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Abstract. This is the first study to encompass a wide range of coupled snow evolution and microwave emission models in a

common modelling framework in order to generalise the link between snowpack microstructure predicted by the snow evolu-

tion models and microstructure required to reproduce observations of brightness temperature as simulated by snow emission

models. Brightness temperatures at 18.7 and 36.5GHz were simulated by 1323 ensemble members, formed from 63 Jules

Investigation Model snowpack simulations, three microstructure evolution functions and seven microwave emission model5

configurations. Two years of meteorological data from the Sodankylä Arctic Research Centre, Finland were used to drive the

model over the 2011-2012 and 2012-2013 winter periods. Comparisons between simulated snow grain diameters and field mea-

surements with an IceCube instrument showed that the evolution functions from SNTHERM simulated snow grain diameters

that were too large (mean error 0.12 to 0.16mm), whereas MOSES and SNICAR microstructure evolution functions simulated

grain diameters that were too small (mean error -0.16 to -0.24mm for MOSES, and -0.14 to -0.18mm for SNICAR). No model10

(HUT, MEMLS or DMRT-ML) provided a consistently good fit across all frequencies and polarizations. The smallest absolute

values of mean bias in brightness temperature over a season for a particular frequency and polarization ranged from 0.7 to

6.9K.

Optimal scaling factors for the snow microstructure were presented to compare compatibility between snowpack model

microstructure and emission model microstructure. Scale factors ranged between 0.3 for the SNTHERM-Empirical MEMLS15

model combination (2011-2012), and 3.3 for DMRT-ML in conjunction with MOSES microstructure (2012-2013). Differ-

ences in scale factors between microstructure models were generally greater than the differences between microwave emission

models, suggesting that more accurate simulations in coupled snowpack-microwave model systems will be achieved primar-

ily through improvements in the snowpack microstructure representation, followed by improvements in the emission models.

Other snowpack parameterisations in the snowpack model, mainly densification, led to a mean brightness temperature differ-20

ence of 11K at 36.5GHz H-pol and 18K at V-pol when the Jules Investigation Model ensemble was applied to the MOSES

microstructure and empirical MEMLS emission model for the 2011-2012 season. The impact of snowpack parameterisation

increases as the microwave scattering increases. Consistency between snowpack microstructure and microwave emission mod-
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els, and the choice of snowpack densification algorithms should be considered in the design of snow mass retrieval systems

and microwave data assimilation systems.

1 Introduction

Global observations of the snow cover extent from optical and microwave satellite observations combined with in-situ data have

shown a reduction in the spring snow cover (Brown et al., 2010; Brown and Robinson, 2011). Observed decline in snow cover5

extent during 2008-2011 exceeded that predicted by climate models (Derksen and Brown, 2012). Observations also indicate

that duration of snow cover is also reducing, but cannot determine whether mass or volume of snow has changed.

Microwave, altimetry or coarser-scale gravity satellite sensors offer the only feasible way to measure snow mass or depth on

a global scale, with microwave observations spanning the longest time scale of these. However, microwave algorithms such as

those developed by Chang et al. (1987); Kelly (2009) can result in large errors because of the high sensitivity of applied forward10

models to parameterization of the snow microstructure (Davenport et al., 2012). In particular, the assumption of a fixed snow

scatterer radius in the Chang et al. (1987) algorithm does not reflect the naturally changing snowpack structure. Errors in snow

mass products derived from these algorithms mean that the products are difficult to use for evaluation of snow mass in climate

models (Clifford, 2010) and unsuitable for assimilation into land surface models for streamflow forecasts (Andreadis and

Lettenmaier, 2006). Development of the assimilation-based technique in GlobSnow allows changes in the snow microstructure15

to be taken into account through inversion of ground-based observations of snow depth and coinciding microwave brightness

temperatures (Takala et al., 2011). Although more accurate than other global products, some errors remain, and the GlobSnow

accuracy relies on the proximity and representativity of the ground stations (Hancock et al., 2013). In addition, the intermediate

retrieval of the snow ’grain size’ in GlobSnow is a parameter that also incorporates other land surface features, so is not a true

representation of the snow effective diameter (Lemmetyinen et al., 2015).20

Snowpack evolution models offer a way to estimate temporal changes in snow microstructural parameters and stratigraphy

(e.g. Lehning et al., 2002; Brun et al., 1992). Intercomparison studies have shown large differences between snow evolution

models driven by the same forcing data (Rutter et al., 2009). Given that the mass inputs were the same for the 33 snow models

considered in the SNOWMIP2 study of Rutter et al. (2009), it is differences in the internal snow physics and model structure

(layering assumptions) that result in the wide range of simulated depth and snow mass. Temperature, temperature gradient and25

density drive changes in the snow microstructure (e.g. Flanner and Zender, 2006), so it is likely that different snow physics

assumptions in a coupled snowpack and emission model result in different thermal structures, microstructure parameterisations

and ultimately different microwave extinction behaviour.

Theoretical differences between specific electromagnetic models have been examined in Löwe and Picard (2015); Pan et al.

(2015), and other intercomparisons carried out by Tedesco and Kim (2006). These studies are useful for interpreting differences30

in electromagnetic model outputs for a snapshot profile of the snowpack properties. Given the dependence of microwave

scattering on snow microstructure, a satellite retrieval system needs some quantification of microstructure. Snowpack evolution

modelling offers a means to quantify the metamorphic changes in snow microstructure. Indeed, snowpack evolution models
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have been coupled with microwave emission models to demonstrate the potential of this approach for snow remote sensing

applications (Langlois et al., 2012; Andreadis and Lettenmaier, 2012; Brucker et al., 2011; Picard et al., 2009). These studies

all examined the accuracy of a single snowpack model coupled with a single microwave emission model.

The purpose of this study is to inform future design of retrieval and assimilation systems where snowpack evolution models

may be used to provide microstructural parameters for microwave emission models, by examining how particular snowpack5

and emission model choices lead to a variation in simulated brightness temperatures throughout the winter period, and evalu-

ate how the simulated values compare to observations. The Jules Investigation Model (Essery et al., 2013) has been coupled

with three widely used microwave emission models: The Dense Media Radiative Transfer Model - Multilayer (Picard et al.,

2013), the Microwave Emission Model of Multi-Layer Snow (Wiesmann and Mätzler, 1999) and the Helsinki University of

Technology Multilayer model (Lemmetyinen et al., 2010; Pulliainen et al., 1999). Snowpack microstructure metamorphism is10

represented here by three different options with differing complexity for grain diameter evolution (or equivalently the Specific

Surface Area). These models are the grain growth models of SNTHERM (Jordan, 1991), SNICAR (Flanner and Zender, 2006)

and MOSES (Essery et al., 2001). This allowed quantification of the seasonal variation in uncertainty in brightness temper-

ature simulations from 1,323 coupled snowpack-emission model systems, as evaluated against ground based observations of

brightness temperature.15

The study approach, model descriptions and field measurements are given in section 2. Comparisons between simulations,

and between simulations and observations are presented in section 3, and the implications for future approaches to the remote

sensing of snow mass are discussed in section 4.

