1	"Ground-penetrating radar reveals ice thickness and undisturbed englacial			
2	layers at Kilimanjaro's Northern Ice Field" by Pascal Bohleber et al.			
3	- Response to reviews and revised manuscript -			
4				
5	General Remarks: All line numbers in "Changes to manuscript" refer to the revised			
6	version. Changes in the corresponding pdf of the revised manuscript are highlighted in			
7	red.			
8	Author's responses to the referee's comments are in blue.			
9	All new references used in this text here can be found in the revised manuscript.			
10				
11				
12	Response to referee #1 (Denis Samyn) posted on Sept. 12th 2016			
13	Bohleber et al. surveyed the Northern Ice Field of Kilimanjaro for reconstructing its			
14	bedrock topography, ice thickness and internal stratigraphy, using ground-			
15	penetrating radar (GPR) at various frequencies. Despite GPR being widely used in			
16	glaciology nowadays, this work is the first of its kind on Kilimanjaro, and therefore			
17	represents a novel approach in the exploration and investigation history of this			
18	mythical mountain. This study is well written, and I believe that the conclusions are			
19	scientifically sound and will contribute significantly to the future investigations of			
20	local, and other tropical, glacier recession dynamics.			
21				
22	As a general advice for improving this manuscript, I would suggest the			
23	authors to strengthen their point where it is not stated carefully, or where the			
24	implications or interest for the scientific community are overlooked. These			
25	comments do not diminish the quality of this work though; therefore I recommend			
26	publishing this paper with minor revisions as described below.			
27				
28	We thank the referee for a very thorough review, we appreciate the helpful			
29	suggestions and comments.			
30				
31				

32 **Referee comment**

Page 1, Line 7: "indicating an undisturbed internal stratigraphy within NIF'scentral flat area".

35

36 Whereas other statements of minor importance have been stressed more cautiously, 37 I believe that this statement is too assertive and should be rephrased more carefully. 38 Clearly some unknown uncertainty remains in this regard and, without drilling a 39 new ice core between the former drilling sites and the edge ice cliff, without the 40 result of the ice cliff dating work mentioned in the paper, and without carrying ice 41 flow modelling investigations, no clear or solid information is available to certify 42 that the internal stratigraphy is undisturbed. The influences on ice flow dynamics 43 through time and space of, first, near-surface and internal meltwater and, second, 44 fumaroles, still need to be better documented in order to fully appraise potential 45 issues on the ice stratigraphical integrity. This comment also stands for the sentences on Page 9, Line 6 "We thus conclude that the internal stratigraphy within 46 47 the NIF central flat area is generally undisturbed", and on Page 9, Line 32 "[...] 48 revealed an undisturbed internal stratigraphy".

49

50 We believe the presence of spatially continuous internal reflection horizons in the 51 GPR profiles stem from an uninterrupted, spatially coherent layering within the NIF 52 plateau area, which is one of the central findings of our study. Limitations to this 53 finding apply to the near-surface sections where noise associated with meltwater 54 hampers tracing reflections, as well as to the near-basal sections where strong 55 continuous reflections are not detected. Our main point is that the coherent 56 stratigraphy in the 200 MHz profiles does not provide any evidence for deformed 57 (overturned, interrupted) layers. Based on the referee's comment we understand 58 that the general use of the term "undisturbed stratigraphy" can be misinterpreted. 59 Hence we decided to replace the term "undisturbed stratigraphy" with 60 "uninterrupted, spatially coherent internal layering". We also clarified on the depth 61 restriction of the tracing of IRH in the abstract.

62	We agree with the referee that additional information regarding the influence of				
63	meltwater percolation (especially on the cm-scale chemical stratigraphy in ice				
64	cores), as well as investigating basal fumarole activity would be helpful for an even				
65	more refined assessment of the stratigraphy at NIF and regard this a helpful				
66	suggestion for future research.				
67					
68	Changes to manuscript:				
69	• Page 1, Line 7: "indicating an uninterrupted, spatially coherent internal				
70	layering "				
71	• Page 1, Line 8: "We show that, at least for the upper 30 m, it is possible to				
72	follow isochrone layers between two former NIF ice core drilling sites and a				
73	sampling site on NIF's vertical wall."				
74	• Page 9, Line 16-17: "generally composed of uninterrupted, spatially coherent				
75	layers"				
76	• Page 10, Line 19-20: "an internal stratigraphy made up of an uninterrupted,				
77	spatially coherent layering.				
78					
79	Referee comment				
80	- Pages 4-5, "2.3 Uncertainty considerations" section				
81					
82	Here the vertical error in internal reflection horizons (IRH) tracking is discussed.				
83	How about the horizontal uncertainty related to the various GPR pulse triggering				
84	methods used (wheel, time, manual)? In other words, what is the horizontal extent				
85	of potential bedrock/stratigraphical discontinuities that the method used might				
86	omit while progressing on the glacier surface? This is of potential significance in				
87	regions of increased meltwater/fumarole activity, where electromagnetic coherency				
88	is more prone to disturbance.				
89					
90	We thank the referee for this suggestion and have now added a short discussion of				
91	the horizontal resolution in section 2.3 "uncertainty considerations". In essence we				

