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Abstract 35 

This paper compares and integrates different strategies to characterize the variability of end-of-36 

winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic 37 

Alaska. Snow depth was measured using in situ snow depth probes, and estimated using ground 38 

penetrating radar (GPR) surveys and the Photogrammetric Detection and Ranging (PhoDAR) 39 

technique with an unmanned aerial system (UAS). We found that GPR data provided high-40 

precision estimates of snow depth (RMSE = 2.9 cm), with a spatial sampling of 10 cm along 41 

transects. PhoDAR-based approaches provided snow depth estimates in a less laborious manner 42 

compared to GPR and probing while yielding a high precision (RMSE = 6.0 cm) and a fine 43 

spatial sampling (4 cm by 4 cm). We then investigated the spatial variability of snow depth and 44 

its correlation to micro- and macrotopography using the snow-free LiDAR digital elevation map 45 

(DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly 46 

variable over short (several meter) distances, and the variability was correlated with 47 

microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons) 48 

were filled in with snow, which resulted in a smooth and even snow surface following 49 

macrotopography. We developed and implemented a Bayesian approach to integrate the snow-50 

free LiDAR DEM and multi-scale measurements (probe and GPR) as well as the topographic 51 

correlation for estimating snow depth over the landscape. Our approach led to high precision 52 

estimates of snow depth (RMSE = 6.0 cm), at 0.5-meter resolution and over the LiDAR domain 53 

(750 m by 700 m). 54 

55 
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1. Introduction 56 

Snow plays a critical role in ecosystem functioning of the Arctic tundra environment through its 57 

impacts on soil hydrothermal processes and energy exchange (e.g., Callaghan et al., 2011). Snow 58 

insulates the ground from intense cold during the Arctic winter, limiting the heat transfer 59 

between the air and the ground (Zhang, 2005). Snow depth affects active layer and permafrost 60 

temperatures throughout the year (Gamon et al., 2012; Stieglitz et al., 2003), and increased snow 61 

depth has resulted in permafrost degradation (Osterkamp, 2007). Snow’s insulating capacity 62 

enhances conditions for active soil microbial processes and CO2/CH4 production during winter 63 

(Nobrega and Grogan, 2007; Schimel et al., 2004; Clein and Schimel, 1995; Jansson and Taş, 64 

2014; Zona et al., 2016). In addition, snow serves as an important water source to tundra 65 

ecosystems during the growing season, and therefore has a large impact on biological processes 66 

via hydrology. Snowmelt water can lead to extensive inundation of low-gradient tundra and large 67 

runoff events in early summer (Bowling et al., 2003; Kane et al., 1991; Liljedahl et al., 2016). 68 

Since soil biogeochemistry and vegetation are controlled by soil moisture (Sjögersten et al., 69 

2006; Wainwright et al., 2015), the amount of snow affects ecosystem functioning throughout 70 

the season. 71 

 72 

In order to investigate controls of snow on ecosystem properties, high resolution estimates of 73 

snow are needed over large spatial regions. This is especially true in ice-wedge polygon tundra, 74 

which dominates a large portion of the high Arctic (Zona et al., 2011). The ice wedges develop 75 

when frost cracks occur in the ground, and vertical ice wedges grow laterally over years 76 

(Leffingwell, 1915; MacKay, 2000). Soil movement associated with ice-wedge development 77 

creates small-scale topographic variations – microtopography – where the ground surface 78 
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elevation can vary significantly over lateral length distances of several meters (e.g., Brown, 79 

1967; MacKay, 2000; Engstrom et al., 2005; Zona et al., 2011). This microtopography leads to 80 

dramatically variable snow depth across short distances. Liljedahl et al. (2016) found that the 81 

differential snow distribution increased the partitioning of snowmelt water into runoff, leading to 82 

less water stored on the tundra landscape. Gamon et al. (2012) reported that snow depth 83 

heterogeneity results in differential thawing and active layer thickness variability. In addition, 84 

there is large-scale topographic variability at the scale of several hundred meters to kilometers – 85 

macrotopography –which is often associated with drained thaw lake basins or drainage features 86 

(Hinkel et al., 2003). Although the effect of macrotopography on snow depth has not been 87 

studied, Engstrom et al. (2005) quantified that both macrotopography and microtopography have 88 

a significant effect on soil moisture distribution. The snow representation of the Arctic tundra 89 

needs to be refined to account for the effect of such multiscale terrain heterogeneities on 90 

hydrology and ecosystem functioning, by bridging between finer geographical scales (several 91 

meters) and large areal coverage (several hundred meters to kilometers). 92 

 93 

Snow depth characterization in Arctic tundra environments has traditionally been performed 94 

using snow depth probes (Benson and Sturm, 1993; Hirashima et al., 2004; Derksen et al., 2009; 95 

Rees et al., 2014; Dvornikov et al., 2015), or modeled using terrain and vegetation information 96 

(Sturm and Wagner, 2010; Liston et al., 1998; Pomeroy et al., 1997). Recently, there have been 97 

several new techniques for estimating snow depth in high resolution, and in a non-invasive and 98 

spatially extensive manner. Ground-penetrating radar (GPR) has been widely used to 99 

characterize snow cover in alpine, arctic and glacier environments (e.g., Harper and Bradford, 100 

2003; Machguth et al., 2006; Gusmeroli and Grosse, 2012; Gusmeroli et al., 2014). GPR 101 
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measures the radar reflection from the snow-ground interface, which can be used to estimate 102 

snow depth. GPR can be collected by foot, snowmobile or airborne methods. In addition, Light 103 

Detection and Ranging (LiDAR) and Photogrammetric Detection and Ranging (PhoDAR) 104 

airborne methods have recently been used to estimate snow depth at local and regional scales 105 

(e.g., Deems et al., 2013; Harpold et al., 2014; Nolan et al., 2015). Both techniques measure the 106 

snow surface elevation, using laser in LiDAR, or a camera with a structure-from-motion (SfM) 107 

algorithm in PhoDAR. Both approaches allow us to estimate snow depth by subtracting the 108 

snow-free elevation from the snow surface elevation. While there is potential for providing 109 

detailed information about local-scale snow variability using LiDAR and PhoDAR snow depth 110 

estimates, these techniques have not been extensively tested in ice-wedge-polygonal tundra 111 

environments.  112 

 113 

Such indirect geophysical methods are, however, known to have increased snow depth 114 

uncertainty relative to direct measurements (here ground-based snow depth probe measurements) 115 

(e.g., Hubbard and Rubin, 2005). The uncertainty of the snow depth probe measurements is sub-116 

centimeter to several centimeters depending on the surface vegetation (Berezovskaya and Kane, 117 

2007). On the other hand, the snow depth estimates obtained using GPR can be affected by 118 

uncertainty associated with radar velocity, which depends on snow density (Harper and 119 

Bradford, 2003). In the environments with complex terrain such as ice-wedge polygonal tundra, 120 

GPR-based snow estimates could also be influenced by the errors stemming from radar 121 

positioning and raypath assumptions. The airborne LiDAR/PhoDAR-based methods are subject 122 

to the errors associated with georeferencing, processing and calibration (e.g., Deems et al., 2013; 123 
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Nolan et al., 2015). The accuracy of the airborne methods is usually several tens of centimeters, 124 

which is lower than the snow depth probe measurements.  125 

 126 

Integrating different types of snow measurements can take advantage of the strengths of various 127 

techniques while minimizing the limitations stemming from using a single method. Bayesian 128 

approaches have proven to be useful for integrating multiscale, multi-type datasets to estimate 129 

spatially heterogeneous terrestrial system parameters in a manner that honors method-specific 130 

uncertainty (e.g., Wikle et al., 2001; Wainwright et al., 2014; 2016). Bayesian methods also 131 

permit systematic incorporation of expert knowledge or process-specific information, such as the 132 

relationships between datasets and parameters. In particular, snow depth is known to be affected 133 

by topography and wind direction (e.g., Benson and Sturm, 1993; Anderson et al., 2014; 134 

Dvornikov et al., 2015). To our knowledge, such Bayesian data integration methods have never 135 

been applied to estimate end-of-winter snow variability using multiple types of datasets.  136 

 137 

The primary objectives of this study are to (1) compare point-scale snow depth probe, GPR and 138 

