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Abstract.

We present a new method to estimate sea ice concentration in the Arctic Ocean using bright-

ness temperature observations from the Soil Moisture Ocean Salinity (SMOS) satellite. The method,

which employs a Maximum Likelihood Estimator (MLE), exploits the marked difference in radiative

properties between sea ice and seawater, in particular when observed over the wide range of satellite5

viewing angles provided by SMOS. Observations at L-band frequencies such as those from SMOS

(i.e., 1.4 GHz, or equivalently 21-cm wavelength) are advantageous for the remote sensing of sea ice

because the atmosphere is virtually transparent at that frequency.

We find that sea ice concentration (SIC) is well determined, quantified as a 0.75 correlation –

the average value over the entire Arctic during year 2014 – between SIC estimates obtained using10

the MLE method on L-band data and the method of the Ocean and Sea Ice Satellite Application

Facility (OSI-SAF) on data from sensors such as the Special Sensor Microwave/Imager (SSM/I and

SSMIS).We find that sea ice concentration is well determined (correlations of about 0.75) when

compared to estimates from other sensors such as the Special Sensor Microwave/Imager (SSM/I and

SSMIS). We also find that the performance of the method decreases under thin sea ice conditions15

(ice thickness .0.6 m). This result is expected because thin ice is partially transparent at L-band

thus causing sea ice concentration to be underestimated. Wetherefore argue that SMOS estimates

can be complementary to estimates of sea ice concentration of both thick and thin sea ice from other

satellite sensors such as the Advanced Microwave Scanning Radiometer (AMSR-E and AMSR-2)

or SSMIS, enabling a synergistic monitoring of pan-Arctic sea ice conditions.20

1 Introduction

The Arctic Ocean is under profound transformation. The rapid decline in Arctic sea ice extent and

volume that is both observed and modeled (e.g., Comiso, 2012; Stroeve et al., 2012) may have

become the key illustration of change in a warming planet, but change is widespread across the
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whole Arctic system (e.g., AMAP, 2012; IPCC, 2013; SEARCH, 2013). A retreating Arctic sea ice25

cover has a marked impact on regional and global climate, and vice versa, through a large number of

feedback mechanisms and interactions with the climate system (e.g., Holland and Bitz, 2003; Cohen

et al., 2014; Vihma, 2014).

The launch of the Soil Moisture and Ocean Salinity (SMOS) satellite, in 2009, marked the dawn

of a new type of space-based microwave imaging sensor. Originally conceived to map geophys-30

ical parameters of both hydrological and oceanographic interest (e.g., Martin-Neira et al., 2002;

Mecklenburg et al., 2009), SMOS is also making serious inroads in the cryospheric sciences (e.g.,

Kaleschke et al., 2010, 2012; Huntemann et al., 2014). Developed by the European Space Agency

(ESA), SMOS single payload, called Microwave Imaging Radiometer using Aperture Synthesis (MI-

RAS), is an L-band (1.4 GHz, or 21-cm wavelength) passive interferometric radiometer that mea-35

sures the electromagnetic radiation emitted by Earth’s surface. The observed brightness temperature

(TB) can be related to moisture content over the soil and to salinity over the ocean surface (Kerr

et al., 2010; Font et al., 2013), as can be used to infer sea ice thickness (Kaleschke et al., 2012) and

snow thickness (Maaß, 2013; Maaß et al., 2015).

Sea ice concentration (SIC), defined as the fraction of ice relative to the total area at a given40

ocean location, is often used to determine other important climate variables such as ice extent and

ice volume. SIC has therefore been the target of satellite-based passive microwave sensors such as

the Special Sensor Microwave/Imager (SSM/I and SSMIS)AMSR-2 and SSMIS and the Advanced

Microwave Scanning Radiometer (AMSR-E and AMSR-2) for more than 30 years. SIC can be esti-

mated due to the fact thatbecause the brightness temperature of sea ice and seawater are quite distinct.45

There exists a variety of algorithms to retrieve SIC from TB observations tuned to those higher-

frequency sensors, that is frequencies between 6–89 GHz (e.g., Cavalieri et al., 1984; Comiso, 1986;

Hollinger and Ramseier, 1991; Smith, 1996; Markus and Cavalieri, 2000; Kaleschke et al., 2001;

Shokr et al., 2008). Those algorithms present different advantages and drawbacks depending on fre-

quency, spatial resolution, atmospheric effects, physical temperature, and others. See for example50

Ivanova et al. (2015) for a review of a sample of thirteen of those algorithms. Although some au-

thors (e.g., Mills and Heygster, 2011a; Kaleschke et al., 2013) have recently explored the feasibility

of SIC determination using an aircraft-mounted L-band radiometer, a method that extends satellite-

based SIC retrievals down to L-band (i.e., SMOS) frequencies has been missing. We therefore set

out to develop a new method, which we present here.55

A significant difference between high-frequency and L-band microwave radiometry is that , unlike

the former, the ice penetration at L-bandof the latter is non-negligible (Heygster et al., 2014). In other

words, ice is more transparent (i.e., optically thinner) at low than at high microwave frequencies.

As a consequence, the brightness temperature measured by an L-band antenna is not only emitted

by the topmost ice surface layer but by a larger range of deeper layers within the ice. Thanks to60

that increased penetration in sea ice (about 60 cm depending on ice conditions), the SMOS L-band
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radiometer is also sensitive to ice thickness (Kaleschke et al., 2012; Huntemann et al., 2014). In fact,

ideally one would want to estimate both SIC and sea ice thickness simultaneously [e.g.,][]Mills.2011,

what is left for a future work.

Wilheit (1978) analyzed the sensitivity of microwave emissivity of open seawater to a variety65

of geophysical variables such as atmospheric water vapor, sea surface temperature, wind speed, and

salinity as function of frequency (Figure 1). The figure illustrates that L-band (1-2 GHz) observations

are in a sweet spot, with the effect of all variables but salinity being minimal around the SMOS

frequency. The same authors also showed that the signature of multi-year (MY) and first-year (FY)

ice overlap in the lower microwave frequencies, while this is not the case at higher frequencies.70

We exploit some of SMOS key observational features in this study to develop a new method to

estimate SIC. These include a combination of acquisition modes involving dual and full polarization,

continuous multiangle viewing between nadir and 65◦, wide swath of about 1200 km, spatial resolu-

tion of 35-50 km, and 3-day revisit time at the equator but more frequently at the poles. In particular,

the multiangle viewing capability of SMOS is a noteworthy feature; it means that the same location75

on the Earth’s surface can be observed quasi-simultaneously from a continuous range of angles of

incidence as the satellite overpasses it. The spatial resolution of about 35-50 km.

The new method we present in this paper uses SMOS brightness temperature observations TB

and a Maximum Likelihood Estimator (MLE) to obtain SIC maps in the Arctic Ocean. We describe

SMOS data and a radiative transfer model for sea ice that allows us to compute its emissivity, in80

Sections 2 and 3, respectively. We then introduce the concept of tie-points and its sensitivity to

different geophysical parameters to help with SIC retrievals via algorithmic inversion of SMOS data,

in Section 4.1, 4.2, 4.3, and 4.4, and the MLE inversion algorithm, in Section 4.5. We then perform

an accuracy assessment of SIC estimates using SMOS by comparing them to an independent SIC

dataset, in Section 5, to close with a discussion and conclusions, in Section 6 and 7, respectively.85

2 Data

2.1 SMOS data from the Arctic Ocean

Since its launch in 2009, ESA has been generating brightness temperature full-polarization data

products from SMOS. In this study, we focus on the official SMOS Level 1B (L1B) product version

504 data north of 60◦ N from 2014 to estimate SIC.(The analysis of the entire SMOS dataset, which90

continues to be growing, is left for future work.) The L1B data contains the Fourier components

of TB at the antenna reference frame (Deimos, 2010), from which one can obtain temporal snap-

shots of the spatial distribution of TB (i.e., an interferometric TB image) by performing an inverse

Fourier transform. The TB data are geo-referenced at an Equal-Area Scalable Earth (EASE) North-

ern hemisphere grid (Brodzik and Knowles, 2002) of 25 km on the side. The radiometric accuracy95

of individual TB observations from SMOS is ∼2 K at boresight, and it increases to ∼4.5 K on the
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Extended Alias Free Field-of-View (Corbella et al., 2011). Proceeding from L1B data, though com-

putationally more demanding than the more traditional L1C data products, has several benefits. For

example, it allows one to change the antenna grid from the operational size of 128x128 pixels to

64x64 pixels. As shown by Talone et al. (2015), the smaller grid is optimal in that it helps mitigate100

some of the spatial correlations between measurements that are present in the larger grid.

We correct TB for a number of standard contributions such as geomagnetic and ionospheric rota-

tion and atmospheric attenuation (Zine et al., 2008). The galactic reflection is not significant at high

latitudes, and no correction was applied. We then filter out outliers (defined as those estimates that

deviate by more than 3-σ from the mean value, where σ is the radiometric accuracy at the given105

point in the antenna plane) and filtered out TB observations in regions of the field of view that are

known to have low accuracy due to aliasing (Camps et al., 2005), Sun reflections, and Sun tails.

To lower the noise level, we averaged TB measurements from both ascending and descending

orbits over periods of 3 days, which thus define the time resolution of our SIC maps , over each grid

cell. We also averaged acquisitions in incidence angle binnings of 2◦intervals. Since some incidence110

angles could be missing due to the SMOS acquisition feature and interferences, we use a cubic

polynomial fit to interpolate TB measurements to have the full range of incidence angles in each

grid position. to locations that might otherwise not have TB estimates over the full range of incidence

angles.