92	are following earlier studies by Welch et al. (1998) and Yilmaz (1987), who showed				
93	that for properly migrated radargrams the horizontal resolution becomes lambda/2,				
94	independent of reflector depth. In data acquisition we took care to avoid spatial				
95	aliasing by collecting traces less than one quarter wavelength apart.				
96					
97	Changes to manuscript:				
98	• Page 5, Line 6 ff.: " Shot distances in data acquisition "				
99					
100					
101	Referee comment				
102	- Page 5, Lines 12-14: "Assuming 0.3 m uncertainty in the length of the rope at 16 m				
103	(mainly resulting from knots tied into the rope)".				
104					
105	From personal experience, the error stated seems rather low. In addition to the tied				
106	knots mentioned by the authors, the type of rope, its elasticity, and the mass of the				
107	dead weight at its end will certainly contribute. The uncertainty given here is				
108	therefore clearly a lower estimate.				
109					
110	We agree with the referee and have added text to clarify that we are regarding this				
111	uncertainty as merely a lower estimate.				
112					
113	Changes to manuscript:				
114	• Page 5, Lines 17: "To derive a lower estimate of uncertainty"				
115					
116	Referee comment				
117	- Page 7, Lines 21-22: "The low ice thickness is likely a result of the surface				
118	gradually sloping off towards the west outside the caldera. A distinct rise in the				
119	local GPR bedrock reflection appears where the location of the crater rim below the				
120	ice is suggested by satellite images (Figure 6, and small insert therein)".				
121					

122	The size of Fig. 6 inset is way too small to be able to observe this. This inset could					
123	certainly be resized to the dimensions of the main figure. In fact, it should, given the					
124	importance of the authors' point here.					
125						
126	We took care to resize the insert in order to aid better visual recognition of the					
127	satellite image. As a general remark, we have also tried to improve the readability of					
128	all of the figures by increasing font size etc.					
129						
130	Changes to manuscript:					
131	Figure 6: Resized insert to full size					
132						
133	Referee comment					
134	- Page 7, Lines 23-24: "This finding implies that the local bedrock relief features					
135	may have affected past ice build up and decay through limiting exposure to solar					
136	radiation and wind".					
137						
138	I find this argument somewhat weak here – one would either need to check this					
139	limiting exposure effect with e.g. an insulation model, or provide more (visual?)					
140	details.					
141						
142	We did not intend to make this argument based on our findings alone. Instead, we					
143	wanted to point out the detection of the subglacial crater rim in context of the					
144	previous study of Kaser et al. (2010) who suggested that local bedrock relief					
145	features may have affected past ice build up and decay through limiting exposure to					
146	solar radiation and wind. We have changed the sentence to clarify accordingly.					
147						
148	Changes to manuscript:					
149	• Page 7, Lines 34 ff.: "This finding supports the idea that local bedrock relief					
150	features may have affected past ice build up and decay through limiting					
151	exposure to solar radiation and wind (Kaser et al., 2010)."					

153

154 **Referee comment**

Page 7, Lines 28-35: "Considering additionally the coarse resolution used in
the kriging approach, we regard the values derived from this method with caution
only.

158 The estimates of total ice volume obtained from the Grid approach and DEM-only 159 are (12.0 ± 0.3) and (14.3 ± 1.3) 10⁶ m³, respectively. Evidently the main contribution 160 to the difference in ice volume comes from different mean ice thickness values 161 (using the 2012 surface area the mean ice thickness obtained from the Grid method 162 gives a volume of $(12.3 \pm 0.3) 10^6 \text{ m}^3$. The decrease in mean ice thickness 163 suggested by the comparison of the two interpolation methods is not supported by 164 surface height change measurements 2012–2015. Since both interpolation methods 165 use the same surface topography supplied by the DEM as input, the difference in 166 mean ice thickness has to come from differences in determining subglacial bedrock. 167 Consequently, the difference in ice volume estimates is not used to infer a rate of ice 168 loss."