UAS-based PhoDAR approaches for characterizing snow depth, and the associated resolution 139 

and accuracy of the GPR and PhoDAR methods; (2) quantify the spatial variability of end-of-140 

winter snow depth in ice-wedge polygonal tundra landscape; (3) explore the relationship between 141 

snow depth and topography; and (4) develop a Bayesian method to integrate multiscale, multi-142 

type data to estimate snow depth over a LiDAR DEM covering an ice-wedge polygonal tundra 143 

landscape. In Section 2, we describe our site and datasets, including snow depth probes, ground-144 

based GPR and UAS-based PhoDAR. In Section 3, we present the methodology to analyze the 145 

indirect snow depth measurements from GPR and PhoDAR as well as to evaluate the 146 
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heterogeneity of snow depth in relation to both microtopography (i.e., ice-wedge polygons) and 147 

macrotopography (i.e., large-scale gradient, drained thaw lake basins and interstitial upland 148 

tundra). We then develop a Bayesian geostatistical approach to integrate the multiscale datasets 149 

to estimate snow depth over the LiDAR domain. The snow measurement and estimation results 150 

are presented in Section 4 and discussed in Section 5.   151 
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2. Data and Site Descriptions 152 

2.1. Study Site  153 

Snow survey data were collected within a study site (approximately 750 m by 700 m) located on 154 

the Barrow Environmental Observatory near Barrow, Alaska, as part of the Department of 155 

Energy’s Next-Generation Ecosystem Experiment (NGEE) Arctic project (Figure 1). This study 156 

domain has been characterized intensively in the NGEE-Arctic project, leading to various 157 

ecosystem and subsurface datasets, including snow depth measurements (Wainwright et al., 158 

2015; Dafflon et al., 2016). Mean annual air temperature at the Barrow site is –11.3°C and mean 159 

annual precipitation is 173 mm (Liljedahl et al., 2011). Snowmelt usually ends in early to mid-160 

June. The wind direction is predominantly from east to west throughout the year.  161 

 162 

Ice-wedge polygons are prevalent in the region, including low-centered polygons in drained thaw 163 

lake basins and high-centered polygons with well-developed troughs in the upland tundra 164 

(Hinkel et al., 2003; Wainwright et al., 2015). The dominant plants are mosses (Dicranum 165 

elongatum, Sphagnum), lichens and vascular plants (such as Carex aquatilis); plant distribution 166 

at the site is governed by surface moisture variability (e.g., Hinkel et al., 2003; Zona et al., 167 

2011). There are currently no tall shrubs or woody plants established within the study site, 168 

therefore complex topography is most likely to control the snow depth distribution within the 169 

study domain (Sturm et al., 2005; Dvornikov et al., 2015). 170 

 171 

Three long transects and four representative plots were chosen within the study site to explore 172 

snow variability and its relationship to topography (Figure 1). Typical for low-gradient tundra 173 

terrain, ice-wedge polygon microtopographic variations are superimposed on macrotopographic 174 
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trends at the study site.  The elevation is higher in the center of the domain (interstitial upland 175 

tundra) and lower near the drainage features in the south. The elevation is also relatively lower in 176 

the drained thaw lake basins (DTLB) region, which is located in the northeastern and 177 

northwestern edges of the study site. The four intensive plots (A-D), each 160m x 160m, were 178 

chosen to represent specific polygon types or macrotopographic positions within the study area. 179 

The three parallel transects, each ~500m long, were designed to traverse multiple polygon types 180 

in a continuous fashion (Hubbard et al., 2013). We refer to those transects by “the 500-meter 181 

transects”. 182 

 183 

2.2. Datasets 184 

Airborne LiDAR data were collected at the site on October 4th, 2005, and used to provide a 185 

high-resolution digital elevation map (DEM) of the snow-free ground at 0.5 m by 0.5 m 186 

resolution (Hubbard et al., 2013). The DEM effectively resolves both micro- and 187 

macrotopography at the study site (Figure 1). The original reported accuracy is 0.3 m in the 188 

horizontal direction and 0.15 m in the vertical direction. To further evaluate the accuracy of the 189 

airborne DEM, we measured the ground surface elevation in September 2011 at 1286 points 190 

around the 500-meter transects, using a high-precision centimeter-grade RTK Differential GPS 191 

(DGPS) system (the reported precision about 2 cm in the horizontal direction and 3 cm in the 192 

vertical direction). The root mean square error of the LiDAR DEM compared to the DGPS data 193 

was 6.08 cm.  194 

 195 

The majority of the snow depth data was collected on May 6–12, 2012, during which no snowfall 196 

occurred and little change in snow depth was observed. Snow depth was measured in the four 197 
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intensive study plots and along three transect lines (Figure 1). Two sets of snow depth 198 

measurements using a snow depth probe were collected. The ‘fine-grid’ dataset was aimed to 199 

characterize the fine-scale heterogeneity by ~7200 snow depth point measurements (every 200 

~0.3 m along transects with a 4 m spacing) across a small domain (~50 × 50 m) within Plots A-201 

D. This was done using a GPS snow depth probe (Magnaprobe by Snow-Hydro) which had a 202 

reported vertical precision of < 0.01 m and horizontal precision of 2–10 m. The corner 203 

coordinates within each grid were surveyed with the RTK DGPS, while each snow depth point 204 

measurement was associated with latitude/longitude positional information recorded by the 205 

Magnaprobe’s built-in GPS receiver. All the snow depth point measurements were made along 206 

regularly spaced transects. Comparisons between coordinates surveyed with both the RTK DGPS 207 

and the Magnaprobe’s built-in GPS confirmed constant biases in the horizontal directions, which 208 

allowed a constant bias adjustment for all GPS surveyed snow depth point measurements. 209 

 210 

A second ‘coarse-grid’ set of snow depth measurements covered the entire area in Plots A-D 211 

(~160 m × 160 m) with lower sampling density. The coarse-grid snow data were collected using 212 

a tile probe, which had a precision of approximately 0.01 m. Snow depth was measured every 213 

8 m along a measurement tape along five parallel transects in the coarse grid, which were spaced 214 

40 m apart. The total number of data points was 380 (95 points in each plot). Along the 500-215 

meter transects, we used the tile probe along with a measurement tape, and measured eight points 216 

along each of the three lines. The start and end coordinates of each transect were surveyed with a 217 

RTK DGPS and used to georeference the measurement locations. 218 

 219 
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Ground-based ground penetrating radar (GPR) data were acquired over the four study plots and 220 

along the three 500-meter transects. The instrument (Mala ProEx with 500 MHz antenna) was 221 

pulled on a sled. In each plot, we acquired the GPR data at 0.1-m intervals (triggered by an 222 

odometer wheel) along 37 lines of 4-m spacing. The start and end coordinates of each transect 223 

were surveyed with a RTK DGPS and used to georeference the measurement locations. We 224 

compared the distance from wheel with the distance on tape and confirmed that the difference is 225 

generally very small at this site. The error of horizontal positioning is estimated to be about 0.1 226 

m. Several of the GPR lines were co-located with the ‘coarse-grid’ snow depth probe 227 

measurements. The GPR technique allowed for denser sampling within the plot relative to the 228 

snow depth probe, with more than 50,000 points in each plot. Due to the microtopography at this 229 

site, the positioning errors between in situ measurements and GPR data could lead to an error in 230 

the radar velocity and snow depth estimation. We evaluate the effect of such positioning errors 231 

extensively, as described in Section 3.1. 232 

 233 

The GPR reflection signal from the bottom of snowpack (i.e., the ground surface) was clear, 234 

which allowed us to measure the travel time between the top and bottom of snowpack. The GPR 235 

processing routine consisted of (1) zero-time adjustment, (2) average tracer removal, (3) picking 236 

the travel time (manually with automated snapping in the ProMAX® software) of the reflected 237 

GPR signal that travelled from the snow surface to the snow-ground interface and back to the 238 

snow surface and (4) dividing by two to obtain a one-way travel time between the snow surface 239 

and ground surface. We processed the GPR data including travel-time picking before accounting 240 

for topography. More details on GPR processing and theory can be found in Annan (2015) and 241 

Jol (2009), while more detailed explanation on the use of GPR in the tundra can be found in 242 
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Hubbard et al. (2013). Differing from previous studies (e.g., Harper and Bradford, 2003), we did 243 

not observe echoes from snow layering. This is possibly because of the low antenna frequency 244 

