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Abstract. A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea ice mass

balance. Simulated sea-ice deformation from numerical simulations with 4.5-km, 9-km, and 18-km horizontal grid spacing

and a viscous-plastic sea ice rheology are compared with synthetic aperture radar satellite observations (RGPS) for the time

period 1996 to 2008. All three simulations can reproduce the large-scale ice deformation patterns, but small scale sea-ice

deformations and linear kinematic features (LKFs) are not adequately reproduced. The mean sea-ice total deformation rate is5

about 40% lower in all model solutions than in the satellite observations, especially in the seasonal sea ice zone. A decrease in

model grid spacing, however, produces a higher density and more localized ice deformation features. The 4.5-km simulation

produces some linear kinematic features but not with the right frequency. The dependence on length scale and probability

density functions of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar

to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5-km simulation produces the10

most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and

coarse-resolution viscous-plastic sea ice simulations based on spatial distribution, time series, and power-law scaling metrics.

1 Introduction

The Arctic sea ice in many respects is an important component of the Earth’s climate system, e.g., sea ice governs the ocean to

atmosphere heat flux, freezing and melting influences the upper ocean salinity and density, and sea ice dynamics act as a latent15

energy transport (Barry et al., 1993). During recent years substantial changes of the Arctic sea ice cover have been observed

(e.g., Comiso et al., 2008; Kwok and Rothrock, 2009; Nghiem et al., 2007). Coupled ocean-sea ice models can reproduce

some aspects of sea ice and its recent changes (e.g., Zhang et al., 2008; Lindsay et al., 2009; Nguyen et al., 2011). In part

this can be attributed to the fact that model parameters can be adjusted to produce observed ice concentration (extent) and

drift distributions (Nguyen et al., 2011; Fenty et al., 2015). Detailed comparisons between satellite remote sensing data with20

model results, however, reveal big differences in certain aspects of the sea ice cover, e.g., for fracture zones and for small-

scale dynamic processes (Kwok et al., 2008; Girard et al., 2009). It remains unclear whether current model physics are suited

to reproduce these observed sea-ice deformation features (Coon et al., 2007) or if new sea-ice rheologies (e.g., Bouillon and

Rampal, 2015b; Girard et al., 2011; Sulsky et al., 2007) have to be used. Sea-ice deformation is an important process for (1) sea
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ice mass balance due to new ice production and ridged ice formation, (2) brine rejection into the ocean due to freezing in open

water areas, (3) regulation of ocean-to-air heat and gas fluxes, and (4) altering the air and water drag coefficients. Therefore a

realistic representation of sea-ice deformation in coupled sea ice-ocean models is important.

Here we study sea-ice deformation strain rates in the Arctic obtained from Synthetic Aperture Radar (SAR) satellite mea-

surements using the RADARSAT Geophysical Processor System (RGPS) in comparison to coupled ocean-sea ice simulations5

carried out with the Massachusetts Institute of Technology general circulation model (MITgcm) as configured for the Estimat-

ing the Circulation and Climate of the Ocean, Phase II (ECCO2) project (Menemenlis et al., 2008). Model integrations with

horizontal grid spacing of 18, 9, and 4.5 km are carried out. These comparisons also allow us to study the model uncertainties

regarding the sea-ice deformation representation in the current formulation of viscous-plastic sea ice models.

Traditionally sea ice model performance is evaluated by comparing satellite-derived ice area and velocities to model results10

(e.g., Nguyen et al., 2011; Zhang et al., 2003). However, it can be shown that the Arctic sea ice velocity field can be divided

into mean and fluctuating fields with the fluctuating field not behaving in a significantly different manner from a turbulent

fluid (Rampal et al., 2009). It is therefore not sufficient to evaluate models on the basis of their first-order mean velocity field.

Kwok et al. (2008) showed that sea ice models that reproduce the large-scale ice velocity field can still have large problems

in reproducing sea ice deformations correctly. The second-order sea-ice velocity field, represented by the sea ice deformation15

fields (strain rate invariants), has to be used for comparison to take into account the high frequency fluctuations of the sea-ice

velocity field and to assess the quality of the sea-ice rheology formulation.

Sea ice strain rates do not scale linearly in space and time but follow a power law depending on the length scale L and time

interval ∆T over which the strain rates are integrated. For RGPS total deformation rates Ḋ in the Arctic, Marsan et al. (2004)

and Stern and Lindsay (2009) observe a spatial scale dependence of Ḋ ≈ dL−0.2 over a scale range from 10 to 1000 km. The20

constant d can be interpreted as the mean deformation rate at a given base scale. To make meaningful comparisons between

observations and model simulations, both have to be brought to the same reference frame in space and time, i.e., averages have

to be calculated for the same area and time interval. Otherwise the scaling nonlinearity will cause artificial differences between

the datasets.

It can be shown that traditional sea ice models using the Hibler (1979) viscous-plastic (VP) or elastic-visco-plastic (EVP)25

(Hunke and Dukowicz, 1997) ice rheology have difficulties in correctly representing the sea-ice deformation fields, especially

the distribution of the observed linear kinematic features (LKFs) (Kwok et al., 2008; Lindsay et al., 2003; Wang and Wang,

2009). Girard et al. (2009) also report distinct differences in the statistical scaling behavior of RGPS data and models using VP

and EVP sea ice rheologies, showing that the modeled deformation distributions can be close to Gaussian while the observed

ones follow a power law. Improvements in modeled sea-ice deformation and thickness can be obtained by modifying the form30

of the yield curve away from an elliptical shape and/or changing the ratio of major to minor axes (Wang and Wang, 2009;

Miller et al., 2005). To overcome some of the deficiencies of the viscous-plastic rheology, new ice rheologies with improved

ice physics are under development in the hope of better representing the observed sea ice dynamics (e.g., Heil and Hibler,

2002; Sulsky et al., 2007; Girard et al., 2011; Bouillon and Rampal, 2015b). A recent example is the study of Tsamados et al.

(2013), which demonstrates how an anisotropic ice rheology changes the sea ice mass balance and ice dynamics compared to35
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the EVP rheology. Current VP and EVP sea ice model implementations, however, are robust and their parameters well tuned to

reproduce the broad features of sea ice extent and drift. Therefore, they are widely used in coupled ocean-sea ice and in global

climate simulations and thus their evaluation is necessary.

The main purpose of this article is to examine how model grid spacing influences simulated sea-ice deformation represen-

tation when compared to satellite observations. Different from previous studies, we focus on direct comparison between the5

modeled and observed strain rates. Using the VP model, we construct simulated deformation fields on the same spatial and

temporal scales as in the RGPS observations (section 2.3) and compare them spatially (section 3.1). We then analyze the power

law scaling properties of the modeled and observed deformation rates (sections 3.2). Ultimately, we would like to highlight

why the sea-ice strength representation and the sea-ice rheology should receive more attention in models.

The remainder of this article is laid out as follows: Section 2 describes the model setup and introduces the RGPS satellite10

data. Section 3 contains the comparison between modeled sea-ice deformation and RGPS satellite observations. It contains

an evaluation of the representation of sea-ice deformation dependencies on horizontal grid spacing both spatially and as time

series, and shows the power law scaling behavior of the modeled and observed sea-ice deformation fields. Finally, section 4

concludes and further discusses the results.

2 Model Setup and Satellite Data15

2.1 MITgcm Arctic Model Setup

The model output used for this study is obtained from integrations of a coupled ocean and sea ice configuration of the Mas-

sachusetts Institute of Technology general circulation model (MITgcm) (e.g., Losch et al., 2010). The model configuration is

similar to that used for global integrations by the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2)

project (Menemenlis et al., 2008), but only a sub-domain covering the Arctic Ocean including the surrounding marginal seas20

and parts of the North Atlantic and Pacific is used (see Figure 1a).

Briefly, the ECCO2 project uses a cube-sphere grid projection in a volume-conserving C-grid configuration. The ocean model

has 50 vertical levels and employs the K-Profile Parameterization (KPP) of Large et al. (1994) for vertical mixing. The cold

halocline layer of the Arctic Ocean is realistically reproduced with the use of the subgrid-scale brine rejection parameterization

of Nguyen et al. (2009). The sea ice model uses 2-category, zero-layer thermodynamics (Hibler, 1980) and viscous-plastic25

(VP) dynamics (Zhang and Hibler, 1997; Hibler, 1979). The snow cover is simulated following Zhang et al. (1998). Table 1

summarizes the relevant sea ice parameters used for all model solutions presented herein (see also Nguyen et al. (2011) for

more details).