2.2 OSI-SAF and other sea ice data products115

We use SIC maps from the database (product version OSI-401a)of the Ocean and Sea Ice Satellite

Application Facility (OSI SAF product version OSI-401a) of the European Organization for the

Exploitation of Meteorological Satellites (EUMETSAT) for comparison with the products we are

obtaining.

These are computed from brightness temperature observations from SSMIS at 19 and 37 GHz,120

are corrected for atmospheric effects using forecasts from the European Center for Medium Range

Weather Forecasts (ECMWF), use monthly dynamic tie-points (see below), are available on polar

Stereographic 10-km grid for both polar hemispheres, and include SIC uncertainty estimates (Tonboe

et al., 2016). In this study, we used daily SIC maps in the Arctic Ocean from the OSI-SAF northern

hemisphere products of the yearsince 2014.125

We also used SIC estimates from ice charts generated from various sensors by the National Ice

Center (Fetterer and Fowler, 2009) to identify regions of interestsdefined the region that will be used

to compute the 100% ice-tie-points. (see below)

3 Theoretical model of sea ice radiation at microwave wavelengths
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The goal of this study is to develop a method that allows us to estimate Arctic sea ice concentration at130

SMOS electromagnetic frequency. Our approach will be to first describe the theoretical framework

for the radiation emitted by sea ice in L-band. We will then describe a procedure that is robust when

the values of the physical parameters of the model are unknown, which is often the case.

As we discussed in Section 1, Passive radiometers measure brightness temperature TB at antenna

frame with different incidence angle. TB can be expressed as:135

TB = Υ[TBSURF
+TBATM_DN

] + TBATM_UP
, (1)

where Υ is the atmosphere transmitivity, TBSURF
the self- emitted radiation emitted by the sur-

face, TBATM_DN
the downward-emitted atmospheric radiation that gets scattered by the terrain in

the direction of the antenna, and TBATM_UP
the upward-emitted atmospheric radiation.self-emitted

upward radiation from the atmosphere. Focussing on The surface emission is defined as:140

TBSURF
(θ) = es(θ)T, (2)

where θ is the incidence angle relative to zenith angle, es the surface emissivity, and T the physi-

cal temperature of the radiation-emitting body layer. Hereafter, we will use TB to refer to surface

brightness temperature emissivity, for simplicity.

The emissivity e and reflectivity Γ of a layer are related by e= (1−Γ). The reflectivity (some-145

times also called R) is the ratio betweenof reflected and incident radiation at the media boundaries

for each polarization. Γ for horizontal H and vertical V polarizationsand can be calculated using

Fresnel equations, which depend non-linearly on the dielectric constant (ε), and on the incident θi

and refracted θt angles:

ΓH(θ) =

∣∣∣∣√ε1 cosθi−
√
ε2 cosθt√

ε1 cosθi +
√
ε2 cosθt

∣∣∣∣2 , ΓV (θ) =

∣∣∣∣√ε2 cosθi−
√
ε1 cosθt√

ε1 cosθt +
√
ε2 cosθi

∣∣∣∣2 . (3)150

The frequency-dependent dielectric constant of a medium is a complex number defined as ε(f) =

ε
′
(f) + iε

′′
(f), where the real part ε

′
is related to the electromagnetic energy that can be stored in

the medium, and the imaginary part ε
′′

is related to the energy dissipated within the medium, and

f is frequency. Note that brightness temperature varies linearly with emissivity (Eq. 2), hence also

withon the reflectivity. The nonlinearity is an advantageous property for remote sensing that can be155

exploited by the multi-angle viewing capability of SMOS.

To calculate es, we will assume a sea ice model consisting of horizontal layers of three media –

air, snow, and thick ice. We will use the incoherent approach (i.e., conservation of energy, instead of

wave field treatment in the coherent approach) and the radiative transfer equation [e.g.,][]Burke.1979

to compute the net emission from the third and second media (i.e., ice and snow, respectively) into160

the first medium (i.e., air). The approach is similar to that used by other authors

Figure 2 shows the dependence of brightness temperature, with angle of incidence for seawater

and sea ice, as well as that of ice overlaid by a dry snow layer (see Eq. 4 below), for nominal
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Arctic temperature and salinity values. Specifically, temperature and salinity values used were after

Maass.2013; for seawater –1.8◦C and 30 psu, respectively, and for sea ice –10◦C and 8 psu. Note165

that the TB of seawater is significantly less than that of ice, and that the latter is slightly less than

that of snow over ice. Also note the nonlinear dependence of TB on incidence angle, the difference

between horizontally (H) and vertically (V) polarized waves for all three models, and the higher

larger variation with the incidence angle of H than that of V over ice and snow

To calculate the brighness temperature TB of sea ice, we will assume a sea ice model consisting170

of horizontal layers of three media – air, snow, and thick ice. We use the incoherent approach (i.e.,

conservation of energy, instead of wave field treatment in the coherent approach). Then a plane-

parallel radiative transfer model (Eq. 4) is used to propagate to the surface the reflectivity computed

at and through the ice-snow and snow-air media boundaries, and making a number of simplifying

assumptions. Specifically, our model assumes (a) that the media are isothermal and (b) that the175

thickness of the ice layer is semi-infinite so that radiation from an underlying fourth layer (i.e.,

seawater) does not need to be considered. This approach is similar to that used by other authors (e.g.,

Mills and Heygster, 2011b; Maaß, 2013; Schwank et al., 2015). These assumptions are realistic for

the spontaneous emission of sea ice that is thicker than about 60 cm at the observing frequency of

SMOS, as discussed in Section 1, since the underlying seawater then makes no contribution to the180

overall emissivity. (But see below for the case of thin ice.)

To further simplify our approach, we assume that the snow layer in the model consists of dry

snow, which is typical of winter Arctic conditions. Dry snow can be considered a lossless medium

at 1.4 GHz, due to the fact that the imagenary part of ε is very small compared with the real part,

as stated in Schwank et al. (2015). That means that there is no attenuation in the snow layer, and185

therefore its attenuation coefficient, αsnow, is considered zero. We make this simplifying assumption

because water in a wet snow layer would cause attenuation and therefore increase the total emissivity,

but it is rarely possible to obtain meaningful data on the amount of water in wet snow. However, dry

snow still has an effect on the refracted angle according to Snell’s law, hence on the emissivity,

which is computed via Eq. (3). changes with the angle of incidence according to Snell’s law. The190

permittivity of dry snow depends on snow density (Tiuri et al., 1984; Matzler, 1996), which depend

on the snow temperature. For a snow density of ρs = 300g/cm3, the dry snow permittivity at L-band

is εsnow = 1.53 following the equation described in Schwank et al. (2015).

The brightness temperature of a thick-ice, dry-snow layered body that is measured at an angle

of incidence θ with respect to the local vertical, polarization p, and observing frequency f can be195

simply calculated by propagating onto the surface the radiation that results from multiple reflections

and refractions at the two media boundaries (i.e., ice-snow and snow-air) accounting for the infinite

number of reflections between layers as Burke.1979:
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We can now define the simplified brightness temperature that results from an infinite number of

reflections between the three medias as (Ulaby et al., 1981):200

TB(θ,p,f) =

(
1−Γas

1−ΓasΓsi exp−2τ

)
·
[
(1 + Γsi exp−τ )(1− exp−τ )Tsnow + (1−Γsi)exp−τ Tice

]
+TskyΓas,

(4)

where Γas and Γsi are the reflectivity at the air-snow and snow-ice boundaries, respectively, and

Tsnow and Tice are the physical temperature in the snow and ice layers, respectively. The term τ is

the attenuation factor and is defined as τ = 2dαsecθ, where d is the depth of the snow layer and α

the attenuation constant. Tsky is the temperature of the cosmic background. The dependence of TB205

on θ, p, and f is embedded in the expressions of Γ and τ .

The attenuation constant α of the middle layer, in the case of a low-loss medium (ε
′′
/ε
′
<< 1),

can be expressed as:

α=
πf

c

ε
′′

√
ε′

(5)

where c the speed of light. The skin depth is defined as δs = 1/α (m) and characterizes how deep an210

electromagnetic wave can penetrate into aconducting medium (e.g. Ulaby and Long, 2014).

The permittivity of dry snow is dependent on the snow density (Turi.1984, Matzler.1996). For

a snow density of ρs = 300g/cm3, the dry snow permittivity at L-band is equal to εsnow = 1.47,

with negligible imaginary dielectric constant. Therefore, the snow attenuation coefficient αsnow is

considered zero at this frequency.215

To compute the complex dielectric constant of sea ice εice, which is needed to compute Γsi, we use

the classic empirical relationship by Vant et al. (1978). In this model, permittivity depends linearly

on the ice brine volume Vb as,

ε̂ice = a1 + a2Vbr + i(a3 + a4Vbr) (6)

where Vbr = 10Vb, and the coefficients ai can be obtained by linear interpolation to 1.4 GHz of the220

laboratory values from microwave measurements at 1 and 2 GHz (refer to Vant et al. (1978) for

coefficient values).

The sea ice brine volume Vb can be computed using Cox and Weeks (1983) as follows:

Vb =
ρS

F1(T )− ρSF2(T )
(7)

where ρ, S, and T are sea ice density, salinity, and temperature, respectively. The F functions are225

cubic polynomials derived empirically, namely

Fj(T ) =

3∑
i=0

aijT
i (8)

where the values of the coefficient aij were given in Leppäranta and Manninen (1998) for ice tem-

peratures between –2 ◦C and 0 ◦C, and for lower temperatures in Cox and Weeks (1983); see also

Thomas and Dieckmann (2003).230
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Figure 2 shows the dependence of brightness temperature, at L-band, with angle of incidence for

seawater and sea ice, as well as that of ice overlaid by a dry snow layer (following Eq. 4), for nominal

Arctic temperature and salinity values. Specifically, temperature and salinity values used were after

Maaß (2013); for seawater –1.8◦C and 30 psu, respectively, and for sea ice –10◦C and 8 psu. Note

that the TB of seawater is significantly less than that of ice, and that the latter is slightly less than235

that of snow over ice. Also note the non-linear dependence of TB on incidence angle, the difference

between H- and V-polarized waves for all three cases, and the larger variation with incidence angle

of H than V over ice and snow (e.g., Maaß et al., 2015).