2 Models and methods

This study builds on the work of Essery et al. (2013), who incorporated many published snow model parameterisations within20

a single model framework, the Jules Investigation Model (JIM), which is described in section 2.1. As this earlier study did

not incorporate snow microstructure changes, JIM was coupled with three microstructure evolution functions for this study,

described in section 2.2 and three distinct snow emission models, detailed in section 2.3. Steps necessary to form the model

ensemble, including assumptions about the representation of the soil are given in section 2.4. A description of the field site,

driving and evaluation data for the simulations in this paper are presented in section 2.5.25

2.1 Snow model parameterisation

Essery et al. (2013) developed the Jules Investigation Model (JIM), a system of 1701 snowpack evolution models to provide

a systematic method and common framework to examine how the range of snowpack parameterisations used in land surface

models impacts the simulation of snow parameters. Based on this work, a more computationally efficient version, the Factorial

Snowpack Model has been developed (Essery, 2015) that allows for 32 model configurations. JIM is based on an Eulerian30

grid scheme (fixed layer structure), which requires mass redistribution between layers with precipitation events. An alternative

approach is a Lagrangian grid scheme: a deforming layer structure that retains much of the same snow material throughout the
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season (e.g. Jordan, 1991; Brun et al., 1992; Lehning et al., 2002). For this paper, a subset of the original JIM members were

selected as these were expected to influence the parameters important for microwave modelling. The subset includes variation

in the representation of compaction, the density of newly-deposited snow, thermal conductivity and liquid water flow (snow

hydrology). Table 1 summarizes the different approaches taken. Note that a variable fresh snow density (options 0 and 1) cannot

be used if the snowpack has fixed density (compaction option 2), so there are only 63 model configurations in the model subset5

rather than 81. For all other snowpack parameterisations, option ‘1’ from Essery et al. (2013) were used for albedo, surface

exchange and snow fraction representations to form the JIM subset.

2.2 Microstructure evolution

JIM subset outputs were used to drive three microstructure models of differing complexity. SNTHERM (SNT) (Jordan, 1991)

growth of snow grain diameter d is based on the rate of vapour transport through the snow (and therefore temperature gradient),10

which leads to the microstructure evolution function of dry snow in SNT as:

∂d

∂t
=
g1

d
Deos

(
1000

Pa

)(
Ts
Tm

)6

CkTs

∣∣∣∣∂Ts∂z
∣∣∣∣ (1)

where g1 and Deos are empirical constants, Pa is the atmospheric pressure, CkTs is the variation of saturation vapour pressure

with snow temperature Ts, Tm = 273.15K and ∂Ts
∂z is the temperature gradient. Grain growth under wet conditions is more

rapid, with empirical constant g2 and is dependent on the liquid fractional volume, fl by:15

∂d

∂t
=
g2

d
(fl + 0.05) fl < 0.09 (2)

∂d

∂t
=
g2

d
(0.14) fl ≥ 0.09 (3)

SNICAR (SNI) microstructure evolution is a computationally efficient approximation to a model based on physics, and uses

a look-up table for empirical parameters τ and κ, as described in Flanner and Zender (2006). These parameters are dependent

on the snow density, temperature, and temperature gradient. The equation of microstructure evolution in SNI is based on snow20

specific surface area (SSA):

SSA(t) = SSA0

(
τ

t+ τ

)1/κ

(4)

SSA per unit mass of ice (m2 kg−1) can then be converted to grain diameter with D = 6/(ρi SSA) (Mätzler, 2002; Montpetit

et al., 2012).

A third microstructure model, MOSES (MOS), parameterizes snow evolution as a function of grain radius r and snow age:25

r(t+ ∆t) =

[
r(t)2 +

Gr
π

∆t

]1/2
− [r(t)− r0]

Sf∆t

d0
(5)

where Gr is an empirical temperature-dependent grain area growth rate, Sf is the snowfall rate in time interval ∆t and d0 is a

constant representing the mass of fresh snow required to reset the snow albedo to its maximum value.
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Other microstructure parameterisations are available, namely the Crocus (Vionnet et al., 2012) and SNOWPACK (Lehning

et al., 2002) microstructure evolution functions. It is not currently possible to couple these with the JIM model due to the

Eulerian grid structure of JIM. Mass transfer between layers allows numerical averaging of concepts such as grain diameter

and SSA, but not shape-dependent concepts such as dendricity and sphericity. Therefore the Crocus and SNOWPACK functions

have not been included in this study.5

2.3 Microwave emission models

The microwave models chosen for this application span a range of physical complexity in their representation of the snow. The

Helsinki University of Technology (HUT) model (Lemmetyinen et al., 2010) is a semi-empirical model based on strong for-

ward scattering assumptions, the Microwave Emission Model of Multi-Layer Snow (MEMLS) model (Wiesmann and Mätzler,

1999) is of intermediate complexity and contains the Improved Born Approximation (Mätzler, 1998), and the Dense Media10

Radiative Transfer Multilayer (DMRT-ML) model (Picard et al., 2013) is the most physically complex, being based on quasi-

crystalline approximation with coherent potential (QCA-CP). Many other microwave emission models have been developed,

such as Mie scattering approach of Boyarskii and Tikhonov (2000); Chang et al. (1976); Eom et al. (1983); strong fluctua-

tion theory (Stogryn, 1986; Song and Zhang, 2007), distorted Born approximation (Tsang et al., 2000), the quasi-crystalline

approximation (Grody, 2008), other QCA-CP models Rosenfeld and Grody (2000); Jin (1997) or the Numerical Method of15

Maxwell’s equations in 3D (Xu et al., 2012). These references are not exhaustive but give an illustration of the range of models

available. Here, we restrict the comparison to widely available multilayer models that span a range of complexity and whose

computational efficiency is such that entire seasons can be simulated rapidly.

