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Abstract. Robustly understanding connections between the climate, cryosphere, and streamflow is necessary to make informed

decisions regarding water resources in mountainous regions. Conceptual models, for instance variations on simple degree-index

(SDI) or enhanced temperature index (ETI) formulations of cryosphere heat transfer and melt, are often applied in mountain

environments. SDI and ETI models perform relatively well over short time periods or small geographic extents, but their

performance is known to degrade over longer periods or across larger geographic regions, which makes them ill-suited for5

climate change impact studies. Our work seeks to quantitatively assess differences in performance of multiple existing and

novel conceptual cryosphere model formulations across climatic conditions and geographic regions. To accomplish this, we

present the Conceptual Cryosphere Hydrology Framework (CCHF), which is a set of coupled process modules, computational

engine, and analysis tools, to assess the accuracy and precision of conceptual cryosphere models. We compare existing SDI and

ETI formulations and novel conceptual cryosphere process modules that include net longwave radiation in the heat transfer10

formulation (termed the Longwave, Shortwave, Temperature - LST - formulation) and a cold content representation of the

snowpack internal energy. We implement the CCHF for the Gulkana and Wolverine glaciated watersheds in Alaska, which

have markedly different climates and contain longterm US Geological Survey benchmark glaciers. Overall, of the models

tested, the LST heat representation with a cold content internal energy representation is the most accurate and precise model.

The CCHF is open-source and we encourage interested parties to use it to identify further refinements to cryosphere model15

formulations.
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1 Introduction

Many regions of the Earth’s cryosphere are currently changing and are projected to continue changing significantly under a

range of projected future climate scenarios (Stocker, 2013; Mankin et al., 2015). Understanding the impacts of climate change

on the cryosphere, and in turn on timing and magnitude of streamflow originating from the cryosphere, requires implementing

a spatially and temporally robust cryosphere hydrology model. Two categories of cryosphere models are energy balance and5

conceptual. Our basic definition of the difference between these model types is that energy balance models represent each heat

flux independently and base calculation of heat fluxes on all physically relevant parameters, while conceptual models lump

multiple heat fluxes together and use parameterizations to reduce the number of input variables. In practice, these model types

exist on a spectrum rather than as discrete categories.

Energy balance models are theoretically more robust than conceptual models because the relative balance of heat fluxes10

changes over time and between locations (Kustas et al., 1994; Sicart et al., 2008; Huss et al., 2009). Yet, many cryosphere

studies utilize conceptual models, such as simple degree index (SDI) and enhanced temperature index (ETI) structures (e.g.

Wang et al., 2004; Hagg et al., 2007; Jung and Chang, 2011; Lutz et al., 2014). In contrast, energy balance models require a

variety of inputs that are even more sparsely measured in mountain environments and that vary significantly over short spatial

and temporal scales (see discussion on the surface energy balance in Sturm, 2015). Wind speed, for example, linearly scales15

each convective heat flux (i.e. sensible and latent), and is therefore necessary for energy balance models. The spatial distribution

of wind speed is, however, difficult to characterize even if there are measurements of wind speed at points within the region

(Marks et al., 1992; Marks and Winstral, 2001). Therefore, it warrants consideration of whether including variables such as

wind speed improves or reduces model performance.

Conceptual models, which typically only require climate inputs of precipitation and temperature, perform well under many20

circumstances (Ohmura, 2001), with ETI models typically performing better than SDI models (Hock, 1999; Pellicciotti et al.,

2005). The reasons for relatively good performance of SDI and ETI models are that many heat fluxes are functions of tem-

perature (e.g. sensible convection and longwave radiation), seasonality of air temperature and shortwave radiation are often

correlated for a given location, and shortwave radiation fluxes tend to be significantly larger than convective heat fluxes during

melt conditions (Marks et al., 1992; Cline, 1997). While previous studies have compared ETI to energy balance models (e.g.25

Hock, 2005), the present study seeks to assess whether adding more physical basis to conceptual cryosphere structures (while

holding the required inputs constant) enhances model accuracy and precision.

Identifying improvements to conceptual models requires a framework for comparing existing structures and systematically

assessing novel representations. Other hydrology intercomparison projects have been carried out (e.g. Smith et al., 2004, 2012;

Clark et al., 2008) and are being developed (e.g. Clark et al., 2015a, b). The comparison carried out by Smith et al. (2004) and30

Smith et al. (2012) assess several hydrologic models, many of which are conceptual, but implement each model independently

instead of through a common framework. Clark et al. (2008) creates a common modeling structure for implementing lumped

variants of several hydrologic models for two basins in the USA, but does not model snowpack accumulation and melt. The

Structure for Unifying Multiple Modeling Alternatives (SUMMA) is a much more generalizable intercomparison framework
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by Clark et al. (2015a). In SUMMA, the relevant mass and energy conservation relationships are implemented, and the structure

is designed to allow alternative spatial representations of each process relevant to the system. Thus, in theory SUMMA can

be developed to implement any physically-based representation of a distributed hydrologic system. In practice, SUMMA

development has not focused on the processes and conditions typical of data-sparse mountain regions (Clark et al., 2015a, b).

Our present work seeks to assess and improve conceptual representations of snow and glacier processes. To achieve this, we5

have developed the Conceptual Cryosphere Hydrology Framework (CCHF). The CCHF modularizes alpine and glacier surface

processes, and includes routines to optimize model parameters and analyze outputs. We assess four heat flux representations

(including three existing and one novel formulation) and two mass and energy representations (one existing and one novel).

We focus on these processes because their representation may depend significantly on climate regime (i.e. existing conceptual

representations of these processes may not be robust under climate change). We conduct our assessment for Gulkana and10

Wolverine watersheds in Alaska (Fig. 1), for the period July 2000 through June 2010, and evaluate model performance using

streamgage, glacier stake, and snow-covered area (SCA) observations. In addition to our present assessment, a valuable attribute

of CCHF is that it is open-source and can easily be implemented for other regions, different climate forcing datasets, or novel

process representations.