169

170 I wonder what is the added value of discussing the 'Kriging' method here, given its171 obvious flaws at such a low sampling resolution. There are various other

172 interpolation techniques worth trying I think, that are not involving such a coarse

173 resolution data grid.

174

175 Our intention was to include the 'Kriging' method as an alternative spatial

interpolation routine that uses the GPR based derived ice thickness profiles only.

177 The coarse spatial resolution is an immediate consequence of the sparse spatial

178 coverage of the GPR profiles over the NIF. In this respect, a finer mesh-type array of

179 profiles would have been desirable but was not feasible due to time and issues

- 180 related to surface roughness. We agree that the results of the 'Kriging' routine
- 181 provide less detail in comparison with the DEM-based and 'Grid' interpolation
- 182 scheme. We are already stating in the manuscript that the 'Kriging' results are

183	regarded with caution only. In the end we decided to leave the 'Kriging' results in				
184	the text in order to illustrate to the reader the benefit of the GPR-DEM combined				
185	interpolation approach. We have changed the text to make this intention more clear.				
186	While a detailed analysis of the result of various interpolation models and				
187	techniques is far beyond the scope of this paper, the IACS working group on ice				
188	thickness has just submitted a paper on this topic with a large sample of glaciers of				
189	various types ("ITMIX experiment"). This promises much greater insight as				
190	compared to investigating one glacier only. As the data of our study will be				
191	submitted to GlaThiDA 3.0, the data will also be available for validation of a				
192	potential second ITMIX experiment.				
193					
194	Changes to manuscript:				
195	• Page 6, Lines 19-21: "Although clearly suffering from these restrictions"				
196					
197					
198	Referee comment				
199	- Page 7, Lines 31-33: "Evidently the main contribution to the difference in ice				
200	volume comes from different mean ice thickness values (using the 2012 surface area				
201	the mean ice thickness obtained from the Grid method gives a volume of (12.3				
202	± 0.3) 10 ⁶ m ³)."				
203					
204	There should also be another source of error introduced in the volume calculations				
205	through the fact that ice cover area is simply multiplied by ice depth here, which is				
206	valid for a rectangular prism. The numbers given are thus upper estimates of the				
207	glacier volume.				
208					
209	We agree that using the mean ice thickness multiplied by the total surface area can				
210	only give an estimate. Calculating the volume by multiplying area by height luckily				
211	works for every prism (and not just rectangular ones). Using the areal mean height				
212	(including its uncertainty) should avoid a systematic overestimation. What we				
213	intend to point out in the above mentioned is the fact that the dominant cause for				

214	the difference in ice volume estimates between the Grid and DEM-only approach is					
215	due to different ice thickness values, as opposed to the additional contribution of					
216	different surface area. We have changed the sentence to clarify.					
217						
218	Changes to manuscript:					
219	• Page 8, Line 7-8: "The main contribution to the difference in ice volume					
220	comes from different mean ice thickness values as opposed to surface area"					
221						
222						
223	Referee comment					
224	- Page 8, Line 2: "we regard the ice volume estimate of the Grid method as					
225	most accurate".					
226						
227	As mentioned for Page 7, Lines 28-35, this statement is somewhat trivial here.					
228						
229	In this instance, we are not referring anymore to a comparison with the coarse					
230	interpolation based on 'Kriging', but compare the DEM-based and the DEM+GPR-					
231	combined approach. The fact that GPR introduces additional constraints may indeed					
232	sound trivial to the reader. However, we felt it was necessary to be clear about					
233	which ice volume estimate is regarded as the final and most reliable estimate. We					
234	have slightly modified our wording in this regard.					
235						
236	Changes to manuscript:					
237	• Page 8, Lines 13-14: "Integrating both the DEM and GPR as constraints, the					
238	Grid method provides the most reliable ice volume estimate"					
239						
240						
241	Referee comment					
242	- Page 8, Lines 12-13: "It is worth noting that the vertical cliffs show instances of					
243	tilted and converging layers in close proximity to bedrock".					

