Mapping snow depth within a tundra ecosystem using multiscale observations and 1 **Bayesian methods** 2 3 Haruko M. Wainwright 4 5 hmwainwright@lbl.gov Earth Sciences Division, Lawrence Berkeley National Laboratory 6 7 1 Cyclotron Road, MS 74R-316C, Berkeley, CA 94720-8126 8 Anna K. Liljedahl 9 akliljedahl@alaska.edu 10 Water & Environmental Research Center 11 12 University of Alaska Fairbanks 13 306 Tanana Loop, Fairbanks, AK 99775-5860, USA 14 Baptiste Dafflon 15 bdafflon@lbl.gov 16 17 Earth Sciences Division, Lawrence Berkeley National Laboratory 18 1 Cyclotron Road, MS 74R-316C, Berkeley, CA 94720-8126 19 20 Craig Ulrich 21 CUlrich@lbl.gov 22 Earth Sciences Division, Lawrence Berkeley National Laboratory 23 1 Cyclotron Road, MS 74R-316C, Berkeley, CA 94720-8126

25	John E. Peterson
26	jepeterson@lbl.gov
27	Earth Sciences Division, Lawrence Berkeley National Laboratory
28	1 Cyclotron Road, MS 74R-316C, Berkeley, CA 94720-8126
29	
30	Susan S. Hubbard
31	sshubbard@lbl.gov
32	Earth Sciences Division, Lawrence Berkeley National Laboratory
33	1 Cyclotron Road, MS 74R-316C, Berkeley, CA 94720-8126
34	

Abstract

35

37

38

39

40

41

43

44

45

46 47

48

49

50

51

53

55

36 This paper compares and integrates different strategies to characterize the variability of end-of-

winter snow depth and its relationship to topography in ice-wedge polygon tundra of Arctic

Alaska. Snow depth was measured using in situ snow depth probes, and estimated using ground

penetrating radar (GPR) surveys and the Photogrammetric Detection and Ranging (PhoDAR)

technique with an unmanned aerial system (UAS). We found that GPR data provided high-

precision estimates of snow depth (RMSE = 2.9 cm), with a spatial sampling of 10 cm along

42 transects. PhoDAR_r based approaches provided snow depth estimates in a less laborious manner

compared to GPR and probing while yielding a high precision (RMSE = 6.0 cm) and a fine

spatial sampling (4 cm by 4 cm). We then investigated the spatial variability of snow depth and

its correlation to micro- and macrotopography using the snow-free LiDAR digital elevation map

(DEM) and the wavelet approach. We found that the end-of-winter snow depth was highly

variable over short (several meter) distances, and the variability was correlated with

microtopography. Microtopographic lows (i.e., troughs and centers of low-centered polygons)

were filled in with snow, which resulted in a smooth and even snow surface following

macrotopography. We developed and implemented a Bayesian approach to integrate the snow-

free LiDAR DEM and multi-scale measurements (probe and GPR) as well as the topographic

52 correlation for estimating snow depth over the landscape. Our approach led to high precision

estimates of snow depth (RMSE = 6.0 cm), at 0.5-meter resolution and over the LiDAR domain

54 (750 m by 700 m).

Deleted: UAS

57	1. Introduction
58	Snow plays a critical role in ecosystem functioning of the Arctic tundra environment through its
59	impacts on soil hydrothermal processes and energy exchange (e.g., Callaghan et al., 2011). Snow
60	insulates the ground from intense cold during the Arctic winter, limiting the heat transfer
61	between the air and the ground (Zhang, 2005). Snow depth affects active layer and permafrost
62	temperatures throughout the year (Gamon et al., 2012; Stieglitz et al., 2003), and increased snow
63	depth has resulted in permafrost degradation (Osterkamp, 2007). Snow's insulating capacity
64	enhances conditions for active soil microbial processes and $\mathrm{CO}_2/\mathrm{CH}_4$ production during winter
65	(Nobrega and Grogan, 2007; Schimel et al., 2004; Clein and Schimel, 1995; Jansson and Taş,
66	2014; Zona et al., 2016). In addition, snow serves as an important water source to tundra
67	ecosystems during the growing season, and therefore has a large impact on biological processes
68	via hydrology. Snowmelt water can lead to extensive inundation of low-gradient tundra and large
69	runoff events in early summer (Bowling et al., 2003; Kane et al., 1991; Liljedahl et al., 2016).
70	Since soil biogeochemistry and vegetation are controlled by soil moisture (Sjögersten et al.,
71	2006; Wainwright et al., 2015), the amount of snow affects ecosystem functioning throughout
72	the season.
73	
74	In order to investigate controls of snow on ecosystem properties, high resolution estimates of

snow are needed over large spatial regions. This is especially true in ice-wedge polygon tundra,

which dominates a large portion of the high Arctic (Zona et al., 2011). The ice wedges develop

(Leffingwell, 1915; MacKay, 2000). Soil movement associated with ice-wedge development

<u>creates small-scale topographic variations</u> —*microtopography* —, where the ground surface

when frost cracks occur in the ground, and vertical ice wedges grow_laterally over years

75

76

77

78

79

Deleted: s

Deleted: s

Deleted: Polygon evolution – caused by successive freezing, cracking and thawing of soil and ice and associated movement of soil – leads to

Deleted:

87 1967; MacKay, 2000; Engstrom et al., 2005; Zona et al., 2011). This microtopography leads to dramatically variable snow depth across short distances. Liljedahl et al. (2016) found that the 88 89 differential snow distribution increased the partitioning of snowmelt water into runoff, leading to less water stored on the tundra landscape. Gamon et al. (2012) reported that snow depth 90 91 heterogeneity results in differential thawing and active layer thickness variability. In addition, 92 there is large-scale topographic variability at the scale of several hundred meters to kilometers. Deleted: are Deleted: spatial 93 macrotopography which is often associated with drained thaw lake basins or drainage features Deleted: in ground surface elevation Deleted:, or 94 (Hinkel et al., 2003). Although the effect of macrotopography on snow depth has not been Deleted: , which can vary over lateral distances of several hundred meters to kilometers; m 95 studied, Engstrom et al. (2005) quantified that both macrotopography and microtopography have Deleted: acrotopography Deleted: s 96 a significant effect on soil moisture distribution. The snow representation of the Arctic tundra 97 needs to be refined to account for the effect of such multiscale terrain heterogeneities on Deleted: T 98 hydrology and ecosystem functioning, by bridging between finer geographical scales (several Deleted: the snow representation of the Arctic tundra needs to be refined, especially Deleted: from 99 meters) and large areal coverage (several hundred meters to kilometers). Deleted: sub-meter 100 Deleted: to 101 Snow depth characterization in Arctic tundra environments has traditionally been performed Deleted: ave Deleted: observed 102 using snow depth probes (Benson and Sturm, 1993; Hirashima et al., 2004; Derksen et al., 2009; 103 Rees et al., 2014; Dvornikov et al., 2015), or modeled using terrain and vegetation information 104 (Sturm and Wagner, 2010; Liston et al., 1998; Pomeroy et al., 1997). Recently, there have been Deleted: In the tundra environment, snow depth characterization has been limited to ground-based point (probe) measurements (Benson and Sturm, 1993; Dvornikov 105 several new techniques for estimating snow depth in high resolution, and in a non-invasive and et al., 2015). 106 spatially extensive manner. Ground-penetrating radar (GPR) has been widely used to

elevation can vary significantly over lateral length distances of several meters (e.g., Brown,

characterize snow cover in alpine, arctic and glacier environments (e.g., Harper and Bradford,

2003; Machguth et al., 2006; Gusmeroli and Grosse, 2012; Gusmeroli et al., 2014). GPR

86

107

108

129	measures the radar reflection from the snow-ground interface, which can be used to estimate	Deleted: the snow and ground surface
130	snow depth. GPR can be collected by foot, snowmobile or airborne methods. In addition, Light	 Deleted: h
131	Detection and Ranging (LiDAR) and Photogrammetric Detection and Ranging (PhoDAR)	
132	airborne methods have recently been used to estimate snow depth at local and regional scales	Deleted: site
133	(e.g., Deems et al., 2013; Harpold et al., 2014; Nolan et al., 2015). Both techniques measure the	 Deleted: or
133	(e.g., Decins et al., 2013, Taipoia et al., 2014, Notali et al., 2013). Both techniques incasure the	Formatted: English (US)
134	snow surface elevation, using laser in LiDAR, or a camera with a structure-from-motion (SfM)	Deleted: and
135	algorithm in PhoDAR. Both approaches allow, us to estimate snow depth by subtracting the	Deleted: the Deleted: , which
		Deleted: s
136	snow-free elevation from the snow surface elevation. While there is potential for providing	
137	detailed information about local-scale snow variability using LiDAR and PhoDAR snow depth	
138	estimates, these techniques have not been extensively tested in ice-wedge-polygonal tundra	
139	environments.	 Deleted: While the potential of those advanced methods
1.40		for providing information about snow variability has been documented, they have not been used extensively for
140		characterizing the variability of snow depth in ice-wedge polygonal tundra
141	Such indirect geophysical methods are, however, known to have increased snow depth	(P)80
142	uncertainty, relative to direct measurements (here ground-based snow depth probe measurements)	 Deleted: increased uncertainty
143	(e.g., Hubbard and Rubin, 2005). The uncertainty of the snow depth probe measurements is sub-	
144	centimeter to several centimeters depending on the surface vegetation (Berezovskaya and Kane,	
145	2007). On the other hand, the snow depth estimates obtained using GPR can be affected by	 Deleted: For example, t
146	uncertainty associated with radar velocity, which depends on snow density (Harper and	
147	Bradford, 2003). In the environments with complex terrain such as ice-wedge polygonal tundra,	
148	GPR-based snow estimates could also be influenced by the errors stemming from radar	
149	positioning and raypath assumptions. The airborne LiDAR/PhoDAR-based methods are subject	
150	to the errors associated with georeferencing, processing and calibration (e.g., Deems et al., 2013;	

166	Nolan et al., 2015). The accuracy of the airborne methods is usually several tens of centimeters,		
167	which is lower than the snow depth probe measurements.		Deleted: the centimeter accuracy of
168			
169	Integrating different types of snow measurements can take advantage of the strengths of various		
170	techniques while minimizing the limitations stemming from using a single method. Bayesian		
171	approaches have proven to be useful for integrating multiscale, multi-type datasets to estimate		
172	spatially heterogeneous terrestrial system parameters in a manner that honors method-specific		
173	uncertainty (e.g., Wikle et al., 2001; Wainwright et al., 2014; 2016). Bayesian methods also		
174	permit systematic incorporation of expert knowledge or process-specific information, such as the		
175	relationships between datasets and parameters. In particular, snow depth is known to be affected		
176	by topography and wind direction (e.g., Benson and Sturm, 1993; Anderson et al., 2014;		
177	Dvornikov et al., 2015). To our knowledge, such <u>Bayesian data integration</u> methods have <u>never</u>		Deleted: integration
178	been applied to estimate end-of-winter snow variability using multiple types of datasets.		Deleted: not Deleted: developed
179			
180	The primary objectives of this study are to (1) compare point-scale snow depth probe, GPR and		Formatted: Tabs: 0.2", Left + 3.2", Centered + 6.5", Right
181	UAS-based PhoDAR approaches for characterizing snow depth, and the associated resolution		0.3 , Night
182	and accuracy of the GPR and PhoDAR methods; (2) quantify the spatial variability of end-of-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Deleted: UAS
183	winter snow depth in ice-wedge polygonal tundra landscape; (3) explore the relationship between	The same of the sa	Deleted: characterize Deleted: heterogeneity
184	snow depth and topography; and (4) develop a Bayesian method to integrate multiscale, multi-		
185	type data to estimate snow depth over a LiDAR DEM covering an ice-wedge polygonal tundra		
186	landscape, In Section 2, we describe our site and datasets, including snow depth, probes, ground-	erenenen.	Deleted: the LiDAR domain
187	based GPR and UAS-based PhoDAR. In Section 3, we present the methodology to analyze the	*****	Deleted: point
188	indirect snow depth measurements from GPR and PhoDAR as well as to evaluate the		

198	heterogeneity of snow depth in relation to both microtopography (i.e., ice-wedge polygons) and
199	macrotopography (i.e., large-scale gradient, drained thaw lake basins and interstitial upland
200	tundra). We then develop a Bayesian geostatistical approach to integrate the multiscale datasets
201	to estimate snow depth over the LiDAR domain. The snow measurement and estimation results
202	are presented in Section 4 and discussed in Section 5.