Figure 1. Geographic extent of the glaciated Gulkana and Wolverine watersheds. The digital elevation model is produced by WorldClim

(Hijmans, 2011) and glacier coverage is from the Randolph Glacier Inventory version 5 (Pfeffer et al., 2014).
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1.1 Existing Conceptual Cryosphere Representations

1.1.1 Heat Flux to Melt

A basic yet still widely used conceptual cryosphere heat and melt formulation is the SDI structure (two well known examples

are Hydrologiska Byråns Vattenbalansavdelning, presented in Lindström et al., 1997, and the Snowmelt-Runoff Model, pre-

sented in Martinec, 1975). In SDI models, melt, M ([M ] = m−1 s−1, which throughout represents depth of melt per unit time5

per unit area; square brackets denote a variable’s units), occurs when the surface air temperature at a grid cell, Ta ([Ta] = ◦C),

is above a temperature threshold, T0 ([T0] = ◦C) (Singh et al., 2000; Wang et al., 2004). Otherwise, no melt occurs and incident

precipitation during that time step adds to the snowpack. When melt occurs at a given grid cell, its magnitude is determined as

M =




fm (Ta−T0) if Ta > T0

0 otherwise
(1)

where fm is the degree-index factor ([fs] = m−1 ◦C−1 s−1).10

ETI formulations are a category of conceptual cryosphere formulations that model heat transfer as a function of air temper-

ature and shortwave radiation. Two ETI formulations, by Hock (1999) and Pellicciotti et al. (2005) respectively, are

M =





(
ai (1−α)I + fm

)
(Ta−T0) if Ta > T0

0 otherwise
(2)

M =




ai (1−α)I + fm (Ta−T0) if Ta > T0

0 otherwise
(3)

where ai is a fitting parameter that scales melt from shortwave radiation (Eq. 2: [ai] = m−1 J−1 ◦C−1; Eq. 3: [ai] = m−1 J−1),15

α is the surface albedo (unitless), I is the measured or modeled shortwave radiation ([I] = W m−2). Throughout, the ETI heat

formulations described in Eqs. 2 and 3 are referred to respectively as ETI(H) and ETI(P). As a note, within the CCHF, the units

of fitting parameters in Eqs. 1-3 are altered such that the lefthand side of the equations have units of W per meter squared.

ETI(P) is more physically representative than ETI(H) because temperature and shortwave radiation scale melt independently

(DeWalle and Rango, 2008); however, Pellicciotti et al. (2005) only describes application of ETI(P) to individual points on a20

glacier, rather than as a distributed model. Conversely, ETI(H) is freely available as a spatially-distributed modeling package

(Hock, 1999).

1.1.2 Internal Energy of Snow and Ice

Snow and ice melt in Eqs. 1-3 is proportional ti the heat transfer in the current time-step (modified using a step function), and

therefore these formulations do not represent the internal energy of snow or ice in a physically meaningful way. A common25

concept in snow process modeling, however, is cold-content, CC ([CC] = m), which is defined as

CC =
ci ρs

Lf ρw
ds (Tm−Ts,i) (4)
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where ci is the specific heat of ice ([ci] = J kg−1 K−1), ρs is the density of the snow mass ([ρs] = kg m−3), Lf is the latent heat

of ice ([Lf ] = J kg−1), ρw is the density of water ([ρw] = kg m−3), ds is the depth of snow ([ds] = m), Tm is the temperature at

which melt occurs (i.e 0 ◦C; [Tm] = ◦C), and Ts,i is the internal temperature of the snow mass (assuming the snow is isothermal

or that Ts,i is the mass-averaged temperature; [Ts,i] = ◦C). CC is simply a statement of the magnitude of sensible energy deficit

of the snow mass in terms of the latent energy required to melt the same mass of water.5

CC is a natural conceptual formulation of internal energy to combine with a conceptual heat flux representation (e.g. Eqs.

1-3) because both are formulated as depth of water equivalent. Hock (2005) states that the concepts of energy deficit (referring

to Van de Wal and Russell, 1994) and CC, or ‘negative melt’ (referring to Braun and Aellen, 1990), have been incorporated

into previous conceptual cryosphere models; however, the above references that Hock (2005) cites do not mention treatment of

internal energy. Therefore, we are not aware of any previous conceptual cryosphere models that incorporate internal energy or10

‘negative melt’ into their formulation. Many conceptual cryosphere model implementations are able to avoid including internal

energy representations by focusing only on the melt season (e.g. Kustas et al., 1994, Hock, 1999, Pellicciotti et al., 2005, and

Sicart et al., 2008). Section 2.2 explains how CC is incorporated into the CCHF.

Even after the CC of a snowpack is satisfied (i.e. becomes zero), the snowpack must ripen before releasing water. Snowpack

ripening refers to the process by which snow holds water interstitially until the interstitial forces are overcome by gravity15

and the melt water drains from the snowpack. While the percentage holding capacity of snow varies, a typical value is 3%

(DeWalle and Rango, 2008). Some existing conceptual cryosphere models include snowpack liquid water holding capacity

(e.g. Kokkonen et al., 2006) and others do not (e.g. Wang et al., 2004). Liquid water holding capacity is included in the CCHF

and discussed in Section 2.2.

1.2 Climates of Gulkana and Wolverine Watersheds20

While Gulkana and Wolverine watersheds are both within the Gulf of Alaska, their climates are markedly different (Fig. 2).

With respect to air temperature, the upper end of the air temperature ranges (i.e. summer temperatures) are similar between

Gulkana and Wolverine but Gulkana is significantly colder at the low end of the distribution (i.e. corresponding to colder winter

temperatures at Gulkana). At all percentiles in the distribution, Wolverine’s precipitation is greater than Gulkana’s. The zeroth

percentile non-exceedance probability of precipitation for Wolverine is greater than 150 mm per day while for Gulkana it is25

approximately 60 mm.

Based on these differences, Gulkana’s climate can be categorized as more continental while Wolverine’s is more maritime

(Armstrong and Armstrong, 1987; Ukraintseva, 2009). These climate classifications are consistent with findings for the Alaska

region presented in Bieniek et al. (2012) (using cluster analysis of station records) and (Simpson et al., 2002) (based on

Parameter-elevation Regressions on Independent Slopes Model interpolated climate surfaces; Daly et al., 2002). Continental30

cryosphere climates tend to be colder and drier than maritime cryosphere climates. These climatic differences lead to snow-

packs in continental climates being much more polythermal and generally less dense than snowpacks in maritime climates

(Armstrong and Armstrong, 1987; DeWalle and Rango, 2008; Ukraintseva, 2009). Higher densities in maritime snowpacks are

partially caused by atmospheric conditions during snowfall and also by repeat freezing and melting cycles, which are more
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Figure 2. Cumulative probability distributions of daily precipitation and mean surface air temperature for the Gulkana and Wolverine wa-

tersheds (Fig. 1) from 1980-2009. The lines correspond to the spatially averaged precipitation and temperature values and the shaded region

indicates one standard deviation in the spatial distribution of precipitation and temperature within the watershed. Climate representation is

derived from the daily downscaled Climate System Forecast Reanalysis (Saha et al., 2010) product discussed in Section 3.1.

common to maritime snowpacks. These differences between continental and maritime cryosphere climate affect the thermal
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properties resulting snowpacks because the thermal conductivity of snow is primarily a function of density and water content

(Sturm et al., 1997; DeWalle and Rango, 2008).

