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Abstract.

Monitoring sea ice concentration is required for operational and climate studies in the Arctic Sea. Technologies used so

far for estimating sea ice concentration have some limitations, as for instance the impact of the atmosphere, the physical

temperature of ice, the presence of snow and melting, etc. In the last years, L-band radiometry has been successfully used

to study some properties of sea ice, remarkably sea ice thickness. However, the potential of satellite L-band observations for5

obtaining sea ice concentration had not yet been explored.

In this paper, we present preliminary evidence showing that data from Soil Moisture Ocean Salinity (SMOS) mission can be

used to estimate sea ice concentration. Our method, based on a Maximum Likelihood Estimator (MLE), exploits the marked

difference in the radiative properties of sea ice and seawater. In addition, the brightness temperatures of 100% sea ice and

100% sea water, as well as their combined values (polarization and angular difference), have been shown to be very stable10

during winter and spring, so they are robust in front of variations in physical temperature and other geophysical parameters.

Therefore, we can use just two set of tie points, one for summer and another for winter, for calculating sea ice concentration,

leading to a more robust estimate.

After analysing the full year 2014 in the entire Arctic, we have found that the sea ice concentration obtained with our method

is well determined as compared to Ocean and Sea Ice Satellite Application Facility (OSI-SAF) dataset. However, when thin15

sea ice is present (ice thickness .0.6 m) the method underestimates the actual sea ice concentration.

Our results open the way for a systematic exploitation of SMOS data for monitoring sea ice concentration, at least for specific

seasons. Additionally, SMOS data can be synergistically combined with data from other sensors to monitoring of pan-Arctic

sea ice conditions.
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1 Introduction

The Arctic Ocean is under profound transformation. The rapid decline in Arctic sea ice extent and volume that is both observed

and modeled (e.g., Comiso, 2012; Stroeve et al., 2012) may have become the key illustration of change in a warming planet,

but change is widespread across the whole Arctic system (e.g., AMAP, 2012; IPCC, 2013; SEARCH, 2013). A retreating

Arctic sea ice cover has a marked impact on regional and global climate, and vice versa, through a large number of feedback5

mechanisms and interactions with the climate system (e.g., Holland and Bitz, 2003; Cohen et al., 2014; Vihma, 2014).

The launch of the Soil Moisture and Ocean Salinity (SMOS) satellite, in 2009, marked the dawn of a new type of space-

based microwave imaging sensor. Originally conceived to map geophysical parameters of both hydrological and oceanographic

interest (e.g., Martin-Neira et al., 2002; Mecklenburg et al., 2009), SMOS is also making serious inroads in the cryospheric

sciences (e.g., Kaleschke et al., 2010, 2012; Huntemann et al., 2014). Developed by the European Space Agency (ESA), SMOS10

single payload, called Microwave Imaging Radiometer using Aperture Synthesis (MIRAS), is an L-band (1.4 GHz, or 21-cm

wavelength) passive interferometric radiometer that measures the electromagnetic radiation emitted by Earth’s surface. The

observed brightness temperature (TB) can be related to moisture content over the soil and to salinity over the ocean surface

(Kerr et al., 2010; Font et al., 2013), as can be used to infer sea ice thickness (Kaleschke et al., 2012) and snow thickness

(Maaß, 2013; Maaß et al., 2015).15

Sea ice concentration (SIC), defined as the fraction of ice relative to the total area at a given ocean location, is often used

to determine other important climate variables such as ice extent and ice volume. SIC has been the target of satellite-based

passive microwave sensors such as the Special Sensor Microwave/Imager (SSM/I and SSMIS) and the Advanced Microwave

Scanning Radiometer (AMSR-E and AMSR-2) for more than 30 years. SIC can be estimated due to the fact that the brightness

temperature of sea ice and seawater are quite distinct. There exists a variety of algorithms to retrieve SIC from TB observations20

tuned to those higher-frequency sensors, that is frequencies between 6–89 GHz (e.g., Cavalieri et al., 1984; Comiso, 1986;

Ramseier, 1991; Smith, 1996; Markus and Cavalieri, 2000; Kaleschke et al., 2001; Shokr et al., 2008). Those algorithms present

different advantages and drawbacks depending on frequency, spatial resolution, atmospheric effects, physical temperature, and

others. According to Ivanova et al. (2015), the first source of error in the computation of sea ice concentration is the sensitivity

to changes in the physical temperature of sea ice, in particular for those algorithms that use measurements between 10–37 GHz.25

They identify atmospheric water vapor and cloud liquid water as the second source of error except for algorithms at 89 GHz,

where it becomes the dominant error. Another problem faced by higher frequency radiometers is that the SIC retrievals are

affected by the thickness of snow cover, which is difficult to determine.

Wilheit (1978) analyzed the sensitivity of microwave emissivity of open seawater to a variety of geophysical variables such

as atmospheric water vapor, sea surface temperature, wind speed, and salinity as function of frequency (Figure 1). The figure30

illustrates that L-band (1-2 GHz) observations are in a sweet spot, with the effect of all variables but salinity being minimal

around the SMOS frequency. The same authors also showed that the signature of multi-year (MY) and first-year (FY) ice

overlap in the lower microwave frequencies, while this is not the case at higher frequencies.
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Although some authors (e.g., Mills and Heygster, 2011a; Kaleschke et al., 2013) have recently explored the feasibility of

SIC determination using an aircraft-mounted L-band radiometer, a method that extends satellite-based SIC retrievals down to

L-band (i.e., SMOS) frequencies has been missing. We therefore set out to develop a new method, which we present here.

A significant difference between high-frequency and L-band microwave radiometry is that ice penetration at L-band is non-

negligible (Heygster et al., 2014). In other words, ice is more transparent (i.e., optically thinner) at low than at high microwave5

frequencies. As a consequence, the brightness temperature measured by an L-band antenna is not only emitted by the topmost

ice surface layer but by a larger range of deeper layers within the ice. Thanks to that increased penetration in sea ice (about

60 cm depending on ice conditions), the SMOS L-band radiometer is also sensitive to ice thickness (Kaleschke et al., 2012;

Huntemann et al., 2014).

