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Abstract.

Monitoring sea ice concentration is required for operational and climate studies in the Arctic Sea.

Technologies used so far for estimating sea ice concentration have some limitations, as for instance

the impact of the atmosphere, the physical temperature of ice, the presence of snow and melting, etc.

In the last years, L-band radiometry has been successfully used to study some properties of sea ice,5

remarkably sea ice thickness. However, the potential of satellite L-band observations for obtaining

sea ice concentration had not yet been explored.

In this paper, we present preliminary evidence showing that data from Soil Moisture Ocean Salin-

ity (SMOS) mission can be used to estimate sea ice concentration. Our method, based on a Maxi-

mum Likelihood Estimator (MLE), exploits the marked difference in the radiative properties of sea10

ice and seawater. In addition, the brightness temperatures of 100% sea ice and 100% sea water, as

well as their combined values (polarization and angular difference), have been shown to be very

stable during winter and spring, so they are robust in front of variations in physical temperature and

other geophysical parameters. Therefore, we can use just two set of tie points, one for summer and

another for winter, for calculating sea ice concentration, leading to a more robust estimate.15

After analysing the full year 2014 in the entire Arctic, we have found that the sea ice concentration

obtained with our method is well determined as compared to Ocean and Sea Ice Satellite Application

Facility (OSI-SAF) dataset. However, when thin sea ice is present (ice thickness .0.6 m) the method

underestimates the actual sea ice concentration.

Our results open the way for a systematic exploitation of SMOS data for monitoring sea ice20

concentration, at least for specific seasons. Additionally, SMOS data can be synergistically combined

with data from other sensors to monitoring of pan-Arctic sea ice conditions.
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1 Introduction

The Arctic Ocean is under profound transformation. The rapid decline in Arctic sea ice extent and

volume that is both observed and modeled (e.g., Comiso, 2012; Stroeve et al., 2012) may have25

become the key illustration of change in a warming planet, but change is widespread across the

whole Arctic system (e.g., AMAP, 2012; IPCC, 2013; SEARCH, 2013). A retreating Arctic sea ice

cover has a marked impact on regional and global climate, and vice versa, through a large number of

feedback mechanisms and interactions with the climate system (e.g., Holland and Bitz, 2003; Cohen

et al., 2014; Vihma, 2014).30

The launch of the Soil Moisture and Ocean Salinity (SMOS) satellite, in 2009, marked the dawn

of a new type of space-based microwave imaging sensor. Originally conceived to map geophys-

ical parameters of both hydrological and oceanographic interest (e.g., Martin-Neira et al., 2002;

Mecklenburg et al., 2009), SMOS is also making serious inroads in the cryospheric sciences (e.g.,

Kaleschke et al., 2010, 2012; Huntemann et al., 2014). Developed by the European Space Agency35

(ESA), SMOS single payload, called Microwave Imaging Radiometer using Aperture Synthesis (MI-

RAS), is an L-band (1.4 GHz, or 21-cm wavelength) passive interferometric radiometer that mea-

sures the electromagnetic radiation emitted by Earth’s surface. The observed brightness temperature

(TB) can be related to moisture content over the soil and to salinity over the ocean surface (Kerr

et al., 2010; Font et al., 2013), as can be used to infer sea ice thickness (Kaleschke et al., 2012) and40

snow thickness (Maaß, 2013; Maaß et al., 2015).

Sea ice concentration (SIC), defined as the fraction of ice relative to the total area at a given

ocean location, is often used to determine other important climate variables such as ice extent and

ice volume. SIC has been the target of satellite-based passive microwave sensors such as the Special

Sensor Microwave/Imager (SSM/I and SSMIS) and the Advanced Microwave Scanning Radiome-45

ter (AMSR-E and AMSR-2) for more than 30 years. SIC can be estimated due to the fact that the

brightness temperature of sea ice and seawater are quite distinct. There exists a variety of algorithms

to retrieve SIC from TB observations tuned to those higher-frequency sensors, that is frequencies be-

tween 6–89 GHz (e.g., Cavalieri et al., 1984; Comiso, 1986; Ramseier, 1991; Smith, 1996; Markus

and Cavalieri, 2000; Kaleschke et al., 2001; Shokr et al., 2008). Those algorithms present different50

advantages and drawbacks depending on frequency, spatial resolution, atmospheric effects, phys-

ical temperature, and others. According to Ivanova et al. (2015), the first source of error in the

computation of sea ice concentration is the sensitivity to changes in the physical temperature of sea

ice, in particular for those algorithms that use measurements between 10–37 GHz. They identify

atmospheric water vapor and cloud liquid water as the second source of error except for algorithms55

at 89 GHz, where it becomes the dominant error. Another problem faced by higher frequency ra-

diometers is that the SIC retrievals are affected by the thickness of snow cover, which is difficult to

determine.
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Wilheit (1978) analyzed the sensitivity of microwave emissivity of open seawater to a variety

of geophysical variables such as atmospheric water vapor, sea surface temperature, wind speed, and60

salinity as function of frequency (Figure 1). The figure illustrates that L-band (1-2 GHz) observations

are in a sweet spot, with the effect of all variables but salinity being minimal around the SMOS

frequency. The same authors also showed that the signature of multi-year (MY) and first-year (FY)

ice overlap in the lower microwave frequencies, while this is not the case at higher frequencies.

Although some authors (e.g., Mills and Heygster, 2011a; Kaleschke et al., 2013) have recently ex-65

plored the feasibility of SIC determination using an aircraft-mounted L-band radiometer, a method

that extends satellite-based SIC retrievals down to L-band (i.e., SMOS) frequencies has been miss-

ing. We therefore set out to develop a new method, which we present here.