(500 MHz), relatively thin snow layers (if present), and the low contrast between various snow 245 

layers. In addition, hoar layers or ice layers were not visible in our data or sensed using the 246 

probe. Although ice may form at the ground surface, causing the uncertainty of a few 247 

centimeters, we did not consider this effect in this study. 248 

 249 

Additional campaigns were carried out in 2013 – 2015 along the 500-meter transects only. UAS-250 

based PhoDAR data were collected in July 2013 and 2014 to estimate snow-free ground surface 251 

elevation and in May 2015 for estimating snow depth along the transects. To make these 252 

measurements, we lifted a consumer-grade digital camera (Sony Nex-5R) to about 40 meters 253 

above the ground surface using a kite, and acquired downward-looking Red-Green-Blue 254 

landscape images, as well as collected some surface elevation data (method described in Smith et 255 

al., 2009). The reconstruction procedure was performed using a commercial computer vision 256 

software package (PhotoScan from Agisoft LLC). Reconstruction involved automatic image 257 

feature detection/matching, structure-from-motion and multiview-stereo techniques for 3D point-258 

cloud generation, and georeferenced mosaic reconstruction (Nolan et al., 2015). High-accuracy 259 

georeferencing was enabled by using a network of ground control points placed on the ground 260 

(in summer) and on the snow (in winter) that were surveyed with a high-precision centimeter-261 

grade RTK DGPS system. The reconstructed PhoDAR surface elevation models at this site show 262 

a resolution of 4 cm by 4 cm. We investigated the accuracy in detail as described in Section 3.2.  263 

 264 
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The snow-free ground surface elevation measurements were then subtracted from the snow 265 

surface data to estimate the snow depth over the area. The snow depth probe measurements were 266 

taken at 183 locations along one of the 500-meter transects to validate the PhoDAR-based snow 267 

depth estimates. The locations were marked on a measurement tape, the start and end coordinates 268 

of which were surveyed with a RTK DGPS and used to georeference the measurement locations.  269 
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3. Methodology 270 

3.1. GPR Snow Depth Analysis 271 

Snow depth can be inferred by multiplying GPR one-way travel time by radar velocity. The radar 272 

velocity is determined by the dielectric constant, which depends on snow density in dry snow 273 

(Tiuri, et al., 1984; Harper and Bradford, 2003). Depending on site conditions, the snow density 274 

can vary in both vertical and horizontal directions (Proksch et al., 2015). In this study, we 275 

assume that the depth-averaged radar velocity—which is a function of depth-averaged snow 276 

density—is sufficient for estimating snow depth. Thus, we compute the radar velocity based on 277 

the known snow depth from co-located snow depth probe measurements as: (radar velocity) = 278 

(probe-based snow depth)/(GPR one-way travel time). In addition, we investigate whether the 279 

lateral variations in snow density are significant at our site. 280 

 281 

Identifying co-located points between the GPR and snow depth probe measurements, however, is 282 

not a trivial task in polygonal ground, since the topography and snow depth can vary 283 

significantly within a meter. To address these issues, we investigate the correlations between the 284 

radar velocity and the submeter-scale variability of topography. To link the DEM elevation data 285 

to the snow depth probe and GPR data, we selected the DEM elevation (0.5 m by 0.5 m 286 

resolution) and GPR measurement at the nearest locations to the tile probe measurements. We 287 

assume that the effect of positioning errors is larger near the edge of polygons, or in the region 288 

where the submeter-scale topographic variability is high. We consider that the uncertainty of 289 

radar velocity can be reduced by not using the co-located snow depth probe measurements in 290 

regions of high submeter-scale variability. To define the submeter-scale variability, we compute 291 

the elevation difference within a 1-meter radius of each snow depth probe measurement. In 292 
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addition, the reflections from the troughs could originate from the edge of polygons rather than 293 

the location right below the GPR instrument. Such an “edge reflection” effect can lead to 294 

overestimation of the radar velocity. We assume that we could detect the presence of the edge 295 

reflection by evaluating the systematic bias (i.e., underestimation) in the radar velocity in relation 296 

to the submeter-scale topographic variability. 297 

 298 

3.2. UAS-based PhoDAR Snow Depth Analysis 299 

We first evaluate the accuracy of the PhoDAR-derived digital surface model (DSM) by 300 

comparing it to the RTK GPS elevation measurements along the 500-meter transects acquired in 301 

2011. Since the PhoDAR-derived DSM was obtained at very high lateral resolution (4 cm by 4 302 

cm), it was more prone to noise or small-scale variability (Nolan et al., 2015). As such, we test 303 

three schemes to explore the vertical agreement between the two datasets: (1) nearest points, (2) 304 

average elevation within the 0.5-m radius, and (3) minimum elevation within the 0.5-m radius. 305 

We use the same scheme (the best scheme among the three) for determining the snow-free and 306 

snow surface elevation at the co-located points. We then compare the snow depth estimates from 307 

PhoDAR and snow depth probe measurements at co-located points (the May-2015 snow data). 308 

Since we assume that the PhoDAR snow depth estimates would suffer from the same positioning 309 

errors associated with the snow depth probe data as GPR, we eliminate the snow depth probe 310 

measurements in the regions where the submeter-scale topographic variability is high. 311 

  312 

3.3. Spatial Variability Analysis of Topography and Snow Depth 313 

To quantify the topographic effects in a complex terrain of ice-wedge polygons and to partition 314 

micro- and macrotopography, we apply the wavelet transform method to the airborne LiDAR 315 
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DEM, which is commonly used for 2D image processing. The wavelet approach has been 316 

applied to DEM for geomorphic studies, including terrain analysis and landslide analysis (Bjørke 317 

and Nilsen, 2003; Kalbermatten, 2010; Kalbermatten et al., 2012). In this transform, a high-pass 318 

filter (a mother wavelet) and a low-pass filter (a father wavelet) are applied to decompose the 319 

DEM into four images at each scale: low-pass, high-pass horizontal, high-pass vertical, and high-320 

pass diagonal images). The scale is a parameter in the wavelet transform, representing the width 321 

of the filter and the scale of topographic variability (Kalbermatten et al., 2012). Depending on 322 

the scale of the wavelet transform, the method yields different images, corresponding to different 323 

scales of topographic features. We define this wavelet scale as a topography separation scale.  324 

We consider the low-pass image as macrotopographic elevation (i.e., the smoothed version of 325 

the original DEM) and the high-pass diagonal image as microtopographic elevation (i.e., the 326 

topographic variability associated with ice-wedge polygon development). Removing the large-327 

scale topography has been done in the previous studies in order to capture or quantify the effect 328 

of microtopography on carbon fluxes (Wainwright et al., 2015) or soil properties (Gillin et al., 329 

2015). 330 

 331 

Correlations between the topographic metrics and snow depth are identified using the Pearson 332 

product-moment correlation coefficient (Anderson et al., 2014). At each spatial scale, we can 333 

compute micro- and macrotopographic metrics such as slope and curvature as well as their 334 

correlations with corresponding probe-measured snow depth. The curvature is of particular 335 

interest, since Dvornikov et al. (2015) reported strong correlations between snow surface 336 

curvature and snow depth, and a dependency of this correlation on the DEM resolution (the 337 

lower resolution led to lower correlation coefficients). Note that the DEM resolution (0.5 m) in 338 
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this study is much finer than the one (25 m) in Dvornikov et al. (2015). We compute a wind 339 

factor in a similar manner as Dvornikov et al. (2015), with a slight modification. Here we define 340 

the wind factor as the inner product of the slope direction and predominant wind direction. With 341 

this calculation, the wind factor is smallest in the slope against the wind direction, and largest in 342 

the slope in line with the wind, which is reasonable and also consistent with visual observations 343 

at the site. When the correlation is statistically significant, the metrics are included in a 344 

regression analysis (Davison, 2003) to represent the snow depth as a function of the topographic 345 

metrics. 346 

 347 

A geostatistical approach has been used to investigate the spatial variability of snow depth as 348 

well as the scales of variability (Anderson et al., 2014). The standard geostatistical analysis starts 349 

with creating an empirical variogram, followed by estimating the spatial correlation parameters 350 

