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S1 Meteorological measurements at Svalbard Airport

The 117 year long homogenized air temperature record after Nordli et al. (2014) from Svalbard

airport is shown in Figure S1. Over the period all seasons has a positive trend with the largest

warming during winter and lowest warming during summer. Summer temperature trend is not easily

seen in Figure S1. Since 1976 daily meteorological measurements allow for estimating a common5

measure of glacier melt, yearly cumulative positive degree days (ΣPDD), which show a markedly

increase over the last 40 years (Fig. S2).

S2 Glacier masks

Figure S3 shows the glacier coverage at three epochs, 1930-60s, 1990s, and 2000s, (Nuth et al.,

2013). Regional glacier area for the applied temporally evolving glacier mask, which was is derived10

by interpolation of the Nuth et al. (2013) inventory, is shown in Figure S4. For some locations like

Kvitøya, glacier coverage is only available for the last epoch and the glacier area is constant for

the entire period. This approach assume linear glacier retreat or advance between the epochs and no

changes are assumed after the 2000s epoch. Representation of glacier tongue retreats are somewhat

unrealistic, since they disintegrate rather than displaying a frontal retreat.15
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Figure S1. Air temperatures and precipitation at Svalbard Airport 1898-2014 from climate4you.com with data

from eklima.no

S3 MODIS

Figure S5 shows MODIS-derived average over 2003-13 for: minimum summer (lower 5th percent)

albedo and mean annual clear-sky skin surface temperatures.

S4 Calibration

Table S1 list relevant parameters employed in the model and how the respective values are deter-20

mined. Only four parameters were determined during the calibration. Expert judgment are values

based on one or more of the following: 1) from a pre-calibration step with many more than the 4 pa-

rameters, to aid the parameter choice in the next calibration exercise; 2) from fitting to observations,

where direct comparison where possible; 3) from a mixture of values found in the literature.

S5 Regional Refreezing and Thermal regime25

Figure S6 and S7 shows yearly amount of refreezing and 15 m temperatures with altitude resolved

regionally. All regions show nearly the same response regarding thermal regime for the period 1957-
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Figure S2. Accumulated positive degree days from Svalbard airport 1976-2015. Data from eklima.no

2014, thus occurring at different elevation. The main features are: 1) warming of the cold ice in the

ablation area; 2) cooling of the the area around ELA, which climb increase as firn area shrinks with

the increasingly negative Bclim; 3) warming of the cold firn area which existed until 1975, when30

nearly all firn became temperate.
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Figure S3. Fractional glacier cover (%) on 1000m DEM: a) 2000s, b) 1990s, c) 1930s/60s and d) reference

mask
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Figure S4. Glacier area evolution for Svalbard and it’s regions in percent from the first data acquisition in 1936

and onwards constructed from the multi-temporal glacier inventory (Nuth et al., 2013).
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Figure S5. a) Mean annual clear-sky skin surface temperatures from MODIS over 2003-2013. b) Minimum

(lower 5th percentile) summer albedo averaged over 2003-2013 derived from MODIS. Missing data (in gray)

are caused by erroneous landmask in MODIS.
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Figure S6. Refreezing averaged over 50 m altitude intervals for Svalbard and for 8 regions, for each year from

1957 (blue) to 2014 (red).
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Table S1. Overview on parameters and parameterization employed in the model and their origin.

Process Parameter Symbol Value Source

Turbulent fluxes
Roughness lengths of momentum

zoice (mm) 0.18 Calibration

zosnow (mm) 0.06 Calibration

Roughness length heat/moist zoT/q (mm) see Andreas (1987)

Albedo

Ice αice (–) 0.30 Calibration

Firn/ min snow αfirn (–) 0.62 Calibration

New snow αsnow (–) 0.85 Expert judgment

Slush αslush (–) 0.55 Expert judgment

Superimposed ice αSI (–) 0.67 Expert judgment

Water αwater (–) 0.15 Zuo and Oerlemans (1996)

Slush αslush (–) xx Expert judgment

Aging wet snow t∗wet (d) 5 Expert judgment

Aging dry snow 0◦C t∗dry(0◦C) (d) 15 Expert judgment

Aging cold snow -10◦C t∗dry(−10◦C) (d) 100 Expert judgment

Depth scale snow d∗ (cm) 3 Oerlemans and Knap (1998)

Depth scale water w∗ (cm) 30 Bougamont and Bamber (2005)

Long wave radiation Emissivity ǫ (–) 0.99 Snyder et al. (1998)

Heat conductivity Ice conductivity a (Wm−1 K−1) 2.3 Expert judgment

(Douville et al., 1995) Exponent b (–) 2.35 Expert judgment

Runoff timescales τsteep, τ1◦ , τ0◦ , Factor see Reijmer and Hock (2008)

Precipitation Rain/snow threshold Train/snow (◦C) 1.5 Expert judgment

Fresh snow density Density ρfsn (kgm−3) 300 Expert Judgment

Densification Herron and Langway (1980)

Irreducible water content Schneider and Jansson (2004)

References

Andreas, E.: A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice,

Boundary-Layer Meteorology, 38, 159–184, 1987.

Bougamont, M. and Bamber, J.: A surface mass balance model for the Greenland ice sheet, Journal of Geo-35

physical Research-Earth Surface, 110, f04018, doi:10.1029/2005JF000348, 2005.

Douville, H., Royer, J.-F., and Mahfouf, J.-F.: A new snow parameterization for the Meteo-France climate

model. Part I: Validation in stand alone experiment., Climate Dynamics, 12, 21–35, 1995.

Herron, M. and Langway, J. C.: Firn densification: an empirical model, Journal of Glaciology, 25, 373–385,

1980.40

Nordli, O., Przybylak, R., Ogilvie, A. E. J., and Isaksen, K.: Long-term temperature trends and variabil-

ity on Spitsbergen: the extended Svalbard Airport temperature series, 1898-2012, Polar Research, 33,

doi:10.3402/polar.v33.21349, 2014.

S6

http://dx.doi.org/{10.3402/polar.v33.21349}


0

200

400

600

800

1000

1200

1400

E
la

v
a

ti
o

n
 m

 a
s
l.

Kvitøya

0

200

400

600

800

1000

1200

1400

E
la

v
a

ti
o

n
 m

 a
s
l.

Austfonna

-10 -8 -6 -4 -2 0

T
z=-15m

  °C

0

200

400

600

800

1000

1200

1400

E
la

v
a

ti
o

n
 m

 a
s
l.

Vestfonna

Edgeøya

South Spitsbergen

-10 -8 -6 -4 -2 0

T
z=-15m

  °C

Northeast Spitsbergen

Northwest Spitsbergen

Nordenskioldland

-10 -8 -6 -4 -2 0

T
z=-15m

  °C

Svalbard

1960

1965

1970

1975

1980

1985

1990

1995

2000

2005

2010

Figure S7. Subsurface temperatures at 15 m depth averaged over 50 m altitude intervals for Svalbard and for 8

regions, for each year from 1957 (blue) to 2014 (red).
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