We exploit some of SMOS observational features in this study to develop a new method to estimate SIC. These include a10

combination of acquisition modes involving dual and full polarization, continuous multiangle viewing between nadir and 65◦,

wide swath of about 1200 km, spatial resolution of 35-50 km, and 3-day revisit time at the equator but more frequently at the

poles. In particular, the multiangle viewing capability of SMOS is a noteworthy feature; it means that the same location on the

Earth’s surface can be observed quasi-simultaneously from a continuous range of angles of incidence as the satellite overpasses

it.15

The new method we present in this paper uses SMOS brightness temperature observations TB and a Maximum Likelihood

Estimator (MLE) to obtain SIC maps in the Arctic Ocean. We describe SMOS data and a radiative transfer model for sea

ice that allows us to compute its emissivity, in Sections 2 and 3, respectively. We then introduce the concept of tie-points

and its sensitivity to different geophysical parameters to help with SIC retrievals via algorithmic inversion of SMOS data, in

Section 4.1, 4.2, 4.3, and 4.4, and the MLE inversion algorithm, in Section 4.5. We then perform an accuracy assessment20

of SIC estimates using SMOS by comparing them to an independent SIC dataset, in Section 5, to close with a discussion and

conclusions, in Section 6 and 7, respectively.

2 Data

2.1 SMOS data from the Arctic Ocean

Since its launch in 2009, ESA has been generating brightness temperature full-polarization data products from SMOS. In25

this study, we focus on the official SMOS Level 1B (L1B) product version 504 data north of 60◦ N from 2014 to estimate

SIC. The L1B data contains the Fourier components of TB at the antenna reference frame (Deimos, 2010), from which one

can obtain temporal snapshots of the spatial distribution of TB (i.e., an interferometric TB image) by performing an inverse

Fourier transform. The TB data are geo-referenced at an Equal-Area Scalable Earth (EASE) Northern hemisphere grid (Brodzik

and Knowles, 2002) of 25 km on the side. The radiometric accuracy of individual TB observations from SMOS is ∼2 K at30

boresight, and it increases on the Extended Alias Free Field-of-View (Corbella et al., 2011). Proceeding from L1B data, though

computationally more demanding than the more traditional L1C data products, has several benefits. For example, it allows one

to change the antenna grid from the operational size of 128x128 pixels to 64x64 pixels. As shown by Talone et al. (2015), the

3



smaller grid is optimal in that it helps mitigate some of the spatial correlations between measurements that are present in the

larger grid.

We correct TB for a number of standard contributions such as geomagnetic and ionospheric rotation and atmospheric atten-

uation (Zine et al., 2008). The galactic reflection is not significant at high latitudes, and no correction was applied. We then

filter out outliers (defined as those estimates that deviate by more than 3-σ from the mean value, where σ is the radiometric5

accuracy at the given point in the antenna plane) and filtered out TB observations in regions of the field of view that are known

to have low accuracy due to aliasing (Camps et al., 2005), Sun reflections, and Sun tails.

To lower the noise level, we averaged TB measurements from both ascending and descending orbits over periods of 3 days,

which thus define the time resolution of our SIC maps. We also averaged acquisitions in incidence angle binnings of 2◦. Since

some incidence angles could be missing due to the SMOS acquisition feature and interferences, we use a cubic polynomial fit10

to interpolate TB measurements to have the full range of incidence angles in each grid position.

2.2 OSI-SAF and other sea ice data products

We use SIC maps from the database of the Ocean and Sea Ice Satellite Application Facility (OSI SAF product version OSI-

401a) of the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) for comparison with the

products we are obtaining.15

These are computed from brightness temperature observations from SSMIS at 19 and 37 GHz, are corrected for atmospheric

effects using forecasts from the European Center for Medium Range Weather Forecasts (ECMWF), use monthly dynamic

tie-points, are available on polar Stereographic 10-km grid for both polar hemispheres, and include SIC uncertainty estimates

(Tonboe et al., 2016). In this study, we used daily SIC maps in the Arctic Ocean from the OSI-SAF northern hemisphere

products of the year 2014.20

We also used SIC estimates from ice charts generated from various sensors by the National Ice Center (Fetterer and Fowler,

2009) to identify regions of interests to compute the 100% ice-tie-points.

3 Theoretical model of sea ice radiation at microwave wavelengths

Passive radiometers measure brightness temperature TB at antenna frame with different incidence angle. TB can be expressed

as:25

TB = Υ[TBSURF
+TBATM_DN

] + TBATM_UP
, (1)

where Υ is the atmosphere transmitivity, TBSURF
the radiation emitted by the surface, TBATM_DN

the downward-emitted

atmospheric radiation that gets scattered by the terrain in the direction of the antenna, and TBATM_UP
the upward-emitted

atmospheric radiation.

The surface emission is defined as:30

TBSURF
(θ) = es(θ)T, (2)
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where θ is the incidence angle relative to zenith angle, es the surface emissivity, and T the physical temperature of the radiation-

emitting body layer. Hereafter, we will use TB to refer to surface brightness temperature, for simplicity.

The emissivity e and reflectivity Γ of a layer are related by e= (1−Γ). The reflectivity (sometimes also called R) is the

ratio between reflected and incident radiation at the media boundaries for each polarization. Γ for horizontal H and vertical V

polarizations can be calculated using Fresnel equations, which depend non-linearly on the dielectric constant (ε), and on the5

incident θi and refracted θt angles:

ΓH(θ) =

∣∣∣∣√ε1 cosθi−
√
ε2 cosθt√

ε1 cosθi +
√
ε2 cosθt

∣∣∣∣2 , ΓV (θ) =

∣∣∣∣√ε2 cosθi−
√
ε1 cosθt√

ε1 cosθt +
√
ε2 cosθi

∣∣∣∣2 . (3)

The frequency-dependent dielectric constant of a medium is a complex number defined as ε(f) = ε
′
(f)+ iε

′′
(f), where the

real part ε
′

is related to the electromagnetic energy that can be stored in the medium, and the imaginary part ε
′′

is related to

the energy dissipated within the medium, and f is frequency. Note that brightness temperature varies linearly with emissivity10

(Eq. 2), hence also with reflectivity.