We also calculate the theoretical emissivity es of a four-layer model using the Burke et al. (1979)

equation. The additional layer in this model is the seawater under sea ice, and we use the dielectric240

constant of seawater from Klein and Swift (1977). This layer does not need to be considered for the

case of (optically) thick icedescribed above, but it becomes “visible" for the case of (optically) thin

ice (i.e., thicknesses ≤60 cm, depending on ice temperature and salinity). The expression of TB for

a four-layer model is defined in Burke et al. (1979) as:

TB(θ,p) =

3∑
i=1

Ti ·
(

1− e(−γi(θ)∆zi)
)
·
(

1 + Γp,i+1(θ)e(−γi(θ)∆zi)
)
·

i∏
j=1

[1−Γp,i+1(θ)] · e(−
∑i

j=2 γj−1(θ)∆zj−1)

(9)245

where Ti is the temperature of each layer, Γ its reflectivity, γ the absorption coefficient, and ∆z the

layer thickness. Because the emissivity of seawater is significantly less than that of sea ice (Figure 2),

The net effect of reducing the sea ice thickness and starting to sense seawater, is an overall a decrease

in surface emissivity, hence of TB (as illustrated in Figure 5), relative to emissivity of thick ice (Shokr

and Sinha, 2015).250

4 Methods

4.1 Definition of robust indices from brightness temperature

It is rarely possible to obtain the ancillary geophysical data such as sea ice temperature, salinity,

and ice thickness that is required to estimate brightness temperature from a microwave emissionthe

microwave remote sensing model.described above Therefore, making assumptions and approxima-255

tions becomes critically important as discussed above. It is possible, however, to define a number of

indices resulting from a combination of brightness temperature observations that are less sensitive

to the unknown physical parameters. For example, estimates of soil moisture or sea ice concentra-

tion from radiometric measurements are often derived by combining TB measurements obtained

from different polarizations, frequencies, and angles of incidence (Becker and Choudhury, 1988;260

Owe et al., 2001). Combinations of TB measurements might result in lower sensitivity than that of
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original TB to the exact physical conditions, but good enough to distinguish among conditions such

as phase changes, thus increasing robustness.

Hereafter, we use two indices, the polarization difference (PD) index and the angular difference

(AD) index. The PD index is defined as the difference between TB measurements obtained at vertical265

TBV
and horizontal TBH

polarizations as

PD(θ) = TBV
(θ)−TBH

(θ). (10)

The AD index is defined as the difference between two vertical polarization TB measurements

obtained at two different angles of incidence as

AD(θ) = TBV
(θ+ ∆θ)−TBV

(θ). (11)270

Figures 3 and 4 show the variation of PD and AD for the thick-ice model with angle of incidence,

respectively. In defining AD, we use vertical rather than horizontal polarization because identifica-

tion of the three media is facilitated by the larger dynamic range and non-crossing signatures of

vertical polarizationformer (Figure 4). We choose ∆θ = 35◦ angle difference because this value rep-

resents a good compromise between sensitivity of the index and radiometric accuracy in the case of275

SMOS (Camps et al., 2005) and, importantly, is also well supported by the wide range of satellite

viewing angles that characterizes SMOS.

Although the Polarization Ratio (PR) is also a commonly used index, we have chosen PD after

verifying that its dynamic range is larger than that of PR, and suspecting that PD would yield higher

accuracy estimates given the SMOS error budget.280

4.2 Calibration of sea ice concentration using tie-points

Tie-points are widely used for retrieving SIC with higher frequency radiometers, as well as in other

fields such as photogrammetry (e.g., Khoshelham, 2009). In this study, we use tie-points as the

typical TB values for 100% and 0% concentrations which permit us to compute theground-truth

estimates of sea ice concentration. In this context tie-points are reference values of the two radiometric285

end-members for ocean pixels in the Arctic, that is, pixels that are completely covered by sea ice –

100% concentration – and pixels of open water – 0% concentration. In this applications, Tie-points

can therefore be viewed as SIC calibration points because their expected radiation can be unambigu-

ously determined.

Figure 3 shows theoretical PD tie-point values for open water and sea ice, as well as ice with a290

snow layer. The values for an angle of incidence of 50◦ are marked by solid red circles. This angle

represents a good compromise in PD contrast between the two media and SMOS accuracy (Camps

et al., 2005). The two bounding values are 62.9 K for seawater and 26.8 K for ice with snow cover

(Table 1). The large difference between tie-point values suggests that it is possible to estimate SIC

at L-band.295
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Figure 4 shows theoretical AD tie-point values for difference in incidence angle ∆θ = 35◦ and

angles of incidence up to θ = 30◦ which, per Eq. 11, represents the TBV
difference between θ = 60◦

and θ = 25◦. The values for an angle of incidence of 25◦ are marked by solid red circles, for which

the tie-points are 51.8 K for seawater and 8.6 K for ice with snow cover (Table 1). Hereafter, PD and

AD are evaluated at the incidence angles of θ = 50◦ and θ = 25◦, respectively. indicated above.300

Figure 5 shows thataccording the discussed 4-layer radiative transfer model TB at nadir increases

non-linearly as function of ice thickness up to the saturation value of ∼250 K, which is reached

when ice becomes about 70-cm thick. Notice that in the figure, TB estimates start at an ice thickness

of 5 cm because there is a discontinuity in the Burke model as the thickness of ice tends to zero (e.g.,

Kaleschke et al., 2010; Mills and Heygster, 2011a; Maaß, 2013; Kaleschke et al., 2013).Also shown305

in Figure 5, theoretical AD and PD values for the incidence angles indicated above, as described

by our model. Compared with TB , the total variation of both AD and PD with ice thickness is

significantly smaller and, therefore, are better suited to estimate sea ice concentration.

4.3 Sensitivity of estimates of sea ice concentration to surface emissivity changes

In this section, we calculate the sensitivity of SIC estimates to changes in surface emissivity due310

to variations in the physical properties of sea ice (i.e., salinity, temperature, and thickness). We

work with estimated SIC derived from the three indicesparameters TB , PD, and AD. This is done

following a standard error propagation method (as also used in Comiso et al. (1997)). It is important

to determine how changes in ice conditions affect SIC estimates through those three indices to try to

minimize SIC errors obtained using SMOS.315

Table 2 lists the sensitivities, according to our theoretical model, of the indices I (I = TB , PD,

and AD) to the geophysical variables of ice and seawater: physical temperature (i.e., δI/δT ), salin-

ity (δI/δS), and thickness (δI/δd) evaluated within the ranges of Twater=[2,15], Swater=[10,38],

Tice=[-20,-5], and Sice=[2,12]. It should be noted that those sensitivities are calculated using the

model and the nominal Arctic temperature and salinity values defined in Section 3. In order to as-320

sess which index is less sensitive to changes in a given geophysical variable, we calculate absolute

sensitivities, defined as the sensitivities multiplied by the dynamic range of the measurements.

Knowing the value of the tie-points of sea ice (SIC=100%) and seawater (SIC=0%), one can

compute the average slopes of the SIC estimates to their corresponding parameters TB , PD, and

AD (i.e., δSIC/δTB , δSIC/δPD, and δSIC/δAD). From data in Table 1, we obtain the average325

slopes as: δSIC/δTB = 0.65, δSIC/δPD = 2.32, and δSIC/δAD = 2.77. These slopes can be

used to propagate TB , AD, and PD errors to errors in the SIC estimates.

We assume reasonable values for the variability of the physical parameters on which our emissiv-

ity model depends on, namely T,S and d of ice (generically denoted by g), as follows: ∆T=5 K,

∆S=4 psu, and ∆d=30 cm. Using the values in Table 2 and the calculated average slopesabove, one330

can finally compute the errors in SIC estimates associated with the geophysical variability of g when
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the index I is used to evaluate SIC as:

∆SIC|g =

∣∣∣∣δSICδI
∣∣∣∣ · ∣∣∣∣δIδg

∣∣∣∣ ·∆g (12)

To evaluate the final impact of geophysical variability on the SIC evaluation using the index I ,

we compute the root-sum-squared (RSS) of the SIC uncertainties due to the geophysical parameters335

(Table 3). The table shows that AD is the most robust index to retrieve SIC, slightly better than

PD, and significantly better than TB . Because TB is theoretically more sensitive to thin ice than

the other two indices, one can expect that the use of TB to retrieve SIC would result in larger SIC

errors. Moreover, the uncertainty distribution of TB is too broad, especially due to thickness, thus

less adequate to fulfill the statistical hypotheses used to derive SIC. Despite the uncertainties in340

the theoretical physical model of ice, we consider the differences significant enough to focus on

inversion algorithms using the PD and AD indices, and not on TB . as done by other authors e.g.,

Mills et al. 2011.

4.4 Comparison with empirical tie-points

Following the theoretical analysisabove, we now turn to evaluate its performance empirically. We345

therefore select several regions of interest in the Arctic Ocean where SIC has been determined to

be either 0% or 100% by other sensors and methods. To identify such regions, we use SIC maps

from OSI-SAF and from the National Ice Center. In particular, we selected the open seawater region

between latitudes 55◦–70◦ N and longitudes 20◦ W and 25◦ E, which comprises more than 2000

pixels in a typical SMOS image. For sea ice, we selected the multi-year (MY) ice region between350

latitudes 78◦–83◦ N (the northernmost latitude observable by SMOS) and longitudes 75◦–150◦ W,

which comprises about 1000 pixels per SMOS image. We expect some(yet unquantified) level of

uncertainty associated with the selection of the region to compute the 100% tie-points for summer

periods stemming from known errors in the summer SIC products by OSI-SAF (Tonboe et al., 2016).