A significant difference between high-frequency and L-band microwave radiometry is that ice

penetration at L-band is non-negligible (Heygster et al., 2014). In other words, ice is more transparent70

(i.e., optically thinner) at low than at high microwave frequencies. As a consequence, the brightness

temperature measured by an L-band antenna is not only emitted by the topmost ice surface layer

but by a larger range of deeper layers within the ice. Thanks to that increased penetration in sea ice

(about 60 cm depending on ice conditions), the SMOS L-band radiometer is also sensitive to ice

thickness (Kaleschke et al., 2012; Huntemann et al., 2014).75

We exploit some of SMOS observational features in this study to develop a new method to esti-

mate SIC. These include a combination of acquisition modes involving dual and full polarization,

continuous multiangle viewing between nadir and 65◦, wide swath of about 1200 km, spatial resolu-

tion of 35-50 km, and 3-day revisit time at the equator but more frequently at the poles. In particular,

the multiangle viewing capability of SMOS is a noteworthy feature; it means that the same location80

on the Earth’s surface can be observed quasi-simultaneously from a continuous range of angles of

incidence as the satellite overpasses it.

The new method we present in this paper uses SMOS brightness temperature observations TB

and a Maximum Likelihood Estimator (MLE) to obtain SIC maps in the Arctic Ocean. We describe

SMOS data and a radiative transfer model for sea ice that allows us to compute its emissivity, in85

Sections 2 and 3, respectively. We then introduce the concept of tie-points and its sensitivity to

different geophysical parameters to help with SIC retrievals via algorithmic inversion of SMOS data,

in Section 4.1, 4.2, 4.3, and 4.4, and the MLE inversion algorithm, in Section 4.5. We then perform

an accuracy assessment of SIC estimates using SMOS by comparing them to an independent SIC

dataset, in Section 5, to close with a discussion and conclusions, in Section 6 and 7, respectively.90
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2 Data

2.1 SMOS data from the Arctic Ocean

Since its launch in 2009, ESA has been generating brightness temperature full-polarization data

products from SMOS. In this study, we focus on the official SMOS Level 1B (L1B) product version

504 data north of 60◦ N from 2014 to estimate SIC. The L1B data contains the Fourier components95

of TB at the antenna reference frame (Deimos, 2010), from which one can obtain temporal snap-

shots of the spatial distribution of TB (i.e., an interferometric TB image) by performing an inverse

Fourier transform. The TB data are geo-referenced at an Equal-Area Scalable Earth (EASE) North-

ern hemisphere grid (Brodzik and Knowles, 2002) of 25 km on the side. The radiometric accuracy

of individual TB observations from SMOS is ∼2 K at boresight, and it increases on the Extended100

Alias Free Field-of-View (Corbella et al., 2011). Proceeding from L1B data, though computationally

more demanding than the more traditional L1C data products, has several benefits. For example, it

allows one to change the antenna grid from the operational size of 128x128 pixels to 64x64 pixels.

As shown by Talone et al. (2015), the smaller grid is optimal in that it helps mitigate some of the

spatial correlations between measurements that are present in the larger grid.105

We correct TB for a number of standard contributions such as geomagnetic and ionospheric rota-

tion and atmospheric attenuation (Zine et al., 2008). The galactic reflection is not significant at high

latitudes, and no correction was applied. We then filter out outliers (defined as those estimates that

deviate by more than 3-σ from the mean value, where σ is the radiometric accuracy at the given

point in the antenna plane) and filtered out TB observations in regions of the field of view that are110

known to have low accuracy due to aliasing (Camps et al., 2005), Sun reflections, and Sun tails.

To lower the noise level, we averaged TB measurements from both ascending and descending or-

bits over periods of 3 days, which thus define the time resolution of our SIC maps. We also averaged

acquisitions in incidence angle binnings of 2◦. Since some incidence angles could be missing due

to the SMOS acquisition feature and interferences, we use a cubic polynomial fit to interpolate TB115

measurements to have the full range of incidence angles in each grid position.

2.2 OSI-SAF and other sea ice data products

We use SIC maps from the database of the Ocean and Sea Ice Satellite Application Facility (OSI

SAF product version OSI-401a) of the European Organization for the Exploitation of Meteorological

Satellites (EUMETSAT) for comparison with the products we are obtaining.120

These are computed from brightness temperature observations from SSMIS at 19 and 37 GHz,

are corrected for atmospheric effects using forecasts from the European Center for Medium Range

Weather Forecasts (ECMWF), use monthly dynamic tie-points, are available on polar Stereographic

10-km grid for both polar hemispheres, and include SIC uncertainty estimates (Tonboe et al., 2016).
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In this study, we used daily SIC maps in the Arctic Ocean from the OSI-SAF northern hemisphere125

products of the year 2014.

We also used SIC estimates from ice charts generated from various sensors by the National Ice

Center (Fetterer and Fowler, 2009) to identify regions of interests to compute the 100% ice-tie-

points.

3 Theoretical model of sea ice radiation at microwave wavelengths130

Passive radiometers measure brightness temperature TB at antenna frame with different incidence

angle. TB can be expressed as:

TB = Υ[TBSURF
+TBATM_DN

] + TBATM_UP
, (1)

where Υ is the atmosphere transmitivity, TBSURF
the radiation emitted by the surface, TBATM_DN

the downward-emitted atmospheric radiation that gets scattered by the terrain in the direction of the135

antenna, and TBATM_UP
the upward-emitted atmospheric radiation.

The surface emission is defined as:

TBSURF
(θ) = es(θ)T, (2)

where θ is the incidence angle relative to zenith angle, es the surface emissivity, and T the physi-

cal temperature of the radiation-emitting body layer. Hereafter, we will use TB to refer to surface140

brightness temperature, for simplicity.

The emissivity e and reflectivity Γ of a layer are related by e= (1−Γ). The reflectivity (some-

times also called R) is the ratio between reflected and incident radiation at the media boundaries

for each polarization. Γ for horizontal H and vertical V polarizations can be calculated using Fres-

nel equations, which depend non-linearly on the dielectric constant (ε), and on the incident θi and145

refracted θt angles:

ΓH(θ) =

∣∣∣∣√ε1 cosθi−
√
ε2 cosθt√

ε1 cosθi +
√
ε2 cosθt

∣∣∣∣2 , ΓV (θ) =

∣∣∣∣√ε2 cosθi−
√
ε1 cosθt√

ε1 cosθt +
√
ε2 cosθi

∣∣∣∣2 . (3)

The frequency-dependent dielectric constant of a medium is a complex number defined as ε(f) =

ε
′
(f) + iε

′′
(f), where the real part ε

′
is related to the electromagnetic energy that can be stored in

the medium, and the imaginary part ε
′′

is related to the energy dissipated within the medium, and150

f is frequency. Note that brightness temperature varies linearly with emissivity (Eq. 2), hence also

with reflectivity.