To calculate the brighness temperature TB of sea ice, we will assume a sea ice model consisting of horizontal layers of three

media – air, snow, and thick ice. We use the incoherent approach (i.e., conservation of energy, instead of wave field treatment in

the coherent approach). Then a plane-parallel radiative transfer model (Eq. 4) is used to propagate to the surface the reflectivity

computed at and through the ice-snow and snow-air media boundaries, and making a number of simplifying assumptions.15

Specifically, our model assumes (a) that the media are isothermal and (b) that the thickness of the ice layer is semi-infinite so

that radiation from an underlying fourth layer (i.e., seawater) does not need to be considered. This approach is similar to that

used by other authors (e.g., Mills and Heygster, 2011b; Maaß, 2013; Schwank et al., 2015). These assumptions are realistic for

the emission of sea ice that is thicker than about 60 cm at the observing frequency of SMOS, as discussed in Section 1, since

the underlying seawater then makes no contribution to the overall emissivity.20

To further simplify our approach, we assume that the snow layer in the model consists of dry snow, which is typical of

winter Arctic conditions. Dry snow can be considered a lossless medium at 1.4 GHz, due to the fact that the imagenary part of

ε is very small compared with the real part, as stated in Schwank et al. (2015). That means that there is no attenuation in the

snow layer, and therefore its attenuation coefficient, αsnow, is considered zero. We make this simplifying assumption because

water in a wet snow layer would cause attenuation and therefore increase the total emissivity, but it is rarely possible to obtain25

meaningful data on the amount of water in wet snow. However, dry snow still has an effect on the refracted angle according

to Snell’s law, hence on the emissivity, which is computed via Eq. (3). The permittivity of dry snow depends on snow density

(Tiuri et al., 1984; Matzler, 1996), which depend on the snow temperature. For a snow density of ρs = 300g/cm3, the dry

snow permittivity at L-band is εsnow = 1.53 following the equation described in Schwank et al. (2015).

We can now define the simplified brightness temperature that results from an infinite number of reflections between the three30

medias as (Ulaby et al., 1986):

TB(θ,p,f) =

(
1−Γas

1−ΓasΓsi exp−2τ

)
·
[
(1 + Γsi exp−τ )(1− exp−τ )Tsnow + (1−Γsi)exp−τ Tice

]
+TskyΓas,

(4)

5



where Γas and Γsi are the reflectivity at the air-snow and snow-ice boundaries, respectively, and Tsnow and Tice are the physical

temperature in the snow and ice layers, respectively. The term τ is the attenuation factor and is defined as τ = 2dαsecθ, where

d is the depth of the snow layer and α the attenuation constant. Tsky is the temperature of the cosmic background. The

dependence of TB on θ, p, and f is embedded in the expressions of Γ and τ .

The attenuation constant α of the middle layer, in the case of a low-loss medium (ε
′′
/ε
′
<< 1), can be expressed as:5

α=
πf

c

ε
′′

√
ε′

(5)

where c the speed of light. The skin depth is defined as δs = 1/α (m) and characterizes how deep an electromagnetic wave can

penetrate into a medium (e.g. Ulaby and Long, 2014).

To compute the complex dielectric constant of sea ice εice, which is needed to compute Γsi, we use the classic empirical

relationship by Vant et al. (1978). In this model, permittivity depends linearly on the ice brine volume Vb as,10

ε̂ice = a1 + a2Vbr + i(a3 + a4Vbr) (6)

where Vbr = 10Vb, and the coefficients ai can be obtained by linear interpolation to 1.4 GHz of the laboratory values from

microwave measurements at 1 and 2 GHz (refer to Vant et al. (1978) for coefficient values).

The sea ice brine volume Vb can be computed using Cox and Weeks (1983) as follows:

Vb =
ρS

F1(T )− ρSF2(T )
(7)15

where ρ, S, and T are sea ice density, salinity, and temperature, respectively. The F functions are cubic polynomials derived

empirically, namely

Fj(T ) =

3∑
i=0

aijT
i (8)

where the values of the coefficient aij were given in Leppäranta and Manninen (1998) for ice temperatures between –2 ◦C and

0 ◦C, and for lower temperatures in Cox and Weeks (1983); see also Thomas and Dieckmann (2003).20

Figure 2 shows the dependence of brightness temperature, at L-band, with angle of incidence for seawater and sea ice, as well

as that of ice overlaid by a dry snow layer (following Eq. 4), for nominal Arctic temperature and salinity values. Specifically,

temperature and salinity values used were after Maaß (2013); for seawater –1.8◦C and 30 g/Kg, respectively, and for sea ice

–10◦C and 8 g/Kg. Note that the TB of seawater is significantly less than that of ice, and that the latter is slightly less than that

of snow over ice. Also note the non-linear dependence of TB on incidence angle, the difference between H- and V-polarized25

waves for all three cases, and the larger variation with incidence angle of H than V over ice and snow (e.g., Maaß et al., 2015).

We also calculate the theoretical emissivity es of a four-layer model using the Burke et al. (1979) equation. The additional

layer in this model is the seawater under sea ice, and we use the dielectric constant of seawater from Klein and Swift (1977).

This layer does not need to be considered for the case of (optically) thick ice, but it becomes “visible" for the case of (optically)

thin ice (i.e., thicknesses ≤60 cm, depending on ice temperature and salinity). The expression of TB for a four-layer model is30
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defined in Burke et al. (1979) as:

TB(θ,p) =

3∑
i=1

Ti ·
(

1− e(−γi(θ)∆zi)
)
·
(

1 + Γp,i+1(θ)e(−γi(θ)∆zi)
)
·

i∏
j=1

[1−Γp,i+1(θ)] · e(−
∑i

j=2 γj−1(θ)∆zj−1)

(9)

where Ti is the temperature of each layer, Γ its reflectivity, γ the absorption coefficient, and ∆z the layer thickness. The net

effect of reducing the sea ice thickness and starting to sense seawater, is a decrease in surface emissivity, hence of TB (as

illustrated in Figure 5), relative to emissivity of thick ice (Shokr and Sinha, 2015).5

4 Methods

4.1 Definition of robust indices from brightness temperature

It is rarely possible to obtain the ancillary geophysical data such as sea ice temperature, salinity, and ice thickness that is

required to estimate brightness temperature from a microwave emission model. Therefore, making assumptions and approxi-

mations becomes critically important. It is possible, however, to define a number of indices resulting from a combination of10

brightness temperature observations that are less sensitive to the unknown physical parameters. For example, estimates of soil

moisture or sea ice concentration from radiometric measurements are often derived by combining TB measurements obtained

from different polarizations, frequencies, and angles of incidence (Becker and Choudhury, 1988; Owe et al., 2001).