2 The Conceptual Cryosphere Hydrology Framework (CCHF)

The CCHF models alpine and glacier systems using nine process modules (see Figure 3). While it is common for conceptual

cryosphere models to combine heat and snow/ice melt into a single formulation, here they are separated into “cryosphere heat5

transfer” (referred to as the heat module for brevity; described in Section 2.1) and “cryosphere energy and mass” (referred to as

the energy and mass module; described in Section 2.2) as this allows more versatility in the process representations. While we

have programmed multiple representations for each process module in CCHF, we only vary these two modules. We choose this

focus because the processes represented in the heat and energy and mass modules are the most sensitive to climatic differences

(resulting from either interregional variability or long-term climatic changes).10

Figure 3. Categories of process modules included in the current version of the conceptual cryosphere hydrology framework (CCHF).

Rounded blocks refer to process modules and ovals refer to data inputs and outputs. Blocks tinted green denote modules used for all models

and blocks tinted orange denote modules only used for models that include shortwave radiation.

The process representations used for each of the seven fixed modules are provided in Table 1. The process representations

for fixed modules (Table 1) are used because preliminary analysis indicated these modules work well for the conditions under

which the CCHF is currently implemented. Section 2.4 discusses the modules involved in translating snow and ice melt and
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rain into streamflow, which are represented by the four modules on the right hand side of the engine in Fig. 3. In addition to

the nine process modules CCHF also includes a built-in optimization routine (Fig. 3), which we discuss in Section 2.5.

Table 1. Process representations for modules that are fixed in the present CCHF implementation. tc, ts, and ca are fitting parameters

(unitless), ∆T is maximum temperature minus minimum temperature ([∆T ] = K), αf is the albedo of fresh snow (unitless), αo is the albedo

of old snow (unitless),
∑
Tmax is the cumulative sum of maximum temperature since last precipitation event ([

∑
Tmax] = K).

Module Name Summary Source

top-of-atmosphere

radiation

function of latitude, slope, as-

pect, and day of year
DeWalle and Rango, 2008

atmospheric

transmittance
tc
(
1− exp(−0.01 ts ∆T 2.4)

)
DeWalle and Rango, 2008

albedo αf − ca log(
∑
Tmax) Pellicciotti et al., 2005

potential evapotran-

spiration
Eq. 16

Allen et al., 1998; Lu

et al., 2005

flowpath Sec. 2.4 manual

cell-to-cell flow

time
Eq. 17 Johnstone et al., 1949

runoff to stream-

flow conversion
Sec. 2.4 Moore et al., 2012

2.1 Cryosphere Heat Transfer

Since the CCHF separates heat transfer from the representation of energy and mass, we use units of Watts per meter squared

(W/m2) for all heat module representations. The three existing heat modules we implement are SDI (Eq. 1), ETI(H) (Eq. 2),5

and ETI(P) (Eq. 3). Reformulating the lefthand side of each of these formulations to W/m2 changes the units of the coefficients

on the right hand side of the equations and the optimal range of fitting parameter values relative to the references on each of

these formulations.

A novel conceptual heat representation implemented here is the Longwave, Shortwave, and Temperature (LST) formulation.

The LST representation is similar to ETI(P) except that LST includes a longwave radiation balance term and LST does not10

have a fitting parameter to scale shortwave radiation. Net longwave radiation is calculated as

Lnet = σ
(
εaT

4
a,K −T 4

s,K

)
(5)

where σ is the Stefan-Boltzmann constant (σ = 5.67×10−8 W m−2 K−4), εa is the effective atmospheric emissivity (unitless),

subscriptK indicates the temperature is expressed in units of Kelvin rather than Celsius, and Ts is the snow surface temperature

([Ts] = ◦C). The LST formulation assumes εa to be 0.7 when there is no precipitation and 1 otherwise, which roughly translates15

to clear-sky and cloudy conditions (Hock, 2005; Sedlar and Hock, 2009). The LST heat formulation, HLST ([HLST]= W

8
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m−2), is thus

HLST = (1−α)I + fmTa +σ
(
εaT

4
a,K −T 4

s,K

)
(6)

where in this equation fm has units of W ◦C−1 m−2, which differs from fm’s units in Eqs. 1-3. Unlike the SDI, ETI(H), and

ETI(P) formulations, the LST process representation requires modeling the temperature of snow and ice, which is discussed in

Sec. 2.2.5

2.2 Cryosphere Energy and Mass

We implement two process representations to relate the net heat flux to changes in the internal energy and mass of snow and ice

(i.e. the ‘cryosphere energy and mass’ module). The first representation is a step function, denoted as ∆, which is implicit in

the SDI and ETI formulations used in existing conceptual models (i.e. Eqs. 1-3). The other representation is based on the cold

content (Eq. 4), and is denoted as CC. In both the ∆ and CC formulations, heat is translated into melt potential, MP ([MP ] =10

m−1; i.e. depth of melt per unit area), as

MP =
H∆t
ρwLf

(7)

where H is the net heat flux (i.e. formulations described in Sec. 2.1; [H] = W m−2) and ∆t is the model time step ([∆t] = s).

In the ∆ representation, all melt potential results in melt when the net heat flux is beyond a threshold value, which is

described mathematically as15

M =




MP if MP >mt

0 otherwise
(8)

where mt is a fitting parameter ([mt] = m−1). In the CC representation, CC ([CC] = m−1) is calculated as

CCi =





CCi−1− ccMP,i if MP,i < 0

CCi−1−MP,i otherwise
(9)

where subscript i refers to the current time step, subscript “i− 1” refers to the previous time step, and cc is a unitless fitting

parameter that provides a hysteresis in the accumulation and depletion of CC. Physically, the hysteresis relates to differences20

in the conduction of energy through the snowpack during accumulation (dry) versus ablation (wet) conditions. Melt, M, in the

CC representation is calculated as

M =




MP −CC if MP >CC

0 otherwise
(10)

where the negative bounds on CC is zero (i.e. CC is set to zero if it becomes negative). CC is always zero at grid locations

without snowpack (i.e. CC is always zero for grid cells containing ice but without snow). While snowpack temperature cannot25
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be modeled in the ∆ formulation, the CC formulation models the average internal snowpack temperature, T̄s,i, as

T̄s,i =−ct CC (11)

where ct is a fitting parameter to translate CC into internal temperature ([ct] = ◦C m−1). Thus, the assumption is made in

the CC representation that the snowpack is isothermal (i.e. T̄s,i = Ts,i). When liquid water is present in the snowpack, the

snowpack temperature is set to 0 ◦C.The LST heat representation is the only formulation implemented here that uses Eq. 11.5

In the LST model, it is therefore assumed that the snowpack surface temperature equals the average internal temperature. This

is a poor assumption for dry, cold snowpacks.