To calculate the brighness temperature TB of sea ice, we will assume a sea ice model consisting

of horizontal layers of three media – air, snow, and thick ice. We use the incoherent approach (i.e.,

conservation of energy, instead of wave field treatment in the coherent approach). Then a plane-155

parallel radiative transfer model (Eq. 4) is used to propagate to the surface the reflectivity computed
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at and through the ice-snow and snow-air media boundaries, and making a number of simplifying

assumptions. Specifically, our model assumes (a) that the media are isothermal and (b) that the

thickness of the ice layer is semi-infinite so that radiation from an underlying fourth layer (i.e.,

seawater) does not need to be considered. This approach is similar to that used by other authors160

(e.g., Mills and Heygster, 2011b; Maaß, 2013; Schwank et al., 2015). These assumptions are realistic

for the emission of sea ice that is thicker than about 60 cm at the observing frequency of SMOS,

as discussed in Section 1, since the underlying seawater then makes no contribution to the overall

emissivity.

To further simplify our approach, we assume that the snow layer in the model consists of dry165

snow, which is typical of winter Arctic conditions. Dry snow can be considered a lossless medium

at 1.4 GHz, due to the fact that the imagenary part of ε is very small compared with the real part,

as stated in Schwank et al. (2015). That means that there is no attenuation in the snow layer, and

therefore its attenuation coefficient, αsnow, is considered zero. We make this simplifying assumption

because water in a wet snow layer would cause attenuation and therefore increase the total emissivity,170

but it is rarely possible to obtain meaningful data on the amount of water in wet snow. However, dry

snow still has an effect on the refracted angle according to Snell’s law, hence on the emissivity, which

is computed via Eq. (3). The permittivity of dry snow depends on snow density (Tiuri et al., 1984;

Matzler, 1996), which depend on the snow temperature. For a snow density of ρs = 300g/cm3, the

dry snow permittivity at L-band is εsnow = 1.53 following the equation described in Schwank et al.175

(2015).

We can now define the simplified brightness temperature that results from an infinite number of

reflections between the three medias as (Ulaby et al., 1986):

TB(θ,p,f) =

(
1−Γas

1−ΓasΓsi exp−2τ

)
·
[
(1 + Γsi exp−τ )(1− exp−τ )Tsnow + (1−Γsi)exp−τ Tice

]
+TskyΓas,

(4)

where Γas and Γsi are the reflectivity at the air-snow and snow-ice boundaries, respectively, and180

Tsnow and Tice are the physical temperature in the snow and ice layers, respectively. The term τ is

the attenuation factor and is defined as τ = 2dαsecθ, where d is the depth of the snow layer and α

the attenuation constant. Tsky is the temperature of the cosmic background. The dependence of TB

on θ, p, and f is embedded in the expressions of Γ and τ .

The attenuation constant α of the middle layer, in the case of a low-loss medium (ε
′′
/ε
′
<< 1),185

can be expressed as:

α=
πf

c

ε
′′

√
ε′

(5)

where c the speed of light. The skin depth is defined as δs = 1/α (m) and characterizes how deep an

electromagnetic wave can penetrate into a medium (e.g. Ulaby and Long, 2014).

To compute the complex dielectric constant of sea ice εice, which is needed to compute Γsi, we use190

the classic empirical relationship by Vant et al. (1978). In this model, permittivity depends linearly

6



on the ice brine volume Vb as,

ε̂ice = a1 + a2Vbr + i(a3 + a4Vbr) (6)

where Vbr = 10Vb, and the coefficients ai can be obtained by linear interpolation to 1.4 GHz of the

laboratory values from microwave measurements at 1 and 2 GHz (refer to Vant et al. (1978) for195

coefficient values).

The sea ice brine volume Vb can be computed using Cox and Weeks (1983) as follows:

Vb =
ρS

F1(T )− ρSF2(T )
(7)

where ρ, S, and T are sea ice density, salinity, and temperature, respectively. The F functions are

cubic polynomials derived empirically, namely200

Fj(T ) =

3∑
i=0

aijT
i (8)

where the values of the coefficient aij were given in Leppäranta and Manninen (1998) for ice tem-

peratures between –2 ◦C and 0 ◦C, and for lower temperatures in Cox and Weeks (1983); see also

Thomas and Dieckmann (2003).

Figure 2 shows the dependence of brightness temperature, at L-band, with angle of incidence for205

seawater and sea ice, as well as that of ice overlaid by a dry snow layer (following Eq. 4), for nominal

Arctic temperature and salinity values. Specifically, temperature and salinity values used were after

Maaß (2013); for seawater –1.8◦C and 30 psu, respectively, and for sea ice –10◦C and 8 psu. Note

that the TB of seawater is significantly less than that of ice, and that the latter is slightly less than

that of snow over ice. Also note the non-linear dependence of TB on incidence angle, the difference210

between H- and V-polarized waves for all three cases, and the larger variation with incidence angle

of H than V over ice and snow (e.g., Maaß et al., 2015).

We also calculate the theoretical emissivity es of a four-layer model using the Burke et al. (1979)

equation. The additional layer in this model is the seawater under sea ice, and we use the dielectric

constant of seawater from Klein and Swift (1977). This layer does not need to be considered for215

the case of (optically) thick ice, but it becomes “visible" for the case of (optically) thin ice (i.e.,

thicknesses ≤60 cm, depending on ice temperature and salinity). The expression of TB for a four-

layer model is defined in Burke et al. (1979) as:

TB(θ,p) =

3∑
i=1

Ti ·
(

1− e(−γi(θ)∆zi)
)
·
(

1 + Γp,i+1(θ)e(−γi(θ)∆zi)
)
·

i∏
j=1

[1−Γp,i+1(θ)] · e(−
∑i

j=2 γj−1(θ)∆zj−1)

(9)

where Ti is the temperature of each layer, Γ its reflectivity, γ the absorption coefficient, and ∆z the220

layer thickness. The net effect of reducing the sea ice thickness and starting to sense seawater, is a

decrease in surface emissivity, hence of TB (as illustrated in Figure 5), relative to emissivity of thick

ice (Shokr and Sinha, 2015).