Hereafter, we use two indices, the polarization difference (PD) index and the angular difference (AD) index. The PD index

is defined as the difference between TB measurements obtained at vertical TBV
and horizontal TBH

polarizations as15

PD(θ) = TBV
(θ)−TBH

(θ). (10)

The AD index is defined as the difference between two vertical polarization TB measurements obtained at two different

angles of incidence as

AD(θ) = TBV
(θ+ ∆θ)−TBV

(θ). (11)

Figures 3 and 4 show the variation of PD and AD for the thick-ice model with angle of incidence, respectively. In defining20

AD, we use vertical rather than horizontal polarization because identification of the three media is facilitated by the larger

dynamic range and non-crossing signatures of vertical polarization (Figure 4). We choose ∆θ = 35◦ angle difference because

this value represents a good compromise between sensitivity of the index and radiometric accuracy in the case of SMOS

(Camps et al., 2005) and, importantly, is also well supported by the wide range of satellite viewing angles that characterizes

SMOS.25

Although the Polarization Ratio (PR) is also a commonly used index, we have chosen PD after verifying that its dynamic

range is larger than that of PR, and suspecting that PD would yield higher accuracy estimates given the SMOS error budget.
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4.2 Calibration of sea ice concentration using tie-points

Tie-points are widely used for retrieving SIC with higher frequency radiometers, as well as in other fields such as photogram-

metry (e.g., Khoshelham, 2009). In this study, we use tie-points as the typical TB values for 100% and 0% concentrations

which permit us to compute the sea ice concentration. Tie-points can therefore be viewed as SIC calibration points because

their expected radiation can be unambiguously determined.5

Figure 3 shows theoretical PD tie-point values for open water and sea ice, as well as ice with a snow layer. The values for

an angle of incidence of 50◦ are marked by solid red circles. This angle represents a good compromise in PD contrast between

the two media and SMOS accuracy (Camps et al., 2005). The two bounding values are 62.9 K for seawater and 26.8 K for ice

with snow cover (Table 1). The large difference between tie-point values suggests that it is possible to estimate SIC at L-band.

Figure 4 shows theoretical AD tie-point values for difference in incidence angle ∆θ = 35◦ and angles of incidence up to10

θ = 30◦ which, per Eq. 11, represents the TBV
difference between θ = 60◦ and θ = 25◦. The values for an angle of incidence

of 25◦ are marked by solid red circles, for which the tie-points are 51.8 K for seawater and 8.6 K for ice with snow cover

(Table 1). Hereafter, PD and AD are evaluated at the incidence angles of θ = 50◦ and θ = 25◦, respectively.

Figure 5 shows that TB at nadir increases non-linearly as function of ice thickness up to the saturation value of ∼250 K,

which is reached when ice becomes about 70-cm thick. Notice that TB estimates start at an ice thickness of 5 cm because there15

is a discontinuity in the Burke model as the thickness of ice tends to zero (e.g., Kaleschke et al., 2010; Mills and Heygster,

2011a; Maaß, 2013; Kaleschke et al., 2013). Compared with TB , the total variation of both AD and PD with ice thickness is

significantly smaller and, therefore, are better suited to estimate sea ice concentration.

4.3 Sensitivity of estimates of sea ice concentration to surface emissivity changes

In this section, we calculate the sensitivity of SIC estimates to changes in surface emissivity due to variations in the physical20

properties of sea ice (i.e., salinity, temperature, and thickness). We work with estimated SIC derived from the three indices TB ,

PD, and AD. This is done following a standard error propagation method (as also used in Comiso et al. (1997)). It is important

to determine how changes in ice conditions affect SIC estimates through those three indices to try to minimize SIC errors

obtained using SMOS.

Table 2 lists the sensitivities, according to our theoretical model, of the indices I (I = TB , PD, and AD) to the geophysical25

variables of ice and seawater: physical temperature (i.e., δI/δT ), salinity (δI/δS), and thickness (δI/δd) evaluated within

the ranges of Twater=[2,15], Swater=[10,38], Tice=[-20,-5], and Sice=[2,12]. It should be noted that those sensitivities are

calculated using the model and the nominal Arctic temperature and salinity values defined in Section 3. In order to assess

which index is less sensitive to changes in a given geophysical variable, we calculate absolute sensitivities, defined as the

sensitivities multiplied by the dynamic range of the measurements.30

Knowing the value of the tie-points of sea ice (SIC=100%) and seawater (SIC=0%), one can compute the average slopes of

the SIC estimates to their corresponding parameters TB , PD, and AD (i.e., δSIC/δTB , δSIC/δPD, and δSIC/δAD). From
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data in Table 1, we obtain the average slopes as: δSIC/δTB = 0.65, δSIC/δPD = 2.32, and δSIC/δAD = 2.77. These

slopes can be used to propagate TB , AD, and PD errors to errors in the SIC estimates.

We assume reasonable values for the variability of the physical parameters on which our emissivity model depends on,

namely T,S and d of ice (generically denoted by g), as follows: ∆T=5 K, ∆S=4 g/Kg, and ∆d=30 cm. Using the values in

Table 2 and the calculated average slopes, one can finally compute the errors in SIC estimates associated with the geophysical5

variability of g when the index I is used to evaluate SIC as:

∆SIC|g =

∣∣∣∣δSICδI
∣∣∣∣ · ∣∣∣∣δIδg

∣∣∣∣ ·∆g (12)

To evaluate the final impact of geophysical variability on the SIC evaluation using the index I , we compute the root-sum-

squared (RSS) of the SIC uncertainties due to the geophysical parameters (Table 3). The table shows that AD is the most robust

index to retrieve SIC, slightly better than PD, and significantly better than TB . Because TB is theoretically more sensitive to10

thin ice than the other two indices, one can expect that the use of TB to retrieve SIC would result in larger SIC errors. Moreover,

the uncertainty distribution of TB is too broad, especially due to thickness, thus less adequate to fulfill the statistical hypotheses

used to derive SIC. Despite the uncertainties in the theoretical physical model of ice, we consider the differences significant

enough to focus on inversion algorithms using the PD and AD indices, and not on TB .

