is expected to decrease faster than the σds, thus the CVds will increase without a corresponding 

increase in subgrid snow variability (Winstral and Marks, 2014). SWE data from nine Natural Resources 

Conservation Service (NRCS) SNOTEL stations located in the Front Range Mountains of northern Colorado (Figure 20 

1) were evaluated to assess snowpack conditions. A snowmelt event occurred across the study area on 10 April 2010 

(Figure 2a) that caused considerable snowmelt at stations below an elevation of 3000 m and a loss of 10% of peak 

SWE on average at stations above 3000 m. Following this snowmelt event, substantial snow accumulation continued 

at SNOTEL stations above 3000 m until 17 May 2010, when the onset of snowmelt began (Figure 2a). A plot of σds 

versus mean ds among the SNOTEL stations highlights the hysteretic dynamics of accumulation and melt across the 25 

region (Egli and Jonas, 2009), and confirms that the lidar data were collected prior to and at the beginning of 

snowmelt across the study area (Figure 2b). Additionally, the statistical distributions of snow depth on 05 May 2010 

and 20 May 2010 within the areas that were overlapped by both lidar campaigns (7.92 km
2
; Figure 1) are shown to 

be similar and have a CVds of 1.01 and 1.10, respectively (Figure 3). Given that the lidar-derived snow depths were 

collected before substantial snowmelt had occurred within the persistent snow zone and the distributions of ds from 30 

both dates exhibit similar characteristics, we are confident that the subgrid CVds evaluated in this study is 

representative of snow variability at peak snow accumulation and was not significantly influenced by data collection 

on two separate dates. 
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3.2 Subgrid snow depth variability 

Snow depth CV (CVds) and σds were consistently greater in the alpine versus subalpine at each of the varying grid 

resolution sizes (Figure 4). The mean CVds across the study grids was generally consistent with changes in grid 

resolution; however, the standard deviation of CVds decreased with increasing grid resolution and stabilized around a 

500 m grid size. The mean σds across the study grids tended to increase with increasing grid size for all study grids, 5 

but stabilized around 400 m for subalpine study grids only. The 500 m resolution study grids (n = 642) were the 

smallest grid size with a comparable mean and standard deviation of CVds to the 1000 m grid size (Figure 4) and 

were chosen for analysis in this study (Figure 1) as a grid size representative of the subgrid snow variability at the 

1000 m resolution. 

 The median ds, σds, and CVds across all study grids (hereinafter 500 m resolution) was equal to 1.27 m, 0.88 10 

m, and 0.74, respectively, and subgrid CVds ranged from 0.15 to 2.74 across the study area. The variability of CVds 

collected on 05 May 2010 (n = 219 study grids) and 20 May 2010 (n = 423 study grids) (Figure 1) was similar, with 

the 05 May grids exhibiting a slightly smaller CVds (median = 0.64) than the 20 May grids (median = 0.81). 

Statistically significant differences (p value < 0.001) between the alpine and subalpine study grids were observed for 

ds, σds, and CVds by the nonparametric Mann-Whitney test (Figure 5). The alpine study grids exhibited a greater 15 

mean and range of snow accumulation and variability than the subalpine study grids. The range of CVds from the 10
th

 

to the 90
th

 percentiles within the alpine and subalpine study grids was equal to 0.61 to 1.57 and 0.30 to 0.98, 

respectively. Figure 6 highlights the abrupt change of subgrid snow depth variability characteristics observed in a 

transition from the subalpine to alpine ecosystem; forest structure and topography characteristics appears to exert a 

strong influence on subgrid CVds and these relations were investigated further. 20 

3.3 Relation of subgrid snow depth variability with topography and forest characteristics 

A statistically significant linear correlation (Pearson’s r coefficient; p value < 0.05) between CVds and ds was 

observed to be -0.60 and -0.45 for the alpine and subalpine study grids, respectively (Table 1). However, further 

evaluation showed this relation to be nonlinear and best described by a power function (Figure 7). This function 

suggests that CVds exhibits a systematic decrease with increasing ds and suggests that relative subgrid snow 25 

variability is importantly related to the total snow accumulation of a given year. The power relation between CVds 

and ds was greatly improved when split between alpine and subalpine study grids, as a CVds for a corresponding ds 

tended to be greater for alpine versus subalpine study grids (Figure 7). The power functions (CVds versus ds) were 

detrended (i.e. removing the influence ds on CVds) and the residuals of the functions were compared to topography 

and forest characteristics (Table 2). The alpine study grids were most positively correlated with σSx suggesting that 30 

the variability of wind exposure and sheltering and thus wind redistribution within a study grid is a strong control on 