Deleted:

204 2. Data and Site Descriptions 205 2.1. Study Site 206 Snow survey data were collected within a study site (approximately 750 m by 700 m) located on 207 the Barrow Environmental Observatory near Barrow, Alaska, as part of the Department of 208 Energy's Next-Generation Ecosystem Experiment (NGEE) Arctic project (Figure 1). This study 209 domain has been characterized intensively in the NGEE-Arctic project, leading to various Deleted:, and produced 210 ecosystem and subsurface datasets, including snow depth measurements (Wainwright et al., 211 2015; Dafflon et al., 2016). Mean annual air temperature at the Barrow site is -11.3°C and mean 212 annual precipitation is 173 mm (Liljedahl et al., 2011). Snowmelt usually ends in early to mid-213 June. The wind direction is predominantly from east to west throughout the year. 214 Ice-wedge polygons are prevalent in the region, including low-centered polygons in drained thaw 215 216 lake basins and high-centered polygons with well-developed troughs in the upland tundra 217 (Hinkel et al., 2003; Wainwright et al., 2015). The dominant plants are mosses (Dicranum 218 elongatum, Sphagnum), lichens and vascular plants (such as Carex aquatilis); plant distribution 219 at the site is governed by surface moisture variability (e.g., Hinkel et al., 2003; Zona et al., 220 2011). There are currently no tall shrubs or woody plants established within the study site, 221 therefore complex topography is most likely to control the snow depth distribution within the 222 study domain (Sturm et al., 2005; Dvornikov et al., 2015). Deleted: There are no shrubs or tall woody plants that are 223 224 Three long transects and four representative plots were chosen within the study site to explore 225 snow variability and its relationship to topography (Figure 1). Typical for low-gradient tundra 226 terrain, ice-wedge polygon microtopographic variations are superimposed on macrotopographic

230	trends at the study site. The elevation is higher in the center of the domain (interstitial upland	
231	tundra) and lower near the drainage features in the south. The elevation is also relatively lower in	
232	the drained thaw lake basins (DTLB) region, which is located in the northeastern and	
233	northwestern edges of the study site. The four intensive plots (A-D), each 160m x 160m, were	
234	chosen to represent specific polygon types or macrotopographic positions within the study area.	
235	The three parallel transects, each ~500m long, were designed to traverse multiple polygon types	 Deleted:
236	in a continuous fashion (Hubbard et al., 2013). We refer to those transects by "the 500-meter	
237	transects".	
238		
239	2.2. Datasets	
240	Airborne LiDAR data were collected at the site on October 4th, 2005, and used to provide a	 Deleted: ing
241	high-resolution digital elevation map (DEM) of the snow-free ground at $0.5\ m$ by $0.5\ m$	
242	resolution (Hubbard et al., 2013). The DEM effectively resolves, both micro- and	 Deleted: d
243	macrotopography at the study site (Figure 1). The original reported accuracy is 0.3 m in the	
244	horizontal direction and 0.15 m in the vertical direction. To evaluate the accuracy of the airborne	
245	DEM, we measured the ground surface elevation in September 2011 at 1286 points around the	
246	500-meter transects, using a high-precision centimeter-grade RTK Differential GPS (DGPS)	
247	system (the reported precision about 2 cm in the horizontal direction and 3 cm in the vertical	 Deleted: .
248	direction). The root mean square error of the LiDAR DEM compared to the GPS data was	
249	6.08 cm _v	 Deleted: The precision of the RTK DGPS is estimated to be about 2 cm in direction and 3 cm in direction.
250		or account and an
251	The majority of the snow depth data was collected on May 6-12, 2012, during which no snowfall	
252	occurred and little change in snow depth was observed. Snow depth was measured in the four	
	10	

259	intensive study plots and along three transect lines (Figure 1). Two sets of snow depth			
260	measurements using a snow depth probe were collected. The 'fine-grid' dataset was aimed to			
261	characterize the fine-scale heterogeneity by ~7200 snow depth point measurements (every			
262	\sim 0.3 m along transects with a 4 m spacing) across a small domain (\sim 50 \times 50 m) within Plots A-			
263	D. This was done using a GPS snow depth probe (Magnaprobe by Snow-Hydro) which had a	Dele	eted: th	
264	reported vertical precision of < 0.01 m and horizontal precision of around 0.5 m. The corner	<u> </u>	eted: . The	
264	reported vertical precision of \$0.01 m and norizontal precision of around 0.5 m. The corner	,	eted: accuracy	
265	coordinates within each grid were surveyed with the RTK DGPS, while each snow depth point	Dele	eted: this snow probe was	
266	measurement was represented by the built-in GPS unit that was programmed to automatically			
267	record locations. All the snow depth point measurements were made along regularly spaced			
268	transects. Comparisons between coordinates surveyed with both the RTK DGPS and the built-in			
269	GPS confirmed constant biases in the horizontal directions, which allowed a constant bias			
270	adjustment for all GPS surveyed snow depth point measurements.			
271		Dolo	eted: The start and end coordinates of each transec	ct
271	V	were	surveyed with a RTK DGPS and used to correct por	
272	A second 'coarse-grid' set of snow depth measurements covered the entire area in Plots A-D	meas	surement locations in respective transect.	
273	(~160 m × 160 m) with lower sampling density. The coarse-grid snow data were collected using			
274	a tile probe, which had a precision of approximately 0.01 m. Snow depth was measured every	: Dala	eted: tile	
2/4	a the probe, which had a precision of approximately 0.01 m. Show depth was measured every		eted: nie	
275	8, m along a measurement tape along five parallel transects in the coarse grid, which were spaced	- N.	eted: accuracy	
		·	eted: 5	
276	40 m apart. The total number of data points was 380 (95 points in each plot). Along the 500-	Dele	eted: set	
277	meter transects, we used the title probe along with a measurement tape, and measured eight	Dele	eted: lines	
211	meter transcets, we used the title probe along with a measurement tape, and measured eight	Dele	eted: in each plot	
278	points along each of the three lines. The start and end coordinates of each transect were surveyed	Dele	eted: approximately	
279	with a RTK DGPS and used to georeference the measurement locations.			
1				

296	Ground-based ground penetrating radar (GPR) data were acquired over the four study plots and		Deleted: G
297	along the three 500-meter transects. The instrument (Mala ProEx with 500 MHz antenna) was		
298	pulled on a sled. In each plot, we acquired the GPR data at 0.1-m intervals (triggered by an		Deleted: marked
299	odometer wheel) along 37 lines of 4-m spacing. The start and end coordinates of each transect		
300	were surveyed with a RTK DGPS and used to georeference the measurement locations. We		Formatted: Font color: Text 1
301	compared the distance from wheel with the distance on tape and confirmed that the difference is		
302	generally very small at this site. The error of horizontal positioning is estimated to be about 0.1		Deleted: precision
202			Deleted: in
303	m. Several of the GPR lines were co-located with the 'coarse-grid' snow depth probe		Deleted: of the measurements
304	measurements. The GPR technique allowed for denser sampling within the plot relative to the		
305	snow depth probe, with more than 50,000 points in each plot. Due to the microtopography at this		Deleted: tile
306	site, the positioning errors between in situ measurements and GPR data could lead to an error in		Deleted: , while the exact location of each measurement was within ~1 m (marked by tape majors)
307	the radar velocity and snow depth estimation. We evaluate the effect of such positioning errors		
308	extensively, as described in Section 3.1.		
309			
310	The GPR reflection signal from the bottom of snowpack (i.e., the ground surface) was clear,		
311	which allowed us to measure the travel time between the top and bottom of snowpack. The GPR	//	Deleted: data were pre-processed to maximize signal-to- noise ratio; a detailed explanation of the use and processing of GPR at this study site was provided by Hubbard et al. (2013). Our pre-
312	processing routine consisted of (1) zero-time adjustment, (2) average tracer removal, (3) picking	/ 	Deleted: picking the airwave (which is used to define the
313	the travel time (manually with automated snapping in the ProMAX® software) of the reflected		signal initiation time, or 'zero time') Deleted: 2
314	GPR signal that travelled from the snow surface to the snow-ground interface and back to the	********	Deleted: reflection
514	OFK Signal that travelled from the show surface to the show-ground interface and back to the		Deleted: of the
315	snow surface and (4) dividing by two to obtain a one-way travel time between the snow surface	, en	Deleted:
216		1	Deleted: , (3) subtracting the zero time from the reflection pick
316	and ground surface. We processed the GPR data including travel-time picking before accounting	No.	Formatted: Font color: Text 1
317	for topography. More details on GPR processing and theory can be found in Annan (2015) and		Deleted: A more detailed explanation on the use of
			Deleted: various review papers
318	Jol (2009), while more detailed explanation on the use of GPR in the tundra can be found in		Deleted: () and
		The same	Formatted: Font color: Text 1

Formatted: Font color: Text 1

342	Hubbard et al. (2013). <u>Differing from previous studies (e.g., Harper and Bradford, 2003)</u> , we did
343	not observe echoes from snow layering. This is possibly because of the low antenna frequency
344	(500 MHz), relatively thin snow layers (if present), and the low contrast between various snow
345	layers. In addition, hoar layers or ice layers were not visible in our data or sensed using the
346	probe. Although ice may form at the ground surface, causing the uncertainty of a few
347	centimeters, we did not consider this effect in this study.
348	
349	Additional campaigns were carried out in 2013 – 2015 along the 500-meter transects only. UAS-
350	<u>based</u> PhoDAR data were collected in July 2013 and 2014 to estimate snow-free ground surface
351	elevation and in May 2015 for estimating snow depth along the transects. To make these
352	measurements, we lifted a consumer-grade digital camera (Sony Nex-5R) to about 40 meters
353	above the ground surface using a kite, and acquired downward-looking Red-Green-Blue
354	landscape images, as well as collected some surface elevation data (method described in Smith et
355	al., 2009). The reconstruction procedure was performed using a commercial computer vision
356	software package (PhotoScan from Agisoft LLC). Reconstruction involved automatic image
357	feature detection/matching, structure-from-motion and multiview-stereo techniques for 3D point-
358	cloud generation, and georeferenced mosaic reconstruction (Nolan et al., 2015). High-accuracy
359	georeferencing was enabled by using a network of ground control points placed on the ground
360	(in summer) and on the snow (in winter) that were surveyed with a high-precision centimeter-
361	grade RTK DGPS system. The reconstructed PhoDAR surface elevation models at this site show
362	a resolution of 4 cm by 4 cm. We investigated the accuracy in detail as described in Section 3.2.
363	

Deleted: 2014 and
Deleted:
Deleted: only
Deleted: and

The snow-free ground surface elevation measurements were then subtracted from the snow	4
surface data to estimate the snow depth over the area. The snow $\underline{\text{depth}}$ probe measurements were	
taken at 183 locations along one of the 500-meter transects to validate the PhoDAR-based snow	
depth estimates. The locations were marked on a measurement tape, the start and end coordinates	
of which were surveyed with a RTK DGPS and used to georeference the measurement locations.	
	surface data to estimate the snow depth over the area. The snow depth probe measurements were

Formatted: Line spacing: double, Tabs: 0.2", Left + 3.2", Centered + 6.5", Right

Deleted: UAS-based

Deleted: measure

Deleted: For the probe measurements,

Deleted: the transect

Deleted:

3. Methodology

378

379

390

391

392

393

394

395

396 397

398

399

400

3.1. GPR Snow Depth Analysis

380 Snow depth can be inferred by multiplying GPR one-way travel time by radar velocity. The radar 381 velocity is determined by the dielectric constant, which depends on snow density in dry snow 382 (Tiuri, et al., 1984; Harper and Bradford, 2003). Depending on site conditions, the snow density 383 can vary in both vertical and horizontal directions (Proksch et al., 2015). In this study, we 384 assume that the depth-averaged radar velocity—which is a function of depth-averaged snow 385 density—is sufficient for estimating snow depth. Thus, we compute the radar velocity based on 386 the known snow depth from co-located snow depth probe measurements as: (radar velocity) = 387 (probe-based snow depth)/(GPR one-way travel time). In addition, we investigate whether the 388 lateral variations in snow density are significant at our site. 389

Identifying co-located points between the GPR and snow depth probe measurements, however, is not a trivial task in polygonal ground, since the topography and snow depth can vary significantly within a meter. To address these issues, we investigate the correlations between the radar velocity and the submeter-scale variability of topography. To link the DEM elevation data to the snow depth probe and GPR data, we selected the DEM elevation (0.5 m by 0.5 m resolution) and GPR measurement at the nearest locations to the tile probe measurements. We assume that the effect of positioning errors is larger near the edge of polygons, or in the region where the submeter-scale topographic variability is high. We consider that the uncertainty of radar velocity can be reduced by not using the co-located snow depth probe measurements in regions of high submeter-scale variability. To define the submeter-scale variability, we compute the elevation difference within a 1-meter radius of each snow depth probe measurement. In

Deleted: T

Deleted: significantly or not, this

Deleted: could be variable

Deleted: /or

Deleted: Although the snow density is known to be variable in a vertical direction, we assume that

Deleted: in this study

Deleted: the studied site

Deleted:

Deleted: Further

Deleted: the accuracy in snow depth estimations to evaluate if

aluate II

Deleted: potential lateral variations **Deleted:** need to be accounted or not

Deleted:;, while uncertainty is present in every acquisition method and inand georeferencing both lead to uncertainty..