The International Bathymetric Chart of the Arctic Ocean (IBCAO) (Jakobsson et al., 2008) is used as bathymetry, where

available. For the remaining part of the model domain, which is not covered by IBCAO, the merged Smith and Sandwell/General30

Bathymetric Charts of the Oceans (GEBCO) is used and blended with IBCAO along the borders. Sea ice initial conditions (area

and thickness) for January 1992 are from the Polar Science Center (Zhang and Rothrock, 2003) and ocean initial conditions

(temperature, salinity, velocity) are from the World Ocean Atlas 2005 (Locarnini et al., 2006; Antonov et al., 2006). The
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model simulations are started from these initial conditions on January 1st 1992 and end on December 31st 2009. The glob-

ally optimized simulation from ECCO2 (Menemenlis et al., 2008) provides lateral boundary conditions. Surface boundary

conditions are obtained from the Japanese 25-year ReAnalysis (JRA-25; Onogi et al., 2007) with a spatial and temporal res-

olution of 1.125◦ (≈ 120 km) and 6 hours, respectively. These spatial and temporal resolutions do not allow to fully resolve

all high frequency atmospheric forcing on the sea ice. Some ice deformation events will be missed, which adds uncertainty to5

model-derived sea-ice deformation rates.

Integrations with three different nominal horizontal grid spacings, 18 km, 9 km and 4.5 km, were performed. An example of

the simulated sea ice thickness on 15 November 1999, after about eight years of model integration, is shown in Figure 1b–d for

the three different grid spacings. The 4.5-km solutions clearly shows more details, e.g., clearer lead patterns, that is, regions

with reduced ice thickness. Since typical lead width is smaller than the model grid spacing, the ice thickness does not drop10

to zero. The 18-km model solution was constrained by least squares fit to available satellite and in-situ data (e.g., ice drift,

area, thickness) using a Green’s function approach (Menemenlis et al., 2005; Nguyen et al., 2011) and is here referred to as

the “baseline” simulation. A comprehensive evaluation of the 18-km model simulation and more detailed description of the

optimization can be found in Nguyen et al. (2011). They show, by comparison to measurements, that the model using the

optimized parameter set can realistically reproduce the most important features of the coupled Arctic ocean and sea ice system.15

For example, sea ice extent and thickness as well as their trends are in good agreement with satellite and in situ measurements.

Also the sea ice export through Fram Strait is modeled realistically compared to observations from Kwok et al. (2004). For

the higher resolution (9 km and 4.5 km grid spacing) simulations, we use the same set of parameters as those derived for the

18-km configuration. As a consequence these higher-resolution simulations exhibit somewhat larger model deviations relative

to observations than the 18-km simulation. For example, the mean ice thickness on 15 November 1999 shown in Figure 1b–d20

is similar for the 4.5 and 18-km simulations but higher by 24 and 28 cm, respectively, compared to the 9-km simulation. They

nevertheless have been found of sufficient quality for process studies in the Arctic Ocean and adjacent seas (Nguyen et al.,

2012; Rignot et al., 2012).

2.2 RGPS Satellite Observations

The RADARSAT Geophysical Processor System (RGPS) produces sea ice data products covering the Arctic Ocean derived25

from Synthetic Aperture Radar (SAR) imagery acquired by the Canadian RADARSAT satellite. Details of the analysis proce-

dures can be found in the papers of Kwok (1998) and Kwok and Cunningham (2002). In this study the “Lagrangian ice motion”

dataset, one of the eight RGPS data products, is used as initial dataset. Sea-ice deformation, i.e., strain rates, are calculated

from this ice motion dataset as described below. We start with the “Lagrangian ice motion” dataset to allow highest possible

consistency between the observed and modeled deformation rates.30

The 460-km wide swath ScanSAR Wide B (SWB) mode of RADARSAT (Raney et al., 1991) is selected to provide routine

coverage of the Arctic Ocean for the RGPS system. The western Arctic Ocean is covered by RADARSAT images approxi-

mately once every three days. At the beginning of the season (winter or summer) an initial Lagrangian grid with 10 km grid

spacing is set up. For the start and end dates of winter and summer periods see Table 2. The movement and deformation of
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the Lagrangian grid cells are followed throughout the season. Grid cells are removed if they are advected out of the region of

interest. Gaps in the ice motion data sets are due to the lack of backscatter contrast for tracking ice features in the SAR im-

agery. The actual sea ice tracking is very accurate. Lindsay and Stern (2003) report that the median magnitude of displacement

differences between buoy drift (via ARGOS positioning) and RGPS motion estimates is 323 m.

RGPS observations are available since November 1996 until May 2008. In this study we use RGPS data from 20 periods (115

winter and 9 summer) or 97 months between 1996 and 2008 (see Table 2).

2.3 Common Reference Frame for Model Solutions and Observations

As a prerequisite for a meaningful comparison, the Lagrangian RGPS observations and Eulerian model output have to be

brought to a common reference frame. We use the RGPS Lagrangian reference frame. This ensures that both RGPS and model

sea ice strain rates are calculated for the same area and time interval. This procedure avoids differences between the datasets10

caused by the non-linearity of the strain rate scaling (power law dependence, see sections 1, 3.2, and 3.2.2). The starting point

is the RGPS ice drift velocity dataset. After the RGPS and model velocities are brought onto the same reference frame, strain

rates are calculated from both datasets in exactly the same way.

Every RGPS Lagrangian point k(xi, ti) has a location, time, and time difference ∆t until the next observation attached to

it. From this ∆t= ti+1− ti and the new position xi+1 the velocity of point k during the time interval ∆t can be calculated.15

We interpolate the Eulerian model velocities to the Lagrangian RGPS positions using a bilinear interpolation. The mean RGPS

time interval ∆t is about 3 days, but ∆t varies from a few hours to about two weeks. We interpolate the mean model sea ice

velocity during the individual ∆t’s from the daily model output covering the ∆t time period.

After this consistent RGPS and model sea ice velocity dataset is established, sea ice strain rates are calculated using Delaunay

Triangulation. From the triangle area A and the sea ice velocity components u in x direction and v in y direction at the three20

triangle corners, the following partial derivatives can be calculated using the Divergence Theorem and the line integral around

the triangle boundary:
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=

1

A

∮
udy ,

∂u

∂y
=− 1

A

∮
udx
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vdy ,
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∂y
=− 1

A

∮
vdx (1)

Using equations 1 the strain-rates invariants divergence ∇̇, shear τ̇ , and vorticity ζ̇ can be calculated:25

∇̇=
∂u

∂x
+
∂v

∂y
, (2)
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∂u

∂x
− ∂v

∂y

)2

+

(
∂u

∂y
+
∂v
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)2
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ζ̇ =
∂v

∂x
− ∂u

∂y
. (4)

As a measure of the total sea-ice deformation rate Ḋ we use

Ḋ =
√
∇̇2 + τ̇2 , (5)30
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which is used as a measure for the overall sea-ice deformation occurring at a certain point in space (e.g., Stern and Lindsay,

2009).

Erroneous cells, which might, e.g., arise due to errors in the ice tracking or from badly defined triangles from the Delaunay

triangulation, are filtered out using the following constrains: (1) The triangle cell area A has to be between 5 and 400 km2. For

the statistical comparisons and model to RGPS difference calculations, this condition is further restricted to 25<A< 100 km2.5

This second condition assures that the length scale of all observations can be considered to be ∼10 km, which is the initial

RGPS grid spacing. This is important as sea ice strain rates are scale-dependent (see section 1). (2) Triangles are not allowed to

be overly distorted, i.e., not to be acute. To achieve this condition all angles have to be larger than 10◦. (3) The time interval ∆t

between two observations must be between 12 hours and 7 days. (4) Cells with a deformation rate Ḋ (see equation 5) higher

than 1 day−1 are considered outliers and are removed. Only filter (4) creates a different number of observations for the RGPS10

and model dataset (because Ḋ can differ between model and RGPS). However, to keep the number of observations equal in

both datasets, filtered data points from one dataset are also removed from the other one.

2.4 Anisotropic Smoothing Filter

Bouillon and Rampal (2015a) show that artificial noise can be present in sea ice deformation fields derived from Lagrangian

sampling. The simplest example to understand the problem, discussed in more detail in the article, would be a linear shear15

fault line without any divergence, i.e., two floes of ice move parallel to each other in opposite directions. If we now consider

Lagrangian points on both sides of the shear line and the triangles they form it becomes clear that the area of these triangles will

change for a parallel but opposite movement of the two floes: alternating the area of the triangles will increase and decrease.

Following equation 2 this will lead to an alternating pattern of divergence and convergence while actually there is no divergence

at all (no lead is opening or closing). This sampling noise can, however, cause the deformation fields to appear noisy and also20

will artificially increase the absolute divergence, vorticity, and deformation rate (see equation 5). Bouillon and Rampal (2015a)

estimate an overestimation of opening and closing by about 60% for the RGPS dataset.