4.4 Comparison with empirical tie-points15

Following the theoretical analysis, we now turn to evaluate its performance empirically. We therefore select several regions of

interest in the Arctic Ocean where SIC has been determined to be either 0% or 100% by other sensors and methods. To identify

such regions, we use SIC maps from OSI-SAF and from the National Ice Center. In particular, we selected the open seawater

region between latitudes 55◦–70◦ N and longitudes 20◦ W and 25◦ E, which comprises more than 2000 pixels in a typical

SMOS image. For sea ice, we selected the multi-year (MY) ice region between latitudes 78◦–83◦ N (the northernmost latitude20

observable by SMOS) and longitudes 75◦–150◦ W, which comprises about 1000 pixels per SMOS image. We expect some

level of uncertainty associated with the selection of the region to compute the 100% tie-points for summer periods stemming

from known errors in the summer SIC products by OSI-SAF (Tonboe et al., 2016).

We calculated SMOS brightness temperatures of these target regions to evaluate their potential as empirical tie-points for

seawater and sea ice. The temporal variation, in 2014, of the spatially averaged (median) TB at nadir of the two geographic25

regions are shown in Figure 6. The values are consistent with the modeled values in Table 1. For the seawater region, the figure

shows that the brightness temperature is constant, at about 99 K, to within ∼2.5 K (one σ standard deviation) throughout the

year. For the ice region, TB is also stable during the non-summer months, but it drops by about 20 K during the summer season

due to changes in surface emissivity associated with snow and ice melt and concurrent formation of meltwater ponds. The

factor-two increase in formal error in summer relative to winter is also an indication of increased radiometric variability in30

surface conditions (as shown in Table 1).

Figure 7 shows that the temporal radiometric stability of the seawater region during 2014, and that of sea ice during the

non-summer months, is also reflected in the AD and PD indices, as one would expect. This suggests that a different set of
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tie-points during winter and summer periods could be beneficial for the quality of the SIC retrievals. On the other hand, the

AD and PD tie-point values are very stable during winter and spring (November to June), indicating that values are robust to

variations on physical temperature and that may not be necessary to compute tie-point values often (daily or monthly), as done

with the OSI-SAF product.

Figure 8 shows a 2-D scatter plot of AD and PD indices for the two regions defined above during March (winter tie-point)5

and July (summer tie-point) 2014. The index values associated with seawater and with ice group form two well-differentiated

clusters, which implies that the two types of regions can be clearly segregated using these indices. This is also true for the

summer tie-points even though in this case the dispersion is larger and values are closer to sea tie-points, as expected following

Figure 7.

The modeled (with snow and without) and observed TB, AD, and PD tie-point values for winter and summer 2014, and the10

standard deviation (σ) of the measurements are listed in Table 1. It is encouraging that most of the values are in agreement

at about 2σ despite underlying model assumptions such as uniform sea ice temperature and specular ocean surface. Another

important result is that the observed SMOS data is closer to the model when snow is considered.

4.5 Retrieval of sea ice concentration

The brightness temperature of mixed pixels, that is, ocean pixels partially covered by sea ice, can be expressed as a linear15

combination of the brightness temperature of ice and seawater weighted by the percentage of each surface type (e.g., Comiso

et al., 1997):

TBmixed
= CTBice

+ (1−C)TBwater
(13)

where C is the fraction of ice present in a pixel, with C = 1 corresponds to 100% of ice and C = 0 to 0% of ice, or equivalently

100% of seawater. Since AD and PD (Eqs. 10-11) depend linearly on brightness temperature, Eq. (13) can be used to express20

both AD and PD.

There are several possible strategies to estimate sea ice concentration at a given pixel from the AD and PD values measured

at that pixel. The simplest approach is to consider that the values of the tie-points are good representatives of the values of AD

and PD at the respective medium, i.e., seawater and sea ice, such that

AD ≈ CADice + (1−C)ADwater25

PD ≈ C PDice + (1−C)PDwater (14)

Concentration C can thus be retrieved from the value of either AD or PD by inverting the associated linear equation. In

general, C can also be evaluated simultaneously with the AD and the PD observations by averaging the values obtained from

both indices, as:

C =
1

2

[
AD−ADwater

ADice−ADwater
+

PD−PDwater
PDice−PDwater

]
(15)30
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This is known as the Linear Estimation of SIC. However, this approach might be too simple, as the values of AD and PD on

ice and seawater can have some non-negligible dispersion due to geophysical conditions and to radiometric noise.

In this paper, a new inversion algorithm to estimate C is presented, which considers that AD and PD have known distribu-

tions, and by combining the observations it is possible to infer the value of C that is statistically more probable.

The distributions of the SMOS AD and PD are unimodal and symmetric (not shown), thus allowing us to approximate them5

by Gaussians and considering the pure ice and pure sea measurements as independent. Therefore we can easily use a Maximum-

Likelihood Estimation (MLE) approach. The MLE has many optimal properties in statistical inference such as (e.g., Myung,

2003) sufficiency (the complete information about the parameter of interest is contained in the MLE estimator), consistency

(the true value of the parameter that generated the data is recovered asymptotically, i.e. for sufficiently large samples), efficiency

(asymptotically, it has the lowest-possible variance among all possible parameter estimates), and parameterization invariance10

(same MLE solution obtained independent of the parametrization used).