(Diggle and Ribeiro, 2007). The spatial correlation parameters include (1) magnitude of 351 

variability (or spatial heterogeneity) as variance, (2) fraction of correlated and uncorrelated 352 

variability (nugget ratio), (3) spatial correlation length (range), and (4) covariance model (i.e., 353 

the shape of decay in the spatial correlation as a function of distance), such as exponential and 354 

spherical models. The covariance models (equivalent to variogram models) can be selected to 355 

minimize the weighted sum of squares during variogram fitting. 356 

 357 

Such spatial variability and correlation are particularly important for interpolating the sparse in 358 

situ snow depth measurements. The interpolation can be applied not only for snow depth itself 359 

but also for snow surface (snow depth plus elevation) or residual snow depth after removing 360 

topographic correlations in the regression analysis. The same geostatistical analysis method is 361 
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therefore performed for snow surface and residual snow depth. We used the geoR package in 362 

statistical software R (Ribeiro and Diggle, 2001; https://www.r-project.org/).  363 

 364 

3.4. Bayesian Geostatistical Estimation Method 365 

We first define that the snow depth at each pixel yi (i = 1,…, n) is a hidden variable which can be 366 

observed only with an added measurement error. In this study, we set the pixel size to 0.5 by 367 

0.5 m, which corresponded to the LiDAR DEM resolution. The snow depth distribution (or field) 368 

is defined by a vector y = {yi| i = 1, …, n}. We integrate three datasets: snow depth probe data zp, 369 

GPR data zg, and LiDAR DEM zd. The goal of the estimation is to determine the posterior 370 

distribution of snow depth conditioned on all the given datasets, p(y |zp, zg, zd). Following a 371 

Bayesian hierarchical approach, we divide this posterior distribution into three sets of statistical 372 

sub-models (Wikle et al., 2001; Wainwright et al., 2014; 2016). First, data models represent each 373 

data value as a function of snow depth at each pixel, depending on different data types. Second, 374 

process models describe the spatial distribution of snow depth (i.e., snow depth field) as function 375 

of topography and correlation parameters. Finally, prior models define the prior information of 376 

parameters. The hierarchical approach breaks down a complex posterior distribution into a series 377 

of simple models, and hence enables us to capture complex relationships easily. In addition to 378 

the snow field vector and data vectors, two parameter vectors are defined: the process-model 379 

parameter vector a to represent the heterogeneous pattern of snow depth, and the data-model 380 

parameter vector b to describe the correlations between the snow depth and the GPR travel time.  381 

 382 

We assume a linear model to describe the snow depth field,  383 

  𝒚 = A𝒂 + 𝝉 (1) 384 

https://www.r-project.org/)
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where A is the design matrix as a function of the topographic metrics as explanatory variables 385 

(and hence a function of DEM zd). The process-model parameter vector a describes the 386 

correlation between the topographic metrics and the snow depth field. We assume that the 387 

residual of this correlation  represents the unexplained variability by the topographic metrics 388 

and that is spatially correlated. The residual term  is described by a multivariate normal 389 

distribution with a covariance , which is determined by a geostatistical analysis (Diggle and 390 

Ribeiro, 2007). Although we may include the uncertainty of those geostatistical parameters in the 391 

Bayesian estimation (Diggle and Ribeiro, 2007; Lavigne et al., 2016), we assume that those 392 

parameters are fixed during the Bayesian estimation process in this study. This is because we 393 

have a large amount of point measurements (snow depth probe data), and also it is known that 394 

indirect information (such as geophysics) does not significantly improve the estimation of 395 

geostatistical parameters (Day-Lewis, 2004; Murakami et al., 2010). 396 

 397 

The data model for the snow depth probe measurements defines the snow depth probe data zp as 398 

a function of snow depth y: 399 

  𝒛𝑝 = 𝒚 + 𝜺𝑝 (2) 400 

We assume that the vector p is an uncorrelated normally-distributed measurement error at each 401 

data location with the standard deviation of p. We determine the error based on the precision 402 

estimate of each snow depth probe. The snow depth probe data vector zp follows a multivariate 403 

normal distribution with the mean vector y and the covariance matrix Dp, which is a diagonal 404 

matrix with diagonal elements of p
2. Although it is not considered this study, we could include a 405 

systematic bias of snow probe measurements as an added shift (Berezovskaya and Kane, 2007). 406 

 407 
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The data model for the GPR data describes the GPR data zg as a function of the snow depth y at 408 

the GPR locations. The GPR data model can be represented by a linear model: 409 

  𝒛𝑔 = 𝑏0 + B𝒚 + 𝜺𝑔 (3) 410 

where B is a matrix, the diagonal elements of which is b1. The error vector g is an uncorrelated 411 

normally-distributed measurement error with the standard deviation of g. The standard 412 

deviation is computed from comparing the GPR-based snow depth to the probe-based one. At the 413 

same time, the GPR data model can be written as a function of the parameter vector b such that: 414 

  𝒛𝑔 = Y𝒃 + 𝜺𝑔 (4) 415 

where Y is the design matrix with the first column being y, and the second column being all one. 416 

The parameter vector b ={b1, b0} represents the linear correlations between the GPR data and 417 

snow depth. This alternative model is useful during the estimation procedure described below. 418 

The GPR data vector zg follows a multivariate normal distribution with the mean vector y and the 419 

covariance matrix Dg that is a diagonal matrix with diagonal elements of g
2. 420 

 421 

The posterior distribution of the snow depth conditioned on the datasets p(y | zd, zp, zg) is a 422 

marginal distribution of p(y, a, b| zd, zp, zg). By applying Bayes’s rule and following the 423 

conditional dependencies defined above, we can decompose this posterior distribution as: 424 

  p(y, a, b | zd, zp, zg)  p(zg| y, b) p(zp| y) p(y| a, zd)p(a)p(b). (5) 425 

Table 1 defines all the distributions on the right-hand side of Equation (5) based on the models 426 

defined in Equations (1) – (4). We also assume multivariate normal distributions for the prior 427 

distributions of the parameter vectors a and b. The posterior distribution in Equation (5) can be 428 

computed using the Markov-chain Monte-Carlo (MCMC) method (Gamerman and Lopes, 2006). 429 

Since all the distributions are defined as multivariate normal distributions, it is possible to use 430 
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efficient Gibbs’ algorithm. The MCMC procedure is described in Appendix A. The convergence 431 

can be confirmed by the Geweke’s convergence diagnostic (Geweke, 1992). The entire workflow 432 

is included in Appendix B.  433 
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4. Results 434 

4.1. Snow Depth Measurements 435 

GPR Radar Velocity Analysis 436 

Our results (based on the GPR data and tile probe data collected in May 2012) indicate that the 437 

estimated radar velocity itself does not have a systematic dependency on (or trend with) the snow 438 

depth or submeter-scale variability of topography in May 2012 (Figures 2a and 2b). The 439 

correlation coefficient between the radar velocity and snow depth is 0.11, and between the radar 440 

velocity and submeter-scale variability is 0.15. The variability of the radar velocity, on the other 441 

hand, depends on those two factors (i.e., the variability of snow depth and topography). Hence, 442 

the variability is higher in areas with shallower snow depths (Figure 2a). The standard deviation 443 

(STDEV) of the radar velocity is 0.039 m/ns at the snow depth smaller than one STDEV minus 444 

the median snow depth, and 0.019 m/ns at the one larger than one STDEV plus the median. The 445 

radar velocity variability is higher also in localized regions of large submeter-scale topographic 446 

variability (Figure 2b). The STDV of the radar velocity is 0.015 m/ns at the submeter-scale 447 

topographic variability (i.e. elevation difference within a one-meter radius) smaller than 0.05 m, 448 

and 0.036 m/ns at the one larger than 0.05m. By selecting the points with the submeter-scale 449 

topographic variability < 0.05 m, we obtained a mean radar velocity of 0.25 m/ns, which was 450 

used for subsequent analysis.  451 

 452 

Using the mean velocity value in May 2012, the calculated GPR-based snow depth estimates 453 

were compared with the snow depth probe measurements (Figure 2c). The correlation between 454 

the measured and estimated snow depth is high (the correlation coefficient is 0.88), with the root 455 

mean square error (RMSE) being 5.4 cm, and with no significant under- or overestimation (the 456 
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mean bias error –0.16 cm). The selected points in the regions of low submeter-scale topographic 457 

variability (red circles) are more tightly distributed around the one-to-one line. In these regions, 458 

the RMSE of GPR-based snow depth improved to 2.9 cm with a increased correlation coefficient 459 

between the GPR-based and probe-based snow depth  to 0.94. These results confirm that snow 460 

density variations are limited, and using a constant mean GPR velocity is acceptable.  461 