Deleted: topographic

Deleted: topographic

420	addition, the reflections from the troughs could originate from the edge of polygons rather than	
421	the location right below the GPR instrument. Such an "edge reflection" effect can lead to	
422	overestimation of the radar velocity. We assume that we could detect the presence of the edge	
423	reflection by evaluating the systematic bias (i.e., underestimation) in the radar velocity in relation	
424	to the submeter-scale topographic variability.	 Deleted:
425		
426	3.2. <u>UAS-based PhoDAR</u> , Snow Depth Analysis	 Deleted: UAS
427	We first evaluate the accuracy of the PhoDAR derived digital surface model (DSM) by	 Deleted: UAS
428	comparing it to the <u>RTK_GPS</u> elevation measurements along the <u>500-meter_transects_acquired_in</u>	
429	2011. Since the PhoDAR derived DSM was obtained at very high lateral resolution (4 cm by 4	 Deleted: UAS
430	cm), it was more prone to noise or small_scale variability (Nolan et al., 2015). As such, we test	 Deleted:
431	three schemes to explore the <u>vertical agreement</u> between the two datasets: (1) nearest points, (2)	 Deleted: co-location
432	average elevation within the 0.5-m radius, and (3) minimum elevation within the 0.5-m radius.	
433	We used the same scheme (the best scheme among the three) for determining the snow-free and	
434	snow surface elevation at the co-located points. We then compare the snow depth estimate from	
435	PhoDAR, and snow depth probe measurements at co-located points (the May-2015 snow data). In	 Deleted: UAS
436	the same manner as the GPR data, we eliminate the snow depth probe measurements in the	
437	regions where the <u>submeter-scale</u> topographic variability is high.	
438		
439	3.3. Spatial Variability Analysis of Topography and Snow Depth	
440	To quantify the topographic effects in a complex terrain of ice-wedge polygons and to partition	
441	micro- and macrotopography, we apply the wavelet transform method to the airborne LiDAR	
442	DEM, which is commonly used for 2D image processing. The wavelet approach has been	 Deleted: recently
l		

applied to DEM for geomorphic studies, including terrain analysis and landslide analysis (Bjørke and Nilsen, 2003; Kalbermatten, 2010; Kalbermatten et al., 2012). In this transform, a high-pass filter (a mother wavelet) and a low-pass filter (a father wavelet) are applied to decompose the DEM into four images at each scale: low-pass, high-pass horizontal, high-pass vertical, and highpass diagonal images). The scale is a parameter in the wavelet transform, representing the width of the filter and the scale of topographic variability (Kalbermatten et al., 2012). Depending on the scale of the wavelet transform, the method yields different images, corresponding to different scales of topographic features. We define this wavelet scale as a topography separation scale. We consider the low-pass image as macrotopographic elevation (i.e., the smoothed version of the original DEM) and the high-pass diagonal image as microtopographic elevation (i.e., the topographic variability associated with ice-wedge polygon development). Removing the largescale topography has been done in the previous studies in order to capture or quantify the effect of microtopography on carbon fluxes (Wainwright et al., 2015) or soil properties (Gillin et al., 2015). Correlations between the topographic metrics and snow depth are identified using the Pearson product-moment correlation coefficient (Anderson et al., 2014). At each spatial scale, we can compute micro- and macrotopographic metrics such as slope and curvature as well as their correlations with corresponding probe-measured snow depth. The curvature is of particular interest, since Dvornikov et al. (2015) reported strong correlations between snow surface curvature and snow depth, and a dependency of this correlation on the DEM resolution (the lower resolution led to lower correlation coefficients). Note that the DEM resolution (0.5 m) in this study is much finer than the one (25 m) in Dvornikov et al. (2015). We compute a wind

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474 factor in a similar manner as Dvornikov et al. (2015), with a slight modification. Here we define 475 the wind factor as the inner product of the slope direction and predominant wind direction. With 476 this calculation, the wind factor is smallest in the slope against the wind direction, and largest in 477 the slope in line with the wind, which is reasonable and also consistent with visual observations 478 at the site. When the correlation is statistically significant, the metrics are included in a 479 regression analysis (Davison, 2003) to represent the snow depth as a function of the topographic 480 metrics. 481 482 A geostatistical approach has been used to investigate the spatial variability of snow depth as 483 well as the scales of variability (Anderson et al., 2014). The standard geostatistical analysis starts 484 with creating an empirical variogram, followed by estimating the spatial correlation parameters 485 (Diggle and Ribeiro, 2007). The spatial correlation parameters include (1) magnitude of 486 variability (or spatial heterogeneity) as variance, (2) fraction of correlated and uncorrelated 487 variability (nugget ratio), (3) spatial correlation length (range), and (4) covariance model (i.e., 488 the shape of decay in the spatial correlation as a function of distance), such as exponential and 489 spherical models. The covariance models (equivalent to variogram models) can be selected to 490 minimize the weighted sum of squares during variogram fitting. 491 492 Such spatial variability and correlation are particularly important for interpolating the sparse in Deleted: 493 situ snow depth measurements. The interpolation can be applied not only for snow depth itself Deleted: interpolating the sparse snow depth measurements 494 but also for snow surface (snow depth plus elevation) or residual snow depth after removing 495 topographic correlations in the regression analysis. The same geostatistical analysis method is Deleted: are

therefore performed for snow surface and residual snow depth. We used the geoR package in statistical software R (Ribeiro and Diggle, 2001; https://www.r-project.org/).

Deleted:

3.4. Bayesian Geostatistical Estimation Method

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

We first define that the snow depth at each pixel y_i (i = 1,...,n) is a hidden variable which can be observed only with an added measurement error. In this study, we set the pixel size to 0.5 by 0.5 m, which corresponded to the LiDAR DEM resolution. The snow depth distribution (or field) is defined by a vector $\mathbf{y} = \{y_i | i = 1, ..., n\}$. We integrate three datasets: snow depth probe data \mathbf{z}_{p_i} GPR data z_g , and LiDAR DEM z_d . The goal of the estimation is to determine the posterior distribution of snow depth conditioned on all the given datasets, $p(y|z_p, z_g, z_d)$. Following a Bayesian hierarchical approach, we divide this posterior distribution into three sets of statistical sub-models (Wikle et al., 2001; Wainwright et al., 2014; 2016). First, data models represent each data value as a function of snow depth at each pixel, depending on different data types. Second, process models describe the spatial distribution of snow depth (i.e., snow depth field) as function of topography and correlation parameters. Finally, prior models define the prior information of parameters. The hierarchical approach breaks down a complex posterior distribution into a series of simple models, and hence enables us to capture complex relationships easily. In addition to the snow field vector and data vectors, two parameter vectors are defined: the process-model parameter vector \mathbf{a} to represent the heterogeneous pattern of snow depth, and the data-model parameter vector **b** to describe the correlations between the snow depth and the GPR travel time.

Deleted: point-

We assume a linear model to describe the snow depth field,

$$y = \mathbf{A}a + \mathbf{\tau} \tag{1}$$

where A is the design matrix as a function of the topographic metrics as explanatory variables (and hence a function of DEM z_d). The process-model parameter vector a describes the correlation between the topographic metrics and the snow depth field. We assume that the residual of this correlation τ represents the unexplained variability by the topographic metrics and that τ is spatially correlated. The residual term τ is described by a multivariate normal distribution with a covariance Σ , which is determined by a geostatistical analysis (Diggle and Ribeiro, 2007). Although we may include the uncertainty of those geostatistical parameters in the Bayesian estimation (Diggle and Ribeiro, 2007; Lavigne et al., 2016), we assume that those parameters are fixed during the Bayesian estimation process in this study. This is because we have a large amount of point measurements (snow depth probe data), and also it is known that indirect information (such as geophysics) does not significantly improve the estimation of geostatistical parameters (Day-Lewis, 2004; Murakami et al., 2010).

536 537

525

526

527

528

529

530

531

532

533

534

535

538 The data model for the snow depth probe measurements defines the snow depth probe data z_p as 539 a function of snow depth y:

$$\mathbf{z}_{p} = \mathbf{y} + \boldsymbol{\varepsilon}_{p} \tag{2}$$

541 We assume that the vector \mathbf{e}_p is an uncorrelated normally-distributed measurement error at each 542 data location with the standard deviation of σ_p . We determine the error based on the <u>precision</u> 543 estimate of each snow depth probe. The snow depth probe data vector z_p follows a multivariate

544

545

546

547

normal distribution with the mean vector \mathbf{y} and the covariance matrix \mathbf{D}_p , which is a diagonal matrix with diagonal elements of σ_p^2 . Although it is not considered this study, we could include a

systematic bias of snow probe measurements as an added shift (Berezovskaya and Kane, 2007).

Deleted: accuracy

Deleted: with

The data model for the GPR data describes the GPR data z_g as a function of the snow depth y at the GPR locations. The GPR data model can be represented by a linear model:

$$\mathbf{z}_g = b_0 + \mathbf{B}\mathbf{y} + \boldsymbol{\varepsilon}_g \tag{3}$$

553

554

555

556

559

560

561

562

563

564

565

566

568

569

570

571

572

where B is a matrix, the diagonal elements of which is b_1 . The error vector ε_g is an uncorrelated normally-distributed measurement error with the standard deviation of σ_g . The standard deviation is computed from comparing the GPR-based snow depth to the probe-based one. At the same time, the GPR data model can be written as a function of the parameter vector \boldsymbol{b} such that:

$$\mathbf{z}_{q} = \mathbf{Y}\mathbf{b} + \boldsymbol{\varepsilon}_{q} \tag{4}$$

where Y is the design matrix with the first column being y, and the second column being all one.

The parameter vector $\mathbf{b} = \{b_1, b_0\}$ represents the linear correlations between the GPR data and

snow depth. This alternative model is useful during the estimation procedure described below.

The GPR data vector z_g follows a multivariate normal distribution with the mean vector y and the

covariance matrix D_g that is a diagonal matrix with diagonal elements of σ_g^2 .

Deleted: with

The posterior distribution of the snow depth conditioned on the datasets $p(y \mid z_d, z_p, z_g)$ is a marginal distribution of $p(y, a, b \mid z_d, z_p, z_g)$. By applying Bayes's rule and following the

conditional dependencies defined above, we can decompose this posterior distribution as:

567
$$p(y, a, b \mid z_d, z_p, z_g) \propto p(z_g \mid y, b) p(z_p \mid y) p(y \mid a, z_d) p(a) p(b).$$
 (5)

Table 1 defines all the distributions on the right-hand side of Equation (5) based on the models

defined in Equations (1) - (4). We also assume multivariate normal distributions for the prior

distributions of the parameter vectors \mathbf{a} and \mathbf{b} . The posterior distribution in Equation (5) can be

computed using the Markov-chain Monte-Carlo (MCMC) method (Gamerman and Lopes, 2006).