We calculated SMOS brightness temperatures of these target regions to evaluate their potential355

as empirical tie-points for seawater and sea ice. Starting with TB , The temporal variation, in 2014,

of the spatially averaged (median) TB at nadir of the two geographic regionsabove are shown in

Figure 6. The values are consistent with the modeled values in Table 1. For the seawater region, the

figure shows that the brightness temperature is constant, at about 99 K, to within ∼2.5 K (one σ

standard deviation) throughout the year. For the ice region, TB is also stable during the non-summer360

months, but it drops by about 20 K during the summer season due to changes in surface emissivity

associated with snow and ice melt and concurrent formation of meltwater ponds. The factor-two

increase in formal error in summer relative to winter is also an indication of increased radiometric

variability in surface conditions (as shown in Table 1).

Figure 7 shows that the temporal radiometric stability of the seawater region during 2014, and that365

of sea ice during the non-summer months, is also reflected in the AD and PD indices, as one would
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expect. This suggests that a different set of tie-points during winter and summer periods could be

beneficial for the quality of the SIC retrievals. On the other hand, the AD and PD tie-point values

are very stable during winter and spring (November to June), indicating that values are robust to

variations on physical temperature and that may not be necessary to compute tie-point values often370

(daily or monthly), as done with the OSI-SAF product.

Figure 8 shows a 2-D scatter plot of AD and PD indices for the two regions defined above dur-

ing March (winter tie-point) and July (summer tie-point) 2014. The index values associated with

seawater and with ice group form two well-differentiated clusters, which implies that the two types

of regions can be clearly segregated using these indices. This is also true for the summer tie-points375

even though in this case the dispersion is larger and values are closer to sea tie-points, as expected

following Figure 7.

Table 1 lists The modeled (with snow and without) and observed TB, AD, and PD tie-point values

for winter and summer 2014, and the standard deviation (σ) of the measurements are listed in Table 1.

It is encouraging that most of the values are in agreement at about 2σ despite underlying model380

assumptions such as uniform sea ice temperature and specular ocean surface. Another important

result is that the observed SMOS data is closer to the model when snow is considered.

4.5 Retrieval of sea ice concentration

The brightness temperature of mixed pixels, that is, ocean pixels partially covered by sea ice, can be

expressed as a linear combination of the brightness temperature of ice and seawater weighted by the385

percentage of each surface type (e.g., Comiso et al., 1997):

TBmixed
= CTBice

+ (1−C)TBwater
(13)

where C is the fraction of ice present in a pixel, with C = 1 corresponds to 100% of ice and C = 0

to 0% of ice, or equivalently 100% of seawater. Since AD and PD (Eqs. 10-11) depend linearly on

brightness temperature, Eq. (13) can be used to express both AD and PD.390

There are several possible strategies to estimate sea ice concentration at a given pixel from the

AD and PD values measured at that pixel. The simplest approach is to consider that the values of

the tie-points are good representatives of the values of AD and PD at the respective medium, i.e.,

seawater and sea ice, such that

AD ≈ CADice + (1−C)ADwater395

PD ≈ C PDice + (1−C)PDwater (14)
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Concentration C can thus be retrieved from the value of either AD or PD by inverting the asso-

ciated linear equation. In general, C can also be evaluated simultaneously with the AD and the PD

observations by averaging the values obtained from both indices, as:

C =
1

2

[
AD−ADwater

ADice−ADwater
+

PD−PDwater
PDice−PDwater

]
(15)400

This is known as the Linear Estimation of SIC. However, this approach might be too simple,

as the values of AD and PD on ice and seawater can have some non-negligible dispersion due to

geophysical conditions and to radiometric noise.

In this paper, a new inversion algorithm to estimate C is presented, which considers that AD and

PD have known distributions, and by combining the observations it is possible to infer the value of405

C that is statistically more probable. , given those observations.

The distributions of the SMOS AD and PD are unimodal and symmetric (not shown), thus allow-

ing us to approximate them by Gaussians and considering the pure ice and pure sea measurements as

independent. Therefore we can easily use a Maximum-Likelihood Estimation (MLE) approach. The

MLE has many optimal properties in statistical inference such as (e.g., Myung, 2003) sufficiency410

(the complete information about the parameter of interest is contained in the MLE estimator), con-

sistency (the true value of the parameter that generated the data is recovered asymptotically, i.e. for

sufficiently large samples), efficiency (asymptotically, it has the lowest-possible variance among all

possible parameter estimates), and parameterization invariance (same MLE solution obtained inde-

pendent of the parametrization used).415

Assuming the linearity superposition of indices (Eq. 14), it follows that the distributions of AD

and PD (fAD,fPD) in a general ocean pixel can be expressed as:

fAD ∼N
(
C ADice + (1−C) ADwater,

√
C2σ2

ADice
+ (1−C)2σ2

ADwater

)
(16)

fPD ∼N
(
C PDice + (1−C) PDwater,

√
C2σ2

PDice
+ (1−C)2σ2

PDwater

)
(17)

where the bar over the AD and PD indices refers to their mean values, the subindex identifies the420

medium, and σ is the associated standard deviation for each index and media. To obtain the mean and

standard deviation values, we used the SMOS measurements at the regions for generating tie-points

regions and periods discussed above (see in Sect. 4.4. The symbol N means normal probability

density function., that is:

As a first approximation, we have considered AD and PD two independent variables. It thus fol-425

lows that the likelihood function L is equal to the product of their distributions or, equivalently
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and conveniently, to their sum (recall that the likelihood is the logarithm of the probability density

function), thus:

l̂ = ln(L) = ln(fAD) + ln(fPD) (18)

The MLE of SIC is the value of C that maximizes the likelihood function l̂.430

5 Results

5.1 Quality algorithm assessmentInternal consistency of SMOS SIC retrievals

We have calculated AD and PD values from SMOS brightness temperature and used the MLE ap-

proach described aboveto obtain SIC estimates over the Arctic Ocean in year 2014. We have esti-

mated SIC using different tie-points, characterized by their central value and dispersion. For seawa-435

ter, we have used a single, year-round median value and the associated standard deviation for each

index. For ice tie-points, we have used two sets of values, as suggested by the results in Figure 7. For

the first set, we have computed for all years the median of the tie-points between December and May

(Table 1), i.e., the winter-spring months when Arctic sea ice extent is close to its annual maximum.

For the second set, we have used those same winter-spring values for the months of October through440

May but the average of the summer values for the months between June and September (Table 1).

We have not used the October nor November data to compute ice tie-points values because these

are months of maximum extension of thin ice, and underlying emission through thin ice could cause

some errors on the SIC estimates (Figure 5 and Table 2).

Figure 9 shows The root-mean-square (RMS) error, relative to OSI-SAF, of SIC retrievals over the445

Arctic Ocean using four types of retrievals and two sets of tie-points. The root-mean-square (RMS)

error of SIC retrievals relative to OSI-SAF over the Arctic Ocean is shown in Figure 9. Four types

of retrievals and two sets of tie-points are compared. Introducing a specific set of summer tie-points

(black solid line) reduces the RMS error with respect to using only one unique tie-point for the whole

year (black dotted line). The RMS reduction is about 24% and 12% in July and August, respectively,450

and to smaller degree in June and September. Therefore, we will hereafter use a different set of

tie-points values in summer and winter.

Furthermore, using the set of summer-winter tie-points,leads to a significant reduction of the RMS

error, relative to OSI-SAF, results from four types of inversions that stem from combinations of

linear and MLE method and indices are compared in Figure 9.The figure shows the results of the455

four combinations namely of linear and MLE method and the set of indices that allow to discriminate

SIC, and either AD alone or AD and PD in combination. The lowest RMS values through all months

in 2014 but January are obtained with the MLE inversion algorithm and the AD index alone. The

evolution along the year of the RMS obtained with the linear retrieval method is similar in the
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case of the MLE method, but at ∼5-10% increased noise level. Larger RMS values and increased460

temporal variability are observed when the PD index is also used. The RMS error of all retrievals

is largest in Fall, in particular if the PD index is used. Those are months of ice formation, therefore

vast regions become covered with frazil ice, nilas, and thin young ice, following the minimum ice

extension of September. All methods converge to similar results in September, since this period is

the one with minimum ice extension and minimum thin ice is expected (so resulting in very small465

difference between using AD or AD and PD methods). In the next subsection, a physical explanation

and analysis of the behavior during Fall is given.

Figure 10 shows The spatial variation of the difference in MLE SIC retrievals when using only

the AD index and when using the AD and PD indices for the period 2–5 November 2014 is shown

in Figure 10. As expected, the largest differences are associated with regions of thin ice formation,470

in particular in the Laptev Sea, Kara Sea, and along the edge of the ice pack both in the western

Arctic and the Atlantic sector. Together, the spatio-temporal snapshots in Figures 9-10 highlight the

sensitivity of PD to the presence of thin ice, what naturally leads to an increase of the retrieval error

when PD is used. This conclusion is not fully consistent with the analysis done using the models in

Section 4.3, on the dependence of the indices (TB , PD, AD) on ice thickness. Table 2 shows that,475

theoretically, PD is slightly less sensitive to thin ice than AD. However, the AD index is the least

sensitive (lowest RSS) to variations of all the analyzed variables. Therefore, we will hereafter use

the AD index, summer-winter tie-points values, and an MLE-based estimator for SIC retrievals.