Of the models chosen, all are multiple layer and broadly require the same information i.e. they use layered information on

snow temperature, density and layer thickness as input, but differ in their representation of the microstructure. They are all20

based on radiative transfer theory, which is governed by the following general equation:

µ
∂TB (θs,φs,z)

∂z
= κaT (z) +

1

4π

∫
4π

Ψ(θs,φs;θi,φi) ·TB (θi,φi,z)dΩi−κe ·TB (θs,φs,z) (6)

where θ and φ are the zenith and azimuth angles, µ= cosθ, TB is the brightness temperature vector, which we will assume

here to consist of horizontally and vertically polarized brightness temperature only, κa is the absorption coefficient, κe is the

extinction coefficient, which is a sum of the absorption coefficient and the scattering coefficient κs. The models differ in which25

two coefficients determine the third. In HUT, the derived coefficient is κs, whereas κe is derived in MEMLS and κa in DMRT-

ML. Other differences between models include the representation of the phase function (single-stream model with separate

up- and downwelling components in HUT, 6-stream in MEMLS and multiple streams in DMRT-ML), specification of the

absorption coefficient and the numerical techniques applied to solve the radiative transfer equation (Lemmetyinen et al., 2010;

Wiesmann and Mätzler, 1999; Picard et al., 2013; Mätzler and Wiesmann, 1999; Pan et al., 2015). Differences between models30

are not restated here, but options chosen within each model leading to different model versions are stated in the following

subsections.
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2.3.1 DMRT-ML

DMRT-ML is based on a sticky hard spheres representation of the microstructure so that the scattering coefficient given by the

quasi-crystalline approximation with coherent potential is given as:

κs =
2

9
k40a

3f

∣∣∣∣∣ εs− εb

1 + εs−εb
3Eeff

(1− f)

∣∣∣∣∣
2

(1− f)4

(1 + 2f − tf(1− f))2
(7)

where k0 = 2π/λ is the wave number, a is the radius of the spheres, f is the fractional volume of scatterers, εs is the permittivity5

of the scatterers, εb is the permittivity of the background and Eeff is the effective permittivity of the medium. t is related to

the stickiness factor τ governing the potential of particles to coalesce. For non-sticky particles t=0 but for sticky particles, it is

given by the largest of the two solutions to the quadratic equation:

f

12
t2 −

(
τ +

f

1− f

)
t+

1 + f/2

(1− f)2
= 0 (8)

Whilst Löwe and Picard (2015) have shown that it may be possible to determine stickiness from micro-CT measurements of the10

snow, an appropriate value of stickiness is not known for the field observations used in this paper. Roy et al. (2013); Löwe and

Picard (2015) showed that non-sticky representation in DMRT-ML is inappropriate. For this model ensemble, two DMRT-ML

configurations have been chosen to capture the range of brightness temperatures simulated: "DMRT less sticky" (τ = 0.2) and

"DMRT very sticky" (τ = 0.1). These two values represent reasonable values used by others (e.g. Tsang et al., 2007; Shih et al.,

1997).15

2.3.2 MEMLS

Within MEMLS there are a suite of options for the calculation of the scattering coefficient. Two of the options within MEMLS

were selected for this study to cover both empirical and theoretical approaches: "MEMLS empirical" and "MEMLS IBA". The

empirical version of MEMLS used gives the scattering coefficient as:

κs = (9.2pec− 1.23ρ+ 0.54)
2.5

(ν/50)
2.5 (9)20

where the correlation length pec is in mm, density ρ is in g cm−3 and frequency ν is in GHz. This is suitable for correlation

lengths 0.05 < pec < 0.3 mm, and density 0.1 < ρ < 0.4 g cm−3.

MEMLS IBA uses the Improved Born Approximation theory given in Mätzler (1998); Mätzler and Wiesmann (1999), where

the scattering coefficient is given by the integral of the phase function for polarization angle χ

κs =
1

4π

∫
4π

f(1− f)(εs− εb)
2K2Ik40 sin2χ dΩ (10)25

One further assumption applied to distinguish this MEMLS IBA configuration is that oblate grains are used rather than small

spherical scatterers or thin spherical shells. This assumption governs the representation of the mean squared field ratio, K2 as

detailed in Mätzler and Wiesmann (1999). The microstructure length information is contained in I:

I =
2pec(

1 + 4εeffk20 sin2(θ/2)p2ec
)2 (11)
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It should be noted that the choice of oblate grains also affects the effective permittivity in I , represented by an empirical,

density-dependent effective permittivity (Wiesmann and Mätzler, 1999, equations 45-47) for this case.

2.3.3 HUT

HUT has three options for the extinction coefficient. These are nominally suited to different grain diameter (d0) ranges, with

some overlap between them. All three versions (termed "HUT H87", "HUT R04", "HUT K10") have been included in this5

version of the model ensemble. HUT H87 is based on the work of Hallikainen et al. (1987):

κe = 0.0018ν2.8d1.90 (12)

This is nominally appropriate for frequency range ν=18-60GHz and d0 < 1.6 mm.

The extinction coefficient in HUT H04, with a validity range of 1.3 < d0 < 4 mm was derived by Roy et al. (2004):

κe = 2ν0.8d1.20 (13)10

Kontu and Pulliainen (2010) gave the extinction coefficient for maritime snow, used here in the HUT K10 simulations as:

κe = 0.08ν1.75d1.80 (14)

Scaling of the grain diameter by the relationship recommended in Kontu and Pulliainen (2010) has not been applied here as

it was developed for snow microstructure observations rather than simulated snowpack microstructure.

2.4 Model framework15

Interfacing of the various model inputs and outputs was enabled through the development of the ensemble framework, via a

combination of shell script and Octave/Matlab code. Interfacing of the various model inputs and outputs was enabled through

the development of the ensemble framework, via a combination of shell script and Octave/Matlab code. The DMRT-ML model

was run from the shell script, which subsequently calls an Octave / Matlab script to run HUT and MEMLS. HUT and MEMLS

run alternately in this framework as the soil parameters (common between DMRT-ML and HUT) are used to calculate soil20

reflectivity in HUT, which is then used as the lower boundary condition in MEMLS. Internal parallelization of the MATLAB

code of HUT-MEMLS means that a season-long simulation of one HUT-MEMLS combination with one grain scaling factor

takes 9 minutes over eight cores. For the DMRT-ML FORTRAN code, external bash shell parallelization reduces execution

time from 16 hours to circa 2 hours for one grain scale factor and two parameterisations of stickiness. Over 29 million individual

brightness temperatures were simulated for this study.25

For the purposes of this study, the effective sphere size in JIM, DMRT-ML and HUT are assumed to be identical i.e.

dhut = 2× rdmrt = djim. This may not be a good assumption as the empirical extinction coefficient model used in HUT was

based on observations of the maximum grain extent rather than effective diameter, which was almost impossible to measure

at the time of the original work. The exponential correlation length in MEMLS (in mm) is calculated from the theoretical
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relationship to the effective grain diameter from JIM (in microns) as Montpetit et al. (2013); Mätzler (2002):

pec =
2

3

(
1− ρs

ρi

)
djim
1000

(15)

Figure 1 illustrates the flow of information in the model ensemble. Meteorological data are used to drive the 189 config-

urations of JIM (3 microstructural models for each of the 63 snowpack parameterizations). The outputs from JIM are then

reformatted for each of the three electromagnetic models. Table 2 gives a summary of the main differences in inputs between5

models. The electromagnetic model inputs are then used to drive the two DMRT-ML model versions (τ=0.1, τ = 106), the

two MEMLS model versions (empirical, IBA with oblate grains) and the three HUT versions (3 different extinction coefficient

models). Meteorological and field data used to drive and evaluate the ensemble are described in the following section.