Both the ∆ and CC energy and mass representations contain a maximum snowpack liquid content, MLC ([MLC] = m−1,

i.e. depth per area), represented by

MLC = cs SWEs (12)10

where cs is a unitless fitting parameter and SWEs is the snowpack’s solid water content expressed as depth of liquid water

equivalent ([SWEs] = m−1, which is depth per unit area). All liquid water in excess of the snow’s liquid water holding capacity

drains from the snowpack at the end of each time step. In the CC formulation, the snowpack’s liquid water is refrozen when

CC is greater than 0, and the CC is reduced in direct proportion to the depth of water frozen. Only water that drains from the

snowpack is counted as a change in the snowpack’s total water content.15

2.3 Glacier Treatment

Fully representing ice processes requires accounting the the ice’s internal energy. Conceptual models typically do not do this,

instead assuming the the ice temperature is 0 ◦C when there is no snow present and the heat flux into the ice is positive (Hock,

1998, 1999). No energy and mass modules that include representation of ice’s internal energy have been programmed in the

current version of CCHF, although this is an area that should be developed in the future. Instead, CCHF assumes the glacier20

surface albedo is 0.4 and that the glacier’s surface temperature is the minimum of the air temperature in the previous time step

and 0 ◦C. The glacier’s surface temperature only impacts net longwave heat flux calculated in the LST model.

Differences in energy required to melt ice versus snow are accounted for in the ∆ and CC formulations by including a fitting

parameter that scales glacier melt differently than snow melt. Thus, glacier melt is calculated as

Mice = cg
Hice
H

MP,ice (13)25

where cg is a unitless fitting parameter to scale glacier melt, Hice is the heat flux for the ice surface properties, H is the

equivalent heat flux for snow surface properties, and MP,ice is the melt potential remaining after snow melt is calculated

([MP,ice] =m−1 s−1).

2.4 Melt to Streamflow

Once melt drains from the snowpack, CCHF models its transport through the landscape with the four modules on the right side30

of Fig. 3. Two general phases of this transport are (1) from melt to runoff and (2) through the stream network. To model phase

10
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one, we implement a leaky groundwater bucket model as described in Moore et al. (2012). In the bucket representation, all

liquid water released from snow, snlr ([snlr] = m−1), released from ice, iclr ([iclr] = m−1), and from rain ([rain] = m−1) enters

the groundwater bucket. The water in the bucket is described as the soil moisture, SM ([SM] = m−1), with a total soil moisture

capacity, SMC ([SMC] = m−1; SMC is a fitting parameter). SM is updated during each time step as

SMi =





SMi−1 + raini + snlri + iclri− rf,i−PETi if no snow or ice present

SMi−1 + raini + snlri + iclri− rf,i otherwise
(14)5

where subscript i refers to the value during the ith time step, and PET is potential evapotranspiration ([PET] = m−1; described

below). Runoff in the bucket model is then calculated based on SM and SMC as

rf =




A ((dr − 1)SMC + SM) if SM≥ SMC

Adr SM otherwise
(15)

where rf is the runoff ([rf ] = m3), A is the grid cell’s area ([A] = m2), and dr is the drain rate of soil moisture from the leaky

groundwater bucket per day ([dr] = days−1; fitting parameter ranging from zero to one).10

PET is calculated using a formulation of the Hamon Equation (Hamon, 1961) based on Allen et al. (1998) and Lu et al.

(2005), in which

PET = 218.39× ce×N




6.108 exp
[

17.27Ta

Ta+273.15

]

Ta + 273.15


 (16)

where ce is a unitless fitting parameter and N is the number of daylight hours ([N ] = hrs). PET is set to zero when snow or ice

is present.15

Direction of flow between grid cells in the CCHF can be input by the user (in the form of an ESRI formatted flow direction

grid) or calculated automatically using algorithms from the TopoToolbox (Schwanghart and Kuhn, 2010). The travel time

through each cell (∆t; [∆t] = s) is then calculated using a formulation by Johnstone et al. (1949),

∆t= tl 3600

√
∆l√
m

(17)

where ct is a unitless fitting parameter, ∆l is the distance between the centroids of grid cells in the flowpath ([∆l] = m), and20

m is the slope between cells in the flowpath expressed as a ratio (unitless).

Two methods available in CCHF to route the streamflow are lumped and Muskingum. The primary difference between these

two methods is that lumped method does not allow dispersion of the flow and the Muskingum method does (Bedient et al.,

2012). The results of both flow routing methods are comparable for simulating small watersheds at large time steps; however,

dispersion becomes more important as the size of the watershed increases relative to the time step (Bedient et al., 2012).25
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2.5 Optimization Routine

Several optimization routine options are built into the CCHF, including a genetic algorithm (Wang, 1991), Monte Carlo simula-

tion (Sawilowsky and Fahoome, 2003), Particle Swarm Optimization (PSO; Poli et al., 2007), and a hybrid algorithm developed

by us. The hybrid algorithm works by implementing the Monte Carlo routine for the first several calibration generations (rang-

ing from four to 15 generations based on the number of fitting parameters) and updating the fitting parameters in the following5

generations using PSO until two consecutive generations stagnate to the same fitness score (referred to here as an initial stag-

nation). Once an initial stagnation occurs, the hybrid algorithm uses a combination of Monte Carlo simulations and linear

sensitivity analysis to alternately add diversity to the population (Monte Carlo simulation) and explore the local parameter

space (linear sensitivity). If a new optimum is found, PSO is reinitiated. The process repeats until the same best fitness score is

returned for 15 consecutive generations (referred to here as terminal stagnation). A population of 30 parameter sets is used in10

each generation of the optimization process.

Calibration in the CCHF can be conducted in one or multiple stages. If multiple stages are implemented, the user must

determine which categories of fitting parameters to optimize in each stage. The two performance metrics we use are the Nash

Sutcliffe Efficiency (NSE; Nash and Sutcliffe, 1970) score and Kling Gupta Efficiency (KGE; Gupta et al., 2009) score. The

NSE score is extensively used to assess hydrologic models and, as is shown in Gupta et al. (2009), can be decomposed into the15

form

NSE = 2αr−α2−β2 (18)

where α is the ratio of the model standard deviation to the observed standard deviation, r is the linear correlation coefficient,

and β is the bias normalized by the observed standard deviation. From Eq. 18 it is evident that the NSE score unequally weights

standard deviation, correlation coefficient, and bias. Therefore, Gupta et al. (2009) propose using the KGE score, defined as20

KGE = 1−
√

(r− 1)2 + (α− 1)2 + (β− 1)2 (19)

Thus, the KGE metric equally weights errors in the correlation, standard deviation, and the non-dimensional bias.

A perfect KGE or NSE score is one and the negative bound on the scores is negative infinity. An NSE score of zero indicates

the mean of the observation time-series are as as good of a predictor as the modeled time-series. Note, though, that a KGE

score of zero does not share this interpretation. The advantage of using the KGE for calibration instead of the NSE is that the25

NSE is sensitive to errors in extreme values and less sensitive to errors in the overall distribution relative to the KGE metric

(Legates and McCabe Jr, 1999).