7



4 Methods

4.1 Definition of robust indices from brightness temperature225

It is rarely possible to obtain the ancillary geophysical data such as sea ice temperature, salinity,

and ice thickness that is required to estimate brightness temperature from a microwave emission

model. Therefore, making assumptions and approximations becomes critically important. It is pos-

sible, however, to define a number of indices resulting from a combination of brightness temperature

observations that are less sensitive to the unknown physical parameters. For example, estimates of230

soil moisture or sea ice concentration from radiometric measurements are often derived by combin-

ing TB measurements obtained from different polarizations, frequencies, and angles of incidence

(Becker and Choudhury, 1988; Owe et al., 2001).

Hereafter, we use two indices, the polarization difference (PD) index and the angular difference

(AD) index. The PD index is defined as the difference between TB measurements obtained at vertical235

TBV
and horizontal TBH

polarizations as

PD(θ) = TBV
(θ)−TBH

(θ). (10)

The AD index is defined as the difference between two vertical polarization TB measurements

obtained at two different angles of incidence as

AD(θ) = TBV
(θ+ ∆θ)−TBV

(θ). (11)240

Figures 3 and 4 show the variation of PD and AD for the thick-ice model with angle of incidence,

respectively. In defining AD, we use vertical rather than horizontal polarization because identifica-

tion of the three media is facilitated by the larger dynamic range and non-crossing signatures of

vertical polarization (Figure 4). We choose ∆θ = 35◦ angle difference because this value represents

a good compromise between sensitivity of the index and radiometric accuracy in the case of SMOS245

(Camps et al., 2005) and, importantly, is also well supported by the wide range of satellite viewing

angles that characterizes SMOS.

Although the Polarization Ratio (PR) is also a commonly used index, we have chosen PD after

verifying that its dynamic range is larger than that of PR, and suspecting that PD would yield higher

accuracy estimates given the SMOS error budget.250

4.2 Calibration of sea ice concentration using tie-points

Tie-points are widely used for retrieving SIC with higher frequency radiometers, as well as in other

fields such as photogrammetry (e.g., Khoshelham, 2009). In this study, we use tie-points as the typi-

cal TB values for 100% and 0% concentrations which permit us to compute the sea ice concentration.

Tie-points can therefore be viewed as SIC calibration points because their expected radiation can be255

unambiguously determined.
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Figure 3 shows theoretical PD tie-point values for open water and sea ice, as well as ice with a

snow layer. The values for an angle of incidence of 50◦ are marked by solid red circles. This angle

represents a good compromise in PD contrast between the two media and SMOS accuracy (Camps

et al., 2005). The two bounding values are 62.9 K for seawater and 26.8 K for ice with snow cover260

(Table 1). The large difference between tie-point values suggests that it is possible to estimate SIC

at L-band.

Figure 4 shows theoretical AD tie-point values for difference in incidence angle ∆θ = 35◦ and

angles of incidence up to θ = 30◦ which, per Eq. 11, represents the TBV
difference between θ = 60◦

and θ = 25◦. The values for an angle of incidence of 25◦ are marked by solid red circles, for which265

the tie-points are 51.8 K for seawater and 8.6 K for ice with snow cover (Table 1). Hereafter, PD and

AD are evaluated at the incidence angles of θ = 50◦ and θ = 25◦, respectively.

Figure 5 shows that TB at nadir increases non-linearly as function of ice thickness up to the

saturation value of ∼250 K, which is reached when ice becomes about 70-cm thick. Notice that TB

estimates start at an ice thickness of 5 cm because there is a discontinuity in the Burke model as the270

thickness of ice tends to zero (e.g., Kaleschke et al., 2010; Mills and Heygster, 2011a; Maaß, 2013;

Kaleschke et al., 2013). Compared with TB , the total variation of both AD and PD with ice thickness

is significantly smaller and, therefore, are better suited to estimate sea ice concentration.

4.3 Sensitivity of estimates of sea ice concentration to surface emissivity changes

In this section, we calculate the sensitivity of SIC estimates to changes in surface emissivity due to275

variations in the physical properties of sea ice (i.e., salinity, temperature, and thickness). We work

with estimated SIC derived from the three indices TB , PD, and AD. This is done following a standard

error propagation method (as also used in Comiso et al. (1997)). It is important to determine how

changes in ice conditions affect SIC estimates through those three indices to try to minimize SIC

errors obtained using SMOS.280

Table 2 lists the sensitivities, according to our theoretical model, of the indices I (I = TB , PD,

and AD) to the geophysical variables of ice and seawater: physical temperature (i.e., δI/δT ), salin-

ity (δI/δS), and thickness (δI/δd) evaluated within the ranges of Twater=[2,15], Swater=[10,38],

Tice=[-20,-5], and Sice=[2,12]. It should be noted that those sensitivities are calculated using the

model and the nominal Arctic temperature and salinity values defined in Section 3. In order to as-285

sess which index is less sensitive to changes in a given geophysical variable, we calculate absolute

sensitivities, defined as the sensitivities multiplied by the dynamic range of the measurements.

Knowing the value of the tie-points of sea ice (SIC=100%) and seawater (SIC=0%), one can

compute the average slopes of the SIC estimates to their corresponding parameters TB , PD, and

AD (i.e., δSIC/δTB , δSIC/δPD, and δSIC/δAD). From data in Table 1, we obtain the average290

slopes as: δSIC/δTB = 0.65, δSIC/δPD = 2.32, and δSIC/δAD = 2.77. These slopes can be

used to propagate TB , AD, and PD errors to errors in the SIC estimates.
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We assume reasonable values for the variability of the physical parameters on which our emissiv-

ity model depends on, namely T,S and d of ice (generically denoted by g), as follows: ∆T=5 K,

∆S=4 psu, and ∆d=30 cm. Using the values in Table 2 and the calculated average slopes, one can295

finally compute the errors in SIC estimates associated with the geophysical variability of g when the

index I is used to evaluate SIC as:

∆SIC|g =

∣∣∣∣δSICδI
∣∣∣∣ · ∣∣∣∣δIδg

∣∣∣∣ ·∆g (12)

To evaluate the final impact of geophysical variability on the SIC evaluation using the index I ,

we compute the root-sum-squared (RSS) of the SIC uncertainties due to the geophysical parameters300

(Table 3). The table shows that AD is the most robust index to retrieve SIC, slightly better than

PD, and significantly better than TB . Because TB is theoretically more sensitive to thin ice than

the other two indices, one can expect that the use of TB to retrieve SIC would result in larger SIC

errors. Moreover, the uncertainty distribution of TB is too broad, especially due to thickness, thus

less adequate to fulfill the statistical hypotheses used to derive SIC. Despite the uncertainties in305

the theoretical physical model of ice, we consider the differences significant enough to focus on

inversion algorithms using the PD and AD indices, and not on TB .