2.5 Data

Model runs for this study were performed for the Intensive Observation Area (IOA) of the Finnish Meteorological Institute10

Arctic Research Centre (FMI-ARC). The site provides a wealth of forcing and evaluation data, including automated soil, snow

and meteorological observations, ground-based microwave radiometry, and a programme of manual snow profile observations.

Air temperature, solar radiation and precipitation observations from this site for the two seasons of simulations are shown in

Figure 2. November rain events occurred in both years, and also in early December in 2011-2012. Layers with melt-freeze

polycrystals and other melt forms were detected in snow observations during both seasons. Metadata and details on the me-15

teorological instruments are given in Essery et al. (2016). Dual polarization microwave radiometers, including at frequencies

of 18.7 and 36.5 GHz are situated on a 4m tower pointing inwards on the edge of a large clearing surrounded by a mainly

pine forest. Further details about the IOA site are given in Lemmetyinen et al. (2016). Details on the manual snow profile

observation programme are given by Leppänen et al. (2016).

Simulations were carried out for the winters of 2011-2012 and 2012-2013 as there were 49 approximately bi-weekly snow pit20

observations over these two years available for snowpack model evaluation. Snow samples from 31 of these pits were extracted

and used to measure profiles of the snow specific surface area (SSA) with the IceCube instrument (Zuanon, 2013). A bulk grain

diameter was calculated for the analysis from the SWE-weighted mean SSA, excluding layers without observations. For these

two seasons, the real component of the soil permittivity measurements were available at 100MHz, measured at three locations

in the observation area with Delta-T Devices ML2x sensors, installed horizontally at a depth of approximately 2 cm beneath25

the organic surface layer. Mean measurements from the stable winter period (1st December to 31st March) were chosen as

representative for the entire season, which resulted in values of soil permittivity of 4.4 in 2011-2012 and 4.6 in 2012-2014. For

the JIM simulations in this paper, a scaling factor of 1.11 was applied to the 2011-2012 precipitation data, and a scaling factor

of 1.06 was applied to the 2012-2013 data to match the measured snow accumulation on the ground better. These factors differ

slightly from the values used in the 7-year consolidated dataset of Essery et al. (2016).30
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2.6 Simulation methodology

Choices in the snowpack evolution parameterisations made here lead to 189 unique JIM snowpack models. Modelled snowpack

profiles of layer thickness, temperature, density and grain diameter were output daily at noon for this study. These were then

applied to the seven microwave emission model combinations, resulting in 1,323 sets of brightness temperature simulations

per day.5

In order to illustrate and analyze the effects of assumptions regarding snowpack evolution and microwave scattering on

simulated brightness temperatures over the course of winter season, the remainder of the paper will:

1. Present the range of brightness temperatures expected for any generic combination of snowpack and emission model.

2. Apply a range of scaling factors (0.1<= Φ<=5.0) to simulated JIM snowpack diameters (equation) and calculate the

degree of misfit between simulated and observed brightness temperatures using the following cost function (CF):10

CF =

ndays∑ ν∑ pol∑(
TBsim−TBobs

2

)2

(16)

The cost function term is summed over the two polarizations (H and V pol) for the two frequencies (18.7 and 36.5 GHz)

over the number of days (ndays) where observations and simulations are both available. Due to the observation schedule

at the Sodankylä site, the noon ‘observations’ for comparison with the simulations were determined as the mean of the

10am and 2pm observations. If observations were missing from either or both of these times, the brightness temperature15

for that day was excluded from the cost function calculation. Optimal Φ were found from the minimisation of the cost

function CF.

3. Isolate the effect of snowpack parameterizations on simulated brightness temperature by presenting simulation results

grouped by parameterizations of densification, liquid water flow, initial snow density and thermal conductivity. This will

determine which factors govern the spread in brightness temperature and are therefore important for the design of snow20

retrieval assimilation systems.

3 Results

Snow depth and snow water equivalent (SWE) simulated by the Jules Investigation Model is shown in Figure 3. There is a

small difference between the automatic measurements and the manual field observations attributable to the spatial variability

of the snow and difference in measurement location. Ultrasonic snow depth measurements were on average 12mm deeper than25

the snow pit observations in 2011-2012 but were 29mm shallower than snow pit measurements in 2012-2013. SWE measured

automatically by the gamma ray sensor had a mean value of 3.6mm SWE greater than the pit observations in 2011-2012 but

5.9mm less in 2012-2013.

Although the precipitation inputs were scaled due to known sensor undercatch problems, in 2011-2012 the SWE was under-

estimated until the end of January, then overestimated until the melt period. Compared with snow pit observations, the SWE30
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bias prior to 1st February was -14.2 mm. Between 1st February and 31st March, the SWE bias was 19.1mm. From 1st April

until the end of the season, the bias was -24.5 mm water equivalent. In 2012-2013, simulated SWE was overestimated for most

of the season, with a mean bias of 13.7 mm compared with the snow pit observation. Simulated SWE is relatively insensitive

to the snow parameterisation in the accumulation period, but three distinct model groups emerge in the melt period, which are

due to the three different representations of the liquid water flow. The snowpack model parameterisations have a greater impact5

on the snow depth, which is to be expected as this is directly affected by the representation of densification and initial snow

density.