245 Instead of 'converging' layers, the pattern in question rather looks in my opinion, 246 from visual inspection of Fig. 8, like a layer from which another layer is swelling as 247 a result of a rheological discontinuity (e.g. localized shearing), as often occurs at the margin of glaciers. This has potential implications not only for the detection of deep 248 249 reflectors as stated by the authors, but also for the integrity of the ice layering. This 250 comment, which I believe needs to be discussed in the manuscript, highlights my 251 former comment on Page 1, Line 7 regarding the authors' rationale and uncertainty 252 analysis on the argued 'undisturbed internal stratigraphy'. 253

We thank the referee for pointing out this additional hypothesis and we haveintegrated this point into our discussion. However, we believe that this stratigraphic

256 convergence is an ablation feature rather than due rheology, as localized shearing

appears evident only near the snout of the steepest slope glaciers, and features such

as that shown in Fig. 8 occur elsewhere on Kilimanjaro glaciers, particularly thoseon the south side.

260

261 **Changes to manuscript:**

- Page 8, Lines 25-28: "We believe that this stratigraphic convergence is an ablation feature rather than due rheology (e.g. localized shearing at the glacier margin), as localized shearing appears evident only near the snout of the steepest slope glaciers, and features such as that shown in Figure 8 occur elsewhere on Kilimanjaro glaciers, particularly on the south side."
- 267
- 268

269 **Referee comment**

Page 8, Lines 14-15: "[...] where ice thickness decreases rapidly due to the crater
rim".

272

I do not think that the presence of the crater rim is the only reason for this 'ice

thickness decrease'. In the case where, say after a period of increased accumulation

275	rate, more ice would flow towards the ice rim, ice thickness could in fact increase as				
276	a result of the blocking effect by the rim. In the case discussed by the authors, it is				
277	probably the conjunction of the rim vicinity and stagnant flow that causes the ice to				
278	reduce locally in thickness.				
279					
280	We appreciate this input by the referee. We were not trying to say the crater rim is				
281	the original cause of the decrease in ice thickness, but were simply referring to the				
282	situation as of today mapped by our GPR profiles. We have modified the wording to				
283	clarify. That said we are not aware of any direct evidence nor published accounts of				
284	ice flow at NIF.				
285					
286	Changes to manuscript:				
287	• Page 8, Lines 29-30: " in the part of the profiles showing decreasing ice				
288	thickness and gradual slope in the bedrock, likely the crater rim."				
289					
290					
291	Referee comment				
292	- Page 8, Lines 20-23: "It is plausible that the according change in the electrical con-				
293	ductivity of the ice layer produces a strong reflector seen in the GPR data (Sold et al.,				
294	2015). Accordingly, this strongly suggests dust layers being a main physical cause				
295	of IRH at NIF. Thompson et al. (2002) and Gabrielli et al. (2014) report visible dust				
296	layers in the NIF2 and NIF3 ice cores".				
297					
298	If the change in electrical conductivity expected from the ammonium and chloride				
299	documented by Thompson et al. (2002) results indeed from dust layers, a				
300	consequent change in ice crystal texture should also be expected, given the				
301	retardation effects of micro-particles on grain boundary migration and				
302	recrystallization. IRH might thus represent "iso-chemical" AND "iso-crystalline"				
303	reflectors.				
304					

305	This is an interesting suggestion and we agree that the known interaction between				
306	impurities and ice texture evolution can be expected also at NIF. IRH caused by ice				
307	texture are linked to the anisotropic dielectric properties of ice. Hence, a change in				
308	ice texture (i.e. grain size) is not sufficient for an IRH to occur, but would also need				
309	to go along with a systematic local anisotropy in crystal orientation. In turn, this				
310	would also imply a dependency on the electric polarisation of the GPR pulse. We				
311	have not observed a change in reflectors at points were we have almost				
312	perpendicular intersections of GPR profiles (e.g. point "intersection" in Fig. 4).				
313	Although we cannot entirely rule out the possibility for a contribution of crystal				
314	orientation to individual IRH, we feel that the change in ice chemistry at the large				
315	dust bands is certainly strong enough to explain all major IRHs discussed here.				
316					
317	Changes to manuscript:				
318	No change necessary.				
319					
320					
321	Referee comment				
322	- Page 8, Line 33-Page 9, Line 8: discussion on IRH 1-5 tracking.				
323					
324	This discussion could be somewhat improved and made much clearer with the use,				
325	for instance, of a table giving (1) the expected depth of these horizons from previous				
326	ice cores, and (2) their depth detected by GPR. The total lengths between the drilling				
327	sites, the ice cliff, and the locations where the IRH tracks are lost would also be				
328	helpful in order to appraise the layer continuity/extension.				
329					
330	The ratio of vertical distances separating the IRH discussed at various locations				
331	would also help evaluating the vertical stratigraphical dilatation/shrinking along				
332	the studied profiles.				
333					
334	Except for IRH 5, which appears to clearly correspond to the exceptionally large				
335	dust layer found in the NIF3 ice core, the derivation of expected IRH depths based				