5.2 Accuracy assessment of SMOS SIC retrievals

As we have shown, We have evaluated the mutual consistency of the SMOS SIC retrievals, and in the480

process we have determined which is the approach that leads to the minimum error in the retrieval

of SIC. We now evaluate the accuracy of those retrievals. Although a representative (in the space-

time domain) ground-truth dataset that allows us to assess the accuracy of SMOS retrievals does

not exist, the SIC estimates from OSI-SAF (already used above) are a good option for cross-check.

They are independent from SMOS, the spatio-temporal sampling and resolution of their products is485

commensurate with that of SMOS, and their error budget is available.

Figure 11 shows the spatial distribution of SIC in the Arctic Ocean estimated from (a) SMOS

for the 3-day period 2–5 March 2014, (b) OSI-SAF SIC on 4 March 2014, and (c) the difference

between (b) and (a). We have shown March because is the month of maximum sea ice extent, but the

results for other months are similar. As explained, the largest differences between both algorithms490

are located at the margins of the sea ice cover, where thinner ice can be expected.

The spatial distribution of SMOS SIC in the Arctic Ocean has been estimated from SMOS data

for the 3-day period 2–5 March 2014 and it has been compared with OSI-SAF SIC product on 4

March 2014 . The largest differences between both algorithms are located at the margins of the sea
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ice cover, where thinner ice can be expected (see Figure 11). March is the month of maximum sea495

ice extent, but the results for other winter months are similar.

Figure 12 is the same as Figure 11 but in November, the month of maximum extension of thin

young ice. Significant differences are now observed over a much wider area of the Arctic Ocean

including the Barents, Kara, Laptev, East Siberian, and Beaufort seas. That is because thin ice is

widely present in this season, and the radiometric response of SMOS to thin ice and the response of500

the microwave radiometers used by OSI-SAF are distinctly different.

On the other hand, November is the month of maximum extension of thin young ice, specially

through the Beaufort Sea since ice in the Laptev and Kara seas remains thin during winter (Shokr

and Dabboor, 2013). Significantly larger differences between SMOS and OSI-SAF products are

now observed over a much wider area of the Arctic Ocean including the Barents, Kara, Laptev, East505

Siberian, and Beaufort seas (Figure 12).

That response is linked to the The brightness temperature measured by a passive microwave ra-

diometer, which increases with sea ice thickness up to a saturation value. Such an increase is more

gradual for low frequencies and horizontal polarization (e.g., Ivanova et al., 2015). At the SMOS

L-band, the increase of emissivity with ice thickness reaches saturation for an ice thickness that is510

about 60 cm, depending on ice salinity and temperature (Kaleschke et al., 2012) whereas at the OSI-

SAF frequencies (19 and 37 GHz) is only a few cm (Heygster et al., 2014; Ivanova et al., 2015).

It is reasonable to infer that the observed SIC differences between SMOS and OSI-SAF are mainly

associated with the different thickness of thin ice and ensuing penetration depths. For example, for

pixels that are 100% covered by thin ice of say 25-cm thickness, the AD and PD values for those515

pixels will be slightly different than the tie-point value of ice because the value of ice tie-points was

computed from thick, MY ice (see Figure 5) for model analysis. This contrast leads to a difference in

classification of such pixels, that will be considered mixtures of water and ice in the case of SMOS,

and as 100% ice with OSI-SAF. In other words, the estimation of SIC of a seas covered by frazil ice

and nilas will be higher for OSI-SAF than for SMOS.520

To further analyze this classification difference, we have calculated the probabilities of SMOS SIC

conditioned by values of OSI-SAF SIC using a full year, 2014, of Arctic-wide estimates. Figure 13

shows (red) tThe probability of estimating a SIC value with SMOS that is less or equal than 5% when

the estimated OSI-SAF SIC is 0% is shown in Figure 13 (red line). As expected, the conditioned

probability is very high throughout the year. This implies that both products have a similar ability525

to detect (close to) 100% ocean pixels. This implies that the probability of having high SMOS SIC

values when OSI-SAF is low, is almost zero, which also means that the rate of triggering false alarms

on ice detection with SMOS is low.

Figure 13 also shows (blue)the opposite situation, that is On the contrary, the probability of esti-

mating a SMOS SIC equal or higher than 90% while the OSI-SAF SIC is 100% is not constant during530

the year and decrease with respect to the previous case. During the winter period (between January
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and April), the conditioned probability is notably high (near 0.9) (see Figure 13 blue line). Then it de-

creases sharply during spring and most notably in summer. This change in the conditioned probabil-

ity starting in the spring could stem from a change in ice properties. Ice properties change becauseAs

the snow becomes wetter with the onset of the melt season in the spring the observed emissiv-535

ity starts to change, and this, varies with the observating frequency (different scattering response).

as well as differences in the retrieval algorithm. And regarding algorithms because OSI-SAF uses

dynamically-adjusted tie-points (every 30 days) while the SMOS algorithms introduced here use two

tie-points (summer and winter), what would explain the decrease of the conditioned probability. The

observed increase of the conditioned probability in June could be due to the use of a summer tie-540

point (applied from June to September) which improve the RMS with respect to OSISAF as shown

in Figure 9. The low conditioned probability in Fall can be explained by the presence of thin ice., as

described above.

Figures 14 map the spatial distribution of the conditioned probability of SIC estimates for the

months of March (a) and November (b). In the figures, the Arctic Ocean has been color-coded in545

three regions whereby both products have SIC above 0.9(red), OSI-SAF SIC is more than 0.9 while

SMOS SIC is less than 0.9 (light blue) and OSI-SAF and SMOS SIC is less than 0.9 (dark blue).

It becomes apparent that the light blue regions outline the edge of the ice cover, what is in good

correspondence with the expected areas of thin ice.

We have analysed the spatial distribution of the conditioned probability of SIC estimates for the550

months of March and November. Those regions where OSI-SAF SIC is more than 0.9 while SMOS

SIC is less than 0.9 (light blue color in Figures 14) outline the edge of the ice cover. This is in

good correspondence with the expected areas of thin ice. Besides, this condition is extended when

analysing November data (Figure 14b) when thin ice is more frequent in the Arctic.

Figure 15 shows the monthly spatial coefficients of determination (that is, the square of the555

correlation coefficients) between SMOS and OSI-SAF SIC throughout 2014. Because the values

of SIC tend to be either 0 or 1 over wide Arctic regions, we have excluded both extremes from

the figure as this would lead to too high, non-significant values of correlation. Thus, we have only

included SIC values between 0.05 (5%) and 0.95 (95%) when computing correlations. During the

winter months, the determination coefficient is high (more than 0.65), what again is consistent with560

our interpretation about the role of thin ice in SMOS SIC (during winter thin ice is scarce and is

present only at the edge of the ice cover). As melt starts, the correlation between SIC estimates

continues to be high, thanks to the summer tie-point. In September, ice cover extent is at minimum

but because ice growth has not started yet there is almost no thin ice, and the correlation remains

high. The correlation drops in the Fall (between October and December) because ice growth starts565

by freezing of the sea surface, producing large amounts of new thin ice.

During the winter months, the spatial coefficients of determination (r2) between SMOS and OSI-

SAF SIC is high (more than 0.65), what again is consistent with our interpretation about the role
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of thin ice in SMOS SIC (see Figure 15). As melt starts, the correlation between SIC estimates

continues to be high, thanks to the use of the summer tie-point in the retrieval. In September, ice570

cover extent is at minimum because ice growth has not started yet there is almost no thin ice, and

the correlation remains high. The correlation drops in the Fall (between October and December)

because ice growth starts by freezing of the sea surface, producing large amounts of new thin ice. To

compute these values, we have only included SIC values between 0.05 (5%) and 0.95 (95%) when

computing correlations to avoid the two extremes values leading to too high, non-significant values575

of correlation.

6 Discussion

The two PD and AD indices, which are derived from brightness temperature,Two indices derived

from brightness temperature, the Polarization Difference (PD) and the Angular Difference (AD),

have been designed to maximize their differences between open water and sea ice. Both have a low580

response to changes in the geophysical characteristics of the media, which has been confirmed by

using theoretical models and by performing sensitivity analysis.

The tie-points, defined as the characteristic values of our reference indices on the different media,

have been calculated from SMOS data. When compared to theoretical values, some small discrep-

ancies at the 10-20% level have been observed, probably due to simplifying assumptions such flat585

surface ice, flat sea, and constant temperature at the layers used in the theoretical models. We have

thus decided to follow a more empirical approach. The use of two sets of tie-points, one for sum-

mer and one for winter measurements, improves the results of the summer SIC maps relative to a

static unique tie-points. This improvement is not caused by changes in the ice or sea physical tem-

perature, but most probably changes in the ice properties, because as snow and ice become wetter590

during the melt season, the observed radiometric emission changes. This effect is also observed on

measurements from radiometers at higher frequencies than SMOS.

We have introduced the MLE inversion algorithm to retrieve SIC from SMOS data. The method

is based on the maximization of the a posteriori likelihood of the joint distribution of AD and PD

indices, assuming that they are independent and normally distributed. This MLE algorithm is more595

robust (less noisy) than the linear inversion (Eq. 14). It also improves the retrieved SMOS SIC with

respect to a linear inversion method because the former takes into account the dispersion (error) of

the tie-points (reference), which makes the algorithm more robust to TB errors. SIC maps obtained

using only the AD index are of better quality than when the AD and PD indices are used together.

We attribute this to the higher sensitivity of PD than AD to physical changes in the media. , as shown600

here both theoretically and empirically.

SMOS and OSI-SAF SIC maps compare well in terms of correlation (determinationcorrelation

coefficient higher than 0.65) and RMS except in areas of thin sea ice. This difference can be ex-
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plained by the higher penetration of SMOS in sea ice (about 60 cm) relative to the penetration from

higher frequency radiometers. Thus, when ice is thinner than 60 cm SMOS data lead to lower values605

of SIC that OSI-SAF. , what has been verified in this study. These results suggest that by combining

SIC information from SMOS and OSI-SAF, one could potentially develop a mask for locations of

thin ice.