Figure 4 demonstrates the impact of the snow model parameterisations on snow grain diameter growth, as simulated with the

MOS, SNI and SNT microstructure evolution functions. Each microstructure model results in a spread of bulk grain diameter

due to the 63 snowpack parameterisations, but in general the difference between microstructure models is greater than the10

difference due to snowpack parameterisations. The simulation range is greatest at the start and at the end of the season,

when the snowpacks can be subject to the largest temperature gradients, or liquid-water dependent growth. In both years of

simulation, the mid season bulk grain diameter is smallest with MOS, and largest with SNT. MOS and SNIs are similar in

magnitude, but SNT bulk grain diameters were approximately twice as large on average, with a mean ratio over the season

of 1.9-2.2, as shown in Table 3. SNT bulk grain diameter was up to 3.2 times larger than MOS bulk grain diameter. Visual15

estimation of the snow grain diameter gave values that were always larger than all of the simulations. Measured SSA-derived

bulk grain diameters generally lay in between the SNT simulations and the simulations with SNI and MOS. The mean absolute

error and mean relative difference for these simulations are presented in Table 4. SNT had the lowest bias (0.12 mm) in 2011-

2012, whereas SNI had the lowest bias (-0.14 mm) in 2012-2013. Bulk grain diameter simulated by the microstructure models

lead to a mean difference of between -53% and +45% relative to the observations.20

Simulation of mean and range of brightness temperature from the three emission models driven by all snowpack and mi-

crostructure model combinations is shown in Figure 5. Note that excessively low brightness temperatures on 01 November 2011

were excluded from this figure as the snowpack for some JIM members was extremely thin with an unphysically high snow

density. In general, HUT with three representations of extinction coefficient showed the smallest range of brightness tempera-

ture, whereas DMRT-ML (covering both very sticky and less sticky assumptions) had a much greater range, which was nearly25

as large as MEMLS (empirical representation and Improved Born Approximation with oblate grains). This is demonstrated by

the ratio between the seasonal mean ranges of brightness temperature presented in Table 5, where the ranges compared with

HUT had a ratio of greater than 1. MEMLS had a larger range than DMRT-ML, although at 37GHz the difference was small.

As illustrated in Figure 5, at 19GHz, the mean of DMRT-ML simulations were highest and the mean of MEMLS simulations

were generally lowest (with the exception of 19H in 2011-2012). At 37 GHz, horizontal polarization, HUT gives the highest30

mean brightness temperature in 2012-2013, whereas DMRT-ML gives the highest mean brightness temperature in 2011-2012

and at horizontal polarization (both years). MEMLS mean brightness temperatures are the lowest at 37GHz at both horizontal

and vertical polarization in both years. All ranges exhibit a distinctive ‘wedge’ shape, where the ranges generally increase

throughout the season until the collapse of the range in the melt period.
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Compared with the brightness temperature observations, no model gives a consistently better performance across both fre-

quencies and both polarizations. This is illustrated in Table 6, where mean bias and root mean squared error (RMSE) for each

season has been presented for each frequency and polarization combination. The lowest bias was less than 7K in magnitude,

whereas the lowest RMSE for each frequency / polarisation was less than 13K. For both years, DMRT-ML gave the lowest bias

at 19H and MEMLS gave the lowest bias at 37GHz (V and H). At 19V DMRT-ML had the lowest bias in 2011-2012 whereas5

HUT had the lowest bias in 2012-2013. Figure 5 shows that the observed brightness temperature is generally within the range

simulated by each of the three microwave emission models, with the exception of 19H in 2011-2012 (MEMLS and HUT) and

37H in 2012-2013 (HUT). End of season brightness temperature observations are not replicated in the simulations as the liquid

water content of the snowpack model is currently decoupled from the electromagnetic snow model, so the simulations only

represent dry snow brightness temperature.10

Table 7 indicates scaling factors that would need to be applied to the grain diameter in order to allow a particular microstruc-

ture evolution function to minimize the cost function given in equation 16 i.e. the best agreement with observed brightness

temperature for all four frequency and polarization combinations. A scale factor of 1 suggests a perfect fit between snowpack

microstructure and microwave microstructure. A scale factor of less than one indicates a snowpack grain diameter overesti-

mate, whereas a scale factor of greater than one is an underestimate. For SNT microstructure, a scale factor of less than one15

was required in 2011-2012 for all emission models with the exception of the less sticky (τ=0.2) application of DMRT-ML.

This indicates that the SNT microstructure resulted in grain diameters larger than that required by the emission models for

that year. In 2012-2013 SNT microstructure required slight scaling to increase the grain diameter for HUT and for less sticky

DMRT-ML, but downscaling for very sticky hard spheres in DMRT-ML and for MEMLS. With the exception of the appli-

cation to empirical MEMLS in 2011-2012, the SNI and MOS grain diameters were too small and required scaling upwards.20

A cost function minimum was achieved for empirical MEMLS driven by MOS microstructure with no scaling whatsoever in

2011-2012. The pattern is consistent between years, with the greatest interannual difference in scale factor for HUT.

Once the microstructure differences have been isolated through application of the optimal scale factor, as shown in Table

8, DMRT-ML bias and RMSE improved, with the exception of the small increase in 19V bias in 2011-2012. For MEMLS,

improvements in bias and RMSE at the lower frequency were at the expense of the higher frequency in both years. The opposite25

occurred for HUT in 2012-2013, whereas in 2011-2012 the bias and RMSE decreased at all frequencies and polarisations apart

from a marginal (<0.04K) increase in RMSE at 19V.

Differences in brightness temperature also exist in the simulations due to the snowpack parameterisation (i.e. 63 JIM com-

binations). Empirical MEMLS with MOS microstructure in the 2011-2012 season was chosen as a test case to illustrate the

effects of snowpack parameterisation on the brightness temperature, because of the equivalence of snowpack and emission30

model microstructure (no scaling required). This subset of 63 simulations for 37H brightness temperature in 2011-2012 is

shown in Figure 6. There is a seasonal dependence in the range, with model divergence from mid-January onwards. February

1st and May 1st were chosen for cluster analysis to determine which parameterisations caused the split in simulations, as shown

in Figure 7.
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Clear groupings of simulations in Figure 7, upper left, indicates that the snowpack densification parameterisation has a

distinguishable effect on the simulation of brightness temperature. A physical representation of densification (parameterization

= "0") gave the lowest brightness temperatures on the 1st February, but the highest by 1st May. In contrast, where no compaction

is simulated i.e. snow density is constant throughout the season (parameterization = "2"), the opposite is true. An empirical

representation of densification (parameterization = "1") results in brightness temperatures generally between those of the5

physical, and of no densification. Thermal conductivity has no effect on the simulation of brightness temperature, whereas

subtle differences are attributable to the fresh snow density value, and to the representation of snow hydrology. There is

no discernible difference between fresh snow density parameterisation schemes "0" and "1", whereas "2" gives a different

set of brightess temperatures. Snow hydrology has very little effect in the early season, but can lead to differences in the

melt period. Overall, the snowpack parameterisations with MOSES microstructure and empirical MEMLS lead to a mean10

difference in the 36.5GHz brightness temperature of 11K at H-pol and 18K at V-pol. The maximum difference in 36.5GHz

brightness temperature was 33K at H-pol and 54K at V-pol for the 2011-2012 season. The maximum difference between H

and V polarization for all unscaled microstructure-electromagnetic model combinations is demonstrated in Table 9. Large

differences in the maximum brightness temperature difference as a result of the 63 snowpack configurations occurred for the

SNT microstructure. Except for DMRT-ML less sticky and HUT with MOS or SNI microstructure, the V-pol difference is15

greater than the H-pol difference.