336	on the impurity profiles of the ice cores remains ambiguous (except of the expected					
337	depth of the known dust horizons which we have already included in the text).					
338	However, we have followed the referee's suggestion and added to Table 3 a column					
339	for horizontal distances (in correspondence to Figure 4). We also now include the					
340	relative depth for each IRH in Table 3 to aid evaluating the vertical stratigraphical					
341	dilatation/shrinking.					
342						
343	Changes to manuscript:					
344	• Modified Table 3 to include horizontal distances and relative depths of IRH.					
345						
346						
347	Referee comment					
348	- Page 9: Lines 9-19: discussion on continuous layering.					
349	It is not clear, from this paragraph, where the authors want to lead the reader. It is					
350	only after reading the Conclusion section that one is able to get the authors' point					
351	regarding the importance of stratigraphical continuity between the former drill sites					
352	and the ice cliff: they are concerned about the possibility to efficiently and					
353	confidently relate the results from former ice cores to the results of the ice dating					
354	work along the ice cliff. This concern is totally justified here, and should be wrapped					
355	up more tightly in this section.					
356						
357	We thank the reviewer for pointing this out and have added text to reiterate here in					
358	modified form what is said in the Conclusions.					
359						
360	Changes to manuscript:					
361	• rewrote paragraph on Page 9, starting Line 19.					
362						
363						
364	Referee comment					

³⁶⁵ - Page 9, Lines 15-19: "Although qualitatively going in the same direction as the

adjustment of the NIF2 and NIF3 stable isotope records (i.e. in comparison with

367 Figure 2 in Thompson et al. (2002)), tracing IRH between NIF2 and NIF3 suggests

tie points that are systematically at greater depth in NIF3 as compared to the ice

- 369 core stable isotope matching."
- 370

Do the authors have an idea about why the ice stratigraphy is stretched at NIF3?
Differences in accumulation cannot really be invoked here given the small distance
between both NIF2 and NIF3 sites. Ice flow would probably play a role, which is

- difficult to determine without ice flow modelling though.
- 375

376 We do not have a conclusive explanation for this situation, and at this time can only 377 note that the difference in relative depths seems to be predominant at lower depths 378 (which becomes more evident by the revised version of Table 3 now). It also seems 379 worth noting in this context that, as a general case at NIF, the visible dust bands on 380 the vertical walls appear to vary in their relative depth. We agree with the referee 381 that systematic differences in accumulation appear unlikely and, as stated 382 previously, question whether ice flow could be involved in altering the stratigraphy 383 of this thin, nearly-horizontal section of the glacier.

- 384
- 385 Changes to manuscript:
- Changes in Table 3.
- 387

changes in Table 5

- Additional clarification in paragraph on page 9, starting line 26.
- 388
- 389

390 **Referee comment**

- Page 9, Lines 26-29: "Hence our GPR profiles demonstrate a highly heterogeneous

392 presence of meltwater near the surface, apparently a wide-spread feature at NIF re-

- 393 lated to spatial and temporal variability in surface characteristics and processes
- 394 (Hardy,2011). This finding is of relevance for any new ice core drilling efforts at NIF

in the future, and an important consideration for energy and mass balancemodelling efforts."

397

398 Although this section is called "Effects of near-surface meltwater", these effects are

399 not really discussed. The authors are only referring to this issue as "of relevance

400 for". I suggest that they either discuss this important issue more thoroughly, or

401 suppress this section. This comment also applies to Lines 11-12 in the Conclusion

- 402 section.
- 403

404 We agree that this is an important finding, although not in the original focus of our

405 work. Hence we followed the referee's suggestion and have elaborated more on the

406 relevance to future ice core drillings as well as modelling efforts.

407

408 **Changes to manuscript**:

- Page 10, Lines 13-16: "...suggesting that chemical and isotopic records of the upper 10~m or more could be potentially corrupted by meltwater. The wide-spread presence of near-surface meltwater also needs to be considered in future energy and mass balance modelling efforts. Further quantifying the generation and evolution of the near-surface meltwater distribution points to important future research questions at NIF.
- 415
- 416
- 417
- - -
- 418
- 419
- 420
- 421
- 422
- 423

424		
425		
426		
427		
428		
429		