4.4 Comparison with empirical tie-points

Following the theoretical analysis, we now turn to evaluate its performance empirically. We therefore

select several regions of interest in the Arctic Ocean where SIC has been determined to be either310

0% or 100% by other sensors and methods. To identify such regions, we use SIC maps from OSI-

SAF and from the National Ice Center. In particular, we selected the open seawater region between

latitudes 55◦–70◦ N and longitudes 20◦ W and 25◦ E, which comprises more than 2000 pixels in

a typical SMOS image. For sea ice, we selected the multi-year (MY) ice region between latitudes

78◦–83◦ N (the northernmost latitude observable by SMOS) and longitudes 75◦–150◦ W, which315

comprises about 1000 pixels per SMOS image. We expect some level of uncertainty associated with

the selection of the region to compute the 100% tie-points for summer periods stemming from known

errors in the summer SIC products by OSI-SAF (Tonboe et al., 2016).

We calculated SMOS brightness temperatures of these target regions to evaluate their potential

as empirical tie-points for seawater and sea ice. The temporal variation, in 2014, of the spatially320

averaged (median) TB at nadir of the two geographic regions are shown in Figure 6. The values

are consistent with the modeled values in Table 1. For the seawater region, the figure shows that

the brightness temperature is constant, at about 99 K, to within ∼2.5 K (one σ standard deviation)

throughout the year. For the ice region, TB is also stable during the non-summer months, but it

drops by about 20 K during the summer season due to changes in surface emissivity associated with325

snow and ice melt and concurrent formation of meltwater ponds. The factor-two increase in formal
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error in summer relative to winter is also an indication of increased radiometric variability in surface

conditions (as shown in Table 1).

Figure 7 shows that the temporal radiometric stability of the seawater region during 2014, and that

of sea ice during the non-summer months, is also reflected in the AD and PD indices, as one would330

expect. This suggests that a different set of tie-points during winter and summer periods could be

beneficial for the quality of the SIC retrievals. On the other hand, the AD and PD tie-point values

are very stable during winter and spring (November to June), indicating that values are robust to

variations on physical temperature and that may not be necessary to compute tie-point values often

(daily or monthly), as done with the OSI-SAF product.335

Figure 8 shows a 2-D scatter plot of AD and PD indices for the two regions defined above dur-

ing March (winter tie-point) and July (summer tie-point) 2014. The index values associated with

seawater and with ice group form two well-differentiated clusters, which implies that the two types

of regions can be clearly segregated using these indices. This is also true for the summer tie-points

even though in this case the dispersion is larger and values are closer to sea tie-points, as expected340

following Figure 7.

The modeled (with snow and without) and observed TB, AD, and PD tie-point values for winter

and summer 2014, and the standard deviation (σ) of the measurements are listed in Table 1. It is

encouraging that most of the values are in agreement at about 2σ despite underlying model assump-

tions such as uniform sea ice temperature and specular ocean surface. Another important result is345

that the observed SMOS data is closer to the model when snow is considered.

4.5 Retrieval of sea ice concentration

The brightness temperature of mixed pixels, that is, ocean pixels partially covered by sea ice, can be

expressed as a linear combination of the brightness temperature of ice and seawater weighted by the

percentage of each surface type (e.g., Comiso et al., 1997):350

TBmixed
= CTBice

+ (1−C)TBwater
(13)

where C is the fraction of ice present in a pixel, with C = 1 corresponds to 100% of ice and C = 0

to 0% of ice, or equivalently 100% of seawater. Since AD and PD (Eqs. 10-11) depend linearly on

brightness temperature, Eq. (13) can be used to express both AD and PD.

There are several possible strategies to estimate sea ice concentration at a given pixel from the355

AD and PD values measured at that pixel. The simplest approach is to consider that the values of

the tie-points are good representatives of the values of AD and PD at the respective medium, i.e.,

seawater and sea ice, such that

AD ≈ CADice + (1−C)ADwater

PD ≈ C PDice + (1−C)PDwater (14)360
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Concentration C can thus be retrieved from the value of either AD or PD by inverting the asso-

ciated linear equation. In general, C can also be evaluated simultaneously with the AD and the PD

observations by averaging the values obtained from both indices, as:

C =
1

2

[
AD−ADwater

ADice−ADwater
+

PD−PDwater
PDice−PDwater

]
(15)

This is known as the Linear Estimation of SIC. However, this approach might be too simple,365

as the values of AD and PD on ice and seawater can have some non-negligible dispersion due to

geophysical conditions and to radiometric noise.

In this paper, a new inversion algorithm to estimate C is presented, which considers that AD and

PD have known distributions, and by combining the observations it is possible to infer the value of

C that is statistically more probable.370

The distributions of the SMOS AD and PD are unimodal and symmetric (not shown), thus allow-

ing us to approximate them by Gaussians and considering the pure ice and pure sea measurements as

independent. Therefore we can easily use a Maximum-Likelihood Estimation (MLE) approach. The

MLE has many optimal properties in statistical inference such as (e.g., Myung, 2003) sufficiency

(the complete information about the parameter of interest is contained in the MLE estimator), con-375

sistency (the true value of the parameter that generated the data is recovered asymptotically, i.e. for

sufficiently large samples), efficiency (asymptotically, it has the lowest-possible variance among all

possible parameter estimates), and parameterization invariance (same MLE solution obtained inde-

pendent of the parametrization used).