4 Discussion

The biggest difference to obtaining accurate simulations would be made by improving the microstructure evolution models

within snowpack models because the optimal scale factors are generally larger between microstructure models than between

emission models. SNTHERM grains tend to be too large for the emission models and generally require scaling down to smaller20

values. SNICAR grains are in the mid-range and require a small amount of scaling, generally upwards to larger grains. MOSES

grains are the smallest and generally require larger scale factors than SNICAR. These patterns are consistent, regardless of the

electromagnetic radiative transfer model used. Differences between microstructure evolution models are so large because they

were developed in models with different purposes. MOSES is a large scale land surface model, requiring snow grain size

for albedo calculations (Essery et al., 2001). SNICAR is a snow albedo model (Flanner and Zender, 2006). SNTHERM,25

on the other hand, was developed to predict surface temperature and uses grain diameter in the simulation of liquid water

flow as well as albedo (Jordan, 1991). SNICAR and MOSES grain sizes are closer to the SSA-derived grain diameter as a

result. SNTHERM simulates a grain size that is closer in concept to the visual estimates of grain diameter than the other two

models. The large spread when coupling snowpack evolution and microwave models, due to the differences in the modelling

of snow microstructure is consistent with the wide range of studies that have investigated how to link snowpack observations30

of microstructure to the microstructure parameter required in electromagnetic models (e.g Kendra et al., 1998; Du et al., 2005;

Tedesco et al., 2006; Liang et al., 2008; Durand et al., 2008; Brucker et al., 2011; Xu et al., 2012; Montpetit et al., 2013; Roy

et al., 2013; Rutter et al., 2014; Picard et al., 2014).
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Nevertheless there are differences between microwave emission models for a particular microstructure evolution model,

and even differences within the same family of emission models. ‘Improvement’ in the microstructure for a particular model

combination may lead to less accurate simulations at some frequencies and polarisations, which highlights that there is more

to understand. In part, this may be due to the methodology of this study as the cost function is calculated per microstructure-

electromagnetic model configuration, yet the bias and RMSE are presented for each electromagnetic model family. An indi-5

vidual contribution can influence the group in a non-intuitive way.

Here, the lowest bias and RMSE for unscaled microstructure simulations were -6.9 to +6.9K and 4.2 to 12.2K respectively,

but depended on microwave model, frequency and polarization. In an attempt to put these results into context, there are a

number of studies that have quantified brightness temperature simulation errors for these models. These fall into different cat-

egories, depending on sensor characteristics, the source of the evaluation data (ground-based, airborne, satellite) and presence10

of ice lenses (Derksen et al., 2012), the treatment of the snow microstructure (Picard et al., 2014), snow type, observation angle

and the specific electromagnetic model (Tedesco and Kim, 2006) and the underlying substrate (Lemmetyinen et al., 2009;

Derksen et al., 2014). Examples of unscaled field observations of microstructure compared with ground-based observations in-

clude the HUT simulations of Derksen et al. (2012), who found an RMSE of 10-34K and Rutter et al. (2014) who found a bias

of 34-68K that was reduced to < 0.6K upon application of grain scale factors of 2.6-5.3. Scaling, or best-fit relationships were15

used by Durand et al. (2008) (mean absolute error 3.1K at V-pol and 9.3K at H-pol), Montpetit et al. (2013) (RMSE 8-20K),

Brucker et al. (2011) (RMSE 1.5K), Picard et al. (2014) (RMSE 1-11K) and Roy et al. (2013) (RMSE 12-16K). However, in

some cases the frequency-dependent results have been combined and in others kept separate.

For DMRT-ML, consideration of the stickiness is imperative. Two constant values were considered here: extremely cohesive,

or less sticky particles. Löwe and Picard (2015) have made progress in understanding stickiness from micro-CT data. There20

are theoretical limits, based on snow density (Löwe and Picard, 2015, eqn. 35-36) but in general stickiness is independent of

diameter and of density, nor should a constant value be used, as was done here. Further research is needed in this regard.

For the HUT radiative transfer model, the optimum combinations of snowpack and microwave model are dependent on

both models, and therefore the end application. The SNT microstructure is most closely matched to the microstructure of the

Hallikainen et al. (1987) extinction model. Both were developed with a similar concept of microstructure. With MOS or SNI25

microstructure, Roy et al. (2004) would be most appropriate. Kontu and Pulliainen (2010) is more broadly applicable as the

scale factor always lies between R04 and H87, regardless of the microstructure model. Therefore K10 may be better choice if

a range of microstructure models are considered in a data assimilation retrieval scheme but with only one observation operator.

In the case of MEMLS, there are some differences between the empirical model, and IBA, but the microstructure model

really matters. IBA is a more appropriate model for the larger SNT grains and endorses the recommendation of Mätzler and30

Wiesmann (1999) for IBA in the simulation of larger grains. The microstructural concept of MOS matches the microstructure

of empirical MEMLS very well, with no scaling required in 2011-2012, although SNI is equally appropriate in 2012-2013.

There is little variation between years for the DMRT-ML (sticky) and MEMLS models, and a consistent pattern for HUT.

Other studies have investigated the microstructural link between snowpack and microwave models. Wiesmann et al. (2000)

found that the scale factor between exponential correlation length in MEMLS and grain diameter in SNTHERM for the Weiss-35
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fluhjoch site in Davos, Switzerland, was 0.16. Applying equation 15 for snow of density 250 kg m−3, the scale factor to relate

the grain diameter of SNTHERM to the exponential length in MEMLS for the Sodankylä site would be 0.24 for IBA and 0.15

for empirical MEMLS for the 2011-2012 dataset. This is entirely consistent with the Wiesmann et al. (2000) study, in spite of

the different locations and snowpack conditions.

Wiesmann et al. (2000) also reported a relationship for Crocus simulations, as did Brucker et al. (2011). At this stage it5

is not possible to make comparisons of this work with those studies as the Crocus evolution model has not been included in

this study, due to the difficulty of applying these models to the Eulerian frame snowpack model scheme used here. These two

studies are, however, consistent with each other. Wiesmann et al. (2000) found a snow type dependent scale factor of 0.3-0.4

between MEMLS correlation length and Crocus grain diameter, whereas the range in Brucker et al. (2011) was 0.4-0.25 for

snow density between 100 and 400 kg m−3. The scaling factor between the SNOWPACK-derived correlation length and the10

correlation length of MEMLS was found to be 0.1 (Langlois et al., 2012) but again, a comparison with this work is not possible

as the SNOWPACK grain evolution model has similar requirements to the Crocus microstructure model as they have a common

origin.