Since all the distributions are defined as multivariate normal distributions, it is possible to use

Formatted: English (US)

Formatted: Line spacing: double

- 574 efficient Gibbs' algorithm. The MCMC procedure is described in Appendix A. The convergence
- 575 can be confirmed by the Geweke's convergence diagnostic (Geweke, 1992). The entire workflow
- 576 <u>is included in Appendix B</u>,

Deleted:

579 4.1. Snow Depth Measurements 580 GPR Radar Velocity Analysis Comment [Office2]: Comment R2-(1) 581 Our results (based on the GPR data and tile probe data collected in May 2012) indicate that the 582 estimated radar velocity itself does not have a systematic dependency on (or trend with) the snow depth or submeter-scale variability of topography in May 2012 (Figures 2a and 2b). The 583 Comment [Office3]: Comment R2-(1) Deleted: topographic 584 correlation coefficient between the radar velocity and snow depth is 0.11, and between the radar Deleted: snow Deleted: depth 585 velocity and submeter-scale variability is 0.15. The variability of the radar velocity, on the other Deleted: the one Deleted: the 586 hand, depends on those two factors (i.e., the variability of snow depth and topography). Hence, Deleted: snow depth Deleted: the one of 587 the variability is higher in areas with shallower snow depths (Figure 2a). The standard deviation Deleted: T (STDEV) of the radar velocity is 0.039 m/ns at the snow depth smaller than one STDEV minus 588 Deleted: at 589 the median snow depth, and 0.019 m/ns at the one larger than one STDEV plus the median. The Deleted:, and also 590 radar velocity variability is higher also in localized regions of large submeter-scale topographic 591 variability (Figure 2b). The STDV of the radar velocity is 0.015 m/ns at the submeter-scale 592 topographic variability (i.e. elevation difference within a one-meter radius) smaller than 0.05 m, 593 and 0.036 m/ns at the one larger than 0.05m. By selecting the points with the submeter-scale, Deleted: a 594 topographic variability < 0.05 m, we obtained a mean radar velocity of 0.25 m/ns, which was 595 used for subsequent analysis. 596 597 Using the mean velocity value in May 2012, the calculated GPR-based snow depth estimates Comment [Office5]: Comment R2-(1) 598 were compared with the snow depth probe measurements (Figure 2c). The correlation between 599 the measured and estimated snow depth is high (the correlation coefficient is 0.88), with the root 600 mean square error (RMSE) being 5.4 cm, and with no significant under- or overestimation (the 23

578

4. Results

612	mean bias error –0.16 cm). The selected points in the regions of low <u>submeter-scale</u> topographic		
613	variability (red circles) are more tightly distributed around the one-to-one line. In these regions,		
614	the RMSE of GPR-based snow depth improved to 2.9 cm with a increased correlation coefficient		Deleted: . The
	• • • — •		Deleted:
615	between the GPR-based and probe-based snow depth, to 0.94. These results confirm that snow		Deleted: increase
61.6		A A A A A A A A A A A A A A A A A A A	Deleted: was
616	density variations are limited, and using a constant mean GPR velocity is acceptable.	in the second	Deleted: increased
617			Deleted:
017		11/	Deleted: in snow density is
618	Snow Depth Measurements in Different Polygon Types	1	Deleted: that
		,	Deleted:
619	Figure 3 shows the LiDAR DEM as well as snow depth probe measurements and GPR estimates		
620	in Plots A–D (May 2012). The LiDAR DEM (in the left column) illustrates the difference among		Comment [Office6]: Comment R2-(1)
621	four plots in terms of both macro- and microtopography. For example, Plot A has better defined		
622	polygon rims and troughs than Plot D, although Plot A and D are both low-centered polygons.		
623	Plot B has round-shaped high-centered polygons, while Plot C has flat-centered polygons with		
624	well-defined troughs. The average size of polygons is also different, with smaller polygons in		
625	Plot B and larger polygons in Plots A, C and D. In addition, these figures illustrate some		
626	macrotopographic trends. Plot C is gradually sloping down towards the east, and Plot D has a		
627	depression (i.e., DTLB) in the northeastern half.		
628			
629	The middle column in Figure 3 shows the snow depth probe data collected using the fine-grid		
630	and coarse-grid scheme collected in May 2012. The fine-grid data reveals the detailed		Comment [Office7]: Comment R2-(1)
631	heterogeneity of snow depth around a single polygon. For example, the fine-grid data in Plot A		
632	show the snow depth distribution in a low-centered polygon, including thin snow along the		
633	polygon rim and thick snow at the polygon center and trough. Comparison of the fine-grid snow		
624	data with the DEM reveals the microtomeomorphic effect such that the travels		Deleased of a
634	data with the DEM reveals, the microtopographic effect such that the troughs and center of the		Deleted: that

Deleted: they are mirror images of each other

646	polygon have larger snow depth. The coarse-grid dataset covers the entire plot, although it is		
647	much more difficult to ascertain the relationship between the snow depth and microtopography.		
648	The snow depth probe data show that the snow depth is highly variable, ranging from 0.2 m to		
649	0.8 m in a single plot.		
650			
651	In the third column of Figure 3, the May-2012 snow depth was estimated from GPR using a		Comment [Office8]: Comment R2-(1)
652	fixed radar velocity 0.25 m/ns along the lines within the plots, and then interpolated with a		
653	simple linear interpolation in between the lines. The high-resolution GPR snow depth estimates		
654	are useful for determining if microtopographic features can influence the distribution of snow		
655	depths across each study plot. The high-resolution snow estimates over the large area allow us to		Deleted: The GPR estimates clearly reveal the influence of
656	visually identify the macrotopographic control on snow depth. In Plot C, for example, the snow		microtopography on snow depth at the resolution of a single- polygon scale and over the entire plot
657	depth does not have an increasing or decreasing trend, even though the elevation gradually		
658	decreases towards east. Plot D, on the other hand, has more snow accumulation in the eastern		
659	part of the domain, which is in the depression associated with DTLB.		
660			
661	PhoDAR-based, Snow Depth Measurements		Deleted: UAS
662	In the region of the 500-meter transects, the PhoDAR _r derived snow-free DSMs (Figure 4a)		Deleted: d Deleted: UAS
663	collected in July 2013 and August 2014 were first compared with the RTK DGPS data (acquired	············	Comment [Office9]: Comment R2-(1)
664	in 2011) in Table 2, using the different schemes to identify co-location. We included the results		Deleted: as
665	of both years to confirm the consistency between the two snow-free DSM products at the same	(Deleteu.
666	terrain. Although all the scheme yielded an excellent accuracy (the RMSE less than 7.0 cm),		
667	taking the average provides the lowest RMSE in both years (6.41 cm in 2013 and 6.19 cm in		Deleted: Taking
007			Deleted: in the vicinity of each probe measurement
668	$\underline{2014}$), which is approximately the same as the LiDAR data (RMSE = 6.08 cm). The PhoDAR-		Deleted: RMSE =
		The same	Deleted: 0
		l	Deleted: UAS

682	derived snow depth estimates in May 2015 were obtained by differencing the snow surface and	
683	snow-free DSM (Figure 4b). The comparison between the PhoDAR based snow estimates and	Deleted: UAS
684	the snow depth probe data are favorable (Figure 4c), with a RMSE of 6.0 cm. When we removed	
685	the points that had a large submeter-scale topographic variability in the vicinity (in the same way	
686	and the same cut-off values as the GPR snow depth analysis), the RMSE improved to 4.6 cm	
687	(Figure 4c) ₂	
688		
689	The PhoDAR-derived snow depth (Figure 4b) around the 500-meter transects in May 2015	Comment [Office10]: Comment R2-(1)
690	reveals a similar pattern of snow distribution as the GPR data in Figure 3, having deeper snow in	Deleted: UAS
691	the troughs and the centers of low-centered polygons. The high-resolution image of the PhoDAR	Deleted: UAS
692	data reveals more detail of the microtopographic effect than the interpolated image of the GPR	
693	data, particularly in the narrow troughs. The large aerial coverage also shows the minimal effect	Deleted: in Figure 3
694	of macrotopography: while the elevation decreases towards south, the snow depth does not have	
695	a large-scale trend.	
696		
697	4.2. Snow Depth Variability over Tundra	
698	Variability among Different Polygon Types	
699	Figure 5 shows the boxplots of the snow depth, elevation, and microtopographic elevation	
700	(Δelevation) in each plot measured in May 2012. We used the coarse-grid snow depth probe	Comment [Office11]: Comment R2-(1)
701	measurements, since the samples are uniformly distributed over each plot. The median snow	
702	depth (Figure 5a) is fairly similar among four plots, even though they have different	
703	geomorphologic features and polygon types. Tukey's pairwise comparison test (Table 3) shows	
704	that only Plot B (small high-centered polygons) is significantly different from the other plots.	

709 710 The absolute elevation distribution varies among the four plots (Figure 5b), although the snow 711 depth for each of the plots has similar median values and distributions. Plot A (well-defined low-712 centered polygons), for example, is at a higher elevation than Plots C (flat-centered polygons) 713 and D (low-centered polygons in DTLB), but the difference in the average snow depth is not 714 statistically significant (Table 3). The microtopographic elevation is computed based on the 715 wavelet transform with the scale of 32 m as described in Section 3.3 (Figure 5b). The scale of 32 716 m was selected to yield the best correlation between snow depth and microtopographic elevation. Plot D (low-centered polygons in DTLB), for example, has less variability in both elevation and 717 718 snow depth, because Plot D has less distinct microtopography than others, In contrast, Plot B has 719 the largest variability in both microtopography and snow depth 720 721 Correlations between Snow Depth and Topographic Indices in May 2012 722 723

Deleted: , removing the difference in the macrotopographic elevation among the four plots

Deleted: . In contrast, Plot B has large variability in both microtopography and snow depth

Comment [Office12]: Comment R2-(1)

Comment [Office13]: Comment R2-(1)

Among the topographic indices of macro- and microtopography, the snow depth in May 2012

(measured by the snow depth probe) was significantly correlated only to the microtopographic elevation for all plots (Figure 6a). The correlation coefficient changes with the scale of the wavelet transform that separates micro- and macrotopography. The correlation coefficient is up to -0.8 at Plot B (small high-centered polygons), and up to -0.7 at all the data points. The correlation coefficient is different among different plots (i.e., different polygon types); the correlation is less significant at Plot D (low-centered polygons in DTLB), than other plots. The

best correlation (i.e., the largest absolute value) can be achieved at a different scale in each plot

730 731

724

725

726

727

728

729

(Plot B < Plot A and Plot C < Plot D).

736 A significant correlation between snow depth and wind factor of macrotopography was identified 737 only in Plot D (low-centered polygons in DTLB; Figure 6b). The correlation coefficient is up to 738 0.41 at the scale of 38 m. Other topographic indices (i.e., the slope and curvature of both micro-739 and macrotopography, the wind factor of microtopography) are not shown here, since we did not 740 find any significant correlation. Although Dvornikov et al. (2015) reported a strong correlation 741 between snow depth and curvature (snow free DEM), we did not find any significant correlation 742 in our data. This is possibly because the microtopography at our site was completely filled by 743 snow, and the overall elevation gradient at our site (the elevation difference in the domain is 3.1 744 m) is much smaller than the one that Dvornikov et al. (2015) reported (the elevation difference in 745 their domain was more than 60 m).

746

747

Geostatistical Analysis of Snow Depth

748 Spatial correlation exists for all three variables in May 2012: snow depth, snow surface, and 749 residual snow depth after removing the correlation to the microtopographic elevation (Table 4). 750 The correlation range is less than 20 m for the snow depth, which is consistent with the large 751 variability in a short distance. The snow surface, on the other hand, has a larger correlation range 752 (253 m). The estimation of a snow surface height (elevation + snow depth), effectively removes 753 the influence of microtopography, resulting in much a larger correlation range. The variance is 754 comparable between the snow depth and snow surface, while the variance is much lower in the 755 residual snow depth, since the topographic correlation explains a large portion of the snow depth

757 758

756

variability.

4.3. Snow Depth Estimation based on LiDAR DEM

Comment [Office14]: Comment R2-(1)

Deleted: Such a large correlation length is consistent with the field observation that the snow surface is smooth across the site.