Assuming the linearity superposition of indices (Eq. 14), it follows that the distributions of AD380

and PD (fAD,fPD) in a general ocean pixel can be expressed as:

fAD ∼N
(
C ADice + (1−C) ADwater,

√
C2σ2

ADice
+ (1−C)2σ2

ADwater

)
(16)

fPD ∼N
(
C PDice + (1−C) PDwater,

√
C2σ2

PDice
+ (1−C)2σ2

PDwater

)
(17)

where the bar over the AD and PD indices refers to their mean values, the subindex identifies the

medium, and σ is the associated standard deviation for each index and media. To obtain the mean and385

standard deviation values, we used the SMOS measurements at the regions for generating tie-points

and periods discussed in Sect. 4.4. The symbol N means normal probability density function.

As a first approximation, we have considered AD and PD two independent variables. It thus fol-

lows that the likelihood function L is equal to the product of their distributions or, equivalently

and conveniently, to their sum (recall that the likelihood is the logarithm of the probability density390

function), thus:

l̂ = ln(L) = ln(fAD) + ln(fPD) (18)
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The MLE of SIC is the value of C that maximizes the likelihood function l̂.

5 Results

5.1 Quality algorithm assessment395

We have calculated AD and PD values from SMOS brightness temperature and used the MLE ap-

proach to obtain SIC estimates over the Arctic Ocean in year 2014. We have estimated SIC using

different tie-points, characterized by their central value and dispersion. For seawater, we have used

a single, year-round median value and the associated standard deviation for each index. For ice tie-

points, we have used two sets of values, as suggested by the results in Figure 7. For the first set, we400

have computed for all years the median of the tie-points between December and May (Table 1), i.e.,

the winter-spring months when Arctic sea ice extent is close to its annual maximum. For the second

set, we have used those same winter-spring values for the months of October through May but the

average of the summer values for the months between June and September (Table 1). We have not

used the October nor November data to compute ice tie-points values because these are months of405

maximum extension of thin ice, and underlying emission through thin ice could cause some errors

on the SIC estimates (Figure 5 and Table 2).

The root-mean-square (RMS) error of SIC retrievals relative to OSI-SAF over the Arctic Ocean

is shown in Figure 9. Four types of retrievals and two sets of tie-points are compared. Introducing a

specific set of summer tie-points (black solid line) reduces the RMS error with respect to using only410

one unique tie-point for the whole year (black dotted line). The RMS reduction is about 24% and

12% in July and August, respectively, and to smaller degree in June and September. Therefore, we

will hereafter use a different set of tie-points values in summer and winter.

Furthermore, using the set of summer-winter tie-points, results from four types of inversions that

stem from combinations of linear and MLE method and indices are compared in Figure 9. The lowest415

RMS values through all months in 2014 but January are obtained with the MLE inversion algorithm

and the AD index alone. The evolution along the year of the RMS obtained with the linear retrieval

method is similar in the case of the MLE method, but at ∼5-10% increased noise level. Larger RMS

values and increased temporal variability are observed when the PD index is also used. The RMS

error of all retrievals is largest in Fall, in particular if the PD index is used. Those are months of ice420

formation, therefore vast regions become covered with frazil ice, nilas, and thin young ice, following

the minimum ice extension of September. All methods converge to similar results in September, since

this period is the one with minimum ice extension and minimum thin ice is expected (so resulting in

very small difference between using AD or AD and PD methods).

The spatial variation of the difference in MLE SIC retrievals when using only the AD index and425

when using the AD and PD indices for the period 2–5 November 2014 is shown in Figure 10. As

expected, the largest differences are associated with regions of thin ice formation, in particular in
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the Laptev Sea, Kara Sea, and along the edge of the ice pack both in the western Arctic and the

Atlantic sector. Together, the spatio-temporal snapshots in Figures 9-10 highlight the sensitivity of

PD to the presence of thin ice, what naturally leads to an increase of the retrieval error when PD is430

used. This conclusion is not fully consistent with the analysis done using the models in Section 4.3,

on the dependence of the indices (TB , PD, AD) on ice thickness. Table 2 shows that, theoretically,

PD is slightly less sensitive to thin ice than AD. However, the AD index is the least sensitive (lowest

RSS) to variations of all the analyzed variables. Therefore, we will hereafter use the AD index,

summer-winter tie-points values, and an MLE-based estimator for SIC retrievals.435

5.2 Accuracy assessment of SMOS SIC retrievals

We have evaluated the mutual consistency of the SMOS SIC retrievals, and in the process we have

determined which is the approach that leads to the minimum error in the retrieval of SIC. We now

evaluate the accuracy of those retrievals. Although a representative (in the space-time domain)

ground-truth dataset that allows us to assess the accuracy of SMOS retrievals does not exist, the440

SIC estimates from OSI-SAF are a good option for cross-check. They are independent from SMOS,

the spatio-temporal sampling and resolution of their products is commensurate with that of SMOS,

and their error budget is available.

The spatial distribution of SMOS SIC in the Arctic Ocean has been estimated from SMOS data

for the 3-day period 2–5 March 2014 and it has been compared with OSI-SAF SIC product on 4445

March 2014 . The largest differences between both algorithms are located at the margins of the sea

ice cover, where thinner ice can be expected (see Figure 11). March is the month of maximum sea

ice extent, but the results for other winter months are similar.

On the other hand, November is the month of maximum extension of thin young ice, specially

through the Beaufort Sea since ice in the Laptev and Kara seas remains thin during winter (Shokr450

and Dabboor, 2013). Significantly larger differences between SMOS and OSI-SAF products are

now observed over a much wider area of the Arctic Ocean including the Barents, Kara, Laptev, East

Siberian, and Beaufort seas (Figure 12).