When isolating the spread in brightness temperature due to snowpack parameterisations, this spread is largely due to the

snowpack model representation of the densification process, with a variable impact throughout the season. After the mi-15

crostructure model, snow compaction must be considered carefully in the design of a coupled snowpack-microwave model.

Liquid water flow representation in the snowpack model may become important in the melt period, particularly for a snowpack

with mid-winter melt periods or if the snowpack model is used to provide information on SWE during melt when microwave

observations cannot. If fresh snow is assumed to have a constant density in a retrieval or assimilation system then that value

will have an impact but is less important than compaction. Thermal conductivity has no discernable impact on the bright-20

ness temperature simulations so the choice of its representation is largely irrelevant for snow mass retrieval and assimilation

systems.

Although empirical MEMLS driven by MOSES was chosen as an example to demonstrate the impact of parameterisations,

this was purely because of the apparent consistency between the MOSES grain diameter converted to exponential correlation

length and MEMLS simulations for 2011-2012 at this site. This is not a general endorsement of empirical models, as those25

based on physics are expected to be more universally applicable, but the specific application of these models will dictate

the balance of accuracy versus simplicity. Extending the analysis beyond this example, snow parameterizations affect other

unscaled model combinations to varying degrees. Microstructure scaling factors in Table 7 can be used as a proxy for the

degree of scattering in the unscaled simulations. A higher scale factor acts to increase the simulated scattering, so for a scale

factor < 1, too much scattering occurs in the unscaled simulations. Snowpack parameterisations have a greater impact for a30

higher degree of scattering, larger at V-pol than H-pol. This is because scattering is already greater at H-pol so the spread in

H-pol simulations as a result of snowpack parameterisations is suppressed by the existing level of scattering. The converse

applies for high scaling factors (e.g. MOS with less sticky DMRT-ML).

Although the differences in scale factors between microstructure models are larger than the differences in scale factors

between microwave models, this does not negate the need for developments in the microwave models. This is highlighted by35
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the treatment of field observations of specific surface area to derive optical diameter as even these require some form of scaling

(e.g. Montpetit et al., 2013; Picard et al., 2014; Rutter et al., 2014). Use of scale factors can improve brightness temperature

accuracy at some frequency and polarisations, but may decrease the accuracy at others. The necessity of scale factors indicate

the need for a deeper understanding in the role of microstructure in the microwave models. Much of this is discussed from

a theoretical perspective by Löwe and Picard (2015). With a sticky hard sphere model of the microstructure, even if the5

stickiness is known, Löwe and Picard (2015) showed that a scale factor to relate the measured optical diameter to microwave

diameter depends on the type of metamorphism the snow has been subjected to. Indeed, here, constant scale factors have been

applied with no attempt to assess how these may change over the season. Nor do they account for the anisotropic nature of the

snow, which adds to the complexity both in the modelling of the snowpack (Löwe et al., 2013) and in microwave scattering

(Leinss et al., 2016). Some of the fundamental questions on how to relate snowpack and microwave microstructure may be10

addressed with a better microstructure descriptor of the snowpack rather than a single length scale, and would benefit from

easy interchangability between different microwave models, and different snowpack evolution models. Ultimately a consistent

microstructural treatment will be needed in both snowpack evolution and microwave models.

5 Conclusions

Future snow mass and depth retrievals systems may rely on snowpack models to provide snow microstructural parameters.15

To improve accuracy in seasonal simulations of brightness temperature, the largest gains will be achieved by improving the

microstructural representation within snowpack models, followed by improvements in the emission models to use accurate

microstructural information and reduce bias and RMSE at all frequencies and polarizations simultaneously. For the design

of retrieval systems with current capabilities, particular model combinations may be more suitable than others, and careful

consideration must be given to snow compaction processes. Snow process representation becomes increasingly important as20

the snowpack scatters more. The future lies in a better and consistent treatment of snow microstructure in both snowpack and

emission model developments.
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Figure 1. Flowchart showing flow of information from JIM snow evolution model outputs to outputs from the various microwave emission

models.

21



Figure 2. Air temperature, solar radiation and precipitation data measured at the Sodankylä site, used as inputs for the JIM simulations.
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Figure 3. Snow depth and water equivalent simulated by the Jules Investigation Model subset used in this study. Grey lines indicate individual

JIM subset member simulations. Note that erroneous positive SWE observation points have been removed at the end of the season when snow

depth is zero, as this is a sensor artifact related to soil moisture changes.
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Figure 4. Bulk grain diameter evolution for the MOS, SNT and SNI microstructure evolution models and the spread in model results.

Observations of bulk diameter were derived from macro-photography (Visual) and from SSA measurements from the IceCube instrument
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Figure 5. Range and mean of brightness temperature over the two winter seasons as simulated with the DMRT-ML, MEMLS and HUT

models, driven by 63 JIM outputs and 3 microstructure evolution models. Black lines indicate the observed brightness temperatures. Vertical

dashed lines enclose the period of analysis (1st November - 31st March).
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Figure 6. Variability in brightness temperature simulated with empirical MEMLS, driven by the MOSES microstructure model and 63 JIM

snowpack outputs (no scaling of microstructure was required).
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Figure 7. Cluster analysis of brightness temperature simulated by MOSES microstructure and empirical MEMLS for 1st February 2012

(black dots) and 1st May 2012 (red dots) according to model parameterization choices. Brightness temperature simulations are split according

to the different representations for each process representation. Values 0, 1, 2 relate to parameterizations given in Essery et al. (2013) and as

described in section 2.1. Where distinct clusters occur that differ between parameterizations, this indicates sensitivity to the parameterization.
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Table 1. Equations for options governing the representation of processes in the JIM model subset

Option Description Model Parameterization

Compaction: 0 Physical
1

ρs

dρs
dt

=
Msg

η
+ c1 exp[−c2(Tm−Ts)− c3max(0,ρs− ρ0)]

1 Empirical ρs(t+ δt) = ρmax + [ρs(t)− ρmax] exp(−δt/τρ)

2 Constant ρs = 250 kg m−3

Fresh snow density: 0 Empirical ρf = max[af + bf (Ta−Tm) + cfU
1/2
a ,ρmin]

1 Empirical ρf = ρmin + max[df (Ta−Tm + ef )3/2,0]

2 Constant ρf = 100 kg m−3

Thermal conductivity: 0 Empirical λs = λa + (aλρs + bλρ
2
s)(λi−λa)

1 Empirical λs = cλ

(
ρs
ρw

)nλ
2 Constant λs = 0.265 W m−1 K−1

Maximum liquid water: 0 Empirical
γw,max
ρs

= rmin + (rmax− rmin) max
(

1− ρs
ρr
,0

)
1 Constant γw,max = ρw

(
1− γi

ρi

)
Swi

2 None γw,max = 0 kg m−3

JIM variables are: snow density ρs, overlying snow massMs, snow temperature Ts, air temperature Ta, wind speed Ua, snow effective

thermal conductivity λs, partial density of liquid water γw , partial density of ice γi. Other symbols represent constants, given in Essery et al.