762	Based on the snow-topography analysis in Section 4.2, we included the linear correlation		
763	between snow and microtopographic elevation in Equation (1) ₂ to describe the snow variability		
764	in May 2012. We used the Shapiro-Wilk normality test to confirm that the residual of the linear		Comment [Office15]: Comment R2-(1)
765	correlation, defined by $\underline{\tau}$ in Equation (1), follows a normal distribution (the p-value of rejecting		Formatted: Font:Symbol, Bold
766	this hypothesis was 0.21). The first column of the design matrix A is the microtopographic		
767	elevation at all the pixels, and the second one is a vector of all ones. The parameter vector \boldsymbol{a} is a		
768	2-by-1 vector with the linear correlation parameters (slope and intercept). The Bayesian method		
769	(Section 3.4) yielded 10,000 equally likely fields of the snow depth from the posterior		
770	distribution in Equation (5).		
771			
772	The Bayesian estimated mean snow-depth field over the full study domain in May 2012 (Figure		Comment [Office16]: Comment R2-(1)
773	7a) captures the effects of microtopography, such as more snow accumulation in polygon troughs		Deleted: The estimated mean snow-depth field over the entire study region
774	and centers of low-centered polygons. The snow depth does not have any large-scale trends over		
775	the full study domain, which is different from the LiDAR DEM in Figure 1b, but consistent with		
776	the interpolated GPR snow depths depicted in Figure 3 (right column), and the measured UAS		
777	snow depth measurements depicted in Figure 4b. The variability is larger in the southern region		Deleted: The snow depth does not have a large-scale trend over the domain, which is different from the LiDAR DEM in
778	where there are high-centered polygons with deep troughs.		Figure 1, but consistent with the ground-based measurements (Figure 3 and 4)
779			
780	In addition, we compared this result (Figure 7a) with the mean field by estimating the snow	and a second	Deleted: based on
781	surface elevation and subtracting the ground surface elevation (Figure 7b). In this estimation, we	A CONTRACTOR OF THE PARTY OF TH	Deleted: the kriging-based interpolation Deleted: of
782	used the same Bayesian algorithm one described in Section 3.4, except that we removed the	********	Deleted: (Diggle and Ribeiro, 2007)
783	topographic correlations and assumed a standard geostatistical model for snow surface (Diggle		
784	and Ribeiro, 2007). In other words, we had the same algorithm except that we modified Equation		

795	(1) to $y = -z + \tau$, where $y + z$ represents the surface elevation. Although the two mean fields		Formatted: Font:Bold, Italic
			Deleted: T
796	(Figure 7) are similar in the central regions that have many measurements, the regions without	//	Formatted: Font:Bold, Italic
797	any measures have a significant deviation. This is because the snow surface estimation did not	///	Formatted: Font:Symbol, Bold, Italic
191	any measures have a significant deviation. This is because the show surface estimation did not	1	Formatted: Font:Bold, Italic
798	capture the change in macrotopography (e.g. the drainage feature in the southern part of the		Deleted: , particularly
799	domain).		Deleted: .
800			
801	The estimated standard deviation of the Bayesian-derived snow depth over the study domain		
802	(Figure 8a) also shows a significant difference from the one based on the snow surface		Deleted: The estimated standard deviation of snow depth over the region
803	interpolation (Figure 8b). This standard deviation represents the uncertainty in the estimation. In	The second	Deleted: , on the other hand,
804	both cases, the standard deviation is smaller near the measurement locations along the transects		
805	and within the four plots. However, when the topographic correlation is included (Figure 8a), the		
806	standard deviation increases more rapidly as the pixel is farther away from the data points. This		
807	is due to the fact that the spatial correlation range is small for the residual snow depth after		
808	removing the topographic correlation (Table 4).		
809			
810	Validation of the snow depth estimates over the study area (Plot A-D and the 500-meter		
811	transects) was performed by comparing the estimates with the snow depth probe data (May		Comment [Office17]: Comment R2-(1)
812	2012) not used in the procedure, The 100 points of the snow depth probe data were randomly		Comment [Office18]: Comment R2-(1)
813	selected from all the locations (Plot A-D and the 500-meter transects), using a uniform		Deleted: (randomly selected)
814	distribution. The validation results (Figure 9) show that the estimated confidence interval	المساور	Deleted:
014	ustrouton, The variation results (Figure 7) show that the estimated confidence interval		Deleteu.
815	captures the probe-measured snow depth. The estimated snow depth is distributed along with the		
816	one-to-one line without any significant bias. The estimation, including the topographic		
817	correlation (Figure 9a), has a tighter confidence interval and better estimation results than the		

- one from interpolating the snow surface (Figure 9b). The RMSE for the Bayesian method of
 estimating snow depth including the topographic correlation is 6.0 cm, while the RMSE for the
 interpolated snow surface is 8.8 cm,
- 829

830

Deleted: The RMSE for including the topographic correlations is 6.0 cm, while the one for interpolating the snow surface is 8.8 cm

5. Discussion

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

5.1. Different Observational Platforms

Our analysis showed that GPR data provided the end-of-winter snow depth distribution with high accuracy (RMSE = 2.9 cm) and resolution (10 cm along each line). The GPR-based estimation requires care, particularly regarding the estimation of radar velocity and associated possible errors, such as those due to positioning. Although the radar velocity is known to depend on the snow density, we attribute the variability of radar velocity at our site to random or positioning errors. Three results support this claim. First, the variability of radar velocity is smaller in a thicker snow pack, suggesting the small contribution of the error relative to the overall snow depth. The relatively low topographic variability over the site (compared to mountainous terrains) would have contributed to this fairly uniform radar velocity. Second, the radar velocity variability depends on the submeter-scale variability of the topography in the vicinity of the calibration points, suggesting the impact of positioning errors. Third, there was no systematic trend in the radar velocity as a function of the snow depth or topographic positions. We developed a simple methodology (described in Section 3.1) to select co-located calibration points based on the submeter-scale variability of topography, which proved to be useful to compute accurate velocity. We note that - even though the depth-averaged radar velocity and hence the depth-averaged snow density have little variability over the space -the snow density could be variable vertically along the depth; we indeed found some layers of ice created by winter rain events in the middle of the snow pack. It is possible that there might be a difference in the depthaveraged density and radar velocity at a later time, when the snow pack starts to melt in a heterogeneous manner.

857	UAS-based PhoDAR provided an attractive alternative for estimating snow depth at high	
858	resolution over a large area. With much less labor and time, UAS-based PhoDAR can provide	
859	many more sample points than GPR. The PhoDAR based snow depth, however, was less	Deleted: UAS
860	accurate than ground-based GPR or snow depth probe measurements (RMSE = 6.0 cm). The	Deleted: point
861	main contribution of this error resulted from the snow-free elevation, since RMSE for the surface	
862	DSM is around 6 cm. We note that the RMSE of 6.0 cm is still significantly more accurate than	
863	the previous LiDAR and other airborne surveys (e.g., Deems et al., 2013; Harpold et al. 2014;	
864	Nolan et al., 2015).	
865		
866	The PhoDAR, based approach is expected to continue its trajectory of continuous improvements	Deleted: UAS
867	in terms of technical aspects, ease of use, and accuracy. At the time of our campaign, we were	
868	allowed to use only a kite due to regulations, which led to a limited number of pictures that could	
869	be used to reconstruct the DSM. The accuracy will significantly improve with the use of a light	
870	unmanned aerial vehicle (UAV). Although UAS-based LiDAR acquisition technology continues	
871	to improve (e.g., Anderson and Gaston, 2013), ad is expected to be a powerful alternative to	Deleted: n
872	characterize snow, the LiDAR device is still significantly more expensive than a conventional	
873	camera (roughly by factor of 100). Given that the vegetation height is fairly small in the Arctic	
874	tundra, the PhoDAR technique is an affordable alternative,	Deleted: option
875		
876	For all the types of measurements, accurate positioning was critical in the polygonal tundra due	
877	to microtopography. The GPS snow depth probe (Snow-Hydro), for example, had the positioning	
878	error larger than 50 cm, and required extra post-processing to correct the locations. On the other	
879	hand, measuring the RTK DGPS at all the snow depth measurement locations would not be	
I		

885	realistic since it would take time. We found that having a measurement tape and measuring the	Deleted: measure
886	start and end points by the DGPS were a reasonable approach, when the snow surface is smooth	
887	and hard. In this study, we used the snow depth probe data as the true snow depth to compare	
888	with other measurements (i.e., GPR, PhoDAR, and Bayesian estimation). To improve the	
889	accuracy further, it would be necessary to quantify the uncertainty in the snow depth probe	
890	associated with the vegetation and other issues (Berezovskaya and Kane, 2007).	
891		
892	5.2. Snow Depth Variability	Deleted: .
893	The end-of-year snow depth distribution at the ice-wedge polygons was highly variable over a	
894	short distance in May 2012. The snow depth was, however, significantly correlated with the	Comment [Office19]: Comment R2-(1)
895	microtopographic elevation, suggesting that the snow depth could be described by	
896	microtopography. The wind-blown snow transport leads to significant snow redistribution, and	
897	fills microtopographic lows (i.e., troughs and centers of low-centered polygons) with thicker	
898	snow pack (e.g., Pomeroy et al., 1993). The redistribution also results in the smooth snow	
899	surface, following the macrotopography. The exception was observed at the edge of the DTLB,	
900	where the abrupt change in macrotopography led to increased accumulation in the depression.	
901	This is a similar effect to that observed along the riverbanks by Benson and Sturm (1993).	
902	Although the tundra ecosystem studies have focused on the effect of microtopography (e.g.,	
903	Zona et al., 2011), the macrotopography also may be important when we characterize snow	
904	distribution over a larger area.	
905		
906	The "average" snow depth over a hundred-meter scale (i.e., the size of Plot A-D), on the other	

hand, was fairly uniform across the site despite the different polygon types in May 2012. Plot A

907

Comment [Office20]: Comment R2-(1)

910 (well-defined low-centered polygons) and C (flat-centered polygons), for example, have different 911 polygon types, but they have a similar average snow depth. This is because microtopography and 912 microtopographic features (i.e., polygon troughs, rims) mainly control the snow distribution. Plot 913 B (small high-centered polygons) is an exception, having smaller median snow depth than the 914 other plots. Plot B has the largest variability in microtopography, characterized by the small 915 round high-centered polygons, like numerous small mounds (Figure 3). Such mounds are prone 916 to erosion by the wind, and hence lead to less snow trapping and accumulation. 917 918 Identifying such correlations between snow depth and topography requires an effective approach 919 to separate micro- and macrotopography. Our wavelet analysis revealed that the separation scale 920 depends on the polygon sizes; for example, the larger polygons in Plot A (well-defined low-921 centered polygons) and C (flat-centered polygons) lead to a larger separation scale than the 922 smaller polygons in Plot B (small high-centered polygons). It is a challenge to map 923 macrotopography accurately over a larger area, particularly at the present site, where different 924 types and sizes of polygons mix. Although we used the same scale for the estimation, an, Deleted: the 925 improved polygon delineation algorithm will possibly enable us to separate micro- and 926 macrotopography in the future (e.g., Wainwright et al., 2015). 927 928 5.3. Snow Depth Estimation 929 The developed Bayesian approach enabled us to estimate the snow depth distribution over a large 930 area based on the LiDAR DEM and the correlation between the snow depth and topography. 931 Although this paper only used the ground-based GPR and snow depth probe measurements 932 collected at the same time, **PhoDAR** could be easily included in the same framework. The Deleted: UAS 935 Bayesian method allowed us to integrate three types of datasets (LiDAR DEM, snow depth 936 probe and GPR) in a consistent manner, and also provided the uncertainty estimate for the 937 estimated snow depth. Taking into account the topographic correlation explicitly improved the accuracy of estimation significantly (RMSE 6.0 cm), compared to interpolating the snow surface 938 939 and subtracting the DEM (RMSE 8.8 cm). 941 Our approach can be extended to snow estimates over both time and space. The correlations

940

942

943

944

945

946 947

948

949

950

951

952

953

954

datasets.

between snow depth and topography may change over time. In early and later winter, for example, the snow depth would be more affected by curvature and slope of microtopography, since the microtopographic lows (troughs and centers of the low-centered polygons) are not filled by snow. It would be possible to quantify the seasonal changes in the topography-snow correlations by designing a full season ground-based measurement campaign and acquisition of remote sensing snow depth measurements (by PhoDAR or LiDAR), that monitored the same site over several years to account for inter-annual variability. The Bayesian method presented here is flexible enough to account for changes in parameters over time for the spatial-temporal data integration (e.g., Wikle et al., 2001). Although physically-based snow distribution models can be used for the same purposes (e.g., Pomeroy et al., 1993; Liston and Sturm, 1998; 2002), it is difficult to parameterize all the processes, such as sublimation and turbulent transport. Our data-

driven approach provides a powerful alternative to distribute snow depth based on various

Formatted: Not Highlight

Deleted: It would be possible to quantify the changes in the topography-snow correlations by designing ground-based measurements and remote sensing snow surface measurements (by UAS)

959 6. Summary 960 In this study, we explored various strategies to estimate the end-of-year snow depth distribution 961 over an Arctic ice-wedge polygon tundra region. We first developed an effective methodology to 962 963 964 965 966 967 968 969 970 971 972

973

974

975

976

977

978

979

980

981

calibrate GPR and PhoDAR in the presence of submeter-scale-scale variability of topography. We then investigated the characteristics and accuracy of three observational platforms: snow depth probe, GPR and PhoDAR. The PhoDAR-derived snow depth estimates have great potential for accurately characterizing snow depth over larger regions (with an RMSE of 4.6 cm), relative to the in situ snow depth measurements. The GPR snow depth estimates were slightly more accurate (with an RMSE of 2.9 cm), but required considerable more effort to obtain, and require complex post-processing to minimize errors associated with radar positioning, We investigated the spatial variability of the snow depth and its dependency on the topographic metrics. At the peak snow depth during our data acquisition, the snow depth was highly correlated with microtopographic elevation (the correlation coefficient of up to -0.8), although it was highly variable over short distances (the correlation range of 12.3 m). It is considered that the wind redistribution filled the microtopography by snow, and created a snow surface, following macrotopography at the site. The challenge was to separate macro- and microtopography, since the separation scale was not arbitrary, and depended on the polygon size. The wavelet analysis provided an effective approach to identify this separation scale. The Bayesian method was effective at integrating different measurements to estimate snow depth distribution over the site. Although our estimation is based on the data collected from a one-time campaign, and the correlations to topography may change over time, the approach developed

Deleted:

Deleted: UAS Deleted: complex Deleted: microtopographic

Deleted: point Deleted: UAS

Deleted: Although UAS showed a great potential for characterizing the snow depth over a large area, the groundbased observations were still more accurate.