Assuming the linearity superposition of indices (Eq. 14), it follows that the distributions of AD and PD (fAD,fPD) in a

general ocean pixel can be expressed as:

fAD ∼N
(
C ADice + (1−C) ADwater,

√
C2σ2

ADice
+ (1−C)2σ2

ADwater

)
(16)

fPD ∼N
(
C PDice + (1−C) PDwater,

√
C2σ2

PDice
+ (1−C)2σ2

PDwater

)
(17)15

where the bar over the AD and PD indices refers to their mean values, the subindex identifies the medium, and σ is the as-

sociated standard deviation for each index and media. To obtain the mean and standard deviation values, we used the SMOS

measurements at the regions for generating tie-points and periods discussed in Sect. 4.4. The symbol N means normal proba-

bility density function.

As a first approximation, we have considered AD and PD two independent variables. It thus follows that the likelihood20

function L is equal to the product of their distributions or, equivalently and conveniently, to their sum (recall that the likelihood

is the logarithm of the probability density function), thus:

l̂ = ln(L) = ln(fAD) + ln(fPD) (18)

The MLE of SIC is the value of C that maximizes the likelihood function l̂.

5 Results25

5.1 Quality algorithm assessment

We have calculated AD and PD values from SMOS brightness temperature and used the MLE approach to obtain SIC estimates

over the Arctic Ocean in year 2014. We have estimated SIC using different tie-points, characterized by their central value and
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dispersion. For seawater, we have used a single, year-round median value and the associated standard deviation for each index.

For ice tie-points, we have used two sets of values, as suggested by the results in Figure 7. For the first set, we have computed

for all years the median of the tie-points between December and May (Table 1), i.e., the winter-spring months when Arctic sea

ice extent is close to its annual maximum. For the second set, we have used those same winter-spring values for the months of

October through May but the average of the summer values for the months between June and September (Table 1). We have5

not used the October nor November data to compute ice tie-points values because these are months of maximum extension of

thin ice, and underlying emission through thin ice could cause some errors on the SIC estimates (Figure 5 and Table 2).

The root-mean-square (RMS) error of SIC retrievals relative to OSI-SAF over the Arctic Ocean is shown in Figure 9.

Four types of retrievals and two sets of tie-points are compared. Introducing a specific set of summer tie-points (black solid

line) reduces the RMS error with respect to using only one unique tie-point for the whole year (black dotted line). The RMS10

reduction is about 24% and 12% in July and August, respectively, and to smaller degree in June and September. Therefore, we

will hereafter use a different set of tie-points values in summer and winter.

Furthermore, using the set of summer-winter tie-points, results from four types of inversions that stem from combinations of

linear and MLE method and indices are compared in Figure 9. The lowest RMS values through all months in 2014 but January

are obtained with the MLE inversion algorithm and the AD index alone. The evolution along the year of the RMS obtained with15

the linear retrieval method is similar in the case of the MLE method, but at ∼5-10% increased noise level. Larger RMS values

and increased temporal variability are observed when the PD index is also used. The RMS error of all retrievals is largest in

Fall, in particular if the PD index is used. Those are months of ice formation, therefore vast regions become covered with frazil

ice, nilas, and thin young ice, following the minimum ice extension of September. All methods converge to similar results in

September, since this period is the one with minimum ice extension and minimum thin ice is expected (so resulting in very20

small difference between using AD or AD and PD methods).

The spatial variation of the difference in MLE SIC retrievals when using only the AD index and when using the AD and

PD indices for the period 2–5 November 2014 is shown in Figure 10. As expected, the largest differences are associated with

regions of thin ice formation, in particular in the Laptev Sea, Kara Sea, and along the edge of the ice pack both in the western

Arctic and the Atlantic sector. Together, the spatio-temporal snapshots in Figures 9-10 highlight the sensitivity of PD to the25

presence of thin ice, what naturally leads to an increase of the retrieval error when PD is used. This conclusion is not fully

consistent with the analysis done using the models in Section 4.3, on the dependence of the indices (TB , PD, AD) on ice

thickness. Table 2 shows that, theoretically, PD is slightly less sensitive to thin ice than AD. However, the AD index is the least

sensitive (lowest RSS) to variations of all the analyzed variables. Therefore, we will hereafter use the AD index, summer-winter

tie-points values, and an MLE-based estimator for SIC retrievals.30

5.2 Accuracy assessment of SMOS SIC retrievals

We have evaluated the mutual consistency of the SMOS SIC retrievals, and in the process we have determined which is the

approach that leads to the minimum error in the retrieval of SIC. We now evaluate the accuracy of those retrievals. Although

a representative (in the space-time domain) ground-truth dataset that allows us to assess the accuracy of SMOS retrievals does
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not exist, the SIC estimates from OSI-SAF are a good option for cross-check. They are independent from SMOS, the spatio-

temporal sampling and resolution of their products is commensurate with that of SMOS, and their error budget is available.

The spatial distribution of SMOS SIC in the Arctic Ocean has been estimated from SMOS data for the 3-day period 2–5

March 2014 and it has been compared with OSI-SAF SIC product on 4 March 2014 . The largest differences between both

algorithms are located at the margins of the sea ice cover, where thinner ice can be expected (see Figure 11). March is the5

month of maximum sea ice extent, but the results for other winter months are similar.

On the other hand, November is the month of maximum extension of thin young ice, specially through the Beaufort Sea

since ice in the Laptev and Kara seas remains thin during winter (Shokr and Dabboor, 2013). Significantly larger differences

between SMOS and OSI-SAF products are now observed over a much wider area of the Arctic Ocean including the Barents,

Kara, Laptev, East Siberian, and Beaufort seas (Figure 12).10

The brightness temperature measured by a passive microwave radiometer, increases with sea ice thickness up to a saturation

value. Such an increase is more gradual for low frequencies and horizontal polarization (e.g., Ivanova et al., 2015). At the SMOS

L-band, the increase of emissivity with ice thickness reaches saturation for an ice thickness that is about 60 cm, depending on

ice salinity and temperature (Kaleschke et al., 2012) whereas at the OSI-SAF frequencies (19 and 37 GHz) is only a few cm

(Heygster et al., 2014; Ivanova et al., 2015). For example, for pixels that are 100% covered by thin ice of say 25-cm thickness,15

the AD and PD values for those pixels will be slightly different than the tie-point value of ice because the value of ice tie-

points was computed from thick, MY ice (see Figure 5) for model analysis. This contrast leads to a difference in classification

of such pixels, that will be considered mixtures of water and ice in the case of SMOS, and as 100% ice with OSI-SAF. In other

words, the estimation of SIC of a seas covered by frazil ice and nilas will be higher for OSI-SAF than for SMOS.