We apply the anisotropic smoothing filter suggested by Bouillon and Rampal (2015a) to all our Lagrangian RGPS and model

datasets. We use the same parameters for the filter as suggested in their study, i.e., a threshold of 0.02 day−1 for the deformation

rate Ḋ to identify deformed triangles and a smoothing kernel size of n= 3. n gives the number of times the kernel size is grown25

starting from the initialy analyzed triangle, i.e., for n= 1 only the three triangles adjacent to the analyzed triangles would be

used for the smoother. For n= 3 this procedure is repeated two more times. All triangles above the threshold values within that

kernel are then averaged to yield the new value for the analyzed triangle. For more details see Bouillon and Rampal (2015a).

This anisotropic filter will conserve linear structures typical for ice deformation in most cases and significantly reduce the

artificial noise discussed above. The obtained fields will be more realistic and closer to reality.30

This smoothing filter is applied to all partial derivatives in equations 1 before any further calculations are performed. In the

following all results are based on these smoothed ice deformation fields. As explained above the absolute deformation values

therefore will be lower than in studies that use the unfiltered deformation fields. The smoother will also affect the scaling

exponents discussed in section 3.2. As reference for other studies we therefore repeated all analysis without the anisotropic

6



smoother and present the results in section S-1 of the Supplementary Material document. In section 3.3 we compare some

examples of the filtered and unfiltered results, which will demonstrate that qualitatively all conclusions presented in this study

will hold for both the filtered and unfiltered datasets.

3 Modeled Sea-Ice Deformation Compared to RGPS Observations

In this section, we compare the simulated sea-ice deformation distribution to satellite observations. Big differences between5

observed and modeled sea-ice deformation fields have been reported (Lindsay et al., 2003; Kwok et al., 2008; Girard et al.,

2009; Wang and Wang, 2009, see also section 1). Kwok et al. (2008) evaluated four common sea ice models with horizontal

grid spacing ranging from 9 to 40 km. None of these models could produce realistic distributions of small-scale deformation

features and linear kinematic features (LKFs), although the large-scale sea-ice deformation pattern was reproduced correctly

by some of the models. The model with the smallest grid spacing (9 km) showed the most confined LKFs. It was speculated10

that if the model grid spacing would be further decreased, the model could eventually produce more realistic details and have a

better representation of LKF distribution. Girard et al. (2009) compared the statistics of VP and EVP simulations with 12-km

grid spacing to RGPS data and also reported large differences, as did Wang and Wang (2009) and Lindsay and Stern (2003) for

different model setups. We reconstruct the RGPS observations from model velocity fields for best inter-comparability (section

2.3) and explore how the LKF representation changes when the model resolution increases (section 3.1). We also compare the15

power law scaling between our model simulations and the RGPS data (section 3.2).

3.1 Dependence on Model Grid Spacing

3.1.1 Spatial Patterns and LKFs: Divergence, Vorticity, and Shear

Figures 2, 3, and, 4 show the monthly November 1999 divergence, vorticity, and shear fields, respectively, obtained from RGPS

data and from the three model solutions with 4.5 km, 9 km, and 18 km grid spacing. November 1999 is shown as an example.20

Conclusions drawn in this section are qualitatively valid also for other months. Section S-2 of the Supplementary Material

document shows further examples of all three deformation variables for months December 1999 and March and April 2000 to

also provide some information about the seasonality of the deformation fields.

Divergence, vorticity, and shear in Figures 2, 3, and 4 are not calculated from monthly mean ice velocities but are monthly

aggregates of the about 3-daily Lagrangian dataset described in section 2.3. The patterns shown are therefore not representative25

for a single day but are an aggregate of all patterns that have occurred during one month. Reoccurring LKFs might overlap

each other. For all maps both the Lagrangian RGPS data and the reconstructed Lagrangian model solutions (see section 2.3)

were interpolated to the same polar stereographic grid with 12.5-km grid spacing. This means that all differences visible in the

model maps (at least for the 9 and 4.5-km ones) are due to changed behavior of the model physics and can not be attributed

to the different model grid spacing alone. The 12.5-km grid spacing are a slight oversampling for the 18-km model output but30
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an undersampling for the 9 and 4.5-km model solutions. Figures 2 to 5 also show a black contour discriminating multiyear ice

from first-year sea ice based on QuikSCAT backscatter data.

In general, the large-scale sea-ice deformation patterns are reproduced by the model for all three grid spacings. In November

1999 a pattern of high divergence (Figure 2) can be observed in the Beaufort Sea and a more convergent situation north of the

Chukchi and East Siberian Sea (see Figures 1 and 2 for locations). This pattern is also present in all three model solutions,5

but much weaker. In the RGPS observations the pattern is broader and covering most of the seasonal sea ice in that region.

The high divergence in the Beaufort Sea is accompanied by negative vorticity (Figure 3), which can be observed in the RGPS

data as well as in the three model solutions. Also the positive vorticity pattern north of Ellesmere Island with strong LKFs is

reproduced in all three model integrations. The same is true for the positive vorticity pattern in the East Siberian Sea and the

negative vorticity north of the Laptev Sea.10

The RGPS data show strong sea ice shear almost everywhere in the marginal sea ice zone (Figure 4). This area of high shear

is only partly reproduced by all three model solutions. All three model solutions show almost no large-scale shear patterns.

In the Beaufort and East Siberian Seas, only small areas of high shear are present. From the three deformation variables

divergence, shear, and vorticity the agreement between the large scale RGPS and model shear is the worst. The agreement

of the vorticity patterns between RGPS and models is the best, which is expected because it is strongly inherited from the15

atmospheric and ocean forcing. However, the magnitudes of divergence, shear, and vorticity for all three model solutions are

much smaller (about 40% smaller, see next section) than the RGPS ones. These statements are true not only for the November

1999 example shown here but also for almost all of the other months with available RGPS data (see Table 2) and will be further

discussed in section 3.1.2.

We now qualitatively compare the distribution and frequency of occurrence of LKFs followed by more quantitative compar-20

isons in the next sections. The model solutions for all three grid spacings do have significantly less LKFs than the RGPS data.

This is true for all three deformation variables: divergence, shear and vorticity. Between the three model solutions there are,

however, significant differences for the LKF distribution. While, e.g., the sea ice shear for the 18-km model solution in Figure

4 shows very few identifiable LKFs, the number of LKFs slightly increase for the 9-km solution and significantly increase

for the 4.5-km solution. The same can be observed for the divergence and vorticity fields. The 4.5-km model solution always25

shows the most LKFs and its deformation distribution is most consistent with RGPS observations based on visual inspection.

This conclusion holds for all 97 months with available RGPS data that were analyzed and will be further discussed in section

3.1.3 (see also section S-2 in the Supplementary Material for maps of more example months).

The large-scale difference in sea-ice deformation between RGPS observations and model solutions is not evenly distributed

over the Arctic Basin as can already be seen from Figures 2 to 4. Figure 5 shows the deformation rate difference ∆Ḋ =30

ḊRGPS−ḊMODEL for the 4.5-km, 9-km, and 18-km solutions during November 1999. All three difference maps are smoothed

with a 150-km kernel to remove small scale differences (e.g., LKFs) and highlight the large-scale difference patterns. The

large-scale difference patterns are very similar for all three model grid spacings. The representation of large-scale sea-ice

deformation in the model is therefore less dependent on the model grid spacing than the small scale deformation distribution.

There is, however, some seasonal dependence as we will see in section 3.1.2.35
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The main differences in ∆Ḋ are confined to the seasonal ice zone (outside the black contour in Figure 5). In general the

seasonal sea ice is thinner and more mobile than the older, thicker perennial ice. For the perennial ice, ∆Ḋ is much smaller

and mainly stays below 0.02 day−1. This discrepancy between seasonal and perennial ice hints to a shortcoming of the sea ice

rheology used in the simulations. To first order the main difference between seasonal and perennial sea ice is the ice thickness.

Our November 1999 example month, however, also covers very young ice in the marginal ice zone (MIZ), where also floe size5

and the level of fragmentation and fracturing of the ice is very different from the perennial ice. These factors are not adequately

included in the model.