Deleted: The Deleted: created Deleted: a smooth snow surface,

- here is expected to be applicable for estimating both spatial and temporal variability of snow
- depth at other sites, and in other landscapes,

Deleted: (prairie)extensible

Deleted: for estimating both spatial and temporal variability of snow depth and for exploring the influence of snow depth on ecosystem functioning

Appendix A

In MCMC, we sample each variable sequentially conditioned on all the other variables. In other words, when we update one variable (or one vector), we assume that the other variables are known and fixed. After sampling thousands of sets of the variables, the distribution of those samples converges to the posterior distribution. Each vector is sampled as follows:

10051006

1001

1002

1003

1004

1007 The snow depth field is sampled from the distribution:

1008
$$p(y \mid \bullet) = p(y \mid a, b, z_d, z_g, z_p) \propto p(z_g \mid y, b) p(z_p \mid y) p(y \mid a, z_d)$$
 (A.1)

where "•" represents all the other variables. The distribution is decomposed to a series of small conditional distributions defined in Table 1. Similarly, we can sample the snow-process parameters *a* and GPR-data parameter *b* from the distributions:

1012
$$p(\mathbf{a} \mid \bullet) = p(\mathbf{a} \mid \mathbf{y}, \mathbf{h}) \propto p(\mathbf{y} \mid \mathbf{h}, \mathbf{a}) p(\mathbf{a})$$
(A.2)

1013
$$p(\boldsymbol{b} \mid \bullet) = p(\boldsymbol{b} \mid \boldsymbol{y}, \boldsymbol{z}_{g}) \propto p(\boldsymbol{z}_{g} \mid \boldsymbol{y}, \boldsymbol{b}) p(\boldsymbol{b})$$
(A.3)

Since all the distributions in Equation A.1–A.3 are multivariate Gaussian, we can use the conjugate prior to compute an analytical form of each distribution. Each distribution is multivariate Gaussian with the covariance and mean vector defined in Table A.1. In the Gibbs' sampling algorithm, we sample each variable vector sequentially until the distributions are converged.

1018 1019

1020

1021

1022

1014

1015

1016

1017

Appendix B

The workflow of the Bayesian geostatistical approach from the data is included in Figure B.1.

The snow depth probe data and LiDAR DEM are used to (a) identify the correlations between

1023 topography and snow depth (Section 3.3) after identifying the representative scale of macro- and

Formatted: Font:Bold

1024	micro-topography in the wavelet analysis, to (b) quantity the variogram parameters, and also to
1025	(c) create a process model in Equation (1). The GPR data are analyzed to estimate the radar
1026	velocity, and to quantify the correlations to the snow depth probe (Section 3.1). At the end (the
1027	last column in Figure B.1), all the parameters are assembled for the estimation using MCMC
1028	(Appendix A).
1029	
1030	

1031	Acknowledgements	
1032	The Next-Generation Ecosystem Experiments (NGEE) Arctic project is supported by the Office For	matted: Tabs:Not at 0.2" + 3.2" + 6.5"
1033		leted:)
1034	research is supported through contract number DE-AC0205CH11231 to Lawrence Berkeley	
1035	National Laboratory. We gratefully acknowledge Stan Wullschleger in Oak Ridge National	
1036	Laboratory, project PI. We thank Dr. Craig Tweedie at University of Texas, El Paso for	
1037	providing the LiDAR dataset, and together with Sergio Vargas from University of Texas, El	
1038	Paso, for providing kite-based landscape imaging advice. Datasets are available upon request by	
1039	contacting the corresponding author (Haruko M. Wainwright, hmwainwright@lbl.gov)	leted: .
1040		

1043	Reference:
1044	Anderson, B. T., McNamara, J. P., Marshall, H. P., & Flores, A. N. (2014). Insights into the
1045	physical processes controlling correlations between snow distribution and terrain properties.
1046	Water Resources Research, 50(6), 4545-4563.
1047	Anderson, K., and Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will revolutionize
1048	spatial ecology. Frontiers in Ecology and the Environment, 11(3), 138-146.
1049	Annan, A.P., 2005, Ground penetrating radar, in near surface geophysics, in D.K. Butler (eds),
1050	Society of Exploration Geophysicists, Tulsa, OK, USA, Investigations in Geophysics No. 13,
1051	pp. 357–438.
1052	Benson, C. S., and Sturm, M. (1993). Structure and wind transport of seasonal snow on the
1053	Arctic slope of Alaska. Annals of Glaciology, 18, 261-267.
1054	Berezovskaya S, Kane DL. 2007. Measuring snow water equivalent for hydrological
1055	applications: part 1, accuracy of observations. In: Proceedings of the 16th International
1056	Northern Research Basins Symposium and Workshop. Petrozavodsk, Russia
1057	http://resources.krc.karelia.ru/krc/doc/publ2007/SYMPOSIUM_029-35.pdf
1058	Binley, A., Hubbard, S.S., Huisman, J., Revil, A., Robinson, D., Singha, K., and Slater, L. (2015)
1059	The emergence of hydrogeophysics for improved understanding of subsurface processes over
1060	multiple scales. DOI: 10.1002/20015WR017016
1061	Bowling, L. C., D. L. Kane, R. E. Gieck, L. D. Hinzman, and D. P. Lettenmaier, The role of
1062	surface storage in a low-gradient Arctic watershed, Water Resour. Res., 39(4), 1087,
1063	doi:10.1029/2002WR001466, 2003.

Bjørke, J. T., and Nilsen, S. (2003). Wavelets applied to simplification of digital terrain models.

International Journal of Geographical Information Science, 17(7), 601-621.

1064

- Brown, J. (1967), Tundra soils formed over ice wedges, northern Alaska, Soil Sci. Soc. Am. J.,
- 1067 31(5), 686–691
- 1068 Callaghan, T. V., M. Johansson, R.D. Brown, P. Y. Groisman, N. Labba, V. Radionov, R.S.
- 1069 Bradley, S. Blangy, O.N. Bulygina, T.R. Christensen, J.E. Colman, R.L.H. Essery, B.C.
- 1070 Forbes, M.C. Forchhammer, V.N. Golubev, R. E. Honrath, G.P. Juday, A.V. Meshcherskaya,
- 1071 G.K. Phoenix, J. Pomeroy, A. Rautio, D.A. Robinson, N.M. Schmidt, M.C. Serreze, V.P.
- 1072 Shevchenko, A.I. Shiklomanov, A.B. Shmakin, P. Sköld, M. Sturm, M. Woo, E. F. Wood,
- 1073 (2011). Multiple Effects of Changes in Arctic Snow Cover. Ambio, 40 (Suppl 1), 32–45.
- 1074 Doi:10.1007/s13280-011-0213-x.
- 1075 Clein, J. S., & Schimel, J. P. (1995). Microbial activity of tundra and taiga soils at sub-zero
- temperatures. Soil Biology and Biochemistry, 27(9), 1231-1234.
- 1077 Dafflon, B., Hubbard, S., Ulrich, C., Peterson, J., Wu, Y., Wainwright, H., & Kneafsey, T. J.
- 1078 (2016). Geophysical estimation of shallow permafrost distribution and properties in an ice-
- wedge polygon-dominated Arctic tundra region. Geophysics, 81(1), WA247-WA263.
- Davison, A. C. (2003). Statistical models (Vol. 11). Cambridge University Press.
- Deems, J. S., Painter, T. H., & Finnegan, D. C. (2013). Lidar measurement of snow depth: a
- 1082 review. Journal of Glaciology, 59(215), 467-479.
- 1083 <u>Day-Lewis, F. D., and J. W. Lane Jr. (2004)</u>, Assessing the resolution-dependent utility of
- 1084 tomograms for geostatistics, Geophys. Res. Lett., 31, L07503, doi:10.1029/2004GL019617.
- 1085 Derksen, C., A. Silis, M. Sturm, J. Holmgren, G. Liston, H. Huntington, and D. Solie, 2009:
- Northwest Territories and Nunavut Snow Characteristics from a Subarctic Traverse:
- 1087 Implications for Passive Microwave Remote Sensing. J. Hydrometeor., 10, 448–463, doi:
- 1088 <u>10.1175/2008JHM1074.1.</u>

1089	Diggle, P. and Ribeiro, P. J. (2007). Model-based geostatistics. Springer Science & Business	Deleted: .
1090	Media.	
1091	Dvornikov, Y., Khomutov, Mullanurov, and Ermokhina (2015), GIS- and field data based	
1092	modeling of snow water equivalent in shrub tundra, Ice and Snow, doi:10.15356/2076-6734-	
1093	2015-2-69-80.	
1094	Engstrom, R., Hope, A., Kwon, H., Stow, D., & Zamolodchikov, D. (2005). Spatial distribution	
1095	of near surface soil moisture and its relationship to microtopography in the Alaskan Arctic	
1096	coastal plain. Hydrology Research, 36(3), 219-234.	
1097	Gamerman, D. and H. F. Lopes (2006), Markov Chain Monte Carlo Stochastic simulation for	Deleted: -
1098	Bayesian inference. Chapman&Hall/CRC, 2 nd edition, Boca Raton, USA.	Formatted: Superscript
1099	Gamon, J. A., G. P. Kershaw, S. Williamson, and D. S. Hik (2012), Microtopographic patterns in	
1100	an arctic baydjarakh field: do fine-grain patterns enforce landscape stability? Environ. Res.	
1101	Lett., 7(1), 015502.	
1102	Geweke, J. (1992), Evaluating the accuracy of sampling-based approaches to calculating	
1103	posterior moments, in Bayesian Statistics 4 (edited by J. M. Bernado, J. O. Berger, A. P.	
1104	Dawid and A. F. M. Smith), Clarendon Press, Oxford, UK.	
1105	Gillin, C., S. Bailey, K. McGuire, and J. Gannon (2015), Mapping of Hydropedologic Spatial	
1106	Patterns in a Steep Headwater Catchment, Soil Science Society of America Journal, 79(2),	
1107	440, doi:10.2136/sssaj2014.05.0189.	
1108	Gusmeroli, A., and Grosse, G. (2012). Ground penetrating radar detection of subsnow slush on	
1109	ice-covered lakes in interior Alaska. The Cryosphere, 6(6), 1435-1443.	
1 107 1108	440, doi:10.2136/sssaj2014.05.0189. Gusmeroli, A., and Grosse, G. (2012). Ground penetrating radar detection of subsnow slush on	

- 1112 Gusmeroli, A., G. Wolken, and A. Arendt (2014), Helicopter-borne radar imaging of snow cover
- on and around glaciers in Alaska, Annals of Glaciology, 55(67), 78–88,
- 1114 doi:10.3189/2014aog67a029.
- Harper, JT, and JH Bradford (2003), Snow stratigraphy over a uniform depositional surface:
- spatial variability and measurement tools, Cold Regions Science and Technology.
- 1117 Harpold, A. A., et al. (2014), LiDAR-derived snowpack data sets from mixed conifer forests
- across the Western United States, Water Resour. Res., 50, doi:10.1002/2013WR013935.
- 1119 Hinkel, K. M., W. R. Eisner, J. G. Bockheim, F. E. Nelson, K. M. Peterson, and X. Dai (2003),
- 1120 Spatial extent, age, and carbon stocks in drained thaw lake basins on the Barrow Peninsula,
- 1|121 Alaska, Arct., Antarct., and Alp. Res., 35(3), 291-300.
- ll22 Hirashima, H., Y. Kodama, N. Sato, T. Ohata, H. Yabuki, and A. Georgiadi, 2004: Nonuniform
- 1 Distribution of Tundra Snow Cover in Eastern Siberia. J. Hydrometeor., 5, 373–389, doi:
- 1 1 1 2 4 10.1175/1525-7541(2004)005<0373:NDOTSC>2.0.CO;2.
- Hubbard, S. and Y. Rubin (2005), Hydrogeophysics, Chapter 1 in Hydrogeophysics, Eds. Y.
- Rubin and S. Hubbard, Elsevier.
- Hubbard, S. S., C. Gangodagamage, B. Dafflon, H. Wainwright, J. E. Peterson, A. Gusmeroli, C.
- Ulrich, Y. Wu, C. Wilson, C., J. Rowland, C. Tweedie, and S. D. Wullschleger (2013),
- Quantifying and relating land-surface and subsurface variability in permafrost environments
- using LiDAR and surface geophysical datasets, Hydrogeol. J., 21(1), 149-169.
- Jansson, JK, and N Taş (2014), The microbial ecology of permafrost, Nature Reviews
- 1|132 Microbiology, doi:10.1038/nrmicro3262.
- 1 Jol., H.M., (2009), Ground Penetrating Radar Theory and Applications, Elsevier Science.