7 Conclusions

According to Ivanova et al. (2015), the first source of error in the computation of sea ice concen-610

tration is the sensitivity to changes in the physical temperature of sea ice, in particular for those

algorithms that use measurements between 10–37 GHz. They identify atmospheric water vapor and

cloud liquid water has been identified but they establish that it is the first source of error for those

algorithms which uses the 89 GHz bands. as the second source of error especially for the presence of

water vapor and cloud liquid water except for algorithms at 89 GHz, where it becomes the dominant615

error. Another problem faced by higher frequency radiometers is that the SIC retrievals are affected

by the thickness of snow cover, which is difficult to determine.

These authors also state that temporal variations in sea ice extent observed in the high-frequency

radiometer data are also affected by atmospheric and other surface effects. For example, to com-

pensate for the observed seasonal variations in ice tie-points of up to 10 K, they propose to dy-620

namically obtain a new set of tie-points by using a running window of two-weeks length.These

authors also state that the observed time trends in the measurements obtained by higher frequency

radiometers are not only caused by trends in sea ice extent, but also by trends in the atmospheric

and surface effects influencing the microwave emission measured by the satellite. Those authors

observed seasonal changes on the ice tie-point of up to 10 K. In order to compensate those effects,625

they propose to dynamically derive the tie-points using a two-week running window; therefore, a

new set of tie-points is defined regularly.

Estimating SIC using L-band observations such as those from SMOS is desirable because the

effect of the atmosphere on brightness temperature is negligible, and the vertical polarization of

TB is insensitive to snow depth (Maaß et al., 2015). Moreover, AD and PD tie-point values have630

been shown to be very stable during winter and spring periods (Figure 7), indicating that the values

are robust to variations in physical temperature. Thanks to that, one can safely assume two sets of

static (i.e., not temporally varying) tie-points, one for each of summer and winter for SMOS data,

and not fortnightly or monthly as is done in case of the OSI-SAF product. However, the sensitivity

of the brightness temperature to sea surface temperature, atmosphere, and wind speed is clearly635

reduced when observing the sea surface with radiometers working at lower frequencies (Figure 1),

thus making SMOS more reliable and stable in those situations. Moreover, SMOS TB is not affected

by the snow thickness, as stated in Section 3.
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Figures 6 and 7 show that SMOS PD, and AD have low sensitivity to surface physical changes,

and present small trend, for the year observed, as shown in Figures 6 and 7. Thanks to that, one640

can safely assume two sets of static (i.e., not temporally varying) tie-points (summer and winter) for

SMOS data.

SIC estimates from SMOS have some drawbacks with respect to those from higher-frequency

radiometers. For example, whereas the spatial resolution of the high-frequency SIC estimates can

reach ∼3 km, the resolution from SMOS will not be better than about 35 km. A second issue of645

SMOS is that it underestimates SIC in the presence of thin ice, which is characteristic of the ice

edges and freeze-up periods. Therefore, SMOS data should be used in combination with some form

of spatial masking for those regions. We suggest that SIC estimates from SMOS can complement

those from higher-frequency radiometers, together yielding enhanced SIC products.

On the other hand, the best spatial resolution of SIC measurements with SMOS is about 35 km,650

which is low compared to the∼3-km resolution that can be achieved with higher-frequency radiometers.

Therefore, SMOS-based SIC estimates might be better suited for global climate studies.

An important problem that the retrieval of SIC with SMOS has to deal with is the underestimation

of SIC values when thin ice (less than ∼0.60 m) is present, which are characteristic for the ice edges

and freeze-up periods. Therefore this dataset is not accurate when thin ice is present and a mask655

should be used.

This dataset could be very beneficial during summer period, since SMOS SIC, theoretically,

should be less sensitive to summer metamorphosis, due to the larger wavelength. Previous works

show that the TB and SIC measured at 6.9 GHz band are more robust to summer ice changes than

higer frequency measurements (Kern et al., 2016; Gabarro, 2017). The confirmation of this statement660

will be done as future work.

The study presented here can be expanded in a variety ways, which we are currently exploring. For

example, one could improve the quality of SIC maps by using more tie-points and better characterizing

them over different spatial regions and for various times of year.One could also attempt to simultaneously

estimate SIC and ice thickness (e.g. Rothrock.1988) over thin-ice regions by combining all the665

different SMOS observations acquired over the same point, thus providing independent estimates of

ice volume over these regions. The study could also be further developed in the time-space domain

since the present study has focused in a small fraction of the SMOS dataset making use of just four

measurements from each pixel (two incidence angles and two polarizations), when more than 100

acquisitions can be obtained at each overpass.670

Acknowledgements. This study has been funded by the National R+D Program of the Spanish Ministry of

Economy through the Promises project ESP2015-67549-C3-R, as well as by previous SMOS-related grants.

20



References

AMAP: Changes in Arctic Snow, Water, Ice and Permafrost, Arctic Climate Issues 2011: Arctic Monitoring

and Assessment Programme (AMAP), SWIPA 2011 Overview Report, Oslo, 2012.675

Becker, F. and Choudhury, B. J.: Relative sensitivity of normalized difference vegetation Index (NDVI) and mi-

crowave polarization difference index (MPDI) forvegetation and desertification monitoring, Remote Sensing

of Environment, 24, 297–311, doi:10.1016/0034-4257(88)90031-4, 1988.

Brodzik, M. J. and Knowles, K. W.: EASE-Grid: A versatile set of equal-area 0rojections and grids, Discrete

Global Grids, 2002.680

Burke, W., Schmugge, T., and Paris, J.: Comparison of 2.8- and 21-cm microwave radiometer ob-

servations over soils with emission model calculations, Journal of Geophysical Research, 84,

doi:10.1029/JC084iC01p00287, 1979.

Camps, A., Vall-llossera, M., Duffo, N., Torres, F., and Corbella, I.: Performance of sea surface salinity

and soil moisture retrieval algorithms with different ancillary data sets in 2D L-band aperture synthe-685

sis Interferometic radiometers, IEEE Transactions on Geoscience and Remote Sensing, 43, 1189–1200,

doi:10.1109/TGRS.2004.842096, 2005.

Cavalieri, D., Gloersen, P., and Campbell, W.: Determination of sea ice parameters with the NIMBUS 7 SMMR,

Journal of Geophysical Research, 89, 5355–5369, doi:10.1029/JD089iD04p05355, 1984.

Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff, K.,690

Entekhabi, D., Overland, J., and Jones, J.: Recent Arctic amplification and extreme mid-latitude weather,

Nature Geoscience, 7, 627–637, doi:10.1038/NGEO2234, 2014.

Comiso, J. C.: Characteristics of Arctic winter sea ice from satellite multispectral microwave observations,

Journal of Geophysical Research, 91, 975–994, doi:10.1029/JC091iC01p00975, 1986.

Comiso, J. C.: Large Decadal Decline of the Arctic Multiyear Ice Cover, Journal of Climate, 25, 1176–1193,695

doi:10.1175/JCLI-D-11-00113.1, 2012.

Comiso, J. C., Cavalieri, D. J., Parkinson, C. L., and Gloersen, P.: Passive microwave algorithms for

sea ice concentration: A comparison of two techniques, Remote Sensing of Environment, 60, 357–384,

doi:10.1016/S0034-4257(96)00220-9, 1997.

Corbella, I., Torres, F., Duffo, N., Gonzalez-Gambau, V., Pablos, M., Duran, I., and Martin-Neira, M.: MIRAS700

Calibration and Performance: Results From the SMOS In-Orbit Commissioning Phase, IEEE Transactions

on Geoscience and Remote Sensing, 49, 3147 –3155, doi:10.1109/TGRS.2010.2102769, 2011.

Cox, G. and Weeks, W.: Equations for Determining the Gas and Brine Volumes in Sea-Ice Samples, Journal of

Glaciology, 29, doi:10.1017/S0022143000008364, 1983.

Deimos: SMOS L1 Processor Algorithm Theoretical Baseline Definition, SO-DS-DME-L1PP-0011, Tech. rep.,705

Deimos Engenharia, 2010.

Fetterer, F. and Fowler, C.: National Ice Center Arctic Sea Ice Charts and Climatologies in Gridded Format,

Version 1, http://dx.doi.org/10.7265/N5X34VDB, 2009.

Font, J., Boutin, J., Reul, N., Spurgeon, P., Ballabrera-Poy, J., Chuprin, A., Gabarró, C., Gourrion, J., Guimbard,

S., Hénocq, C., Lavender, S., Martin, N., Martínez, J., McCulloch, M., Meirold-Mautner, I., Mugerin, C.,710

Petitcolin, F., Portabella, M., Sabia, R., Talone, M., Tenerelli, J., Turiel, A., Vergely, J., Waldteufel, P., Yin,

21

http://dx.doi.org/10.1016/0034-4257(88)90031-4
http://dx.doi.org/10.1029/JC084iC01p00287
http://dx.doi.org/10.1109/TGRS.2004.842096
http://dx.doi.org/10.1029/JD089iD04p05355
http://dx.doi.org/10.1038/NGEO2234
http://dx.doi.org/10.1029/JC091iC01p00975
http://dx.doi.org/10.1175/JCLI-D-11-00113.1
http://dx.doi.org/10.1016/S0034-4257(96)00220-9
http://dx.doi.org/10.1109/TGRS.2010.2102769
http://dx.doi.org/10.1017/S0022143000008364
http://dx.doi.org/10.7265/N5X34VDB


X., Zine, S., and Delwart, S.: SMOS first data analysis for sea surface salinity determination, International

Journal of Remote Sensing, 34, 3654–3670, doi:10.1080/01431161.2012.716541, 2013.