3 Methods for Model Comparison

The objectives of the present model assessment using CCHF are to (1) demonstrate that CCHF is a useful tool for developing

novel conceptual cryosphere hydrology models and (2) identify differences in accuracy and precision of existing and novel30

conceptual cryosphere hydrology models. We achieve these objectives by applying the CCHF to Gulkana and Wolverine
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glaciated watersheds in Alaska (Fig. 1) for seven model formulations. Both of these watersheds are longterm US Geological

Survey (USGS) study sites and exist within different climatic regimes of Alaska (Sec. 1.2). Specifically, the different climatic

regimes serve as a proxy to determine how robust each model formulation will likely be when used to simulate the cryosphere

response to altered climate scenarios.

The model formulations we assess are outlined in Table 2 (the fitting parameters contained in each model are displayed in5

Tables 9 and 10, Appendices E and F). Section 3.1 describes the inputs we use to implement each model within CCHF, Sec.

3.2 describes the observation data we use to assess model performance, and Sec. 3.3 describes how we assess each model.

Table 2. Conceptual heat (Sec. 2.1) and energy and mass (Sec. 2.2) module combinations that we assess. In all cases the seven fixed module

formulations are those presented in Table 1. Note that as discussed in Section 2.1, all units of heat are expressed as W/m2, which differ from

the units in many of the reference equations.

Model

Label

Heat

Eq. #

Energy

and Mass

Eq. #

SDI∆ 1 8

SDIcc 1 9

ETI(H)∆ 2 8

ETI(H)cc 2 9

ETI(P)∆ 3 8

ETI(P)cc 3 9

LSTcc 6 9-11

3.1 Model Inputs

CCHF presently supports inputs of precipitation and temperature (mean, minimum, and maximum) time-series, a digital el-

evation model (DEM; we use the WorldClim 30 arcsecond DEM, Hijmans, 2011), a glacier or ice cover raster (we use the10

Randolph Glacier Inventory version 5, Pfeffer et al., 2014), and a flow direction raster (FDR; can also be generated auto-

matically within CCHF using algorithms from the TopoToolbox, Schwanghart and Kuhn, 2010). We manually delineate the

watersheds and create the FDR using a combination of ArcGIS algorithms and visual analysis.

The climate time-series inputs used here are derived from the Climate Forecast System Reanalysis (CFSR), which is pro-

duced by the National Centers for Environmental Prediction (NCEP) (Saha et al., 2010). CFSR is an hourly climate product15

available from 1979-2010 as 0.312 degree grids. Wang et al. (2011) and Lader (2014) find that CFSR represents precipitation

and temperature variability as well or better than other reanalysis products such as MERRA (Rienecker et al., 2011) and ERA-

Interim (Dee et al., 2011) for the Alaska region. CFSR is also demonstrated to reproduce total volumes of water flux through

the Gulf of Alaska better than estimates derived from other reanalysis products (Beamer et al., 2015).
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We temporally aggregate the hourly 0.312 degree CFSR product to daily time steps. Precipitation and mean temperature are

used in all instances, while minimum and maximum temperature are only used in model formulations that include shortwave

radiation. We input the temporally aggregated 0.312 degree CFSR product into MicroMet (Liston and Elder, 2006a). Micromet

resamples the input time-series to the spatial grid of the DEM and applies temperature lapse rates and precipitation correction

factors based on elevation distribution, which vary as a function of the day of the year, creating a 30 arcsecond daily time-series.5

These spatially downscaled and temporally aggregated time-series are then used as inputs to CCHF.

3.2 Observation Data

The three types of observation data we use to assess model performance are USGS streamgage measurements of flowrate

(referred to as flow), Moderate Resolution Imagining Spectroradiometer (MODIS; Hall et al., 2006) images of SCA (referred

to as SCA), and USGS stake measurements of changes in snow and ice water equivalent (referred to as stake). Both Gulkana and10

Wolverine are long-term benchmark glaciers maintained by the USGS. Correspondingly, the USGS has been measuring glacier

and snow accumulation and ablation at three locations on Gulkana glacier from 1974 through the present (with an additional

stake from 1990 through the present) and three locations on Wolverine from 1965 through the present (Van Beusekom et al.,

2010). Glacier stakes measure changes in depth of snow and ice at one location between two observation dates. These changes

in depth are then converted to changes in mass through measuring the density of snow and assuming a density for ice. Wolverine15

glacier is entirely free of surface debris, while a portion of the ablation zone of Gulkana glacier contains scattered debris cover,

but we model both glaciers as debris-free.

There are streamgages located slightly below the termini of Gulkana and Wolverine glaciers. The streamgages were installed

in 1966 and are maintained by the USGS. The temporal coverage of the streamgages is not continuous. For example, the

streamgage at Gulkana is missing measurements from October 1978 through September 1989 and the streamgage at Wolverine20

does not have measurements from October 1978 through September 2000. The USGS also cautions that there may be significant

errors in the flows, especially at high flows, because the streamgages are located in geomorphologically active channels.

Monthly estimates of SCA are obtained from the MODIS instrument aboard the National Aeronautics and Space Administra-

tion’s (NASA) Terra and Aqua satellites. MODIS images have been processed to observe many properties, but the dataset used

here is MOD10CM, which is a 0.05 degree spatial and monthly temporal resolution approximation for the percent SCA of each25

grid cell (Hall et al., 2006). While daily and 8-day MODIS images are available (MOD10C1 and MOD10C2, respectively),

these datasets are less useful than the monthly product for this region due to a large portion of the images being obstructed by

clouds. Individual grid cells are even obstructed in the monthly images due to prevalence of cloud cover during a given month.

To overcome this, we spatially average all MODIS SCA percentages over each watershed and only use the spatially-averaged

monthly SCA values for which 30% or fewer of contributing MODIS grid cells are obstructed for the given time step.30

3.3 Assessment Strategy

As is seen in Fig. 2 and Fig. 5 (Appendix A), climate varies more between the Gulkana and Wolverine watersheds than it varies

between decades at either of the watersheds. Due to this, and because more observation data are available for 2000-2010 than
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for other periods (see discussion in Sec. 3.2), we calibrate each of the seven models for Gulkana and Wolverine separately for

July 2000 through June 2010 and then validate each model by applying it to the opposite watershed but the same time period.

Using only the period 2000-2010 allows us to use flow, SCA, and stake measurements for both calibration and validation at

each site. We view the ten year calibration and validation periods as necessary to assess long-term performance of the models.

Often models are assessed for shorter periods (e.g. Singh et al., 2000, Liston and Mernild, 2012, and Hock and Holmgren,5

2005) but their is evidence that assessing models over short periods can lead to incorrect assessments (e.g. see Razavi and

Tolson, 2013).