Kane, D. L., L. D. Hinzman, C. S. Benson, and G. E. Liston (1991), Snow hydrology of a 1134 1135 headwater Arctic basin: 1. Physical measurements and process studies, Water Resour. Res., 27(6), 1099-1109, doi:10.1029/91WR00262. 1136 1137 Kalbermatten, M. (2010). Multiscale analysis of high resolution digital elevation models using 1138 the wavelet transform, Thesis, Ecole Polytechnique Federale de Lausanne. 1139 Kalbermatten, M., Van De Ville, D., Turberg, P., Tuia, D., & Joost, S. (2012). Multiscale 1140 analysis of geomorphological and geological features in high resolution digital elevation 1141 models using the wavelet transform. Geomorphology, 138(1), 352-363. 1142 Leffingwell, E. D. K. (1915), Ground-ice wedges: The dominant form of ground-ice on the north 1143 coast of Alaska, J. Geol., 635-654. 1144 Liljedahl, A. K., Hinzman, L. D., Harazono, Y., Zona, D., Tweedie, C. E., Hollister, R. D., 1145 Engstrom, R., and Oechel, W. C. (2011) Nonlinear controls on evapotranspiration in arctic 1146 coastal wetlands, Biogeosciences, 8, 3375-3389, doi:10.5194/bg-8-3375-2011. 1147 Liljedahl, A. K., Boike, J., Daanen, R. P., Fedorov, A. N., Frost, G. V., Grosse, G., & 1148 Necsoiu, M. (2016). Pan-Arctic ice-wedge degradation in warming permafrost and its 1149 influence on tundra hydrology. Nature Geoscience. 1150 Liston, G. E., and Sturm, M. (1998). A snow-transport model for complex terrain. Journal of 1151 Glaciology, 44(148), 498-516. 1152 Liston, G., and Sturm, M. (2002). Winter precipitation patterns in arctic Alaska determined from 1153 a blowing-snow model and snow-depth observations. Journal of Hydrometeorology, 3, 646-1154 659. MacKay, J. R. (2000), Thermally induced movements in ice-wedge polygons, western Arctic 1155

coast: a long-term study, Géographie physique et Quaternaire, 54(1), 41-68.

1156

Deleted: ..

1158 Machguth, H, O. Eisen, F. Paul, and M Hoelzle (2006), Strong spatial variability of snow 1159 accumulation observed with helicopter borne GPR on two adjacent Alpine glaciers, 1160 Geophysical Research Letters, 33(13), doi:10.1029/2006GL026576. 1161 Murakami, H., Chen, X., Hahn, M. S., Liu, Y., Rockhold, M. L., Vermeul, V. R., Zachara, J. M., 1162 and Rubin, Y. (2010), Bayesian approach for three-dimensional aquifer characterization at the 1163 Hanford 300 Area, Hydrol. Earth Syst. Sci., 14, 1989-2001, doi:10.5194/hess-14-1989-2010. 1164 Nobrega, S, and P Grogan (2007), Deeper snow enhances winter respiration from both plant-1165 associated and bulk soil carbon pools in birch hummock tundra, Ecosystems, doi:10.1007/s10021-007-9033-z. 1166 1167 Nolan, M., C. Larsen, and M. Sturm (2015), Mapping snow depth from manned aircraft on 1168 landscape scales at centimeter resolution using structure-from-motion photogrammetry, 1169 Cryosphere, 9(4), 1445–1463, doi:10.5194/tc-9-1445-2015. 1170 Osterkamp, T. E. (2007), Causes of warming and thawing permafrost in Alaska, Eos Trans. 1171 AGU, 88(48), 522-523, doi:10.1029/2007EO480002. 1172 Pomeroy, J.W., Gray, D.M. and Landine, P.G., 1993. The Prairie Blowing Snow Model: 1173 characteristics, validation, operation. J. Hydrol., 144: 165-192. 1174 Pomeroy, J. W., Marsh, P. and Gray, D. M. (1997), Application of a distributed blowing snow 1175 model to the Arctic. Hydrol. Process., 11: 1451-1464. doi:10.1002/(SICI)1099-1176 1085(199709)11:11<1451::AID-HYP449>3.0.CO;2-Q

Proksch, M., Löwe, H. and Schneebeli, M. (2015), Density, specific surface area, and correlation

length of snow measured by high-resolution penetrometry. J. Geophys. Res. Earth Surf., 120:

346-362. doi: 10.1002/2014JF003266.

1177

1178

1180 Rees, A., English, M., Derksen, C., Toose, P. and Silis, A. (2014), Observations of late winter 1181 Canadian tundra snow cover properties. Hydrol. Process., 28: 3962-3977. 1182 doi:10.1002/hyp.9931 1183 Ribeiro, P.J., Diggle, P.J. (2001). geoR: a package for geostatistical analysis. 15-18. ISSN R-1184 NEWS 1 (2), 1609-3631. 1185 Smith, M.J., J. Chandler, and J. Rose (2009), High spatial resolution data acquisition for the 1186 geosciences: kite aerial photography, Earth Surf. Proc. and Land., 34(1), 155-161. 1187 Stieglitz, M., S.J.De 'ry, V. E. Romanovsky, and T. E. Osterkamp, The role of snow cover in the 1188 warming of arctic permafrost, Geophys. Res. Lett., 30(13), 1721, 1189 doi:10.1029/2003GL017337, 2003. 1190 Sturm, M., and A. M. Wagner (2010), Using repeated patterns in snow distribution modeling: An 1191 Arctic example, Water Resour. Res., 46, W12549, doi:10.1029/2010WR009434. 1192 Schimel, J. P., Bilbrough, C., & Welker, J. M. (2004). Increased snow depth affects microbial 1193 activity and nitrogen mineralization in two Arctic tundra communities. Soil Biology and 1194 Biochemistry, 36(2), 217-227. 1195 Sjögersten, S., van der Wal, R., and Woodin, S. J. (2006). Small-scale hydrological variation 1196 determines landscape CO2 fluxes in the high Arctic. Biogeochemistry, 80(3), 205-216. 1197 doi:10.1007/s10533-006-9018-6. Sturm, M., Schimel, J., Michaelson, G., Welker, J. M., Oberbauer, S. F., Liston, Fahnestock J. 1198 1199 and Romanovsky, V. E. (2005). Winter biological processes could help convert arctic tundra 1200 to shrubland. Bioscience, 55(1), 17-26.

- 1201 Tiuri, M. E., A. H. Sihvola, E. G. Nyfors, and M. T. Hallikaiken (1984), The complex dielectric
- 1202 constant of snow at microwave frequencies, Oceanic Engineering, IEEE Journal of, 9(5),
- 1203 377–382, doi:10.1109/JOE.1984.1145645.
- 1204 Wainwright, H. M., J. Chen, D. S. Sassen, and S. S. Hubbard (2014), Bayesian hierarchical
- 1205 approach and geophysical data sets for estimation of reactive facies over plume scales, Water
- 1206 Resour. Res., 50, 4564–4584, doi:10.1002/2013WR013842.
- 1207 Wainwright, H. M., B. Dafflon, L. J. Smith, M. S. Hahn, J. B. Curtis, Y. Wu, C. Ulrich, J.E.
- 1208 Peterson, M.S. Torn, and S.S. Hubbard (2015), Identifying multi scale zonation and assessing
- 1209 the relative importance of polygon geomorphology on carbon fluxes in an Arctic tundra
- ecosystem, J. Geophys. Res. Biogeosci., 120,788–808, doi:10.1002/2014JG002799.
- 1211 Wainwright, H. M., A. Flores Orozco, M. Bücker, B. Dafflon, J. Chen, S. S. Hubbard, and K. H.
- Williams (2016), Hierarchical Bayesian method for mapping biogeochemical hot spots using
- induced polarization imaging, Water Resour. Res., 52, doi:10.1002/2015WR017763.
- 1214 Wikle, C. K., R. F. Milliff, D. Nychka, and L. M. Berliner (2001), Spatiotemporal hierarchical
- Bayesian modeling: Tropical ocean surface winds, J. Am. Stat. Assoc., 96(454), 382–397.
- 1216 Zhang, T. J. (2005). Influence of the seasonal snow cover on the ground thermal regime: An
- overview. Reviews of Geophysics 43: RG4002. doi:10.1029/2004RG000157.
- 1218 Zona, D., D. A. Lipson, R. C. Zulueta, S. F. Oberbauer, and W. C. Oechel (2011),
- 1219 Microtopographic controls on ecosystem functioning in the Arctic Coastal Plain, *J. Geophys.*
- 1220 Res. Biogeo. (2005–2012), 116(G4).
- 1221 Zona, D., Gioli, B., Commane, R., Lindaas, J., Wofsy, S. C., Miller, C. E., ... & Chang, R. Y. W.
- 1222 (2016). Cold season emissions dominate the Arctic tundra methane budget. Proceedings of the
- National Academy of Sciences, 113(1), 40-45.

1224	List of Figures
1225	Figure 1. (a) Location of Barrow, Alaska, USA, and Barrow Environmental Observatory (BEO)
1226	from Hubbard et al. (2013). (b) NGEE-Arctic site with the digital elevation map from the
1227	airborne LiDAR (in meters). The black boxes are the intensive sampling plots (Plot A, B, C and
1228	D). The white rectangles are the fine-grid snow depth measurements by a snow depth probe. The
1229	three black lines represent the 500-meter transects.
1230	V
1231	Figure 2. Radar velocity as a function of (a) co-located snow depth measured by a snow depth.
1232	probe and (b) elevation difference (i.e., topographic variability) within 1 m. (c) Comparison
1233	between the probe-derived and GPR-derived snow depth at all the co-located locations (blue
1234	circles) and at selected locations (red circles) where topographic variability is low. In (a), the
1235	black vertical line is the median snow depth, and the dotted lines are +/- one STDEV from the
1236	median snow depth. In (b), the black line is the cut-off elevation difference of 0.05 m_{\star}
1237	
1238	Figure 3. Elevation and snow depth in Plots A, B, C and D. The left column is LiDAR DEM (in
1239	meters), the middle column is the probe measured snow depth (in meters), and the right column
1240	is the interpolated snow depth estimated using GPR (in meters).
1241	
1242	Figure 4. (a) PhoDAR-derived DSM in meters (August, 2014), b) PhoDAR-derived snow depth
1243	in meters (May, 2015), and (c) comparison between the PhoDAR-based and probe-based snow
1244	depth at all the locations (blue circles) and at selected locations (red circles) having low
1245	topographic variability (the sub-meter elevation variability less than 0.05 m). The black line in
1246	(b) represents the snow depth probe measurements every 3 meter along the 500-meter transect.

Deleted: Figure 1. (a) Location of Barrow, Alaska, USA, and Barrow Environmental Observatory (BEO) from Hubbard et al. (2013). (b) NGEE-Arctic site with the digital elevation map from the airborne LiDAR (in meters). The black boxes are the intensive sampling plots (Plot A, B, C and D). The white rectangles are the fine-grid snow depth measurements by a point probe. The three black lines represent the transects.

Deleted: point

Deleted:

Deleted: Figure 4. (a) UAS-derived DSM in meters (August, 2014), b) UAS-derived snow depth in meters (May, 2015), and (c) comparison between the UAS-based and probe-based snow depth at all the locations (blue circles) and at selected locations (red circles) having low topographic variability.