 462 

Snow Depth Measurements in Different Polygon Types 463 

Figure 3 shows the LiDAR DEM as well as snow depth probe measurements and GPR estimates 464 

in Plots A–D (May 2012). The LiDAR DEM (in the left column) illustrates the difference among 465 

four plots in terms of both macro- and microtopography. For example, Plot A has better defined 466 

polygon rims and troughs than Plot D, although Plot A and D are both low-centered polygons. 467 

Plot B has round-shaped high-centered polygons, while Plot C has flat-centered polygons with 468 

well-defined troughs. The average size of polygons is also different, with smaller polygons in 469 

Plot B and larger polygons in Plots A, C and D. In addition, these figures illustrate some 470 

macrotopographic trends. Plot C is gradually sloping down towards the east, and Plot D has a 471 

depression (i.e., DTLB) in the northeastern half.  472 

 473 

The middle column in Figure 3 shows the snow depth probe data collected using the fine-grid 474 

and coarse-grid scheme collected in May 2012. The fine-grid data reveals the detailed 475 

heterogeneity of snow depth around a single polygon. For example, the fine-grid data in Plot A 476 

show the snow depth distribution in a low-centered polygon, including thin snow along the 477 

polygon rim and thick snow at the polygon center and trough. Comparison of the fine-grid snow 478 

data with the DEM reveals the microtopographic effect such that the troughs and center of the 479 
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polygon have larger snow depth. The coarse-grid dataset covers the entire plot, although it is 480 

much more difficult to ascertain the relationship between the snow depth and microtopography. 481 

The snow depth probe data show that the snow depth is highly variable, ranging from 0.2 m to 482 

0.8 m in a single plot.  483 

 484 

In the third column of Figure 3, the May-2012 snow depth was estimated from GPR using a 485 

fixed radar velocity 0.25 m/ns along the lines within the plots, and then interpolated with a 486 

simple linear interpolation in between the lines. The high-resolution GPR snow depth estimates 487 

are useful for determining if microtopographic features can influence the distribution of snow 488 

depths across each study plot.. The high-resolution snow estimates over the large area allow us to 489 

visually identify the macrotopographic control on snow depth. In Plot C, for example, the snow 490 

depth does not have an increasing or decreasing trend, even though the elevation gradually 491 

decreases towards east. Plot D, on the other hand, has more snow accumulation in the eastern 492 

part of the domain, which is in the depression associated with DTLB.  493 

 494 

PhoDAR-based Snow Depth Measurements 495 

In the region of the 500-meter transects, the PhoDAR-derived snow-free DSMs (Figure 4a) 496 

collected in July 2013 and August 2014 were first compared with the RTK DGPS data (acquired 497 

in 2011) in Table 2, using the different schemes to identify co-location. We included the results 498 

of both years to confirm the consistency between the two snow-free DSM products at the same 499 

terrain. Although all the scheme yielded an excellent accuracy (the RMSE less than 7.0 cm), 500 

taking the average provides the lowest RMSE in both years (6.41 cm in 2013 and 6.19 cm in 501 

2014), which is approximately the same as the LiDAR data (RMSE = 6.08 cm). The PhoDAR-502 
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derived snow depth estimates in May 2015 were obtained by differencing the snow surface and 503 

snow-free DSM (Figure 4b). The comparison between the PhoDAR-based snow estimates and 504 

the snow depth probe data are favorable (Figure 4c), with a RMSE of 6.0 cm. When we removed 505 

the points that had a large submeter-scale topographic variability in the vicinity (in the same way 506 

and the same cut-off values as the GPR snow depth analysis), the RMSE improved to 4.6 cm 507 

(Figure 4c). 508 

 509 

The PhoDAR-derived snow depth (Figure 4b) around the 500-meter transects in May 2015 510 

reveals a similar pattern of snow distribution as the GPR data in Figure 3, having deeper snow in 511 

the troughs and the centers of low-centered polygons. The high-resolution image of the PhoDAR 512 

data reveals more detail of the microtopographic effect than the interpolated image of the GPR 513 

data, particularly in the narrow troughs. The large aerial coverage also shows the minimal effect 514 

of macrotopography: while the elevation decreases towards south, the snow depth does not have 515 

a large-scale trend.  516 

 517 

4.2. Snow Depth Variability over Tundra 518 

Variability among Different Polygon Types 519 

Figure 5 shows the boxplots of the snow depth, elevation, and microtopographic elevation 520 

(elevation) in each plot measured in May 2012. We used the coarse-grid snow depth probe 521 

measurements, since the samples are uniformly distributed over each plot. The median snow 522 

depth (Figure 5a) is fairly similar among four plots, even though they have different 523 

geomorphologic features and polygon types. Tukey’s pairwise comparison test (Table 3) shows 524 

that only Plot B (small high-centered polygons) is significantly different from the other plots.  525 
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 526 

The absolute elevation distribution varies among the four plots (Figure 5b), although the snow 527 

depth for each of the plots has similar median values and distributions. Plot A (well-defined low-528 

centered polygons), for example, is at a higher elevation than Plots C (flat-centered polygons) 529 

and D (low-centered polygons in DTLB), but the difference in the average snow depth is not 530 

statistically significant (Table 3). The microtopographic elevation is computed based on the 531 

wavelet transform with the scale of 32 m as described in Section 3.3 (Figure 5b). The scale of 32 532 

m was selected to yield the best correlation between snow depth and microtopographic elevation. 533 

Plot D (low-centered polygons in DTLB), for example, has less variability in both elevation and 534 

snow depth, because Plot D has less distinct microtopography than others. In contrast, Plot B has 535 

the largest variability in both microtopography and snow depth 536 

 537 

Correlations between Snow Depth and Topographic Indices in May 2012 538 

Among the topographic indices of macro- and microtopography, the snow depth in May 2012 539 

(measured by the snow depth probe) was significantly correlated only to the microtopographic 540 

elevation for all plots (Figure 6a). The correlation coefficient changes with the scale of the 541 

wavelet transform that separates micro- and macrotopography. The correlation coefficient is up 542 

to –0.8 at Plot B (small high-centered polygons), and up to –0.7 at all the data points. The 543 

correlation coefficient is different among different plots (i.e., different polygon types); the 544 

correlation is less significant at Plot D (low-centered polygons in DTLB), than other plots. The 545 

best correlation (i.e., the largest absolute value) can be achieved at a different scale in each plot 546 

(Plot B < Plot A and Plot C < Plot D). 547 

 548 
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A significant correlation between snow depth and wind factor of macrotopography was identified 549 

only in Plot D (low-centered polygons in DTLB; Figure 6b). The correlation coefficient is up to 550 

0.41 at the scale of 38 m. Other topographic indices (i.e., the slope and curvature of both micro- 551 

and macrotopography, the wind factor of microtopography) are not shown here, since we did not 552 

find any significant correlation. Although Dvornikov et al. (2015) reported a strong correlation 553 

between snow depth and curvature (snow free DEM), we did not find any significant correlation 554 

in our data. This is possibly because the microtopography at our site was completely filled by 555 

snow, and the overall elevation gradient at our site (the elevation difference in the domain is 3.1 556 

m) is much smaller than the one that Dvornikov et al. (2015) reported (the elevation difference in 557 

their domain was more than 60 m). 558 

 559 

Geostatistical Analysis of Snow Depth 560 

Spatial correlation exists for all three variables in May 2012: snow depth, snow surface, and 561 

residual snow depth after removing the correlation to the microtopographic elevation (Table 4). 562 

The correlation range is less than 20 m for the snow depth, which is consistent with the large 563 

variability in a short distance. The snow surface, on the other hand, has a larger correlation range 564 

(253 m). The estimation of a snow surface height (elevation + snow depth), effectively removes 565 

the influence of microtopography, resulting in much a larger correlation range. The variance is 566 

comparable between the snow depth and snow surface, while the variance is much lower in the 567 

residual snow depth, since the topographic correlation explains a large portion of the snow depth 568 

variability.  569 

 570 

4.3. Snow Depth Estimation based on LiDAR DEM 571 
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Based on the snow-topography analysis in Section 4.2, we included the linear correlation 572 

between snow and microtopographic elevation in Equation (1), to describe the snow variability 573 

in May 2012. We used the Shapiro-Wilk normality test to confirm that the residual of the linear 574 

correlation, defined by  in Equation (1), follows a normal distribution (the p-value of rejecting 575 

this hypothesis was 0.21). The first column of the design matrix A is the microtopographic 576 

elevation at all the pixels, and the second one is a vector of all ones. The parameter vector a is a 577 