The brightness temperature measured by a passive microwave radiometer, increases with sea ice

thickness up to a saturation value. Such an increase is more gradual for low frequencies and hori-455

zontal polarization (e.g., Ivanova et al., 2015). At the SMOS L-band, the increase of emissivity with

ice thickness reaches saturation for an ice thickness that is about 60 cm, depending on ice salinity

and temperature (Kaleschke et al., 2012) whereas at the OSI-SAF frequencies (19 and 37 GHz) is

only a few cm (Heygster et al., 2014; Ivanova et al., 2015). For example, for pixels that are 100%

covered by thin ice of say 25-cm thickness, the AD and PD values for those pixels will be slightly460

different than the tie-point value of ice because the value of ice tie-points was computed from thick,

MY ice (see Figure 5) for model analysis. This contrast leads to a difference in classification of such

pixels, that will be considered mixtures of water and ice in the case of SMOS, and as 100% ice with
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OSI-SAF. In other words, the estimation of SIC of a seas covered by frazil ice and nilas will be

higher for OSI-SAF than for SMOS.465

To further analyze this classification difference, we have calculated the probabilities of SMOS

SIC conditioned by values of OSI-SAF SIC using a full year, 2014, of Arctic-wide estimates. The

probability of estimating a SIC value with SMOS that is less or equal than 5% when the estimated

OSI-SAF SIC is 0% is shown in Figure 13 (red line). As expected, the conditioned probability is

very high throughout the year. This implies that both products have a similar ability to detect (close470

to) 100% ocean pixels. This implies that the probability of having high SMOS SIC values when OSI-

SAF is low, is almost zero, which also means that the rate of triggering false alarms on ice detection

with SMOS is low.

On the contrary, the probability of estimating a SMOS SIC equal or higher than 90% while the

OSI-SAF SIC is 100% is not constant during the year and decrease with respect to the previous475

case. During the winter period (between January and April), the conditioned probability is notably

high (near 0.9) (see Figure 13 blue line). Then it decreases sharply during spring and most notably in

summer. This change in the conditioned probability starting in the spring could stem from a change in

ice properties. As the snow becomes wetter with the onset of the melt season the observed emissivity

starts to change, and this, varies with the observating frequency (different scattering response). The480

observed increase of the conditioned probability in June could be due to the use of a summer tie-

point (applied from June to September) which improve the RMS with respect to OSISAF as shown

in Figure 9. The low conditioned probability in Fall can be explained by the presence of thin ice.

We have analysed the spatial distribution of the conditioned probability of SIC estimates for the

months of March and November. Those regions where OSI-SAF SIC is more than 0.9 while SMOS485

SIC is less than 0.9 (light blue color in Figures 14) outline the edge of the ice cover. This is in

good correspondence with the expected areas of thin ice. Besides, this condition is extended when

analysing November data (Figure 14b) when thin ice is more frequent in the Arctic.

During the winter months, the spatial coefficients of determination (r2) between SMOS and OSI-

SAF SIC is high (more than 0.65), what again is consistent with our interpretation about the role490

of thin ice in SMOS SIC (see Figure 15). As melt starts, the correlation between SIC estimates

continues to be high, thanks to the use of the summer tie-point in the retrieval. In September, ice

cover extent is at minimum because ice growth has not started yet there is almost no thin ice, and

the correlation remains high. The correlation drops in the Fall (between October and December)

because ice growth starts by freezing of the sea surface, producing large amounts of new thin ice. To495

compute these values, we have only included SIC values between 0.05 (5%) and 0.95 (95%) when

computing correlations to avoid the two extremes values leading to too high, non-significant values

of correlation.
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6 Discussion

The two PD and AD indices, which are derived from brightness temperature, have been designed to500

maximize their differences between open water and sea ice. Both have a low response to changes in

the geophysical characteristics of the media, which has been confirmed by using theoretical models

and by performing sensitivity analysis.

The tie-points, defined as the characteristic values of our reference indices on the different media,

have been calculated from SMOS data. When compared to theoretical values, some small discrep-505

ancies at the 10-20% level have been observed, probably due to simplifying assumptions such flat

surface ice, flat sea, and constant temperature at the layers used in the theoretical models. We have

thus decided to follow a more empirical approach. The use of two sets of tie-points, one for sum-

mer and one for winter measurements, improves the results of the summer SIC maps relative to a

static unique tie-points. This improvement is not caused by changes in the ice or sea physical tem-510

perature, but most probably changes in the ice properties, because as snow and ice become wetter

during the melt season, the observed radiometric emission changes. This effect is also observed on

measurements from radiometers at higher frequencies than SMOS.

We have introduced the MLE inversion algorithm to retrieve SIC from SMOS data. The method

is based on the maximization of the a posteriori likelihood of the joint distribution of AD and PD515

indices, assuming that they are independent and normally distributed. This MLE algorithm is more

robust (less noisy) than the linear inversion (Eq. 14). It also improves the retrieved SMOS SIC with

respect to a linear inversion method because the former takes into account the dispersion (error) of

the tie-points (reference), which makes the algorithm more robust to TB errors. SIC maps obtained

using only the AD index are of better quality than when the AD and PD indices are used together.520

We attribute this to the higher sensitivity of PD than AD to physical changes in the media.

SMOS and OSI-SAF SIC maps compare well in terms of correlation (determination coefficient

higher than 0.65) and RMS except in areas of thin sea ice. This difference can be explained by

the higher penetration of SMOS in sea ice (about 60 cm) relative to the penetration from higher

frequency radiometers. Thus, when ice is thinner than 60 cm SMOS data lead to lower values of SIC525

that OSI-SAF.

7 Conclusions

Estimating SIC using L-band observations such as those from SMOS is recommended for the negli-

gible effect of the atmosphere on brightness temperatures, and also because the vertical polarization

of TB is insensitive to snow depth (Maaß et al., 2015).530

Two indices derived from brightness temperature, PD and AD, have been chosen, since they verify

the two required conditions: they maximize the difference between open water and sea ice, and they

present a low response to changes in the geophysical characteristics of the media. AD and PD
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tie-point values have been shown to be very stable during winter and spring periods (Figure 7),

indicating that the values are robust to variations in physical temperature. Thanks to that, one can535

safely assume two sets of static (i.e., not temporally varying) tie-points, one for summer and and

one for winter for SMOS data, and not fortnightly or monthly as is done in case of the OSI-SAF

product.

We have shown that the best configuration for SIC retrieval is using AD only with the MLE inver-

sion method. We exclude PD and TB because they are more sensitive to ice thickness; therefore, the540

combined use of AD and PD presents larger errors when thin ice is present (fall). The MLE inversion

method presents better results than a linear inversion since it takes into account the uncertainty of

the tie-points.