We calibrate each model in two stages. In the first stage parameters relating to cryosphere modules (see Fig. 3) are optimized

by comparing modeled and measured SCA and stake changes. The calibrated cryosphere parameters are then set to their

optimized values during the second stage of calibration and all remaining parameters (i.e. those related to runoff generation10

and routing processes; see Sec. 2.4) are optimized by comparing modeled and measured flow. The KGE score is used to assess

the fitness of parameter sets during calibration. Since stake observations are available at multiple points, fitness scores during

the first stage of calibration are calculated at each stake location and then averaged to produce a single stake score for each

parameter set. This stake score is then averaged with the SCA score to determine the overall cryosphere fitness of the parameter

set.15

4 Results and Discussion

Each of the models from Table 2 is calibrated and validated using the procedure outlined in Sec. 3.3. The corresponding

KGE scores for each model’s calibration and validation runs are summarized in Fig. 4 (full results, including NSE scores,

are provided in Tables 7 and 8 in Appendices C and D, respectively). The corresponding calibrated parameter values are

provided in Tables 9 and 10 (Appendices E and F). While Fig. 4 efficiently summarizes the results, trends become more20

apparent when model performance is aggregated in specific ways. We therefore separate this section into several subsections to

highlight interesting properties of the model intercomparison. Some of the findings are that (1) which energy and mass module

representation performs best depends on the watershed (Sec. 4.1), (2) overall performance varies between the two watersheds

(Sec. 4.2), and (3) which model is most accurate depends on the observation variable considered but the LSTcc model is the

most robust between regions (Sec. 4.3). Section 4.4 then summarizes general observations.25

We also want to note at the outset that the choice of metric is a significant determinant of perceived model performance.

Throughout, we primarily report the KGE (Eq. 19), although Tables 7 and 8 (Appendices C and D) provide model performance

for the NSE (Eq. 18) as well. As explained in Sec. 2.5, whether the NSE or KGE score is greater depends on the characteristic of

the errors (i.e. if the errors are primarily in the correlation, distribution, or bias). To highlight this, Table 3 displays the types of

stake measurement errors for the LSTCC model. This analysis shows that the linear correlation and standard deviation of stake30

observations are reproduced well and that the largest source of error for the stake observations is the bias. This explains the

better NSE scores for stake measurements, because the NSE is less sensitive to errors in the bias if the correlation coefficient is
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Figure 4. Modeled flow performance during validation as a function of combined cryosphere performance, described using the Kling Gupta

Efficiency (KGE; Eq. 19). As described in the legends, the marker border indicates phase of assessment, face color indicates the heat module

representation, and shape indicates the energy and mass module representation. In subplot A, models are calibrated for Gulkana and validated

for Wolverine. In subplot B, models are calibrated for Wolverine and validated for Gulkana. The cryosphere KGE score is the average of the

stake and snow-covered area KGE scores (described in Sec. 3.2).

strong and the standard deviation is reproduced well (Eq. 18). It also highlights that choice of error metric, and understanding

the interpretation of each, is important in comparing results across studies.

Table 3. Types of error in reproduction of stake measurements by the LSTCC model during validation for Gulkana and Wolverine glaciers.

The three error types correspond to the terms of the Kling Gupta Efficiency (Eq. 19), which are the error in the linear correlation coefficient

(r), the ratio of the model standard deviation to the observed standard deviation (α), and the bias normalized by the observed standard

deviation (β).

Error Term Gulkana Wolverine

|r− 1| 0.12 0.06

|α− 1| 0.15 0.22

|β− 1| 1.12 0.94
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Many other modeling studies implement similar conceptual models and reported “better” model performance. Better is

placed in quotation marks because what constitutes better depends on the metric used and how the model is assessed. Com-

monly, glacier models are evaluated for only a few years (e.g. Liston and Mernild, 2012) or a few days (e.g. Singh et al.,

2000). It has been demonstrated by Razavi and Tolson (2013) that when calibrating and validating hydrologic models, use of

short durations can lead to inaccurate assessments of model performance. In the context of identifying robust models for use5

in projecting the impacts of climate change, it is therefore necessary to ensure that the validation is sufficiently long and that

validation is conducted for multiple climatic regimes.

4.1 Energy and Mass Module

Average performance of the two energy and mass module representations tends to vary by watershed (Table 4). On average the

∆ representation performs better for Gulkana and the CC representation performs better for Wolverine. A difference between10

these watersheds is that Gulkana is drier and colder than Wolverine (Fig. 2 and Fig. 5 in Appendix A). Although it is beyond

the present scope to establish precisely why the ∆ performs better for Gulkana and CC performs better for Wolverine, it may

be related to the way each module represents the timing of accumulation and melt.

The CC module assumes that the snowpack is isothermal, which impacts energy storage in all of the heat module represen-

tations and the net heat flux in the LSTcc model. The former point is caused by the thermal conductivity of snow, which cannot15

be accounted for under the isothermal assumption. The thermal conductivity is lower for less dense snowpacks, which means

that less dense snowpacks will absorb energy from the surface less quickly than snowpacks with a higher density. Therefore,

negative heat fluxes during the extremely cold winter months may impact the average CC of the snowpack less than as calcu-

lated by the CC energy and mass module representation, particularly for Gulkana because of its more continental cryosphere

climate.20

Table 4. Kling Gupta Efficiencies (KGE; Eq. 19) during validation by energy and mass module representation and watershed, averaged over

heat module representation.

Model
Gulkana Wolverine

Flow SCA Stake Flow SCA Stake

∆ 0.60 0.94 -0.28 -0.21 0.73 -0.16

CC 0.12 0.37 -0.30 0.67 0.85 -0.06

One characteristic of an improved energy and mass module would be that it allows snowpack temperature to vary vertically

through the snowpack. This would have two advantages over the CC representation: (1) the net surface heat fluxes could be

better calculated across climatic regimes and (2) the effect of the snowpack’s thermal conductivity could be accounted for in

updating the snowpack’s average internal energy. An approach to accomplish this would be to iteratively solve for the surface

temperature by requiring that the surface energy balance be zero, as is done in Liston and Elder (2006b). Using such a method,25
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melt would occur based on the energy balance at the surface of the snowpack rather than as a function of the snowpack’s

average internal energy, as is the case in the CC representation.

4.2 Regional Differences

If validation results are aggregated over models within each region, it appears that on average the seven models reproduce

streamflow better for Gulkana but that they reproduce SCA and stake observations better for Wolverine (Table 5). This is a5

surprising result given that snow and ice melt are significant contributors to streamflow. A few points should be noted though,

which are that SCA performance does not necessarily mean the spatial distribution of snow within the watershed is modeled

correctly and that averaging over models ignores intermodel differences in performance between models.