Gabarro, C.: The dynamical estimation of summer sea ice tie-points using low frequency passive microwave

channels, OSI SAF Associated Visiting Scientist 16/03, OSISAF, EUMETSAT, 2017.715

Heygster, G., Huntemann, M., Ivanova, N., Saldo, R., and Pedersen, L. T.: Response of passive microwave sea

ice concentration algorithms to thin ice, in: IEEE Geoscience and Remote Sensing Symposium, pp. 3618–

3621, doi:10.1109/IGARSS.2014.6947266, 2014.

Holland, M. M. and Bitz, C. M.: Polar amplification of climate change in coupled models, Climate Dynamics,

21, 221–232, doi:10.1007/s00382-003-0332-6, 2003.720

Hollinger, J. and Ramseier, R.: Sea ice validation, in: DMSP Special Sensor Microwave/Imager Calibra-

tion/Validation, Tech. rep., Naval Research Laboratory, Washington, D.C, 1991.

Huntemann, M., Heygster, G., Kaleschke, L., Krumpen, T., Mäkynen, M., and Drusch, M.: Empirical sea ice

thickness retrieval during the freeze up period from SMOS high incident angle observations, The Cryosphere,

8, 439–451, doi:10.5194/tc-8-439-2014, 2014.725

IPCC: Climate Change 2013: The Physical Science Basis, Fifth Assessement, Tech. rep., Cambridge University

Press, 2013.

Ivanova, N., Pedersen, L. T., Tonboe, R. T., Kern, S., Heygster, G., Lavergne, T., Sørensen, A., Saldo, R.,

Dybkjær, G., Brucker, L., and Shokr, M.: Satellite passive microwave measurements of sea ice concentration:

an optimal algorithm and challenges, The Cryosphere, 9, 1797–1817, doi:10.5194/tc-9-1797-2015, 2015.730

Kaleschke, L., Lupkes, C., Vihma, T., Haarpaintner, J., Bochert, A., Hartmann, J., and Heygster, G.: SSM/I

Sea ice remote sensing for mesoscale ocean–atmosphere interaction analysis, Canadian Journal of Remote

Sensing, 27, 5, 526–537, doi:10.1080/07038992.2001.10854892, 2001.

Kaleschke, L., Maaß, N., Haas, C., Hendricks, S., Heygster, G., and Tonboe, R. T.: A sea-ice thickness retrieval

model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice, The735

Cryosphere, 4, 583–592, doi:10.5194/tc-4-583-2010, 2010.

Kaleschke, L., Tian-Kunze, X., Maaß, N., Mäkynen, M., and Drusch, M.: Sea ice thickness retrieval

from SMOS brightness temperatures during the Arctic freeze-up period, Geophysical Research Letters,

doi:10.1029/2012GL050916, 2012.

Kaleschke, L., Tian-Kunze, X., Maaß, N., Heygster, G., Huntemann, M., Wang, H., Hendricks, S.,740

and Krumpen, T.: SMOS Sea Ice Retrieval Study (SMOSIce). Final Report, Tech. rep., ESA ES-

TEC Contract No.: 4000101476/10/NL/CT., http://icdc.zmaw.de/fileadmin/user_upload/icdc_Dokumente/

SMOSICE_FinalReport_2013.pdf, 2013.

Kern, S., Rösel, A., Pedersen, L. T., Ivanova, N., Saldo, R., and Tonboe, R. T.: The impact of melt ponds

on summertime microwave brightness temperatures and sea-ice concentrations, The Cryosphere, 10, 2217–745

2239, doi:10.5194/tc-10-2217-2016, 2016.

Kerr, Y. H., Waldteufel, P., Wigneron, J. P., Delwart, S., Cabot, F., Boutin, J., Escorihuela, M. J., Font, J., Reul,

N., Gruhier, C., Juglea, S. E., Drinkwater, M. R., Hahne, A., Martin-Neira, M., and Mecklenburg, S.: The

SMOS Mission: New Tool for Monitoring Key Elements ofthe Global Water Cycle, Proceedings of the IEEE,

98, 666–687, doi:10.1109/JPROC.2010.2043032, 2010.750

22

http://dx.doi.org/10.1080/01431161.2012.716541
http://dx.doi.org/10.1109/IGARSS.2014.6947266
http://dx.doi.org/10.1007/s00382-003-0332-6
http://dx.doi.org/10.5194/tc-8-439-2014
http://dx.doi.org/10.5194/tc-9-1797-2015
http://dx.doi.org/10.1080/07038992.2001.10854892
http://dx.doi.org/10.5194/tc-4-583-2010
http://dx.doi.org/10.1029/2012GL050916
http://icdc.zmaw.de/fileadmin/user_upload/icdc_Dokumente/SMOSICE_FinalReport_2013.pdf
http://icdc.zmaw.de/fileadmin/user_upload/icdc_Dokumente/SMOSICE_FinalReport_2013.pdf
http://icdc.zmaw.de/fileadmin/user_upload/icdc_Dokumente/SMOSICE_FinalReport_2013.pdf
http://dx.doi.org/10.5194/tc-10-2217-2016
http://dx.doi.org/10.1109/JPROC.2010.2043032


Khoshelham, K.: Role of tie points in integrated sensor orientation for photogrammetric map compilation,

Photogrammetric Engineering and Remote Sensing, 75, 305–311, doi:10.14358/PERS.75.3.305, 2009.

Klein, L. and Swift, C.: An Improved Model for the Dielectric Constant of Sea Water at Microwave Frequencies,

IEEE Transactions on Antennas and Propagation, AP-25, 104–111, doi:10.1109/JOE.1977.1145319, 1977.

Leppäranta, M. and Manninen, T.: The brine and gas contents of sea-ice with attention to low salinities and high755

temperatures, Internal Report 2, Tech. rep., Finnish Institute of Marine Research, 1998.

Maaß, N.: Remote Sensing of Sea Ice thickness Using SMOS data, Master’s thesis, Hamburg University, 2013.

Maaß, N., Kaleschke, L., Tian-Kunze, X., and T., R.: Snow thickness retrieval from L-band brightness temper-

atures: a model comparison, Annals of Glaciology, 56, doi: 10.3189/2015AoG69A886, 2015.

Markus, T. and Cavalieri, D.: An enhancement of the NASA Team sea ice algorithm, IEEE Transactions of760

Geoscience and Remote Sensing, 38, 1387–1398, doi:10.1109/36.843033, 2000.

Martin-Neira, M., Ribó, S., and Martin-Polegre, A. J.: Polarimetric mode of MIRAS, IEEE Transactions on

Geoscience and Remote Sensing, 40, 1755–1768, doi:10.1109/TGRS.2002.802489, 2002.

Matzler, C.: Microwave permittivity of dry snow, IEEE Transactions on Geoscience and Remote Sensing, 34,

573–581, doi:10.1109/36.485133, 1996.765

Mecklenburg, S., Wright, N., Bouzina, C., and Delwart, S.: Getting down to business - SMOS operations and

products, ESA Bulletin, 137, 25–30, 2009.

Mills, P. and Heygster, G.: Retrieving ice concentration From SMOS, IEEE Geoscience and Remote Sensing

Letters, 8, 283–287, doi:10.1109/LGRS.2010.2064157, 2011a.

Mills, P. and Heygster, G.: Sea Ice Emissivity Modeling at L-Band and Application to 2007 Pol-770

Ice Campaign Field Data, IEEE Transactions on Geoscience and Remote Sensing, 49, 612–627,

doi:10.1109/TGRS.2010.2060729, 2011b.

Myung, J.: Tutorial on maximum likelihood estimation, Journal of Mathematical Psychology, 47, 90–100,

doi:https://doi.org/10.1016/S0022-2496(02)00028-7, 2003.

Owe, M., Jeu, R., and Walker, J.: A Methodology for Surface Soil Moisture and Vegetation Optical Depth775

Retrieval Using the Microwave Polarization Difference Index, IEEE Transactions on Geoscience and Remote

Sensing, 39, 1643–1654, doi:10.1109/36.942542, 2001.

Schwank, M., Mätzler, C., Wiesmann, A., Wegmüller, U., Pulliainen, J., Lemmetyinen, J., Rautiainen, K., Derk-

sen, C., Toose, P., and Drusch, M.: Snow Density and Ground Permittivity Retrieved from L-Band Radiom-

etry: A Synthetic Analysis, IEEE Journal of Selected Topics in Applied Earth Observations and Remote780

Sensing, 8, 3833–3845, doi:10.1109/JSTARS.2015.2422998, 2015.

SEARCH: Research, Synthesis, and Knowledge Transfer in a Changing Arctic: The Study of Environmental

Arctic Change (SEARCH), Tech. rep., Arctic Research Consortium of the United States, 2013.

Shokr, M. and Dabboor, M.: Interannual Variability of Young Ice in the Arctic Estimated Be-

tween 2002 and 2009, IEEE Transactions on Geoscience and Remote Sensing, 51, 3354–3370,785

doi:10.1109/TGRS.2012.2225432, 2013.

Shokr, M. and Sinha, N.: Sea Ice. Physics and Remote Sensing, ISBN: 978-1-119-02789-8, AGU-WILEY,

2015.

23

http://dx.doi.org/10.14358/PERS.75.3.305
http://dx.doi.org/10.1109/JOE.1977.1145319
http://dx.doi.org/10.1109/36.843033
http://dx.doi.org/10.1109/TGRS.2002.802489
http://dx.doi.org/10.1109/36.485133
http://dx.doi.org/10.1109/LGRS.2010.2064157
http://dx.doi.org/10.1109/TGRS.2010.2060729
http://dx.doi.org/https://doi.org/10.1016/S0022-2496(02)00028-7
http://dx.doi.org/10.1109/36.942542
http://dx.doi.org/10.1109/JSTARS.2015.2422998
http://dx.doi.org/10.1109/TGRS.2012.2225432


Shokr, M., Lambe, A., and Agnew, T.: A new algorithm (ECICE) to estimate ice concentration from remote

sensing observations: an application to 85-GHz passive microwave data, IEEE Transactions of Geoscience790

and Remote Sensing, 46, 4104–4121, doi:10.1109/TGRS.2008.2000624, 2008.