SIC estimates from SMOS have some drawbacks with respect to those from higher-frequency

radiometers. For example, whereas the spatial resolution of the high-frequency SIC estimates can545

reach ∼3 km, the resolution from SMOS will not be better than about 35 km. A second issue of

SMOS is that it underestimates SIC in the presence of thin ice, which is characteristic of the ice

edges and freeze-up periods. Therefore, SMOS data should be used in combination with some form

of spatial masking for those regions. We suggest that SIC estimates from SMOS can complement

those from higher-frequency radiometers, together yielding enhanced SIC products.550

This dataset could be very beneficial during summer period, since SMOS SIC, theoretically,

should be less sensitive to summer metamorphosis, due to the larger wavelength. Previous works

show that the TB and SIC measured at 6.9 GHz band are more robust to summer ice changes than

higer frequency measurements (Kern et al., 2016; Gabarro, 2017). The confirmation of this statement

will be done as future work.555
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Figure 1. Sensitivity of brightness temperature for open seawater over a range of observing frequencies in the

microwave band for a set of key geophysical parameters (created after Wilheit (1978) and Ulaby and Long

(2014)).

Figure 2. Theoretical variation of brightness temperature with angle of incidence at L-band for (blue) seawater,

(black) sea ice, and (red) a snow layer overlying a sea ice layer for (continuous) horizontal and (dashed) vertical

polarizations.
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Figure 3. Modeled variation of polarization difference (PD) index with angle of incidence for (blue) seawater,

(black) sea ice, and (red) a snow layer overlying a sea ice layer, at L-band. The vertical line at 50◦ incidence

angle is drawn for reference to tie-points, which are marked with a solid circle for the three media.

Figure 4. Modeled variation of angular difference index (AD) with angle of incidence for (blue) seawater,

(black) sea ice, and (red) a snow layer overlying a sea ice layer for (continuous) horizontal and (dashed) vertical

polarizations, and for ∆θ = 35◦, at L-band. The vertical line at 25◦ incidence angle is drawn for reference to

tie-points, which are marked with a solid circle on vertical polarization for the three media.
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Figure 5. Theoretical variation with sea ice thickness of (blue; left axis) TB at nadir, (green; right axis) po-

larization difference (PD) at 50◦ incidence angle, and (red; right axis) angular difference (AD) at ∆θ = 25◦

after the model by Burke et al. (1979), for a sea ice salinity of 8 psu, sea ice temperature of −10◦ C, and a snow

layer of 10-cm thick over the ice. Note the factor of 10 change between the left/right vertical scales.
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Figure 6. Temporal variation of the average brightness temperature TB at nadir for (top) multy year sea ice and

(bottom) seawater at the two regions for generating tie-points. Note the factor of 4 change in the vertical scales.
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Figure 7. Same as Fig. 6 except here for angular and polarization difference indices.
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Figure 8. Scatter plot of the angular difference vs polarization difference in March and July 2014, with (red-to-

blue) high-to-low index occurrence values for the two regions for generating tie-points, i.e., 0% and 100% sea

ice concentration (SIC).
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Figure 9. Comparison against OSI-SAF, of one tie-point (black dotted line) vs two tie-points (black plane line)

with MLE; and MLE vs linear retrieval tecniques. If not defined in the labels it is two tie-points.

Figure 10. SMOS SIC with MLE AD+PD minus SMOS SIC with MLE AD inversion tecniques for 3rd Novem-

ber 2014. SIC scale is presented from 0 to 1.
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Figure 11. SMOS SIC with MLE (a), OSISAF SIC (b) and the differences (c) for 3rd March 2014.

Figure 12. SMOS SIC with MLE (a), OSISAF SIC (b) and the differences (c) for 3rd November 2014.
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Figure 13. Probability to have SMOS SIC more than 0.90 where OSISAF SIC=1 (blue line) and SMOS SIC

less than 0.05 where OSISAF SIC=0 (red line) for 2014. Summer tie-points are used for retrievals from June to

September.
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Figure 14. Classification of the Artic region according to their values of SMOS and OSI-SAF SIC during

March (a) and November (b) 2014. Three classes are shown: 1) OSISAF SIC < 0.9; 2) OSISAF SIC > 0.9

and SMOS SIC < 0.9; and 3) OSISAF SIC > 0.9 and SMOS SIC > 0.9.

Figure 15. Coefficient of determination (R2) between SMOS and OSISAF SIC for 2014, considering only SIC

data in the range from 5% to 95%.
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Table 1. Modeled (with and without snow) and SMOS observed TB , PD, and AD median values. Errors quoted

are the standard deviation around the median.

Modeled Observed all year

(K) median ±σ (K)

0% SIC TB 95.2 99.33± 2.40

(Seawater) PD 62.9 62.56± 2.56

AD 51.8 43.08± 2.57

Modeled with Modeled without Observed Winter Observed Summer

snow (K) snow (K) median ±σ (K) median ±σ (K)

100% SIC TB 249.2 239.3 248.21± 1.56 229.04± 4.99

(Sea Ice) PD 26.8 45.9 20.30± 1.75 25.53± 3.72

AD 8.6 18.8 10.38± 1.17 15.26± 2.31

Table 2. Sensitivity of measurement TB , PD, and AD to ice temperature (T ), salinity (S), and thickness (d).

Medium Index δI/δT δI/δS δI/δd

(I) (K /◦ C) (K / psu)1 (K / cm)

TB 0.2 0.51

Seawater PD 0.26 0.21

AD 0.20 0.12

TB 0.85 1.00 1.2

Sea ice PD 0.66 0.35 0.02

AD 0.35 0.25 0.05

1practical salinity units

Table 3. Propagated SIC error using each index, computed from Eq. 12 for assumed (T , S, d) variations, and

root-sum-squared (RSS).

SIC error index ∆T ∆S ∆d RSS

(%) used 5 K 4 psu 30 cm

∆SIC TB 2.8 2.6 23.4 23.7

∆SIC PD 7.6 3.2 1.4 8.3

∆SIC AD 4.8 2.8 4.2 7.0

29