CVds. The σS, σTPI, σz were also closely related to CVds in both alpine and subalpine areas highlighting the overall 

importance of topographic roughness on subgrid snow variability. The subalpine study grids were negatively 

correlated with the VH, NDVI, and CD variables and also positively correlated with the variability of these 

vegetation metrics (CVVH, σNDVI, σCD), suggesting that forest structure is important driver of subalpine subgrid 35 

variability. 
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3.4 Statistical models 

The multiple linear regression models developed for predicting CVds in both alpine and subalpine seasonal 

snowpacks are presented in Table 2. Variable transformations were necessary to CVds and ds in both models and to 

σSx in the alpine model and CD in the subalpine model to account for the nonlinearity of these datasets (Table 2). 

Snow depth exhibited the greatest explanatory ability within both the alpine and subalpine models, with 5 

standardized regression coefficients equal to -0.92 and -0.95, respectively (not shown). Standardized regression 

coefficients of σSx and CD were equal to 0.50 and -0.72 for the alpine and subalpine models, respectively, and both 

showed the second strongest explanatory power in their respective models. The alpine model had a NSE of 0.66 

(0.65) and RMSE of 0.24 (0.24) while the subalpine model had an NSE of 0.79 (0.78) and RMSE of 0.12 (0.13) for 

the model calibration (10-fold cross-verification) dataset (Figure 8). A total NSE of 0.81 was calculated for the 10 

entire dataset based on predictions from both models. These performance statistics suggest that the models perform 

reasonably well predicting CVds and cross-verification suggests the model may be transferable to independent data 

within the bounds of the original dataset. 

4 Discussion 

Based on an evaluation of CVds at a 500 m grid resolution, subgrid snow variability across a mountainous subalpine 15 

and alpine study area is shown to exhibit a wide range of spatial variation and be well correlated with ecosystem 

type, snow amount, as well as topography characteristics and forest structure. Alpine CVds was most correlated with 

mean snow depth and the variability of exposure to wind while mean snow depth and canopy height and density 

were most correlated with CVds in subalpine areas. A simple statistical model for both alpine and subalpine 

ecosystems was able to reasonably predict subgrid CVds based on these relations and could be used as a methodology 20 

for improving model parameterizations of subgrid snow variability in mountainous terrain. 

 The range of CVds observed over relatively small distances in this study (Figure 6) highlights the 

importance of further characterizing the spatial variability of this parameter within mountainous terrain. The global 

classification of CVSWE defined by Liston (2004) performed well predicting the average conditions observed in this 

study. Liston (2004) define the CVSWE of mid-latitude mountainous forest (i.e. subalpine) as 0.60 and of mid-latitude 25 

treeless mountains (i.e. alpine) as 0.85, whereas this study found a median CVds of 0.55 for subalpine study grids and 

1.05 for alpine study grids. However, the global classification was unable to adequately represent the range and 

variability of CVds across the study area (Figure 5c), and the results presented herein suggests promise for an 

improved parameterization of CVds in mountainous terrain. 

 Mean snow depth was well correlated with CVds variability across alpine and subalpine areas within the 30 

study area. As subgrid ds increased, the CVds decreased, which is a result that is consistent with previous studies at 

various spatial scales (e.g., Fassnacht and Deems, 2006; Fassnacht and Hultstrand, 2015; López-Moreno et al., 

2015). A positive correlation was observed between σds and ds in alpine and subalpine areas, which had a dampening 

effect on this overall negative correlation between the relative subgrid variability (CVds) with ds. The relative subgrid 

variability of ds likely decreases with increasing snow accumulation because of the consistent size of the roughness 35 
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elements of topography and canopy that drive snow variability; as ds increases, the relative influence of these 

topography and canopy features tends to decrease (e.g., Fassnacht and Deems, 2006; López-Moreno et al., 2011; 

López-Moreno et al., 2015). The range of CVds observed in this study (Figure 5) is similar to previous studies 

conducted in mountainous mid-latitude forested and alpine areas (refer to Figure 2 from Clark et al., 2011 and 

references therein). Future research could further investigate CVds and ds across different geographic regions and 5 

snow regimes as well as across multiple snow seasons and compare results to the functions presented in Figure 7 to 

better understand the dynamics and consistency of this relation. An understanding of how the subgrid variability of 

snow depth for a given set of topography and canopy elements scales between low and high snow years could be 

particularly important. 