2-by-1 vector with the linear correlation parameters (slope and intercept). The Bayesian method 578 

(Section 3.4) yielded 10,000 equally likely fields of the snow depth from the posterior 579 

distribution in Equation (5).  580 

 581 

The Bayesian estimated mean snow-depth field over the full study domain in May 2012 (Figure 582 

7a) captures the effects of microtopography, such as more snow accumulation in polygon troughs 583 

and centers of low-centered polygons. The snow depth does not have any large-scale trends over 584 

the full study domain, which is different from the LiDAR DEM in Figure 1b, but consistent with 585 

the interpolated GPR snow depths depicted in Figure 3 (right column), and the measured UAS 586 

snow depth measurements depicted in Figure 4b. The variability is larger in the southern region 587 

where there are high-centered polygons with deep troughs.  588 

 589 

In addition, we compared this result (Figure 7a) with the mean field by estimating the snow 590 

surface elevation and subtracting the ground surface elevation (Figure 7b). In this estimation, we 591 

used the same Bayesian algorithm one described in Section 3.4, except that we removed the 592 

topographic correlations and assumed a standard geostatistical model for snow surface (Diggle 593 

and Ribeiro, 2007). In other words, we had the same algorithm except that we modified Equation 594 
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(1) to y = – z + , where y + z represents the surface elevation. Although the two mean fields 595 

(Figure 7) are similar in the central regions that have many measurements, the regions without 596 

any measures have a significant deviation. This is because the snow surface estimation did not 597 

capture the change in macrotopography (e.g. the drainage feature in the southern part of the 598 

domain).  599 

 600 

The estimated standard deviation of the Bayesian-derived snow depth over the study domain 601 

(Figure 8a) also shows a significant difference from the one based on the snow surface 602 

interpolation (Figure 8b). This standard deviation represents the uncertainty in the estimation. In 603 

both cases, the standard deviation is smaller near the measurement locations along the transects 604 

and within the four plots. However, when the topographic correlation is included (Figure 8a), the 605 

standard deviation increases more rapidly as the pixel is farther away from the data points. This 606 

is due to the fact that the spatial correlation range is small for the residual snow depth after 607 

removing the topographic correlation (Table 4).  608 

 609 

Validation of the snow depth estimates over the study area (Plot A-D and the 500-meter 610 

transects) was performed by comparing the estimates with the snow depth probe data (May 611 

2012) not used in the Bayesian snow depth estimation. We selected 100 points randomly from 612 

the snow depth probe data (all the locations in Plot A-D and the 500-meter transects), using a 613 

uniform distribution. The validation results (Figure 9) show that the estimated confidence 614 

interval captures the probe-measured snow depth. The estimated snow depth is distributed along 615 

with the one-to-one line without any significant bias. The estimation, including the topographic 616 

correlation (Figure 9a), has a tighter confidence interval and better estimation results than the 617 
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one from interpolating the snow surface (Figure 9b). The RMSE for the Bayesian method of 618 

estimating snow depth including the topographic correlation is 6.0 cm, while the RMSE for the 619 

interpolated snow surface is 8.8 cm.  620 

  621 
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5. Discussion 622 

5.1. Different Observational Platforms 623 

Our analysis showed that GPR data provided the end-of-winter snow depth distribution with high 624 

accuracy (RMSE = 2.9 cm) and resolution (10 cm along each line). The GPR-based estimation 625 

requires care, particularly regarding the estimation of radar velocity and associated possible 626 

errors, such as those due to positioning. Although the radar velocity is known to depend on the 627 

snow density, we attribute the variability of radar velocity at our site to random or positioning 628 

errors. Three results support this claim. First, the variability of radar velocity is smaller in a 629 

thicker snow pack, suggesting the small contribution of the error relative to the overall snow 630 

depth. The relatively low topographic variability over the site (compared to mountainous 631 

terrains) would have contributed to this fairly uniform radar velocity. Second, the radar velocity 632 

variability depends on the submeter-scale variability of the topography in the vicinity of the 633 

calibration points, suggesting the impact of positioning errors. Third, there was no systematic 634 

trend in the radar velocity as a function of the snow depth or topographic positions. We 635 

developed a simple methodology (described in Section 3.1) to select co-located calibration points 636 

based on the submeter-scale variability of topography, which proved to be useful to compute 637 

accurate velocity. We note that – even though the depth-averaged radar velocity and hence the 638 

depth-averaged snow density have little variability over the space –the snow density could be 639 

variable vertically along the depth. From snow coring, we indeed found some layers of ice 640 

created by winter rain events that were not detected by the GPR or with probe. It is possible that 641 

there might be a difference in the depth-averaged density and radar velocity at a later time, when 642 

the snow pack starts to melt in a heterogeneous manner.  643 

 644 
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UAS-based PhoDAR provided an attractive alternative for estimating snow depth at high 645 

resolution over a large area. With much less labor and time, UAS-based PhoDAR can provide 646 

many more sample points than GPR. The PhoDAR-based snow depth, however, was less 647 

accurate than ground-based GPR or snow depth probe measurements (RMSE = 6.0 cm). The 648 

main contribution of this error resulted from the snow-free elevation, since RMSE for the surface 649 

DSM is around 6 cm. We note that the RMSE of 6.0 cm is still significantly more accurate than 650 

the previous LiDAR and other airborne surveys (e.g., Deems et al., 2013; Harpold et al. 2014; 651 

Nolan et al., 2015).  652 

 653 

The PhoDAR-based approach is expected to continue its trajectory of continuous improvements 654 

in terms of technical aspects, ease of use, and accuracy. At the time of our campaign, we were 655 

allowed to use only a kite due to regulations, which led to a limited number of pictures that could 656 

be used to reconstruct the DSM. The accuracy will significantly improve with the use of a light 657 

unmanned aerial vehicle (UAV). Although UAS-based LiDAR acquisition technology continues 658 

to improve (e.g., Anderson and Gaston, 2013), as is expected to be a powerful alternative to 659 

characterize snow, the LiDAR device is still significantly more expensive than a conventional 660 

camera (roughly by factor of 100). Given that the vegetation height is fairly small in the Arctic 661 

tundra, the PhoDAR technique is an affordable alternative.  662 

 663 

For all the types of measurements, accurate positioning was critical in the polygonal tundra due 664 

to microtopography. The GPS snow depth probe (Snow-Hydro), for example, had the positioning 665 

error larger than several meters, and required extra post-processing to correct the locations. On 666 

the other hand, measuring the RTK DGPS at all the snow depth measurement locations would 667 
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not be realistic since it would take time. We found that having a measurement tape and 668 

measuring the start and end points by the DGPS were a reasonable approach, when the snow 669 

surface is smooth and hard. In this study, we used the snow depth probe data as the true snow 670 

depth to compare with other measurements (i.e., GPR, PhoDAR, and Bayesian estimation). To 671 

improve the accuracy further, it would be necessary to quantify the uncertainty in the snow depth 672 

probe associated with the vegetation and other issues (Berezovskaya and Kane, 2007).  673 

 674 

5.2. Snow Depth Variability 675 

The end-of-year snow depth distribution at the ice-wedge polygons was highly variable over a 676 

short distance in May 2012. The snow depth was, however, significantly correlated with the 677 

microtopographic elevation, suggesting that the snow depth could be described by 678 

microtopography. The wind-blown snow transport leads to significant snow redistribution, and 679 

fills microtopographic lows (i.e., troughs and centers of low-centered polygons) with thicker 680 

snow pack (e.g., Pomeroy et al., 1993). The redistribution also results in the smooth snow 681 

surface, following the macrotopography. The exception was observed at the edge of the DTLB, 682 

where the abrupt change in macrotopography led to increased accumulation in the depression. 683 

This is a similar effect to that observed along the riverbanks by Benson and Sturm (1993). 684 

Although the tundra ecosystem studies have focused on the effect of microtopography (e.g., 685 