To better understand causes of interregional model performance, we also calculate the linear correlation coefficient, r value,

between performance in each of the cryosphere observation types (i.e. SCA and stake) and flow, by region (Table 5). For10

Wolverine, the correlation between SCA and flow performance is 0.92, while for Gulkana it is 0.22; however, inspection of Fig.

6 (Appendix B) reveals that ETI(H)∆ appears to be an outlier from the general trend because it has strong SCA performance

but very poor streamflow performance. Removing this model, the correlation between SCA and flow for Gulkana increases

to 0.71. Weaker correlations between stake and flow performance, as seen in Table 5, are expected given that glacier melt

contributes a smaller portion of total annual flow than snowmelt.15

Table 5. Regional differences during validation performance and correlation between the Kling Gupta Efficiency (KGE; Eq. 19) scores for

each cryosphere observation type and flow. The top row is the regionally averaged KGE score. The number in parentheses is the linear

correlation coefficient between the KGE scores of each the cryosphere observation type and flow. For Gulkana, the first correlation is for all

models and the second excludes ETI(H)∆, which appears to be an outlier (Fig. 6 in Appendix B).

Region Flow SCA Stake

Gulkana
0.33 0.61 -0.29

(0.22; 0.71) (0.20; 0.45)

Wolverine
0.29 0.80 -0.10

(0.92) (0.46)

4.3 Accuracy and Precision of Performance

The primary goal of this work is to assess the robustness of conceptual cryosphere modules between regions and climatic

conditions. Two aspects of robustness are overall accuracy (i.e. predictive skill for each model application) and precision (i.e.

how the predictive skill varies between applications of the model across regions and climatic conditions). Table 6 provides the

validation performance of each model combination averaged across regions and the difference in performance between each20

region. Under this analysis, the LSTcc has the best predictive skill for flow, ETI(H)∆ has the predictive skill for SCA, and

ETI(P)cc has the predictive skill for stake measurements (Table 6).
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Differences in model performance between regions are indicative of how uniform the predictive skill is across regions and

climates. In this regard, the LSTcc model has the most uniform predictive skill for streamflow and stake measurements, and

the ETI(H)∆ has slightly more uniform predictive skill for SCA (Table 6). Overall, the results indicate that the LSTcc model

represents a significant improvement in precision of predictive skill relative to the other conceptual models assessed.

Given that the climate, cryosphere, and streamflow are physically linked, it would be desirable for one model to perform best5

for all observation types. Selecting a “best” overall model is subjective, depending on which metric, observation data, and time

periods are used. The final column of Table 6 displays the simple mean of KGE scores for flow, SCA, and stake measurements;

under this evaluation the LSTcc performs better than the other models (mean KGE of 0.52), with ETI(P)cc in second (mean

KGE of 0.45), and ETI(P)∆ in third (mean KGE of 0.33).

Table 6. Validation KGE scores for each model averaged over watersheds for each observation type and the average of all three observation

types. Values in parentheses are absolute difference in validation KGE scores between regions. The complete and unaggregated validation

results are provided in Appendix D, Table 8.

Model Flow SCA Stake Mean

SDI∆
0.32 0.74 -0.58 0.16

(0.98) (0.43) (0.97) (0.79)

SDIcc
0.29 0.51 -0.37 0.14

(1.00) (0.66) (0.47) (0.71)

ETI(H)∆
-0.14 0.93 0.16 0.32

(1.16) (0.05) (0.18) (0.46)

ETI(H)cc
0.02 0.50 -0.54 -0.01

(0.51) (0.75) (0.16) (0.47)

ETI(P)∆
0.40 0.85 -0.25 0.33

(0.30) (0.16) (1.15) (0.54)

ETI(P)cc
0.55 0.60 0.21 0.45

(0.55) (0.46) (0.23) (0.41)

LSTcc
0.74 0.84 -0.01 0.52

(0.15) (0.07) (0.10) (0.11)

An important aspect of being robust is representing all fundamental processes well. In this regard, all of the models fail10

because none performs as well for stake measurements as for flow or SCA, as quantified by the KGE. There could be multiple

explanations for the poor stake performance, including errors in the climate inputs, appropriateness of the model’s spatial

resolution, and lack of representation of the ice’s internal energy. Our study does not identify which of these categories cause

the poor stake performance. We do note, though, that future improvements to the energy and mass module should include

representation of ice internal energy and allow polythermal snowpacks. Regardless of these possible future experiments, overall15

the LSTcc model appears to be more accurate and precise than the existing conceptual models that we implement.
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4.4 General Remarks and Future Directions

As discussed in Fujita and Ageta (2000), glacier surface processes are not sufficient to describe glaciers; for example, because

up to 20% of melt refreezes. Surface refreezing is allowed in the CC energy and mass module representation for snowpacks

when the CC is positive, but not for glaciers. The primary differences in the conceptual models implemented here between

snow and ice heat fluxes are that (1) ice has a different surface albedo and (2) ice includes a fitting parameter to allow heat5

fluxes to translate into melt at a different rate than for snow (see Section 2.3). None of the models contains a representation of

the ice’s internal energy. Even SnowModel, an energy balance cryosphere hydrology model, does not characterize the internal

energy of ice (Liston and Elder, 2006b). Yet, conceptual and energy balance cryosphere hydrology models are often applied

to assess the impacts of glacier melt on projected future streamflow (e.g. Lutz et al., 2014). We therefore perceive this as a

significant deficiency in current cryosphere hydrology models and an area where future work must be done.10

None of the cryosphere hydrology models implemented here uses wind speed or humidity as inputs, but these variables

are needed to explicitly represent the sensible and latent convective heat fluxes. The choice to exclude these inputs is made

because they are less frequently observed for mountain environments, are difficult to characterize at high spatial resolutions,

and are therefore not commonly used in conceptual models. For continental snow and glacier environments, such as Gulkana,

sublimation is an appreciable source of energy and mass losses (Ohmura, 2001; DeWalle and Rango, 2008; Sicart et al., 2008).15

Similarly, sensible convection is important during the times of the year when the air and snow/ice surface temperatures differ

from one another the most (e.g. late summer during the glacier ablation season). Each of the conceptual models we implement

accounts for sensible heat fluxes through a degree-index term, which is a significant abstraction from the actual process. In

reality convective heat fluxes also depend on the wind speed and whether the atmosphere is in a stable, unstable, or neutral state

(DeWalle and Rango, 2008). A potentially enlightening future experiment would be to develop a heat module representation20

that uses wind speed as an input and compare how uncertainties in characterizing wind speed impact representation of the heat

balance relative to using a degree-index term. The same experiment could be conducted for humidity to directly account for

sublimation.