1263 Figure 5. Boxplots of (a) snow depth and (b) elevation and (c) microtopographic elevation in 1264 Plots A-D. 1265 1266 Figure 6. Correlation coefficients between snow depth and topographic metrics as a function of 1267 the wavelet scale: (a) the microtopographic elevation, and (b) the wind factor of 1268 macrotopography. The different colors represent different plots (Plot A–D) or all the data (All). 1269 Each dash line represents the scale that maximize the magnitude of the correlation coefficient. 1270 1271 Figure 7. The estimated mean snow depth across the site (in meters) based on (a) the proposed 1272 Bayesian method including the correlation to microtopography, and (b) the kriging-based 1273 interpolation of the snow surface. The spatial extent is the same as Figure 1b. 1274 1275 Figure 8. The estimated standard deviation of snow depth across the site (in meters) based on (a) 1276 the proposed Bayesian method including the correlation to microtopography, and (b) the kriging-1277 based interpolation of the snow surface. The spatial extent is the same as Figure 1b. 1278 1279 Figure 9. Estimated mean and confidence intervals from the Bayesian method, compared to the 1280 probe-measured snow depth by (a) using the correlation to microtopography and (b) interpolating 1281 the snow surface. The red circles represent the snow depth at the validation locations (the snow 1282 depth probe measurements not used in the estimation), the blue lines are the confidence intervals 1283 based on the standard deviation (STD) multiplied by 1.9 (94% confidence intervals), and the 1284 black lines are the one-to-one line. 1285

Deleted: Figure 6. Correlation coefficients between snow depth and topographic metrics as a function of the wavelet scale: (a) the microtopographic elevation, and (b) the wind factor of macrotopography. [1]

1291	List of Tables	
1292	Table 1. Multivariate normal distribution defined for each variable.	
1293		
1294	Table 2. Root mean squared error (RMSE) between the PhoDAR derived DSM and GPS	Deleted: UAS
1295	elevation measurements based on the three schemes: nearest neighbor, average, and minimum	
1296	elevation within the 0.5 m radius.	
1297		
1298	Table 3. p values from Tukey's pairwise comparison test for each pair of the plots.	
1299		
1300	Table 4. Estimated geostatistical parameters and covariance models for snow depth, snow	
1301	surface and residual snow depth.	
1302		
1303	Table A.1. Posterior distributions during the Gibbs sampling	Deleted: [2]
1303 1304	Table A.1. Posterior distributions during the Gibbs sampling	Deleted: [2]
	Table A.1. Posterior distributions during the Gibbs sampling,	Deleted: [2]
	Table A.1. Posterior distributions during the Gibbs sampling.	Deleted: [2]
	Table A.1. Posterior distributions during the Gibbs sampling.	Deleted: [2]
	Table A.1. Posterior distributions during the Gibbs sampling.	Deleted: [2]
	Table A.1. Posterior distributions during the Gibbs sampling.	Deleted: [2]
	Table A.1. Posterior distributions during the Gibbs sampling.	Deleted: [2]
	Table A.1. Posterior distributions during the Gibbs sampling.	Deleted: [2]
	Table A.1. Posterior distributions during the Gibbs sampling.	Deleted: [2]
	Table A.1. Posterior distributions during the Gibbs sampling.	Deleted: [2]
	Table A.1. Posterior distributions during the Gibbs sampling,	Deleted: ([2])

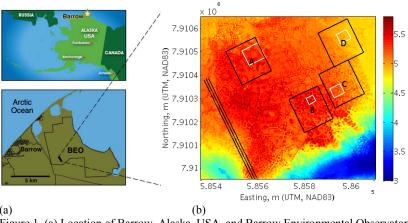
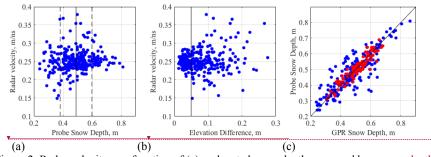
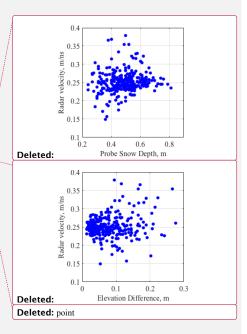




Figure 1. (a) Location of Barrow, Alaska, USA, and Barrow Environmental Observatory (BEO) from Hubbard et al. (2013). (b) NGEE-Arctic site with the digital elevation map from the airborne LiDAR (in meters). The black boxes are the intensive sampling plots (Plot A, B, C and D). The white rectangles are the fine-grid snow depth measurements by a snow depth probe. The three black lines represent the 500-meter transects.

Deleted: point

(a) (b) (c)
Figure 2. Radar velocity as a function of (a) co-located snow depth measured by a snow depth, probe and (b) elevation difference (i.e., topographic variability) within 1 m. (c) Comparison between the probe-derived and GPR-derived snow depth at all the co-located locations (blue circles) and at selected locations (red circles) where topographic variability is low. In (a), the black vertical line is the median snow depth, and the dotted lines are +/- one STDEV from the median snow depth. In (b), the black line is the cut-off elevation difference of 0.05 m.

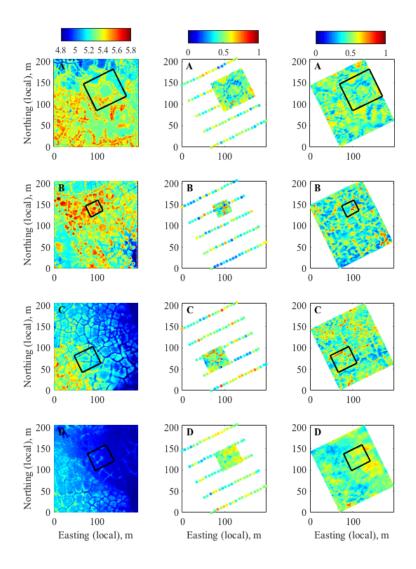


Figure 3. Elevation and snow depth in Plots A, B, C and D. The left column is LiDAR DEM (in meters), the middle column is the probe-measured snow depth (in meters), and the right column is the interpolated snow depth estimated using GPR (in meters). The black boxes represent the locations of the fine-grid snow depth measurements.

Deleted:

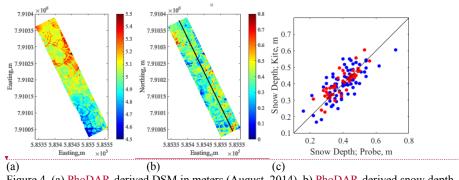
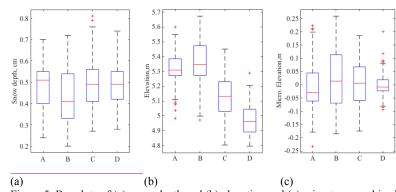



Figure 4. (a) PhoDAR-derived DSM in meters (August, 2014), b) PhoDAR-derived snow depth in meters (May, 2015), and (c) comparison between the PhoDAR-based and probe-based snow depth at all the locations (blue circles) and at selected locations (red circles) having low topographic variability (the sub-meter elevation variability less than 0.05 m). The black line in (b) represents the snow depth probe measurements every 3 meter along the 500-meter transect.

Deleted: UAS
Deleted: UAS
Deleted: UAS

[... [3]

Deleted:

(a) (b) (c) Figure 5. Boxplots of (a) snow depth and (b) elevation and (c) microtopographic elevation in Plots A-D.

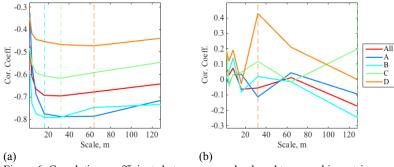
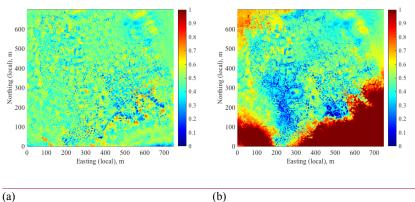



Figure 6. Correlation coefficients between snow depth and topographic metrics as a function of the wavelet scale: (a) the microtopographic elevation, and (b) the wind factor of macrotopography. The different colors represent different plots (Plot A–D) or all the data (All). Each dash line represents the scale that maximize the magnitude of the correlation coefficient.

(a) (b) Figure 7. The estimated mean snow depth over the NGEE-Arctic site (in meters) based on (a) the proposed Bayesian method including the correlation to microtopography, and (b) the kriging-based interpolation of the snow surface. The spatial extent is the same as Figure 1b.

Deleted: across the site

Deleted:

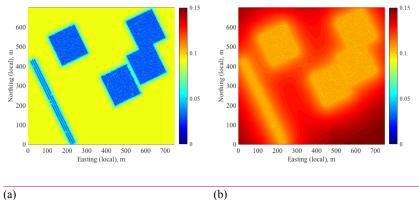


Figure 8. The estimated standard deviation of snow depth across the site (in meters) based on (a) the proposed Bayesian method including the correlation to microtopography, and (b) the kriging-based interpolation of the snow surface. The spatial extent is the same as Figure 1b.

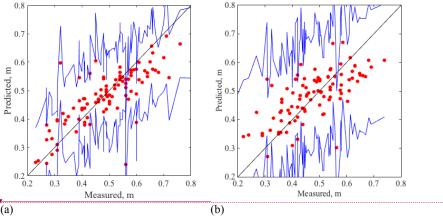
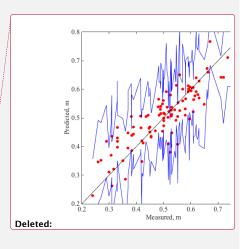



Figure 9. Estimated mean and confidence intervals from the Bayesian method, compared to the probe-measured snow depth by (a) using the correlation to microtopography and (b) interpolating the snow surface. The red circles represent the snow depth at the validation locations (the snow depth probe measurements not used in the estimation), the blue lines are the confidence intervals based on the standard deviation (STD) multiplied by 1.9 (94% confidence intervals), and the black lines are the one-to-one line.

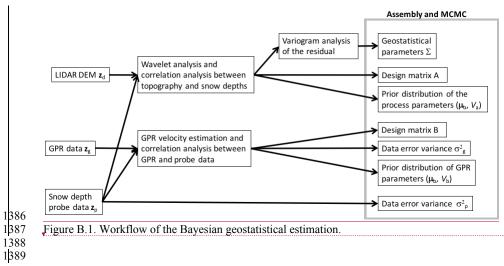


Figure B.1. Workflow of the Bayesian geostatistical estimation.

Deleted:

Table 1. Multivariate normal distribution defined for each variable.

Variable		Type	Distribution	Covariance	Mean vector
Snow depth	y	Process model	$p(y a, z_{\rm d})$	Σ	Aa
Probe data	$z_{\rm p}$	Data model	$p(\mathbf{z}_{\mathbf{p}} \mathbf{y})$	D_p	y
GPR data	$z_{\rm g}$	Data model	$p(\mathbf{z}_{\mathbf{g}} \mathbf{y},\mathbf{b})$	D_g	$\mathbf{B}\mathbf{y} + b_0$
Snow-depth parameters	а	Prior	$p(\boldsymbol{a})$	V_a	μ_a
GPR parameters	b	Prior	$p(\boldsymbol{b})$	V_b	μ_b

Table 2. Root mean squared error (RMSE) between the PhoDAR derived DSM and RTK DGPS elevation measurements based on the three schemes: nearest neighbor, average, and minimum elevation within the 0.5 m radius.

Nearest (cm) Average (cm) Minimum				
July 2013	6.88	6.41	6.62	
August 2014	6.40	6.19	6.34	

Table 3. p values from Tukey's pairwise comparison test for each pair of the plots.

	Snow depth
Plot A – Plot B	6.34 x 10 ⁻³
Plot A – Plot C	0.982
Plot A – Plot D	0.998
Plot B – Plot C	1.72×10^{-3}
Plot B – Plot D	3.55 x 10 ⁻³
Plot C – Plot D	0.997

Table 4. Estimated geostatistical parameters and covariance models for snow depth, snow surface and residual snow depth.

	Model	Range (m)	Variance (m ²)	Nugget Ratio
Snow depth	Exponential	12.3	1.6 x 10 ⁻²	0.0
Snow surface	Spherical	253.3	2.0 x 10 ⁻²	0.16
Residual snow depth	Exponential	15.0	8.3 x 10 ⁻³	0.0

1404 Table A.1. Posterior distributions during the Gibbs sampling

Variable		Covariance, Q	Mean vector
Snow depth	у	$(B^T D_g^{-1} B + D_p^{-1} + \Sigma^{-1})^{-1}$	$Q(B^{T}D_{g}^{-1}(z_{g}-b_{0})+D_{p}^{-1}z_{p}+\Sigma^{-1}Aa)$
Snow depth parameters	а	$(\mathbf{A}^T \Sigma^{-1} \mathbf{A} + \mathbf{V_a}^{-1})^{-1}$	$Q(A^T \Sigma^{-1} y + V_a^{-1} \boldsymbol{\mu}_a)$
GPR parameters	b	$(H^TD_g^{-1}H+V_b^{-1})^{-1}$	$Q(B^{T}D_{g}^{-1}(z_{g}-b_{0})+V_{b}^{-1}\boldsymbol{\mu}_{b})$

Page 51: [1] Deleted	Microsoft Office User	1/29/17 11:42:00 PM
Page 51: [1] Deleted	Microsoft Office User	1/29/1/ 11:42:00 P

Figure 6. Correlation coefficients between snow depth and topographic metrics as a function of the wavelet scale: (a) the microtopographic elevation, and (b) the wind factor of macrotopography.

Page 52: [2] Deleted Microsoft Office User	2/9/17 11:43:00 AM
--	--------------------

Page 56: [3] Deleted	Microsoft Office User	1/21/17 4:59:00 PM
----------------------	-----------------------	--------------------