Zona et al., 2011), the macrotopography also may be important when we characterize snow 686 

distribution over a larger area. 687 

 688 

The “average” (or median) snow depth over a hundred-meter scale (i.e., the size of Plots A-D), 689 

on the other hand, was fairly uniform across the site despite the different polygon types in May 690 
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2012. Plot A (well-defined low-centered polygons) and C (flat-centered polygons), for example, 691 

have different polygon types, but they have a similar median snow depth. This is because 692 

microtopography and microtopographic features (i.e., polygon troughs, rims) mainly control the 693 

snow distribution. Plot B (small high-centered polygons) is an exception, having smaller median 694 

snow depth than the other plots. Plot B has the largest variability in microtopography, 695 

characterized by the small round high-centered polygons, like numerous small mounds (Figure 696 

3). Such mounds are prone to erosion by the wind, and hence lead to less snow trapping and 697 

accumulation. 698 

 699 

Identifying such correlations between snow depth and topography requires an effective approach 700 

to separate micro- and macrotopography. Our wavelet analysis revealed that the separation scale 701 

depends on the polygon sizes; for example, the larger polygons in Plot A (well-defined low-702 

centered polygons) and C (flat-centered polygons) lead to a larger separation scale than the 703 

smaller polygons in Plot B (small high-centered polygons). It is a challenge to map 704 

macrotopography accurately over a larger area, particularly at the present site, where different 705 

types and sizes of polygons mix. Although we used the same scale for the estimation, an 706 

improved polygon delineation algorithm will possibly enable us to separate micro- and 707 

macrotopography in the future (e.g., Wainwright et al., 2015).  708 

 709 

5.3. Snow Depth Estimation 710 

The developed Bayesian approach enabled us to estimate the snow depth distribution over a large 711 

area based on the LiDAR DEM and the correlation between the snow depth and topography. 712 

Although this paper only used the ground-based GPR and snow depth probe measurements 713 
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collected at the same time, PhoDAR could be easily included in the same framework. The 714 

Bayesian method allowed us to integrate three types of datasets (LiDAR DEM, snow depth 715 

probe and GPR) in a consistent manner, and also provided the uncertainty estimate for the 716 

estimated snow depth. Taking into account the topographic correlation explicitly improved the 717 

accuracy of estimation significantly (RMSE 6.0 cm), compared to interpolating the snow surface 718 

and subtracting the DEM (RMSE 8.8 cm).  719 

 720 

Our approach can be extended to snow estimates over both time and space. The correlations 721 

between snow depth and topography may change over time. In early and later winter, for 722 

example, the snow depth would be more affected by curvature and slope of microtopography, 723 

since the microtopographic lows (troughs and centers of the low-centered polygons) are not 724 

filled by snow. It would be possible to quantify the seasonal changes in the topography-snow 725 

correlations by designing a full season ground-based measurement campaign and acquisition of 726 

remote sensing snow depth measurements (by PhoDAR or LiDAR), that monitored the same site 727 

over several years to account for inter-annual variability. The Bayesian method presented here is 728 

flexible enough to account for changes in parameters over time for the spatial-temporal data 729 

integration (e.g., Wikle et al., 2001). Although physically-based snow distribution models can be 730 

used for the same purposes (e.g., Pomeroy et al., 1993; Liston and Sturm, 1998; 2002), it is 731 

difficult to parameterize all the processes, such as sublimation and turbulent transport. Our data-732 

driven approach provides a powerful alternative to distribute snow depth based on various 733 

datasets.   734 



 37 

6. Summary 735 

In this study, we explored various strategies to estimate the end-of-year snow depth distribution 736 

over an Arctic ice-wedge polygon tundra region. We first developed an effective methodology to 737 

calibrate GPR and PhoDAR in the presence of submeter-scale-scale variability of topography. 738 

We then investigated the characteristics and accuracy of three observational platforms: snow 739 

depth probe, GPR and PhoDAR. The PhoDAR-derived snow depth estimates have great 740 

potential for accurately characterizing snow depth over larger regions (with an RMSE of 4.6 cm), 741 

relative to the in situ snow depth measurements. The GPR snow depth estimates were slightly 742 

more accurate (with an RMSE of 2.9 cm), but required considerable more effort to obtain, and 743 

require complex post-processing to minimize errors associated with radar positioning. 744 

 745 

We investigated the spatial variability of the snow depth and its dependency on the topographic 746 

metrics. At the peak snow depth during our data acquisition, the snow depth was highly 747 

correlated with microtopographic elevation (the correlation coefficient of up to –0.8), although it 748 

was highly variable over short distances (the correlation range of 12.3 m). It is considered that 749 

the wind redistribution filled the microtopography by snow, and created a snow surface 750 

following macrotopography at the site. The challenge was to separate macro- and 751 

microtopography, since the separation scale was not arbitrary, and depended on the polygon size. 752 

The wavelet analysis provided an effective approach to identify this separation scale.  753 

 754 

The Bayesian method was effective at integrating different measurements to estimate snow depth 755 

distribution over the site. Although our estimation is based on the data collected from a one-time 756 

campaign, and the correlations to topography may change over time, the approach developed 757 
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here is expected to be applicable for estimating both spatial and temporal variability of snow 758 

depth at other sites, and in other landscapes.. 759 

  760 
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Appendix A 761 

In MCMC, we sample each variable sequentially conditioned on all the other variables. In other 762 

words, when we update one variable (or one vector), we assume that the other variables are 763 

known and fixed. After sampling thousands of sets of the variables, the distribution of those 764 

samples converges to the posterior distribution. Each vector is sampled as follows: 765 

 766 

The snow depth field is sampled from the distribution: 767 

  p(y | •) = p(y | a, b, zd, zg, zp)  p(zg | y, b) p(zp | y) p(y | a, zd) (A.1) 768 

where “•” represents all the other variables. The distribution is decomposed to a series of small 769 

conditional distributions defined in Table 1. Similarly, we can sample the snow-process 770 

parameters a and GPR-data parameter b from the distributions: 771 

  p(a | •) = p(a | y, h)  p(y | h, a) p(a) (A.2) 772 

  p(b | •) = p(b | y, zg)  p(zg | y, b) p(b) (A.3) 773 

Since all the distributions in Equation A.1–A.3 are multivariate Gaussian, we can use the 774 

conjugate prior to compute an analytical form of each distribution. Each distribution is 775 

multivariate Gaussian with the covariance and mean vector defined in Table A.1. In the Gibbs’ 776 

sampling algorithm, we sample each variable vector sequentially until the distributions are 777 

converged. 778 

 779 

Appendix B 780 

The workflow of the Bayesian geostatistical approach from the data is included in Figure B.1. 781 

The snow depth probe data and LiDAR DEM are used to (a) identify the correlations between 782 

topography and snow depth (Section 3.3) after identifying the representative scale of macro- and 783 
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micro-topography in the wavelet analysis, to (b) quantify the variogram parameters, and also to 784 

(c) create a process model in Equation (1). The GPR data are analyzed to estimate the radar 785 

velocity, and to quantify the correlations to the snow depth probe (Section 3.1). At the end (the 786 

last column in Figure B.1), all the parameters are assembled for the estimation using MCMC 787 

(Appendix A).  788 

 789 

  790 
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Figure 1. (a) Location of Barrow, Alaska, USA, and Barrow Environmental Observatory (BEO) 980 

from Hubbard et al. (2013). (b) NGEE-Arctic site with the digital elevation map from the 981 

airborne LiDAR (in meters). The black boxes are the intensive sampling plots (Plot A, B, C and 982 

D). The white rectangles are the fine-grid snow depth measurements by a snow depth probe. The 983 

three black lines represent the 500-meter transects. 984 

  985 

Figure 2. Radar velocity as a function of (a) co-located snow depth measured by a snow depth 986 

probe and (b) elevation difference (i.e., topographic variability) within 1 m. (c) Comparison 987 

between the probe-derived and GPR-derived snow depth at all the co-located locations (blue 988 

circles) and at selected locations (red circles) where topographic variability is low. In (a), the 989 

black vertical line is the median snow depth, and the dotted lines are +/– one STDEV from the 990 

median snow depth. In (b), the black line is the cut-off elevation difference of 0.05 m. 991 