In our model configuration, we use the typical ice pressure formulation P (or strength) of Hibler (1979):

P = P ∗he[C
∗(1−C)] (6)

The ice strength P depends linearly on the ice thickness h and exponentially on the ice concentration C. P ∗ and C∗ are scaling10

constants for the ice strength parameterization. That P depends linearly on ice thickness h is a typical formulation for a VP

or EVP sea ice rheology with two ice classes and might not be the best representation of the P to h relationship. Models with

more ice thickness classes often use a P ∝ h3/2 formulation (Rothrock, 1975; Lipscomb et al., 2007), which can be considered

more realistic. As mentioned there are, however, also other differences between the seasonal and perennial ice zone than the

ice thickness. The proximity to open water in the MIZ, for example, will allow more cases of ice divergence at the ice margins15

than in the ice pack, which might be less well represented by the VP rheology. The examples for late winter in March an

April 2000 in section S-2 in the Supplementary Material document show a reduced difference in divergence and shear for the

seasonal ice zone. The ice has consolidated by then and the Arctic Basin is fully covered by sea ice, which reduces the mobility

of the ice pack. In times of a changing Arctic environment, however, where seasonal sea ice is becoming the dominant ice type

(Comiso, 2012), the problem of large discrepancies in simulated sea-ice deformation of the seasonal ice zone and MIZ will20

have an important impact.

3.1.2 Deformation Rate Time Series

For this study RGPS observations from all 20 available periods of RGPS observations (i.e. 97 months, between November 1996

and May 2008) are used (Table 2). Figure 6 shows (a) the period-averaged sea-ice deformation rate Ḋ and (b) the monthly-

mean seasonal cycle of Ḋ. The months of September and October are not covered by RGPS data. The time series of Ḋ, |∇̇|,25

|τ̇ |, and ζ̇ behave very similarly. For simplicity we will therefore concentrate the discussion on the sea-ice deformation rate Ḋ

(Figure 6) but the statistics for all variables are presented in Table 3.

The RGPS deformation rate (black) is consistently higher than all of the 4.5-km (total mean +37%), 9-km (+40%), and

18-km (+44%) simulations. The same is true for divergence, shear, and vorticity. The largest difference occurs for absolute

divergence, which is 49% to 66% lower than the RGPS data (Table 3). Overall, we conclude that the absolute amount of30

sea-ice deformation in our current sea ice model setup is about 40% too low in comparison to RGPS observations and this

underrepresentation of deformation is almost independent of model grid spacing during winter months. During summer months,

however, the model performance differs depending on horizontal grid spacing and the 4.5-km simulation shows the smallest
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difference to RGPS observations. This can be seen in the seasonal cycle in Figure 6b where during December to April the three

model solutions are close to each other and agree within their standard deviation. Only during summer months (June to August)

the 4.5-km solution shows a higher deformation rate than the 9-km solution, which again shows a higher deformation rate than

the 18-km solution. The RGPS data show a clean, sinusoidal-like seasonal cycle with a clear minimum in March and maximum

in August (likely the real maximum would occur during the unobserved month of September). For the 9-km and 18-km model5

solutions the sinusoidal behavior of the seasonal cycle is less pronounced. They have a clear maximum during August but only

a very weakly defined minimum in March. Ḋ is almost constant during January to May. The 4.5-km solution differs from

this behavior and shows a clearer sinusoidal seasonal cycle than the other two model solutions with a defined minimum in

February/March. That is, the 4.5-km solution again shows a better performance than the lower-resolution simulations.

The RGPS and all model deformation time series are highly correlated (R2 ≈ 0.85). The variability of the modeled defor-10

mation rate is slightly smaller but comparable to the observed RGPS variability. The standard deviation σ of the monthly Ḋ

time series (not shown) is with σ = 0.6 · 10−2 day−1 comparable to the standard deviations of the 18, 9, and 4.5-km solutions

(σ = 0.4 to 0.6 · 10−2 day−1, see Table 3). Again the 4.5-km solution shows the highest variability and performs best.

3.1.3 Localization of Deformation

As seen in section 3.1.2, the absolute magnitude of sea-ice deformation in the model is much too low. Nevertheless, in section15

3.1.1 it was shown that the modeled sea-ice deformation distribution gets more similar to the observed one if the model grid

spacing is decreased. In particular, more and better-confined LKFs appear for smaller grid spacing (e.g., Figure 4). To show

this change in the sea-ice deformation distribution more quantitatively we now look at the "localization" of the deformation

rate (Marsan et al., 2004). Following Stern and Lindsay (2009) we calculate the area fraction Q, which contains the highest

15% of all sea-ice deformation rates. Q is calculated as:20

Ḋ1 ≥ Ḋ2 . . . Ḋn−1 ≥ Ḋn

p∑
i=1

Ḋi = 0.15

n∑
i=1

Ḋi

Q=

p∑
i=1

Ai

/ n∑
i=1

Ai ,

where Ḋi are the individual Lagrangian deformation rate observations sorted by their magnitude starting with the highest. Ai

are the accordant triangle areas. The number of observations n is identical for all model simulations and the RGPS data. This25

measure is independent of the absolute amount of deformation rate.

The smaller the percentage Q gets, the more localized the deformation is distributed. If the deformation rates would be

evenly distributed the highest 15% would also occupy 15% of the area. We will see that Q indeed is much smaller than that.

Figure 7 shows (a) the time series of Q for all 20 RGPS periods for the three model solutions and the RGPS data and (b) the

seasonal cycle of Q (also see Table 3 for statistics).30
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Sea ice deformation in both the RGPS observations and all three model solutions is very localized. The highest 15% of

all deformation rates Q is only occupying between 0.8 and 2.9% of the total area for all models and data. Q decreases with

decreasing model grid spacing. There is a big difference in Q for the 4.5-km simulation (Q= 0.8%) compared to Q of the

9-km and 18-km simulations (Q= 2.3% and Q= 2.9%, respectively). The mean Q= 0.8% of the 4.5-km simulation is even

significantly lower (−47%) than the localization Q= 1.5% of the RGPS observations. This shows that the sea-ice deformation5

distribution got considerably more confined for the 4.5-km simulation compared to the other two lower-resolution simulations,

which are 49% and 95% higher than the RGPS data, respectively. This can also be seen in the examples of Figures 2 to 4, which

show a strong increase in the number of LKFs when the grid spacing is reduced from 18 and 9 km to 4.5 km. The strain rate

distributions for the 18 and 9-km simulations are much more similar. This increase in LKFs is confirmed here by the very strong

localization Q for the 4.5-km solution. It is not clear why the change in Q is so big for the 4.5-km solution compared to the10

other two solutions. Despite the big difference in the mean deformation rate compared to the RGPS data, the 4.5-km simulation

is able to reproduce the fraction of the total area, in which the strong sea-ice deformation events are concentrated very well. The

events are even too confined compared to RGPS. Also the seasonal cycle of Q in Figure 7b is similar for the 4.5-km solutions

compared to RGPS observations. The increase in Q in summer, however, comes later and stays at lower values for the 4.5-km

solution. The seasonal cycle for the 18 and 9-km simulation is also similar to RGPS in terms of timing but the magnitude is15

a bit enhanced. The standard deviations of Q for the monthly time series are with 0.7% and 0.6% very similar for RGPS and

the 4.5-km simulation but are about double for the 18 and 9-km model solutions (1.1% and 1.2%, respectively). Especially the

18-km model simulation shows much higher Q values during summer, which hints towards a degraded performance during

summer.

In summary, sea-ice deformation in the model solution with the finest grid spacing of 4.5 km is most confined and localized,20

as had already been seen in the examples of section 3.1.1 and the Supplementary Material document). One has to keep in mind,

however, that the absolute model deformation rate is about 40% lower than that of the observations. From the three model

solutions, the 4.5-km simulation can be considered most consistent with the RGPS observations.

3.2 Power Law Scaling of Deformation Rates

Sea ice strain rates do not scale linearly in space and time. Instead the scaling follows a power law. Some details about the25

nature of this scaling dependence are given in, e.g., Weiss (2003, 2013). In sections 3.2.1 and 3.2.2 we will compare the power

law scaling of the model solutions with the RGPS data based on length scale and their respective probability density functions.

There is some discussion in current literature how well the VP ice rheology is able to reproduce this power law scaling (e.g.

Girard et al., 2009). In section 3.2.3 we use the power laws scaling dependence to compare the sea ice deformation rate for

three model solutions with different grid spacing.30

3.2.1 Dependence on Length Scale

The magnitude of sea ice strain rates and their invariants depends on the spatial scale over which they are determined. In this

section we use the absolute divergence |∇̇| and shear rate τ̇ as examples but similar relationships exist for the deformation rate
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Ḋ, and vorticity ζ̇. For absolute divergence |∇̇| and length scale L over which |∇̇| is determined this power law scaling can be

expressed as:

|∇̇| ≈ dLb (7)

For τ̇ the equation is equivalent. b is the scaling exponent, and d a constant of proportionality, which can be interpreted as mean

deformation rate at a given base scale. We use the consistent Lagrangian strain rate dataset described in section 2.3 and 2.4 to5

compare RGPS observations with model solutions. Following the procedure described in Stern and Lindsay (2009) strain rates

at different spatial scales are calculated. The seven nominal length scales L∗ = 10, 20, 50, 100, 200, 500, and 1000 km are

used. The initial length scale of the RGPS data is 10 km and therefore this is the smallest scale that can be obtained. We obtain

those strain rates as follows:

– All Lagrangian cells within a 5-day window are aggregated on a regular grid with grid cell size L∗. All Lagrangian cells10

whose center coordinate fall within a grid cell form the aggregate for that cell.