To further analyze this classification difference, we have calculated the probabilities of SMOS SIC conditioned by values of20

OSI-SAF SIC using a full year, 2014, of Arctic-wide estimates. The probability of estimating a SIC value with SMOS that is

less or equal than 5% when the estimated OSI-SAF SIC is 0% is shown in Figure 13 (red line). As expected, the conditioned

probability is very high throughout the year. This implies that both products have a similar ability to detect (close to) 100%

ocean pixels. This implies that the probability of having high SMOS SIC values when OSI-SAF is low, is almost zero, which

also means that the rate of triggering false alarms on ice detection with SMOS is low.25

On the contrary, the probability of estimating a SMOS SIC equal or higher than 90% while the OSI-SAF SIC is 100% is

not constant during the year and decrease with respect to the previous case. During the winter period (between January and

April), the conditioned probability is notably high (near 0.9) (see Figure 13 blue line). Then it decreases sharply during spring

and most notably in summer. This change in the conditioned probability starting in the spring could stem from a change in ice

properties. As the snow becomes wetter with the onset of the melt season the observed emissivity starts to change, and this,30

varies with the observating frequency (different scattering response). The observed increase of the conditioned probability in

June could be due to the use of a summer tie-point (applied from June to September) which improve the RMS with respect to

OSISAF as shown in Figure 9. The low conditioned probability in Fall can be explained by the presence of thin ice.

We have analysed the spatial distribution of the conditioned probability of SIC estimates for the months of March and

November. Those regions where OSI-SAF SIC is more than 0.9 while SMOS SIC is less than 0.9 (light blue color in Figures 14)35
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outline the edge of the ice cover. This is in good correspondence with the expected areas of thin ice. Besides, this condition is

extended when analysing November data (Figure 14b) when thin ice is more frequent in the Arctic.

During the winter months, the spatial coefficients of determination (r2) between SMOS and OSI-SAF SIC is high (more

than 0.65), what again is consistent with our interpretation about the role of thin ice in SMOS SIC (see Figure 15). As melt

starts, the correlation between SIC estimates continues to be high, thanks to the use of the summer tie-point in the retrieval. In5

September, ice cover extent is at minimum because ice growth has not started yet there is almost no thin ice, and the correlation

remains high. The correlation drops in the Fall (between October and December) because ice growth starts by freezing of the

sea surface, producing large amounts of new thin ice. To compute these values, we have only included SIC values between

0.05 (5%) and 0.95 (95%) when computing correlations to avoid the two extremes values leading to too high, non-significant

values of correlation.10

6 Discussion

The two PD and AD indices, which are derived from brightness temperature, have been designed to maximize their differences

between open water and sea ice. Both have a low response to changes in the geophysical characteristics of the media, which

has been confirmed by using theoretical models and by performing sensitivity analysis.

The tie-points, defined as the characteristic values of our reference indices on the different media, have been calculated from15

SMOS data. When compared to theoretical values, some small discrepancies at the 10-20% level have been observed, probably

due to simplifying assumptions such flat surface ice, flat sea, and constant temperature at the layers used in the theoretical

models. We have thus decided to follow a more empirical approach. The use of two sets of tie-points, one for summer and one

for winter measurements, improves the results of the summer SIC maps relative to a static unique tie-points. This improvement

is not caused by changes in the ice or sea physical temperature, but most probably changes in the ice properties, because as20

snow and ice become wetter during the melt season, the observed radiometric emission changes. This effect is also observed

on measurements from radiometers at higher frequencies than SMOS.

We have introduced the MLE inversion algorithm to retrieve SIC from SMOS data. The method is based on the maximization

of the a posteriori likelihood of the joint distribution of AD and PD indices, assuming that they are independent and normally

distributed. This MLE algorithm is more robust (less noisy) than the linear inversion (Eq. 14). It also improves the retrieved25

SMOS SIC with respect to a linear inversion method because the former takes into account the dispersion (error) of the tie-

points (reference), which makes the algorithm more robust to TB errors. SIC maps obtained using only the AD index are of

better quality than when the AD and PD indices are used together. We attribute this to the higher sensitivity of PD than AD to

physical changes in the media.

SMOS and OSI-SAF SIC maps compare well in terms of correlation (determination coefficient higher than 0.65) and RMS30

except in areas of thin sea ice. This difference can be explained by the higher penetration of SMOS in sea ice (about 60 cm)

relative to the penetration from higher frequency radiometers. Thus, when ice is thinner than 60 cm SMOS data lead to lower

values of SIC that OSI-SAF.
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7 Conclusions

Estimating SIC using L-band observations such as those from SMOS is recommended for the negligible effect of the atmo-

sphere on brightness temperatures, and also because the vertical polarization of TB is insensitive to snow depth (Maaß et al.,

2015).

Two indices derived from brightness temperature, PD and AD, have been chosen, since they verify the two required con-5

ditions: they maximize the difference between open water and sea ice, and they present a low response to changes in the

geophysical characteristics of the media. AD and PD tie-point values have been shown to be very stable during winter and

spring periods (Figure 7), indicating that the values are robust to variations in physical temperature. Thanks to that, one can

safely assume two sets of static (i.e., not temporally varying) tie-points, one for summer and and one for winter for SMOS

data, and not fortnightly or monthly as is done in case of the OSI-SAF product.10

We have shown that the best configuration for SIC retrieval is using AD only with the MLE inversion method. We exclude

PD and TB because they are more sensitive to ice thickness; therefore, the combined use of AD and PD presents larger errors

when thin ice is present (fall). The MLE inversion method presents better results than a linear inversion since it takes into

account the uncertainty of the tie-points.