  992 

Figure 3. Elevation and snow depth in Plots A, B, C and D. The left column is LiDAR DEM (in 993 

meters), the middle column is the probe measured snow depth (in meters), and the right column 994 

is the interpolated snow depth estimated using GPR (in meters). 995 

 996 

Figure 4. (a) PhoDAR-derived DSM in meters (August, 2014), b) PhoDAR-derived snow depth 997 

in meters (May, 2015), and (c) comparison between the PhoDAR-based and probe-based snow 998 

depth at all the locations (blue circles) and at selected locations (red circles) having low 999 

topographic variability (the sub-meter elevation variability less than 0.05 m). The black line in 1000 

(b) represents the snow depth probe measurements every 3 meter along the 500-meter transect. 1001 
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Figure 5. Boxplots of (a) snow depth and (b) elevation and (c) microtopographic elevation in 1002 

Plots A-D. 1003 

                1004 

Figure 6. Correlation coefficients between snow depth and topographic metrics as a function of 1005 

the wavelet scale: (a) the microtopographic elevation, and (b) the wind factor of 1006 

macrotopography. The different colors represent different plots (Plot A–D) or all the data (All). 1007 

Each dash line represents the scale that maximize the magnitude of the correlation coefficient.  1008 

 1009 

Figure 7. The estimated mean snow depth across the site (in meters) based on (a) the proposed 1010 

Bayesian method including the correlation to microtopography, and (b) the kriging-based 1011 

interpolation of the snow surface. The spatial extent is the same as Figure 1b. 1012 

 1013 

Figure 8. The estimated standard deviation of snow depth across the site (in meters) based on (a) 1014 

the proposed Bayesian method including the correlation to microtopography, and (b) the kriging-1015 

based interpolation of the snow surface. The spatial extent is the same as Figure 1b. 1016 

 1017 

Figure 9. Estimated mean and confidence intervals from the Bayesian method, compared to the 1018 

probe-measured snow depth by (a) using the correlation to microtopography and (b) interpolating 1019 

the snow surface. The red circles represent the snow depth at the validation locations (the snow 1020 

depth probe measurements not used in the estimation), the blue lines are the confidence intervals 1021 

based on the standard deviation (STD) multiplied by 1.9 (94% confidence intervals), and the 1022 

black lines are the one-to-one line. 1023 
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 1039 
(a)                                                       (b) 1040 

Figure 1. (a) Location of Barrow, Alaska, USA, and Barrow Environmental Observatory (BEO) 1041 

from Hubbard et al. (2013). (b) NGEE-Arctic site with the digital elevation map from the 1042 

airborne LiDAR (in meters). The black boxes are the intensive sampling plots (Plot A, B, C and 1043 

D). The white rectangles are the fine-grid snow depth measurements by a snow depth probe. The 1044 

three black lines represent the 500-meter transects. 1045 

1046 
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  1047 
(a)                                      (b)                                             (c) 1048 

Figure 2. Radar velocity as a function of (a) co-located snow depth measured by a snow depth 1049 

probe and (b) elevation difference (i.e., topographic variability) within 1 m. (c) Comparison 1050 

between the probe-derived and GPR-derived snow depth at all the co-located locations (blue 1051 

circles) and at selected locations (red circles) where topographic variability is low. In (a), the 1052 

black vertical line is the median snow depth, and the dotted lines are +/– one STDEV from the 1053 

median snow depth. In (b), the black line is the cut-off elevation difference of 0.05 m. 1054 

  1055 
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 1056 
Figure 3. Elevation and snow depth in Plots A, B, C and D. The left column is LiDAR DEM (in 1057 

meters), the middle column is the probe-measured snow depth (in meters), and the right column 1058 

is the interpolated snow depth estimated using GPR (in meters). The black boxes represent the 1059 

locations of the fine-grid snow depth measurements. 1060 

  1061 
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 1062 
(a)    (b)          (c) 1063 

Figure 4. (a) PhoDAR-derived DSM in meters (August, 2014), b) PhoDAR-derived snow depth 1064 

in meters (May, 2015), and (c) comparison between the PhoDAR-based and probe-based snow 1065 

depth at all the locations (blue circles) and at selected locations (red circles) having low 1066 

topographic variability (the sub-meter elevation variability less than 0.05 m). The black line in 1067 

(b) represents the 183 snow depth probe measurements every 3 meter along the 500-meter 1068 

transect. 1069 

  1070 
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 1071 
(a)                                          (b)                                          (c) 1072 

Figure 5. Boxplots of (a) snow depth and (b) elevation and (c) microtopographic elevation in 1073 

Plots A-D. 1074 

  1075 
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             1076 
(a)                                                        (b) 1077 

Figure 6. Correlation coefficients between snow depth and topographic metrics as a function of 1078 

the wavelet scale: (a) the microtopographic elevation, and (b) the wind factor of 1079 

macrotopography. The different colors represent different plots (Plots A–D) or all the data (All). 1080 

Each dash line represents the scale that maximize the magnitude of the correlation coefficient.   1081 
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 1082 
(a)      (b) 1083 

Figure 7. The estimated mean snow depth over the NGEE-Arctic site (in meters) based on (a) the 1084 

proposed Bayesian method including the correlation to microtopography, and (b) the kriging-1085 

based interpolation of the snow surface. The spatial extent is the same as Figure 1b. 1086 

  1087 
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 1088 
(a)      (b) 1089 

Figure 8. The estimated standard deviation of snow depth across the site (in meters) based on (a) 1090 

the proposed Bayesian method including the correlation to microtopography, and (b) the kriging-1091 

based interpolation of the snow surface. The spatial extent is the same as Figure 1b. 1092 

  1093 
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 1094 
(a)      (b) 1095 

Figure 9. Estimated mean and confidence intervals from the Bayesian method, compared to the 1096 

probe-measured snow depth by (a) using the correlation to microtopography and (b) interpolating 1097 

the snow surface. The red circles represent the snow depth at the validation locations (the snow 1098 

depth probe measurements not used in the estimation), the blue lines are the confidence intervals 1099 

based on the standard deviation (STD) multiplied by 1.9 (94% confidence intervals), and the 1100 

black lines are the one-to-one line. 1101 

 1102 

 1103 

  1104 



 62 

 1105 
Figure B.1. Workflow of the Bayesian geostatistical estimation. 1106 

 1107 

  1108 
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Table 1. Multivariate normal distribution defined for each variable.  1109 

Variable  Type Distribution Covariance Mean vector 

Snow depth y Process model p(y|a, zd)  Aa 

Probe data zp Data model p(zp|y) Dp y 

GPR data zg Data model p(zg|y, b) Dg By + b0 

Snow-depth parameters a Prior p(a) Va a 

GPR parameters b Prior p(b) Vb b 

  1110 
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Table 2. Root mean squared error (RMSE) between the PhoDAR-derived DSM and RTK DGPS 1111 

elevation measurements based on the three schemes: nearest neighbor, average, and minimum 1112 

elevation within the 0.5 m radius.  1113 

 Nearest (cm) Average (cm) Minimum (cm) 

July 2013 6.88 6.41 6.62 

August 2014 6.40 6.19 6.34 

  1114 
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Table 3. p values from Tukey’s pairwise comparison test for each pair of the plots.  1115 

 Snow depth 

Plot A – Plot B 6.34 x 10-3 

Plot A – Plot C 0.982 

Plot A – Plot D 0.998 

Plot B – Plot C 1.72 x 10-3 

Plot B – Plot D 3.55 x 10-3 

Plot C – Plot D 0.997 

 1116 

  1117 
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Table 4. Estimated geostatistical parameters and covariance models for snow depth, snow 1118 

surface and residual snow depth.  1119 

 Model Range (m) Variance (m2) Nugget Ratio 

Snow depth Exponential 12.3 1.6 x 10-2 0.0 

Snow surface Spherical 253.3 2.0 x 10-2 0.16 

Residual snow 

depth 

Exponential 
15.0 8.3 x 10-3 0.0 

  1120 
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Table A.1. Posterior distributions during the Gibbs sampling 1121 

Variable  Covariance, Q Mean vector 

Snow depth y (BTDg
-1B+Dp

-1+-1)-1 Q(BTDg
-1(zg–b0)+ Dp

-1zp+-1Aa) 

Snow depth parameters a (AT-1A+Va
-1)-1 Q(AT-1y + Va

-1a) 

GPR parameters b (HTDg
-1H+Vb

-1)-1 Q(BTDg
-1 (zg–b0) + Vb

-1b) 

 1122 
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