 Within the alpine study grids, the variability of the exposure/sheltering from wind (σSx) was an important 10 

driver of CVds. Study grids with the greatest σSx were generally positioned over large breaks in topography. For 

example, a given study grid with a large σSx likely contained areas with both wind exposure (Sx < 0°) where snow 

accumulation is scoured by wind and sheltering from wind (Sx > 0°) where preferential deposition of wind 

transported snow occurs. Study grids with a consistent Sx showed a lower CVds with greater variability observed in 

sheltered grids than in exposed grids. Winstral et al. (2002) and many subsequent studies (e.g., Erickson et al., 2005; 15 

McGrath et al., 2015; Molotch et al., 2005; Revuelto et al., 2014) have highlighted this control of wind exposure on 

snow depth distribution in tree-less areas. The degree of importance of σSx for describing CVds is likely variable from 

year-to-year, and would be expected to be well correlated with observed wind speeds (Winstral and Marks, 2014). 

However, in alpine areas where high wind speeds are ubiquitous, σSx is expected to be a consistently important 

driver of subgrid snow variability. 20 

 Subgrid snow variability within subalpine study grids was well correlated with the VH, NDVI, and CD 

vegetation metrics. As mean study grid VH, NDVI, and CD increased, CVds tended to decrease, but was also shown 

to be positively correlated with the variability of these metrics (CVVH, σNDVI, σCD). Forest structure has been shown 

by various studies to exert a strong influence on snow variability because of a variety of physical process 

interactions. Interception of snow (e.g., Hedstrom and Pomeroy, 1998) and subsequent canopy sublimation (e.g., 25 

Molotch et al., 2007; Montesi et al., 2004), influences of trees on shortwave (e.g., Ellis and Pomeroy, 2007; 

Musselman et al., 2012) and longwave (e.g., Pomeroy et al., 2009) radiation dynamics, and the effect of trees on 

wind redistribution of snow (e.g., Hiemstra et al., 2006) can each drive snow accumulation and evolution in forested 

areas. Broxton et al. (2015) utilized lidar-derived snow depth datasets and showed that the variability of snow depth 

in subalpine forests tended to be greatest beneath the forest canopy and near the forest canopy edge and the least 30 

snow depth variability occurred in forested openings that were distant from the forest edge. Also, substantial 

differences in accumulated ds were observed between subcanopy areas and forest openings. The increased CVds with 

decreasing VH, NDVI, and CD observed in this study can be explained by a greater occurrence of transitional areas 

between subcanopy areas and forest openings (i.e., forest edges) occurring in study grids with smaller mean VH and 

CD. Across the study area, subalpine forest openings that spanned an entire study grid were not present; therefore, 35 

study grids with consistent forest cover tended to exhibit the least subgrid snow variability. 
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 This study was limited by the spatial and temporal coverage of the lidar-derived snow datasets that were 

used (Figure 1). Although the alpine and subalpine areas evaluated are representative of mountainous terrain in the 

region and snowpacks in this area are representative of the continental snow regime (Trujillo and Molotch, 2014), 

further analysis of subgrid snow variability across a greater geographic area and across other regions with differing 

snow regimes could improve the applicability of a CVds parameterization for snow distributions in mountains areas 5 

in general. Additionally, spatial patterns of snow variability have been shown to be temporally consistent from year-

to-year (e.g., Deems et al., 2008; Erickson et al., 2005; Sturm and Wagner, 2010), but future studies with multiple 

years of lidar collection could help understand the inter-annual variability of CVds and the consistency of its driving 

variables (e.g., Fassnacht et al., 2012). Of particular interest would be the temporal consistency of the relation 

between CVds and ds. 10 

 This study evaluates the subgrid variability of ds, but SWE is the most fundamental snowpack variable of 

interest in land surface processes (e.g., Sturm et al., 2010). Snow depth and SWE have been shown by many studies 

to be well correlated (e.g., Jonas et al., 2009; Sexstone and Fassnacht, 2014; Sturm et al., 2010), and the subgrid CV 

of these variables is expected to exhibit similar characteristics (e.g., Fassnacht and Hultstrand, 2015). We suggest 

that a parameterization of CVds could be sufficient for representing subgrid SWE variability, but further investigation 15 

into this hypothesis is needed. In order to directly investigate CVSWE from lidar-derived snow data in future studies, 

an estimation of snow density would be needed. Statistically-derived snow density models have been successfully 

developed over varying domain sizes for estimating SWE from ds (e.g., Jonas et al., 2009; Sexstone and Fassnacht, 