5 Conclusions

Understanding how the cryosphere will respond to climatic changes has important water resources implications and requires25

implementing models that are robust across geographic domains and climatic conditions. Conceptual cryosphere hydrology

models are often used to make these types of projections in mountain environments due to data paucity, yet existing conceptual

models are known to be less robust than physically-based model structures. We have developed the CCHF (Fig. 3) in order to

systematically intercompare the accuracy and precision of conceptual cryosphere models. We use the CCHF here to implement

seven conceptual models (including existing and novel formulations; Table 2) for two glaciated watersheds in Alaska (Fig.30

1). The CCHF enables us to interchange individual module representations, which provides more insight into the causes of

differences in model performance compared to if we implemented standalone models. While no single model outperforms the
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others for all categories of observations, the LSTcc model is the most accurate and precise between climatic conditions and

geographic domains when model performance is averaged between flow, SCA, and stake observations.

Our model analysis provides some general insights and directions for future investigations. For example, we find that the

∆ energy and mass module representation results in better KGE scores for models validated for Gulkana (the colder and drier

of the two watersheds) and that the CC energy and mass module representation performs better under the same analysis for5

Wolverine (Table 4). Neither of these representations captures the impact of vertical temperature gradients within a snowpack

on internal energy or heat fluxes across the boundary. Therefore, a future experiment should be to develop an energy and mass

module representation that models these snowpack characteristics.

Assessed using the KGE score, all of the models better represent SCA than stake measurements (Table 6 and Fig. 6 in

Appendix B). It is seen that the origin of this difference is larger bias errors in the reproduction of stake measurements (Table10

4) than for the other observation types. One origin of these biases may be that the glacier’s internal energy is not accounted for

in any of the energy and mass module representations. This deficiency in cryosphere model formulation is consistent with other

conceptual models (e.g. Hock, 1999, and Pellicciotti et al., 2005), and even with energy balance models such as SnowModel

(Liston and Elder, 2006b) that are used in data-sparse mountain environments. Thus, we believe an area of future work with

CCHF will be to better represent glacier processes.15

While the representations we assess are considered conceptual rather than physical, these model types exist on a spectrum

rather than as discrete model types. We emphasize conceptual formulations in this work because this classification of pro-

cesses representations is often used in data-sparse mountain regions. Of the representations we assess, we find that the more

physically-based structures are more robust (i.e. LST is the most robust overall, ETI models are generally in the middle, and the

SDI representation is the least robust). Therefore, interesting future work would be to incorporate more input data types, e.g.20

wind speed and vapor pressure, and assess the impacts of more physically-based heat flux representations on overall model ac-

curacy and robustness. These experiments would be straightforward to implement within CCHF. Therefore, we expect CCHF

will continue to be a useful tool to further our understanding of best practices for modeling the cryosphere in data-sparse

mountain environments.
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Appendix A: Joint Distribution of Precipitation and Temperature
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Figure 5. Joint distribution function of daily precipitation and mean surface air temperature for Gulkana and Wolverine watersheds (Fig. 1)

from 1980-1989 and 1990-2009. The precipitation and temperature values are spatially averaged over each watershed. Climate representation

is derived from the daily downscaled Climate System Forecast Reanalysis (Saha et al., 2010) product discussed in Section 3.1.
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Appendix B: Validation Kling Gupta Efficiencies for Gulkana and Wolverine Watersheds

Figure 6. Modeled flow performance during validation as a function of SCA and stake performance, described using the Kling Gupta

Efficiency (KGE; Eq. 19). The marker border indicates phase of assessment, face color indicates heat module representation, and shape

indicates energy and mass module representation, as described in the legends. Subplot A displays KGE scores for stake measurements and

flow. Subplot B displays KGE scores for SCA and flow.
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Appendix C: Calibration Performance Scores

Table 7. Model Kling Gupta Efficiencies (KGE; Eq. 19) and Nash Sutcliffe Efficiencies (NSE; Eq. 18) during calibration. The top metric is

the KGE score and the bottom metric in parentheses is the NSE score. The KGE score is used to calibrate each model. All calibration runs

are for July 2000 through June 2010.

Model
Gulkana Wolverine

Flow SCA Stake Flow SCA Stake

SDI∆
0.60 0.54 0.72 0.75 0.84 0.81

(0.53) (0.53) (0.35) (0.53) (0.83) (0.86)

SDIcc
0.60 0.53 0.66 0.73 0.83 0.82

(0.63) (0.35) (0.64) (0.16) (0.95) (0.41)

ETI(H)∆
0.49 0.90 0.22 0.16 0.95 0.41

(-0.13) (0.89) (0.43) (-1.22) (0.90) (0.78)

ETI(H)cc
0.61 0.60 0.56 0.66 0.85 0.71

(0.60) (0.44) (0.59) (0.50) (0.81) (0.39)

ETI(P)∆
0.62 0.94 -0.06 0.15 0.83 0.65

(0.43) (0.91) (0.27) (-1.31) (0.86) (0.69)

ETI(P)cc
0.57 0.46 0.66 0.82 0.83 0.77

(0.61) (0.29) (0.65) (0.69) (0.81) (0.87)

LSTcc
0.62 0.58 0.57 0.74 0.86 0.85

(0.68) (0.43) (0.61) (0.70) (0.83) (0.85)
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Appendix D: Validation Performance Scores

Table 8. Model Kling Gupta Efficiencies (KGE; Eq. 19) and Nash Sutcliffe Efficiencies (NSE; Eq. 18) during validation. The columns

labeled Gulkana are parameter sets that were calibrated for Wolverine and then validated for Gulkana, and vise versa for the Wolverine

column. The top metric is the KGE score and the bottom metric in parentheses is the NSE score. The KGE score is used to calibrate each

model. All validation runs are for July 2000 through June 2010.

Model
Gulkana Wolverine

Flow SCA Stake Flow SCA Stake

SDI∆
0.81 0.95 -0.09 -0.17 0.52 -1.06

(0.60) (0.90) (0.37) (0.01) (0.46) (-0.37)

SDIcc
-0.21 0.18 -0.60 0.79 0.84 -0.13

(-0.03) (-0.03) (-0.48) (0.61) (0.81) (0.36)

ETI(H)∆
0.44 0.95 0.07 -0.72 0.90 0.25

(-0.23) (0.92) (0.48) (-4.84) (0.89) (0.40)

ETI(H)cc
-0.24 0.12 -0.62 0.27 0.87 -0.46

(-0.06) (-0.09) (-0.57) (-0.10) (0.77) (0.33)

ETI(P)∆
0.55 0.93 -0.82 0.25 0.77 0.33

(0.06) (0.86) (-0.88) (-0.87) (0.79) (0.60)

ETI(P)cc
0.57 0.46 0.66 0.82 0.83 0.32

(0.44) (0.19) (0.26) (0.66) (0.82) (0.54)

LSTcc
0.66 0.80 -0.06 0.81 0.87 0.04

(0.70) (0.67) (0.38) (0.61) (0.83) (0.57)
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Appendix E: Calibrated Model Parameters for Gulkana
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Appendix F: Calibrated Model Parameters for Wolverine
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