– A filter is applied: The time interval ∆t of the individual Lagrangian cells must be between 2 and 5 days and their

individual area between 25 and 100 km2. The total area of the remaining aggregated cells must be greater than 0.75L∗2.

– For each aggregate, mean strain rates (∂u/∂x, ∂u/∂y, etc. – see equation 1) are computed from the individual strain

rates in the aggregate by using the cell areas as weight. The deformation invariants (∇̇, τ̇ ) for the aggregates are then15

computed with those mean strain rates.

– The actual length scale L for each aggregate is determined by the square root of all cell areas.

Figure 8 shows the absolute divergence |∇̇| and shear rate τ̇ versus the length scale L for RGPS observations and the three

model solutions with 4.5 km, 9 km and 18 km grid spacing on a log-log scale. The dataset was split in the winter and summer

RGPS periods (Table 2). The averages of |∇̇| and τ̇ for the seven nominal scales 10, 20, 50, 100, 200, 500, and 1000 km are20

marked by symbols.

The RGPS observations and all three model solutions follow a power-law scaling, both during winter and during summer.

Figure 8 shows least square fits for the seven mean values between 10 and 1000 km as dashed lines. While both the observations

and model solutions follow a power-law, the inclinations of the fit, i.e., the scaling exponent b in equation 7 is steeper for

RGPS than for the model solutions. All b values (and uncertainty estimates) are summarized in Table 3, including values for25

deformation rate Ḋ.

For absolute divergence |∇̇| the exponent b for RGPS is −0.24± 0.03 during winter and −0.27± 0.01 during summer.

The magnitude of b for the model solutions is lower. The b values of the 4.5-km solution are with −0.13± 0.03 for winter

−0.19± 0.03 for summer closest to the RGPS data. The 9 and 18-km solutions show similar b values that differ stronger from

the RGPS ones (−0.09 during winter and −0.12 to −0.10 during summer).30

For shear τ̇ the situation is similar. During winter the RGPS b value is −0.15± 0.04 and during summer b=−0.19± 0.05.

The b value magnitude for the model solutions is again smaller. During winter all model solutions have similar b exponents
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(−0.09± 0.04 for the 4.5 and −0.08± 0.05 for the 9 and 18-km solutions). During summer the 4.5-km solution again comes

closest to RGPS with b=−0.16±0.05, while the 9 and 18-km solutions have b exponents of −0.12±0.05 and −0.11±0.06,

respectively.

Our estimates of b for RGPS agree well with previous estimates from, e.g., Marsan et al. (2004) and Stern and Lindsay

(2009), who report for the deformation rate Ḋ a b value of ≈−0.2 during winter and ≈−0.3 during summer in the Arctic.5

We obtain b values of somewhat lower magnitude (−0.16 for winter and −0.19 for summer; see Table 3). In contrast to these

studies we, however, use an anisotropic spatial filter to reduce sampling noise (section 2.4). Our b values for the unfiltered

RGPS data of b=−0.22 and −0.25 for summer and winter, respectively, agree very well with previous studies (see section

3.3 and Supplementary Material). A similar change of b for filtered vs. unfiltered RGPS data was reported by Bouillon and

Rampal (2015a).10

More importantly, for the model solutions our results do not agree with previous studies. Our model solutions reproduce the

power-law scaling properties very well. While the b values are different the quality of the fit for the model solutions and RGPS

data are very similar and very good for both (see Figure 8). We do not observe the strong divergence from power-law scaling

for models with VP ice rheology reported by Girard et al. (2009).

3.2.2 Probability Density Function15

Another way to look at the power-law scaling behavior of sea ice deformation rates is by comparing probability density

functions (PDFs) obtained from model solutions and RGPS data. The PDFs for observed sea ice strain rates follow a power

law. For example, Girard et al. (2009) report that the PDF of RGPS strain rates during January to March 1997 follows a linear

relation in log-log space:

p(|∇̇|)∝ |∇̇|n (8)20

For the comparisons, the same 5-day aggregated RGPS and model datasets described in the previous section 3.2.1 were

used. We show results obtained for the nominal length scale L∗ = 10 km. Results for the other length scales are similar. PDFs

at lower resolutions are even a bit smoother, but qualitatively the conclusions are the same. PDFs p for absolute divergence |∇̇|
and shear rate τ̇ are then calculated for all winter (11 years) and summer (9 years) RGPS periods (see Table 2). Figure 9 shows

the PDFs for the three model solutions with 4.5 (blue), 9 (green), and 18 km (red) grid spacing and the RGPS data (black) on25

a log-log scale. Table 3 summarizes the obtained n exponents including uncertainty estimates.

A linear least squares regression was applied to the PDFs in log-log space for the range 0.1–1.0 day−1, shown as dashed

lines in Figure 9. The same range was used for all four plots. For very small and large deformation rates outside that range,

the RGPS PDFs diverge from the power law relationship. The accuracy of the RGPS observations is about 100 m and noisy at

that scale. Low deformation rates therefore could be underrepresented in the RGPS PDF, which potentially could explain the30

deviation from a straight line for low deformation rates in Figure 9. For very high deformation rates the low number of data

points causes artificial variability in the PDFs.
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The slope of |∇̇| and τ̇ for both the winter and summer RGPS PDF is n≈−3.3, only the summer slope of |∇̇| diverges with

n=−2.4 (more values in Table 3). This is consistent with but more negative than what is found in Marsan et al. (2004) and

Girard et al. (2009), who report winter RGPS PDF slopes of about−2.5 for strain rates at the≈10-km scale. Again one needs to

consider that our datasets are spatially filtered (section 2.4), which will impact the statistical values but not the overall behavior.

All model solutions show a power law scaling of the PDFs similar to the RGPS data for both |∇̇| and τ̇ . The magnitude of n5

for the model solutions always follows the same pattern: it is lowest for the 4.5-km solutions, followed by the 9-km one, and

highest for the 18-km simulation. The scaling exponents of the 9-km solution agree best with RGPS ones and often overlap

within the uncertainty estimates (Table 3). The 4.5-km solution always has a shallower and the 18-km one a steeper slope than

the RGPS data for both |∇̇| and τ̇ .

In most cases the three model solutions show a power-law scaling behavior over an even larger absolute range than the RGPS10

data (approximately 10−2 to 1 day−1 for divergence). During summer, the model solutions PDFs are more variable and the

4.5 km solutions especially diverges from the power-law relationship for both |∇̇| and τ̇ . The model solutions show a higher

probability for small shear rates τ̇ than the RGPS data as can be expected since the deformation rates are about 50% lower as

discussed in section 3.1.2.

Overall the slopes of the PDF tails for simulated and observed RGPS absolute divergence and shear rates show good agree-15

ment. The observed and simulated power law exponents n are of the same order during both winter and summer months

(RGPS: n≈−3.1; model solutions: n=−2.2 to −3.5). During winter and summer the PDFs of the 9 km solution agree best

with the RGPS data but all model solutions show good agreement. Again, we do not observe the strong deviation from power-

law scaling reported by Girard et al. (2009) for model simulations using the VP and EVP sea ice rheology. In our model setup

the used VP rheology seems to be able to reproduce a realistic distribution of deformation rates, which follow a power-law20

relationship.

3.2.3 Comparing models with different grid size

In this section, we examine whether sea-ice deformation rates in the three model simulation with different horizontal grid

spacing follow a similar power law scaling as found in observations and as discussed in section 3.2.1. The motivation is to

make the deformation rates of the three model solutions directly comparable to each other. We will show that this is not25

possible generally speaking.

It is a common problem that one wants to compare sea ice deformation rates from different model simulations. These model

simulations then, in general, have a different grid resolution and a direct comparison is not possible due to the different length

scales involved. We will explore if the power law in equation 7 with a constant exponent b can be used to compare mean absolute

deformation rates of model solutions with different grid spacing as it was suggested by, e.g., Stern and Lindsay (2009). We use30

the deformation rate Ḋ here again to not discuss the three different strain rate invariants separately, which give similar results.