2014; Sturm et al., 2010), and these models make use of the fact that SWE and ds variability is much greater than the 

variability of snow density (e.g., Lopez-Moreno et al., 2013; Mizukami and Perica, 2008). 20 

 The snow distributions and variability characteristics evaluated in this study were likely somewhat 

influenced by the occurrence of snowmelt conditions within the study area. Although substantial snowmelt had not 

occurred prior to data collection within the study grids (Figure 2), the mid-season melt events and onset of snowmelt 

may have caused an increase in CVds (Figure 3) and this effect may have differed between the two dates of lidar-

derived ds. López-Moreno et al. (2015) observed a sharp increase in CVds just following the onset of snowmelt yet a 25 

fairly consistent CVds for the remainder of snowmelt season. Future studies evaluating subgrid snow variability 

should investigate the intra-annual variability CVds to further understand the seasonal evolution of this parameter. 

 The development of high resolution snow depth mapping from lidar has provided a unique ability for 

detailed snapshot views of the spatial distribution of snow in complex mountains areas. Although some key 

advantages of these datasets are related to validating satellite-based remote sensing products and direct use within 30 

water resources forecasting, this study also suggests that lidar-derived snow datasets can be an important tool for the 

improvement of snow representations within modeling applications. Future research should utilize lidar-derived 

snow datasets to directly evaluate the ability of physically-based models to represent snow distributions as well as to 

continue to improve the representation of subgrid variability of snow. Additionally, other key snow modeling 

questions such as how representative snow monitoring stations are of surrounding areas (e.g., Meromy et al., 2013; 35 

Molotch and Bales, 2005) could also be investigated further by lidar-derived snow datasets. Lastly, the analysis 

methods that have been developed in this study may also be useful in future studies for characterizing the subgrid 
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variability of other variables that can be measured remotely at a fine scale through lidar or other measurement 

techniques. 

5 Conclusions 

This study outlines a methodology for utilizing lidar-derived snow datasets for investigating subgrid snow depth (ds) 

variability and potentially improving its representation within physically-based modeling applications. Subgrid ds 5 

variability was evaluated over a range of grid sizes and it was determined that study grid CVds characteristics were 

similar among resolutions from 500 m to 1000 m. Study grids (500 m resolution) exhibited a wide range of CVds 

across the study area (0.15 to 2.74) and subgrid ds variability was found to be greater in alpine areas than subalpine 

areas. Snow depth was the most important driver of CVds variability in both alpine and subalpine areas and a 

systematic nonlinear decrease in CVds with increasing ds was observed; the negative correlation between CVds and ds 10 

is attributed to the static size of roughness elements (topography and canopy) that strongly influence seasonal snow 

variability. The variability of wind exposure in alpine areas as well as vegetation metrics in subalpine areas were 

also found to be important drivers of study grid CVds. Two simple statistical models were developed (alpine and 

subalpine) for predicting subgrid CVds from mean ds and topography/canopy features that show reasonable 

performance statistics and suggest this methodology can be used for parameterizing CVds in snow-dominated 15 

mountainous areas. This research highlights the utility of using lidar-derived snow datasets for improving model 

representations of subgrid snow variability. 
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Figure 1: Map of the Boulder Creek CZO study area located within the Front Range Mountains of northern Colorado, 

USA. NRCS SNOTEL sites in the region are shown in blue (sites greater than 3000 m elevation) and red (sites less than 

3000 m elevation). The extent of the snow-covered lidar collection on 05 May 2010 (20 May 2010) is shown in orange 5 
(dark red). The 500 m resolution study grids (n = 650) are shown in blue (subalpine) and red (alpine). The black rectangle 

highlights the area of close up shown in Figure 6. 
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Figure 2: Snow water equivalent (SWE) data from nine NRCS SNOTEL sites within the region of the study area 

displayed as (a) niveographs showing snow accumulation and snowmelt throughout water year 2010 with the timing of 05 