Smith, D.: Extraction of winter total sea-ice concentration in the Greenland and Barents Seas from SSM/I data,

Internation Journal of Remote Sensing, 17, 2625–2646, doi:10.1080/01431169608949096, 1996.

Stroeve, J., Serreze, M., Holland, M., Kay, J., Malanik, J., and Barrett, A.: The Arctic’s rapidly shrinking sea

ice cover: a research synthesis, Climatic Change, 110, 1005–1027, doi:10.1007/s10584-011-0101-1, 2012.795

Talone, M., Portabella, M., Martínez, J., and González-Gambau, V.: About the Optimal Grid for SMOS

Level 1C and Level 2 Products, IEEE Geoscience and Remote Sensing Letters, 12, 1630–1634,

doi:10.1109/LGRS.2015.2416920, 2015.

Thomas, D. and Dieckmann, G., eds.: Sea Ice. An Introduction to its physics, Chemistry, Biology and geology,

Blackwell, 2003.800

Tiuri, M., Sihvola, A., Nyfors, E., and Hallikaiken, M.: The complex dielectric constant of snow at microwave

frequencies, IEEE Journal of Oceanic Engineering, 9, 377–382, doi:10.1109/JOE.1984.1145645, 1984.

Tonboe, R. T., Eastwood, S., Lavergne, T., Sørensen, A. M., Rathmann, N., Dybkjær, G., Toudal Pedersen,

L., Høyer, J. L., and Kern, S.: The EUMETSAT sea ice climate record, The Cryosphere, 10, 2275–2290,

doi:10.5194/tc-10-2275-2016, 2016.805

Ulaby, F. and Long, D.: Microwave Radar and Radiometric Remote Sensing., University of Michigan Press,

2014.

Ulaby, F., Moore, R., and Fung, A.: Microwave Remote Sensing. Active and Passive, ISBN: 978-0890061916,

Addison-Wesley Publishing Company. Advanced Book Program/World Science Division., 1981.

Vant, M., Ramseier, R., and Makios, V.: The complex-dielectric constant of sea ice at frequencies in the range810

0.1–40 GHz, Journal of Applied Physics, 49, 1264–1280, doi:10.1063/1.325018, 1978.

Vihma, T.: Effects of Arctic Sea Ice Decline on Weather and Climate: A Review, Surveys in Geophysics, 35,

1175–1214, doi:10.1007/s10712-014-9284-0, 2014.

Wilheit, T. T.: A review of applications of microwave radiometry to oceanography, Boundary-Layer Meteorol-

ogy, 13, 277–293, doi:10.1007/BF00913878, 1978.815

Zine, S., Boutin, J., Font, J., Reul, N., Waldteufel, P., Gabarro, C., Tenerelli, J., Petitcolin, F., Vergely, J., Talone,

M., and Delwart, S.: Overview of the SMOS Sea Surface Salinity Prototype Processor, IEEE Transactions

on Geoscience and Remote Sensing, 46, 621 – 645, doi:10.1109/TGRS.2008.915543, 2008.

24

http://dx.doi.org/10.1109/TGRS.2008.2000624
http://dx.doi.org/10.1080/01431169608949096
http://dx.doi.org/10.1007/s10584-011-0101-1
http://dx.doi.org/10.1109/LGRS.2015.2416920
http://dx.doi.org/10.1109/JOE.1984.1145645
http://dx.doi.org/10.5194/tc-10-2275-2016
http://dx.doi.org/10.1063/1.325018
http://dx.doi.org/10.1007/s10712-014-9284-0
http://dx.doi.org/10.1007/BF00913878
http://dx.doi.org/10.1109/TGRS.2008.915543


Figure 1. Sensitivity of brightness temperature for open seawater over a range of observing frequencies in the

microwave band for a set of key geophysical parameters (created after Wilheit (1978) and Ulaby and Long

(2014)). The maximum sensitivity of TB to sea surface temperature is around 6 GHz, with a peak of 0.4K/◦C;

to salinity is around 1 GHz, with a peak value of 0.5 K/psu; to wind speed is above 10 GHz, with a peak value of

1 K/m/s. The peak of attenuation from water vapor in clouds is at 22 GHz, and is 0.2 DB/km. L-band (1.4 GHz)

observations are hardly sensitive to any variable but salinity, hence it is in a sweet spot for sea ice studies.

Figure 2. Theoretical variation of brightness temperature with angle of incidence at L-band for (blue) seawater,

(black) sea ice, and (red) a snow layer overlying a sea ice layer for (continuous) horizontal and (dashed) vertical

polarizations. (See text in Sect. 3 for details.)
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Figure 3. Modeled variation of polarization difference (PD) index with angle of incidence for (blue) seawater,

(black) sea ice, and (red) a snow layer overlying a sea ice layer, at L-band. (See Eq. 10 and text in Sec. 4.1 for

details.) The vertical line at 50◦ incidence angle is drawn for reference to tie-points, which are marked with a

solid circle for the three media. (see text in Sec. 4.2).

Figure 4. Modeled variation of angular difference index (AD) with angle of incidence for (blue) seawater,

(black) sea ice, and (red) a snow layer overlying a sea ice layer for (continuous) horizontal and (dashed) vertical

polarizations, and for ∆θ = 35◦, at L-band. (See Eq. 11 and text in Sec. 4.1 for details.) The vertical line at 25◦

incidence angle is drawn for reference to tie-points, which are marked with a solid circle on vertical polarization

for the three media. (see text in Sec. 4.2).
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Figure 5. Theoretical variation with sea ice thickness of (blue; left axis) TB at nadir, (green; right axis) polar-

ization difference (PD) at 50◦ incidence angle, and (red; right axis) angular difference (AD) at ∆θ = 25◦ after

the model by Burke et al. (1979), for a sea ice salinity of 8 psu, sea ice temperature of −10◦ C, and a snow layer

of 10-cm thick over the ice. (See text in Sect. 3 for details.) Note the factor of 10 change between the left/right

vertical scales.
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Figure 6. Temporal variation of the average brightness temperature TB at nadir for (top) multy year sea ice and

(bottom) seawater at the two regions for generating tie-points. regions (see Sec. 4.4).Note the factor of 4 change

in the vertical scales.
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Figure 7. Same as Fig. 6 except here for angular and polarization difference indices.
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Figure 8. Scatter plot of the angular difference vs polarization difference in March and July 2014, with (red-

to-blue) high-to-low index occurrence values for the two regions for generating tie-points regions, i.e., 0% and

100% sea ice concentration (SIC).
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with MLE; and MLE vs linear retrieval tecniques. If not defined in the labels it is two tie-points.

Figure 10. SMOS SIC with MLE AD+PD minus SMOS SIC with MLE AD inversion tecniques. SIC scale is

presented from 0 to 1.
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Figure 11. SMOS SIC with MLE (a), OSISAF SIC (b) and the differences (c) for 3rd March 2014.

Figure 12. SMOS SIC with MLE (a), OSISAF SIC (b) and the differences (c) for 3rd November 2014.
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Figure 13. Probability to have SMOS SIC more than 0.90 where OSISAF SIC=1 (blue line) and SMOS SIC

less than 0.05 where OSISAF SIC=0 (red line) for 2014. Summer tie-points are used for retrievals from June to

September.
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Figure 14. Classification of the Artic region according to their values of SMOS and OSI-SAF SIC during

March (a) and November (b) 2014. Three classes are shown: 1) OSISAF SIC < 0.9; 2) OSISAF SIC > 0.9

and SMOS SIC < 0.9; and 3) OSISAF SIC > 0.9 and SMOS SIC > 0.9.

Figure 15. Coefficient of determination (R2) between SMOS and OSISAF SIC for 2014, considering only SIC

data in the range from 5% to 95%.

31



Table 1. Modeled (with and without snow) and SMOS observed TB , PD, and AD median values. Errors quoted

are the standard deviation around the median.

Modeled Observed all year

(K) median ±σ (K)

0% SIC TB 95.2 99.33± 2.40

(Seawater) PD 62.9 62.56± 2.56

AD 51.8 43.08± 2.57

Modeled with Modeled without Observed Winter Observed Summer

snow (K) snow (K) median ±σ (K) median ±σ (K)

100% SIC TB 249.2 239.3 248.21± 1.56 229.04± 4.99

(Sea Ice) PD 26.8 45.9 20.30± 1.75 25.53± 3.72

AD 8.6 18.8 10.38± 1.17 15.26± 2.31

Table 2. Sensitivity of measurement TB , PD, and AD to ice temperature (T ), salinity (S), and thickness (d).

Medium Index δI/δT δI/δS δI/δd

(I) (K /◦ C) (K / psu)1 (K / cm)

TB 0.2 0.51

Seawater PD 0.26 0.21

AD 0.20 0.12

TB 0.85 1.00 1.2

Sea ice PD 0.66 0.35 0.02

AD 0.35 0.25 0.05

1practical salinity units

Table 3. Propagated SIC error using each index, computed from Eq. 12 for assumed (T , S, d) variations, and

root-sum-squared (RSS).

SIC error index ∆T ∆S ∆d RSS

(%) used 5 K 4 psu 30 cm

∆SIC TB 2.8 2.6 23.4 23.7

∆SIC PD 7.6 3.2 1.4 8.3

∆SIC AD 4.8 2.8 4.2 7.0
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