(2013)
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Table 2. Electromagnetic model inputs, as a function of JIM snowpack model outputs

JIM DMRT-ML MEMLS HUT

output input input input

Temperature Tjim [K] Tjim [K] Tjim [K] Tjim - 273.15 [◦C]

Density ρjim [kg m−3] ρjim [kg m−3] ρjim [kg m−3] ρjim
1000

[g cm−3]

Layer size ∆zjim [m] ∆zjim [m] ∆zjim
100

[cm] ρjim∆zjim [mmswe]

Microstructure djim [µm] djim [µm] 2
3

(
1− ρs

ρi

)
djim
1000

[mm] djim
1000

[mm]

Layer number 1 = base 1 = base 1 = base 1 = top

Soil permittivity - εobs r0,HUT εobs

Note that for the purposes of the ensemble, DMRT-ML was adapted to allow the input of diameter rather than radius. HUT was adapted to

ensure Fresnel reflectivity for a smooth soil surface, and to output the soil reflectivity r0,HUT at both polarizations for use in MEMLS

simulations.
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Table 3. Comparison of grain diameters simulated by different microstructure models. The mean and max ratio between pairs of models is

given in columns. Where the 2012-2013 values differ, these are given in parentheses.

Mean Max

SNI / MOS 1.2 (1.1) 1.4 (1.3)

SNT / MOS 2.2 3.1 (3.2)

SNT / SNI 1.9 (2.0) 2.5

30



Table 4. Mean absolute error (mm) between bulk grain diameter simulated with the microstructure models compared with observations

derived from SSA measurements with IceCube. Smallest bias for each year is shown in bold. Percentages are given in parentheses.

2011-2012 2012-2013

MOS -0.24 (-53%) -0.16 (-34%)

SNI -0.18 (-40%) -0.14 (-31%)

SNT 0.12 (32%) 0.16 (45%)
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Table 5. Ratio of mean brightness temperature ranges simulated by two microwave emission models. The mean and max ratio between pairs

of models is given in columns.

2011-2012 19V 19H 37V 37H

DMRTML / HUT 1.6 1.2 3.8 3.1

MEMLS / HUT 3.7 1.9 4.5 3.2

MEMLS / DMRTML 2.4 1.5 1.2 1.0

2012-2013 19V 19H 37V 37H

DMRTML / HUT 2.0 1.6 3.3 3.0

MEMLS / HUT 3.9 2.4 3.9 3.2

MEMLS / DMRTML 2.0 1.5 1.2 1.1
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Table 6. Mean bias and RMSE in brightness temperature (K) simulated by DMRT-ML (very sticky and less sticky), MEMLS (empirical and

IBA-oblate) and HUT (H87, R04 and K10) forced by 189 JIM-Microstructure model combinations. Only days in the period 1st November

to 31st March, where all four frequency / polarization measurements were available were included in the analysis. Bold values indicate the

lowest bias / RMSE for each frequency / polarization.

2011-2012 19V 19H 37V 37H

DMRTML 0.7 -5.4 10.4 8.7

Bias MEMLS -7.8 -16.3 -6.9 -6.2

HUT -1.3 -18.8 20.6 7.6

DMRTML 5.5 11.4 12.2 12.2

RMSE MEMLS 11.3 20.4 13.0 13.1

HUT 6.1 22.4 21.1 11.7

2012-2013 19V 19H 37V 37H

DMRTML 5.6 6.9 25.2 24.5

MEMLS -9.3 -11.4 -0.9 1.5

HUT 2.9 -8.0 39.2 26.4

DMRTML 6.4 9.8 26.2 27.0

MEMLS 11.4 13.2 7.0 7.0

HUT 4.2 9.8 40.2 28.9
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Table 7. Optimal microwave microstructure scale factors dependent on snow microstructure evolution function for 2011-2012 simulations,

based on minimization of cost function between 1st November and 31st March in each year.

DMRTML DMRTML MEMLS MEMLS HUT HUT HUT

less very IBA EMP H87 R04 K10

SNT 1.1 0.6 0.5 0.3 0.9 0.5 0.7

2011-2012 MOS 3.3 1.6 1.7 1.0 2.6 1.4 2.2

SNI 2.5 1.3 1.2 0.8 1.9 1.1 1.7

SNT 1.3 0.7 0.7 0.5 1.2 1.1 1.1

2012-2013 MOS 3.1 1.7 1.6 1.1 3.2 2.7 2.9

SNI 2.8 1.5 1.5 1.1 2.9 2.3 2.6

A value of 1.0 indicates that the snow grain diameter simulated by a particular form of the snow model may be used directly in the

microwave model to give the best agreement with measured brightness temperature.
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Table 8. Mean bias and RMSE in brightness temperature (K) simulated by DMRT-ML (sticky and non-sticky), MEMLS (empirical and IBA-

oblate) and HUT (H87, R04 and K10) forced by 189 JIM-Microstructure model combinations, with optimal microstructure scale factors from

Table 7 applied. Only days in the period 1st November to 31st March, where all four frequency / polarization measurements were available

were included in the analysis. Bold values indicate the lowest bias / RMSE for each frequency / polarization.

2011-2012 19V 19H 37V 37H

DMRTML 1.0 -5.1 6.6 5.6

Bias MEMLS -0.3 -11.3 13.1 10.5

HUT -1.3 -18.8 19.1 6.2

DMRTML 5.6 11.2 9.3 9.5

RMSE MEMLS 5.7 15.5 14.0 12.7

HUT 6.1 22.4 19.5 10.7

2012-2013 19V 19H 37V 37H

DMRTML 3.7 5.6 -0.3 1.4

MEMLS -1.2 -5.1 6.0 9.1

HUT -4.4 -14.3 18.0 7.5

DMRTML 4.7 8.8 5.2 7.5

MEMLS 3.9 7.6 9.3 11.7

HUT 6.2 15.4 19.8 11.2
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Table 9. Maximum difference in brightness temperature in K (H-pol / V-pol) due to 63 snowpack parameterisations for each unscaled snow

microstructure evolution function

DMRTML DMRTML MEMLS MEMLS HUT HUT HUT

less very IBA EMP H87 R04 K10

SNT 50 / 63 148 / 169 88 / 113 126 / 153 27 / 34 26 / 33 28 / 36

MOS 22 / 15 41 / 45 24 / 25 33 / 54 20 / 9 21 / 14 20 / 11

SNI 22 / 15 59 / 67 24 / 43 55 / 77 20 / 13 21 / 18 20 / 15
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