SIC estimates from SMOS have some drawbacks with respect to those from higher-frequency radiometers. For example,15

whereas the spatial resolution of the high-frequency SIC estimates can reach ∼3 km, the resolution from SMOS will not

be better than about 35 km. A second issue of SMOS is that it underestimates SIC in the presence of thin ice, which is

characteristic of the ice edges and freeze-up periods. Therefore, SMOS data should be used in combination with some form

of spatial masking for those regions. We suggest that SIC estimates from SMOS can complement those from higher-frequency

radiometers, together yielding enhanced SIC products.20

This dataset could be very beneficial during summer period, since SMOS SIC, theoretically, should be less sensitive to

summer metamorphosis, due to the larger wavelength. Previous works show that the TB and SIC measured at 6.9 GHz band are

more robust to summer ice changes than higer frequency measurements (Kern et al., 2016; Gabarro, 2017). The confirmation

of this statement will be done as future work.

Data availability. Level 1 SMOS data can be obtained from ESA distribution system (https://earth.esa.int/web/guest/data-access). OSI25
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Figure 1. Sensitivity of brightness temperature for open seawater over a range of observing frequencies in the microwave band for a set of

key geophysical parameters (created after Wilheit (1978) and Ulaby and Long (2014)).
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Figure 2. Theoretical variation of brightness temperature with angle of incidence at L-band for (blue) seawater, (black) sea ice, and (red) a

snow layer overlying a sea ice layer for (continuous) horizontal and (dashed) vertical polarizations.

Figure 3. Modeled variation of polarization difference (PD) index with angle of incidence for (blue) seawater, (black) sea ice, and (red) a

snow layer overlying a sea ice layer, at L-band. The vertical line at 50◦ incidence angle is drawn for reference to tie-points, which are marked

with a solid circle for the three media.
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Figure 4. Modeled variation of angular difference index (AD) with angle of incidence for (blue) seawater, (black) sea ice, and (red) a snow

layer overlying a sea ice layer for (continuous) horizontal and (dashed) vertical polarizations, and for ∆θ = 35◦, at L-band. The vertical line

at 25◦ incidence angle is drawn for reference to tie-points, which are marked with a solid circle on vertical polarization for the three media.

Figure 5. Theoretical variation with sea ice thickness of (blue; left axis) TB at nadir, (green; right axis) polarization difference (PD) at 50◦

incidence angle, and (red; right axis) angular difference (AD) at ∆θ = 25◦ after the model by Burke et al. (1979), for a sea ice salinity of

8 g/Kg, sea ice temperature of −10◦ C, and a snow layer of 10-cm thick over the ice. Note the factor of 10 change between the left/right

vertical scales.
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Figure 6. Temporal variation of the average brightness temperature TB at nadir for (top) multy year sea ice and (bottom) seawater at the two

regions for generating tie-points. Note the factor of 4 change in the vertical scales.

Figure 7. Same as Fig. 6 except here for angular and polarization difference indices.
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Figure 8. Scatter plot of the angular difference vs polarization difference in March and July 2014, with (red-to-blue) high-to-low index

occurrence values for the two regions for generating tie-points, i.e., 0% and 100% sea ice concentration (SIC).

0 2 4 6 8 10 12
0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Months in 2014

R
M

S
 S

IC

 

 

MLE ADPD one TP

linear ADPD

linear AD

MLE ADPD

MLE AD

Figure 9. Comparison against OSI-SAF, of one tie-point (black dotted line) vs two tie-points (black plane line) with MLE; and MLE vs

linear retrieval tecniques. If not defined in the labels it is two tie-points.
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Figure 10. SMOS SIC with MLE AD+PD minus SMOS SIC with MLE AD inversion tecniques for 3rd November 2014. SIC scale is

presented from 0 to 1.
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Figure 11. SMOS SIC with MLE (a), OSISAF SIC (b) and the differences (c) for 3rd March 2014.

Figure 12. SMOS SIC with MLE (a), OSISAF SIC (b) and the differences (c) for 3rd November 2014.

Table 1. Modeled (with and without snow) and SMOS observed TB , PD, and AD median values. Errors quoted are the standard deviation

around the median.

Modeled Observed all year

(K) median ±σ (K)

0% SIC TB 95.2 99.33± 2.40

(Seawater) PD 62.9 62.56± 2.56

AD 51.8 43.08± 2.57

Modeled with Modeled without Observed Winter Observed Summer

snow (K) snow (K) median ±σ (K) median ±σ (K)

100% SIC TB 249.2 239.3 248.21± 1.56 229.04± 4.99

(Sea Ice) PD 26.8 45.9 20.30± 1.75 25.53± 3.72

AD 8.6 18.8 10.38± 1.17 15.26± 2.31
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Figure 13. Probability to have SMOS SIC more than 0.90 where OSISAF SIC=1 (blue line) and SMOS SIC less than 0.05 where OSISAF

SIC=0 (red line) for 2014. Summer tie-points are used for retrievals from June to September.

Figure 14. Classification of the Artic region according to their values of SMOS and OSI-SAF SIC during March (a) and November (b) 2014.

Three classes are shown: 1) OSISAF SIC < 0.9; 2) OSISAF SIC > 0.9 and SMOS SIC < 0.9; and 3) OSISAF SIC > 0.9 and SMOS

SIC > 0.9.
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Figure 15. Coefficient of determination (R2) between SMOS and OSISAF SIC for 2014, considering only SIC data in the range from 5% to

95%.

Table 2. Sensitivity of measurement TB , PD, and AD to ice temperature (T ), salinity (S), and thickness (d).

Medium Index δI/δT δI/δS δI/δd

(I) (K /◦ C) (K / g/Kg)1 (K / cm)

TB 0.2 0.51

Seawater PD 0.26 0.21

AD 0.20 0.12

TB 0.85 1.00 1.2

Sea ice PD 0.66 0.35 0.02

AD 0.35 0.25 0.05

1practical salinity units

Table 3. Propagated SIC error using each index, computed from Eq. 12 for assumed (T , S, d) variations, and root-sum-squared (RSS).

SIC error index ∆T ∆S ∆d RSS

(%) used 5 K 4 g/Kg 30 cm

∆SIC TB 2.8 2.6 23.4 23.7

∆SIC PD 7.6 3.2 1.4 8.3

∆SIC AD 4.8 2.8 4.2 7.0
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