May 2010 and 20 May 2010 lidar flights plotted as vertical dashed lines and (b) a scatter plot of the standard deviation of 

SWE versus mean SWE from the SNOTEL sites highlighting the hysteretic dynamics of snow accumulation and snowmelt 5 

across the region based on nine SNOTEL stations (Egli and Jonas, 2009). 
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Figure 3: Statistical distributions of lidar-derived snow depth for the overlapping area (7.92 km2) of the 05 May 2010 and 

20 May 2010 lidar flights. 
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Figure 4: Mean subgrid (a) CVds and (b) σds across the study area plotted versus study grid resolution for alpine (red) and 

subalpine (blue) study grids. Error bars represent the standard deviation of CVds and σds across the study area. 
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Figure 5: Boxplots showing the outliers (black circles), 10th and 90th percentiles (whiskers), 25th and 75th percentiles 

(box) and median (black horizontal line) for the (a) ds, (b) σds, and (c) CVds of the alpine and subalpine study grids (500 m 

resolution). 
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Figure 6: Close up map of selected study grids showing the distribution of (a) vegetation height and ecosystem type, (b) 

snow depth, and (c) subgrid CVds value. Area of close up is highlighted in Figure 1. 
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Figure 7: Nonlinear relation of CVds and ds for alpine (red) and subalpine (blue) study grids (500 m resolution). 
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Figure 8: Modeled versus observed CVds for the alpine (red) and subalpine (blue) multiple linear regression models. 
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Table 1: Bivariate correlations (Pearson’s r coefficient) between snow depth coefficient of variation (CVds) and the mean 

and standard deviation (σ) of snow depth (ds), vegetation height (VH) and coefficient of variation of vegetation height 

(CVVH), Normalized Difference Vegetation Index (NDVI), canopy density (CD), elevation (z), slope (S), winter clear-sky 

incoming solar radiation (Qsw↓), maximum upwind slope (Sx), and topographic position index (TPI) for both alpine and 

subalpine study grids. Correlations are also shown for the residuals from the detrended nonlinear relation of CVds and ds. 5 
Bold values represent statistical significance (p value < 0.05). 

 
CVds (alpine) CVds (subalpine) 

CVds (alpine) CVds (subalpine) 

 ds residuals ds residuals 

ds -0.60 -0.45 --- --- 

σds -0.06 0.25 --- --- 

VH -0.38 -0.48 -0.28 -0.71 

σVH -0.38 -0.57 -0.24 -0.59 

CVVH 0.16 0.28 -0.08 0.61 

NDVI 0.2 -0.10 -0.13 -0.42 

σNDVI -0.12 0.25 -0.01 0.55 

CD -0.06 -0.32 -0.21 -0.64 

σCD -0.06 0.30 -0.26 0.50 

z 0.17 -0.22 0.32 0.18 

σz -0.07 0.09 0.16 0.29 

S -0.03 0.06 0.25 0.28 

σS -0.06 0.13 0.37 0.38 

Qsw↓ 0.10 -0.02 -0.07 -0.17 

σQsw↓ -0.07 -0.03 0.21 0.21 

Sx 0.02 0.08 0.29 0.09 

σSx 0.07 0.10 0.43 0.28 

TPI 0.28 0.11 0.15 0.04 

σTPI -0.09 0.09 0.29 0.33 
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Table 2: Multiple linear regression equation variables and coefficients of the alpine and subalpine CVds models. The 

multiple linear regression is of the form: nnxxxy   ...22110 where y is the dependent variable, x1 

through xn are n independent variables, β0 is the regression intercept, and β1 through βn are n regression coefficients. 

Units of the model variables area as following: snow depth (m), maximum upwind slope (°), clear-sky solar radiation (W 

m-2), canopy density (%), surface slope (°). 5 

  

Alpine 

model 

Subalpine 

model 

Y log(CVds) CVds
0.5

 

β0 9.00E-03 8.45E-01 

β1 -1.02E+00 -2.84E-01 

x1 ds
0.5

 log(ds) 

β2 1.00E-02 -9.79E-05 

x2 Sx CD
2
 

β3 3.42E-01 1.12E-02 

x3 log(σSx) σS 

β4 1.84E-03 --- 

x4 QSW↓ --- 
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