Due to the different averaging length scale L one would not expect Ḋ to be the same for model solutions with different grid

spacing. In section 3.1 we avoided this problem by interpolating the model solutions to the RGPS Lagrangian locations. Here

we keep the spatial resolution of the three model simulation and calculate all strain rates on the three original model grids
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with 4.5-km, 9-km and 18-km resolution, respectively. At least for the model solutions with higher or similar spatial scale as

the RGPS data, i.e., the 4.5 and 9-km solutions, this will create comparable datasets. Due to its lower spatial scale, the 18-km

solution cannot, in theory, fully recreate the RGPS data, regardless of the sea ice rheology formulation.

Figure 10a shows the 1992–2008 time series of the mean sea-ice deformation rate Ḋ in the complete model domain shown

in the Figure 1a inset. Different to the previous sections and, e.g., Figure 6, the complete model domain is now consid-5

ered, not only the areas covered by RGPS data. As expected the deformation rate for the 4.5-km model solution (blue, mean

Ḋ4.5km = 0.123/day) is consistently higher than that of the 9-km solution (green, mean Ḋ9km = 0.085/day,−31% compared

to Ḋ4.5km), which itself is higher than that of the 18-km solution (red, mean Ḋ18km = 0.054/day,−36% compared to Ḋ9km).

The variability from year to year of the mean deformation rate is large, especially during summer. Some years, e.g., 1997–

1999, have clearly reduced summer deformation rates in comparison to, e.g., the beginning of the 1990s or 2007 and 2008. The10

deformation rate during 2008, both during summer and winter, is the highest of the complete time series (Figure 10a).

We assume that the model deformation rate Ḋ follows the same power-law as given in equation 7 and apply a least-squares

fit in log space to equation 7:

log(Ḋi) = log(d) + b log(Li) (i= 4.5km,9km,18km)

with daily mean deformation rates Ḋi from model solutions with grid spacing Li = 4.5 km, 9 km and 18 km. The deformation15

rates for all sea-ice covered grid cells (C > 0) is averaged and b calculated on a daily basis. For all sea-ice-covered areas in the

model domain and for the complete time series, the power law scaling exponent b is estimated to be −0.54. The exponent is

different from the ones found in section 3.2.1. First, a different method is used here but more importantly a different regional

domain is covered. The model domain used here contains the complete MIZ and low ice concentrations, which allow more free

drift cases that result in a more negative b exponent.20

Figure 10b shows the deformation rate time series for the three model solutions normalized to a length scale of L= 10 km,

using the estimated scaling exponent b=−0.54 and equation 7. The length scale of 10 km was chosen to be comparable to

the RGPS data. Using this scaling, the three time series become much more similar than the original ones in Figure 10a. If

looked in detail, however, there remain some quite large differences. For example, the mean Ḋ of the 9-km simulation is now

higher than that of the other two simulations; and the standard deviations of all three simulation are still different (not shown:25

the standard deviation of the 18-km simulation is more than 0.05/day smaller than that of the 9 and 4.5-km simulations).

These differences imply that a single, constant scaling exponent b is not sufficient to make the strain rates of the three

model solutions comparable. b varies seasonally and regionally. Figure 10c and d show, respectively, the dependence of sea-ice

deformation rate Ḋ on sea ice concentration C and sea ice thickness h for the three model solutions during the complete 1992

to 2008 time series. In Figure 10c, the deformation rate decreases with increasing sea ice concentration for all three model runs30

and Ḋ approaches zero linearly for 100% ice-covered grid cells. Also for increasing ice thickness in Figure 10d the deformation

rate decreases but here the deformation rate decreases exponentially. For sea ice thickness above 2 m, Ḋ is near zero. It has to

be noted that the ice thicknesses h are the effective ice thicknesses of a complete grid cell, which also can contain open water

(C < 100%).
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From Figures 10c and d, it becomes clear that the scale dependence is much stronger for small ice concentrations and

thicknesses than for large ones. The scaling exponent b gets more negative for weaker sea ice and approaches zero for very

strong sea ice, i.e., thick ice and 100% ice concentration (see equation 6 for how the ice strength dependencies are incorporated

in the model).

There are additional external factors that influence b. For free-drift ice, b gets more negative as can be seen by the strong5

dependence on C. Therefore, the surrounding geography, i.e., landmasses, influence the scaling exponent with b values closer

to zero in channels and near the coast, where the ice cannot drift freely. The estimated power-law scaling factor b represents the

balance between all these factors. That is, sea ice concentration, thickness, and geographic location are important contributors

to the estimated scaling exponent.

The factors mentioned in the last paragraph also explain why the scaling exponent b=−0.54 found here for the three10

simulations is significantly lower than the values of b of about −0.2 found for RGPS data in section 3.2.1 or by Stern and

Lindsay (2009). There are other factors influencing the deformation rate for the different model solutions compared to the

averaging of different scales in section 3.2.1 but the different regions covered will have the dominating influence. In the model,

the values of b between −0.3 to −0.2 are typical for ice concentrations ≥ 80%. These are typical ice concentrations for the

RGPS region, which rarely extends to the marginal ice zones with low ice concentrations. If the calculation of the scaling15

exponent b in the model is restricted to the region covered by RGPS data, a mean b value of ≈−0.2 is found, which is

comparable to the b values found for RGPS data. This scaling exponent, however, is not applicable to the complete Arctic.

For this reason, it is difficult to compare sea-ice deformation rates obtained at different spatial scales. For direct comparison,

strain rates need to be calculated for identical areas, as was done in section 2.3. At the very least, for meaningful statistical

comparisons, the different scaling behavior for different ice concentrations needs to be considered.20

In summary, the three simulations with different horizontal grid spacing, i.e., different resolved spatial scales, follow a similar

power law scaling as that estimated using RGPS and buoy observations. We attribute most of the differences between simulated

and observed scaling factor b to the different sea ice concentration and thickness ranges of each dataset. The simulated power

law scaling strongly depends on ice strength, which itself depends on ice concentration and thickness. For strong sea ice, all

model solutions converge to comparably small deformation rates. In reality, i.e. for the observations, ice strength depends on25

many more factors, e.g., floe size and level of fragmentation and fracturing. The power-law scaling exponent b therefore varies

in space and time. Due to all these factors in most cases it will not be possible to directly compare the deformation rates of

model solutions with different grid spacing based on the power-law relationship.

3.3 Comparison Filtered vs. Unfiltered Datasets

The aniosotropic smoothing filter described in section 2.4 will change the statistical properties of both the RGPS dataset and30

model solutions. Figure 11 shows examplary how the filter changes the sea ice divergence fields and spatial scaling properties.

More examples are given in the Supplementary Material document, where all figures from the main text are reproduced based

on the unfiltered datasets. For the comparison we obtain similar results as described in Bouillon and Rampal (2015a).
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The goal of the anisotropic filtering is to keep the shape of the LKFs but reduce the noise introduced by the sampling of

the Lagrangian cells (see section 2.4). Figure 11a and b clearly demonstrate that the divergence fields get much improved by

applying the filter. One would expect that a particular LKF is either divergent or convergent, i.e., either a lead is opening or

closing. The unfiltered divergence field in Figure 11b shows a lot of LKFs with divergent and convergent grid cells next to each

other. For the filtered divergence field in Figure 11a, LKFs are mainly either divergent or convergent, which is a much more5

physical result. The large scale divergence pattern, however, stay the same for the filtered and unfiltered divergence fields and

all other strain rates.

As a result of the smoothing the absolute divergence (and also the magnitude of all other strain rates) gets significantly

reduced. This reduction is with 50% highest for RGPS divergence but also shear, vorticity, and deformation rate decrease by

about 30% (compare Table 3 with Table S-1 in the Supplementary Material document). For the model solutions the decrease10

is with 47% and 15%, respectively, smaller.

This reduction in divergence magnitude can be seen in Figure 11c and d, where the absolute divergence is much lower for

the filtered RGPS data and model solutions than for the unfiltered ones (mind the logarithmic scale). This reduction, however,

is not uniform at all spatial scales because the anisotropic filter smooths only regionally within a given kernel size (see section

2.4). For large spatial scales the filtered and unfiltered results therefore converge to each other and at the 1000 km scale the15

mean divergence is almost the same (see Figure 11c and d). As a result the gradient of the log-log fit, i.e. the scaling exponent

b, is much shallower for the filtered datasets. The quality of the fit, however, gets better for the filtered datasets: the averages

for the seven investigated spatial scales between 10 and 1000 km lay almost perfectly on the fit line for both RGPS data and

model solutions in case of the filtered datasets. For the unfiltered datasets the fit is still very good but some deviations can be

observed for the RGPS observations.20

The anisotropic filter described in Bouillon and Rampal (2015a) improves the representation of the deformation fields for

both RGPS data and model solutions. The absolute numbers and statistics obtained from the filtered deformation fields should

be more realistic and physical than the unfiltered ones. One will obtain quite different numbers for the means and scaling

exponents for the filtered datasets as was exemplary demonstrated here. The general behavior of the deformation field and

their statistical properties, as for example the power-law-scaling, does qualitatively,however, not change for the filtered data.25

The conclusions drawn from a comparison between different datasets, like in our example between the RGPS observations

and model simulations, would be very similar for the filtered and unfiltered datasets (compare the results here and in the

Supplementary Material document). In most cases the filter will affect different datasets in a similar way and for comparative

studies the results, qualitatively, should stay similar. But again, the filtered datasets will provide more consistent and physically

more plausible results for all sea ice deformation fields.30

4 Summary and Concluding Remarks

Sea ice deformations from coupled Arctic ocean and sea ice simulations with horizontal grid spacing of 18, 9, and 4.5 km were

compared to RGPS satellite observations during the 1992–2008 period (section 3). Lagrangian sea ice drift was reconstructed

17



from the three model solutions for a direct comparison with the RGPS data (section 2.3) and noise related to the sampling of

the Lagrangian data points was removed by an anisotropic filter (section 2.4). Sea ice strain rate invariants divergence and shear

as well as vorticity and deformation rate were calculated in the same way for the three simulations and for satellite observations

from the Lagrangian ice drift datasets. Even though the viscous-plastic dynamic sea ice model with elliptical yield curve is

able to produce what appears to be linear kinematic features (LKFs), the orientation and spatial density of these LKFs are very5

different from what is observed in the RGPS data. For the 4.5 km simulation, however, many more and more confined LKFs

are visible compared to the two lower-resolution simulations. A small model grid spacing seems to be essential to represent

LKFs using VP sea ice rheology. The mean sea-ice deformation rate, however, is between 37% to 44% lower in all simulations

than in the RGPS data. The largest difference occurs for the magnitude of divergence, which is 49% to 66% too low (Table

3). Also the large-scale shear pattern is not well reproduced in the model solutions (Figure 4). In addition the LKFs occur less10

frequently in the simulations. Of the three model solutions, the one with the smallest grid spacing of 4.5 km has characteristics

closest to RGPS observations.

While RGPS sea-ice deformation data show a clear discrimination between the thinner seasonal sea ice with more defor-

mation and the thicker perennial sea ice, the model deformation zones are mainly confined to a few LKFs at the ice margins.

Differences are largest for seasonal sea ice, where the model strongly underestimates sea-ice deformation. This suggests a15

shortcoming of the ice rheology, for example, the linear dependence between ice strength and ice thickness. Model solutions

with smaller grid spacing, however, result in more small-scale deformation features. In particular, the 4.5-km simulation has

more LKF-like features in the Central Arctic than the coarser-resolution simulations and, visually, the spatial distribution of

these LKF-like features agrees better with RGPS observations. This improved realism is evaluated by computing the percentage

Q of sea ice area containing the highest 15% of sea-ice deformation rates, which is a measure of how confined the deformation20

processes are. For this metric, the 4.5-km model solution shows the most confined deformation features with a Q value of

0.8%, which is even lower than the RGPS data with Q= 1.5%. The 9 and 18-km simulations have much higher Q values of

2.3 and 2.9%, receptively, i.e., the deformation features are much less confined. These differences in small-scale deformation

features can be important because ocean-to-atmosphere heat transfer tends to occurs on small scales. For example, the heat flux

from narrow leads can be twice as high as that from larger leads (Marcq and Weiss, 2012) and ocean upwelling events caused25

by sea ice shear motion happen on small scales (McPhee et al., 2005).

In section 3.2 we compare the power-law scaling behavior of the three model solutions with the RGPS observations. Both the

RGPS data and all model solutions show a clear power-law dependence of the absolute divergence |∇̇| and shear rate τ̇ to the

length scale L. The scaling exponents b for the RGPS data, however, is about twice as negative as for the 9 and 18-km model

solutions (e.g., for |∇̇|: b≈−0.25 for RGPS, and b≈−0.1 for the 9 and 18-km model solutions). The b value of the 4.5-km30

simulation comes closest to the RGPS value (e.g., for |∇̇|: b≈−0.16). The power-law scaling for the tail of the probability

density functions (PDF) of absolute divergence and shear for the three model solutions is similar to the RGPS data. During

both summer and winter, the power law scaling exponent n for the models (n=−2.2 to −3.5) is of the same order as the one

for RGPS data (n≈−3.1). The PDF of the 4.5-km solution always shows the shallowest slope, followed by the 9-km one.

18



The 18-km solution has the steepest slope. We do not observe the strong divergence from power-law scaling for the VP sea ice

rheology reported by Girard et al. (2009), neither for the spatial scale dependence nor for the PDFs.

We tested if the power-law dependence can be used to compare deformation rates obtained with model simulations using

different grid spacings. The scaling of the deformation rate in our three model solutions with different grid spacing, i.e.,

different length scales follows a similar power law as is observed for the RGPS observations (section 3.2.3). The power law5

scaling exponent strongly depends on ice concentration and thickness, i.e., the factors that for the model determine the internal

ice stress. In most cases, therefore it will not be possible to meaningfully compare absolute numbers of strain rates obtained

from models with different grid spacing.

The anisotropic filter presented in Bouillon and Rampal (2015a) improves all deformation fields but especially the ice diver-

gence. The filter changes both the average values and magnitude of the power-law scaling exponents (section 2.4). Qualitatively,10

however, the conclusions drawn from a comparison of the RGPS data with model simulations are the same for the filtered and

unfiltered datasets.

On larger scales the sea-ice deformation rate of all three model solutions is very similar, with only small improvements for

the 4.5-km simulation (Figure 5). Almost independent of grid spacing, the modeled sea-ice deformation is much lower than

the RGPS observations (∼ 40%). Nevertheless, the large scale pattern of divergence (Figure 2) and vorticity (Figure 3), but15

to a lesser degree shear (Figure 4), are reproduced by all model simulations. Even if the differences are small for the large-

scale deformation patterns, the 4.5-km simulation, the one with the smallest horizontal grid spacing, always performs best

out of the three solutions. This difference becomes more pronounced if small scale deformation features are considered. The

4.5-km simulation is the only one that reproduces a reasonable number of LKFs in the Central Arctic, even on length scales

(2× the grid spacing) where the lower resolution models theoretically are capable of reproducing these features. We conclude20

that increasing the spatial model resolution can improve the sea-ice deformation representation for a viscous-plastic sea ice

rheology. However, big differences to the observed sea-ice deformation strain rates still remain.

A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea ice mass balance.

Multiple equilibrium flow states (i.e., when ice growth equals ice export) can exist for the Arctic Basin, and their character-

istics are influenced by sea ice strength and ice rheology (Hibler et al., 2006). Steele et al. (1997) show that the ice strength25

parameterization in a VP sea-ice model influences the sea ice mass balance in the Arctic Ocean. Reducing the sea ice strength

in the model decreases internal stress gradient and results in faster mean ice motion and thicker ice, which in turn strengthens

and slows the ice. Steele et al. (1997) attribute this thickening to increased ice piling up in the weaker ice simulation.

An interesting future study would be to attempt to adjust sea ice and ocean model parameters in order to reproduce the metrics

discussed in this paper. For example, in a separate sensitivity experiment, not discussed in this manuscript, we changed the sea30

ice strength dependence on sea ice thickness (equation 6) from linear to cubic, which considerably increased deformation rate

in both perennial and seasonal ice zones. Of course, adjusting a single parameter can improve a certain set of model features

but is likely to make others, e.g., sea ice velocity, worse. What is needed is the simultaneous adjustment of several key model

parameters, in the manner discussed in Menemenlis et al. (2005) and Nguyen et al. (2011). Other possible approaches for

improving the representation of sea ice strain rates include the introduction of multiple categories for different ice thicknesses35
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and deformed and undeformed ice, since multicategory models allow weaker resistance, more leads, and enhanced ice growth

(Mårtensson et al., 2012); and experimentation with new ice rheologies that do not rely on the viscous-plastic assumptions

(Sulsky et al., 2007; Girard et al., 2011; Tsamados et al., 2013; Bouillon and Rampal, 2015b).
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Figures

Figure 1. a) The Arctic face of the cube sphere grid used by the ECCO2 project. The March 2005 ice thickness inset shows the regional grid

used in this study. Note that North Pacific coastline in the regional grid is modified relative to the global set-up in order to remove unconnected

seas. Boundary conditions are obtained from the ECCO2 18-km cube sphere solution. b) – d) Sea ice thickness on 15 November 1999 after

about 8 years of model integration for the 4.5 km, 9 km, and 18 km simulation, respectively. Sea ice thickness is shown on the respective

original model grid.
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Figure 2. Examples of monthly mean November 1999 sea ice divergence. The divergence from (a) RGPS and the model runs with (b)

4.5-km, (c) 9-km, and (d) 18-km grid spacing are shown. The number of LKFs increases with decreasing model grid spacing. All maps are

shown on the same 12.5 km grid and are constructed from the same number of observations (see section 2.3). The black line discriminates

seasonal and perennial sea ice. White areas are not covered by RGPS observations.
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Vorticity, Nov 1999
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Figure 3. As Figure 2 but for vorticity.
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Shear, Nov 1999
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Figure 4. As Figure 2 but for shear.
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Deformation Rate Di�erence, Nov 1999
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Figure 5. Smoothed (150 km) difference in deformation rate Ḋ between RGPS and model solutions with 4.5-km (left), 9-km (middle), and

18-km (right) grid spacing. Largest differences occur in the seasonal ice zone outside the black contour.
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Figure 6. a) Mean deformation rate Ḋ for all 20 RGPS periods and the corresponding modeled values. Circles mark winter periods and

triangles summer periods; note that periods have different length (see Table 2). b) Seasonal cycle of Ḋ; shaded areas show standard deviations

for RGPS and the 4.5-km solution (9 and 18-km solutions are similar); horizontal dashed lines show the mean calculated from the monthly

time series; note that no data is available for September and October.
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Figure 7. The percentage Q of area containing the highest 15% of all sea-ice deformation rates shows the localization of deformation. a)

Time series showing the absolute percentage Q for RGPS data (black) and model solutions with 4.5 (blue), 9 (green), and 18 km (red) grid

spacing for all 20 RGPS periods. Circles mark winter periods and triangles summer periods; note that periods have different length (see Table

2). b) Seasonal cycle of Q; shaded areas show standard deviations for RGPS and the 4.5-km solution (9 and 18-km solutions are similar);

note that no data is available for September and October.
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Figure 8. Scaling properties of absolute sea-ice divergence |∇̇| (a, b) and shear rate τ̇ (c, d) for RGPS and model solutions for all winter

(Nov–May; a, c) and summer (May–Aug; b, d) periods. For length scales of 10, 20, 50, 100, 200, 500, and 1000 km the ice divergence and

shear from the Lagrangian cells were aggregated over 5-day periods. Individual data points for the RGPS dataset are shown in grey. Mean

values for the seven different length scales are marked with symbols. Dashed lines are least square fits to the seven mean values from 10 to

1000 km. Note the logarithmic axes scaling.
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Figure 9. Probability density function of absolute sea-ice divergence |∇̇| (a, b) and shear rate τ̇ (c, d) for a length scale of 10 km based on

5-daily aggregated Lagrangian cells for all winter (Nov–May) and summer (May–Aug) periods for RGPS and model solutions. Dashed lines

are least square fits to the approximately linear part of the PDFs between 0.05 and 1.0 day−1. Note the logarithmic axes scaling.
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Figure 10. a) Time series 1992–2008 of mean deformation rate Ḋ in the complete model domain (see Fig. 1) for model runs with 4.5 (blue),

9 (green), and 18 km (red) grid spacing. b) as a) but for deformations normalized to a 10 km scale using equation 7 with b=−0.54. All

curves are one month running means. c) and d) show, respectively, the dependence of sea-ice deformation rate Ḋ on sea ice concentration C

and sea ice thickness h for the three model integrations. Blue shaded color areas mark ± one standard deviation for the 4.5 km solution.
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Figure 11. Comparison of filtered and unfiltered datasets using the anisotropic smoother described in section 2.4. a) RGPS divergence for

November 1999. This is the same sub-figure as in Figure 2a. b) as a) but using the unfiltered RGPS data. The divergence field appears more

noisy. c) The spatial scaling of absolute divergence for the RGPS data and model solutions based on the filtered datasets for all winter periods.

This is the same sub-figure as in Figure 8a. d) as c) but for the unfiltered datasets. The slopes are shallower for the filtered datasets and the

quality of the fit improves.
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Tables

Table 1. Selected sea ice model parameters (see Nguyen et al. (2011) for more details).

Atmospheric forcing JRA-25

Sea ice dry albedo 0.7

Sea ice wet albedo 0.71

Snow dry albedo 0.87

Snow wet albedo 0.81

Ocean albedo 0.16

Air/sea ice drag coefficient 0.0011

Ocean/sea ice drag coefficient 0.0054

Ice strength parameter P ∗ 23 kN/m2

Lead closing parameter Ho 0.6

elliptical yield curve major to

minor axis ratio e 2
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Table 2. RGPS periods used in this study. Column 3 gives the number of monthly mean values used.

start date end date no. months season

1996-11-07 1997-06-01 7 winter

1997-05-18 1997-08-01 2 summer

1997-11-02 1998-06-01 7 winter

1998-05-10 1998-09-01 2 summer

1998-10-28 1999-05-17 6 winter

1999-05-08 1999-09-01 4 summer

1999-11-01 2000-05-14 7 winter

2000-11-04 2001-06-01 7 winter

2001-05-15 2001-09-01 3 summer

2001-11-05 2002-06-01 7 winter

2002-05-16 2002-08-01 2 summer

2003-12-04 2004-06-01 6 winter

2004-05-11 2004-09-01 3 summer

2004-11-10 2005-06-01 7 winter

2005-05-15 2005-09-01 3 summer

2005-11-29 2006-06-01 6 winter

2006-05-19 2006-09-01 3 summer

2006-12-03 2007-06-01 6 winter

2007-05-14 2007-09-01 3 summer

2007-12-01 2008-06-01 6 winter

20 periods (11 winter/9 summer) 97
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Table 3. Overview of some statistical parameters for the complete 97-month time series of RGPS and model sea ice strain rate invariants.

All units are 10−2 day−1 if not otherwise indicated; ± values denote the standard deviation of the time series; ‘difference’ is the difference

between model and RGPS in %; and ‘correlation’ is the correlation coefficient between the model and RGPS time series. The last rows

summarize the power-law scaling exponents b for spatial scale and n for PDFs at 10 km scale (plus 95% confidence bounds) discussed in

section 3.2 (no units, see also equations 7 and 8).

·10−2 RGPS 4.5 km 9 km 18 km

deformation rate Ḋ mean 1.9± 0.6 1.2± 0.6 1.1± 0.5 1.1± 0.4

difference −37% −40% −44%

correlation 0.84 0.87 0.88

absolute divergence |∇̇| mean 0.6± 0.3 0.3± 0.2 0.2± 0.1 0.2± 0.1

difference −49% −63% −66%

correlation 0.79 0.83 0.84

absolute vorticity |ζ̇| mean 1.9± 0.5 1.2± 0.5 1.2± 0.4 1.2± 0.4

difference −33% −34% −37%

correlation 0.75 0.78 0.79

shear τ̇ mean 1.8± 0.5 1.1± 0.6 1.1± 0.5 1.0± 0.4

difference −35% −37% −41%

correlation 0.84 0.87 0.87

percentage Q of area mean 1.5± 0.7% 0.8± 0.6% 2.3± 1.1% 2.9± 1.2%

containing highest 15% difference −47% 49% 95%

of deformation rates correlation 0.51 0.52 0.72

spatial scaling exponent b for winter −0.24± 0.03 −0.13± 0.03 −0.09± 0.03 −0.09± 0.04

absolute divergence |∇̇| summer −0.27± 0.01 −0.19± 0.03 −0.12± 0.03 −0.10± 0.03

spatial scaling exponent b for winter −0.15± 0.04 −0.09± 0.04 −0.08± 0.04 −0.08± 0.05

shear τ̇ summer −0.19± 0.05 −0.16± 0.05 −0.12± 0.05 −0.11± 0.06

spatial scaling exponent b for winter −0.16± 0.04 −0.10± 0.04 −0.08± 0.04 −0.08± 0.05

deformation rate Ḋ summer −0.19± 0.04 −0.16± 0.05 −0.12± 0.05 −0.11± 0.06

PDF scaling exponent n for winter −3.26± 0.08 −2.12± 0.04 −2.9± 0.2 −3.3± 0.2

absolute divergence |∇̇| summer −2.4± 0.2 −2.5± 0.1 −2.6± 0.2 −2.9± 0.2

PDF scaling exponent n for winter −3.4± 0.1 −2.22± 0.04 −2.9± 0.1 −4.1± 0.2

shear τ̇ summer −3.22± 0.07 −2.11± 0.08 −2.7± 0.1 −3.6± 0.2
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