
Dear	editor,	

	

Reviewer	1	had	still	three	main	concerns	with	our	manuscript:	

	

I) Filtering	of	the	datasets	using	the	filter	presented	in	Bouillon	&	Rampal	(2015)	

We	applied	the	suggested	filter	to	all	our	RGPS	observations	and	model	simulation	datasets.	

All	results	in	the	manuscript	are	now	based	on	that	filtered	data.	Results	qualitatively	stayed	

the	same.	

We	included	(i)	the	filter	description	in	section	2.4,	(ii)	added	a	section	3.3	comparing	filtered	

and	unfiltered	results,	and	(iii)	included	all	results	based	on	the	unfiltered	data	as	reference	

in	a	Supplementary	Material	document.	

Based	on	this	most	of	the	figures	and	numbers	in	the	manuscript	changed	and	some	text	had	

to	be	rewritten.	The	attached	manuscript	difference	file	shows	all	the	changes.	

	

II) Presenting	the	deformation	field	maps	as	3-day	means	instead	of	monthly	

composites	

We	added	a	lot	of	more	examples	of	the	deformation	fields	to	the	supplementary	material	

already	for	the	last	round	of	reviews	as	per	request	of	the	reviewer.	We	think	that	the	

monthly	better	show	and	support	the	points	we	want	to	make.	We	therefore	stick	to	the	

monthly	maps	and	do	not	exchange	them	with	3-daily	ones.	There	would	be	no	change	in	

our	conclusions	based	on	the	3-daily	data.	Studying	the	temporal	development	of	the	LKFs	in	

more	detail	is	not	the	scope	of	our	study.		

	

III) Concerns	with	section	3.2.3	

The	reviewer	is	concerned	that	we	did	not	average	the	model	solutions	for	different	spatial	

scales.	We	can	confirm	here	that	this	is	not	the	case	and	that	all	calculations	are	correct.	We	

clarified	a	sentence	in	that	regards.	We	do	not	agree	with	the	reviewers	view	that	the	results	

in	this	section	are	not	relevant	and	therefore	we	kept	it.	

	

We	included	most	of	the	minor	comments	suggested	by	the	reviewer.	
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Abstract. A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea ice mass

balance. Simulated sea-ice deformation from model simulations with 4.5, 9, and 18-km horizontal grid spacing and a viscous-

plastic sea ice rheology are compared with synthetic aperture radar satellite observations (RGPS) .

:::
for

::
the

:::::
time

:::::
period

:::::
1996

::
to

:::::
2008. All three model simulations can reproduce the large-scale ice deformation patterns, but small scale sea-ice deformations

and linear kinematic features (LKFs) are not adequately reproduced. The mean sea-ice total deformation rate is about 50

::
40%

lower in all model solutions than in the satellite observations, especially in the seasonal sea ice zone. A decrease in model grid

spacing, however, produces a higher density and more localized ice deformation features. To some degree linear kinematic

features can be produced by the 4.5-km simulation while not with the right frequency. The dependence on length scale and

probability density functions of absolute divergence and shear for all three model solutions show a power-law scaling behavior

similar to the RGPS observations, and contrary to what is found in some other studies. Overall, the 4.5-km simulation produces

the lowest misfits in divergence, vorticity, and shear when compared with RGPS data. Not addressed in this study is whether

the differences between simulated and observed deformation rates are an intrinsic limitation of the

::::
This

:::::
study

:::::::
provides

:::
an

::::::::
evaluation

:::
of

::::
high

::::
and

::::::
coarse

::::::::
resolution

:
viscous-plastic sea ice rheology that was used in the experiments, or whether it

indicates a lack of adjustment of existing model parameters to better represent these processes. Either way, this study provides

quantitative metrics for existing and new sea ice rheologies to strive for

:::::::::
simulations

:::::
based

:::
on

:::
the

:::::
spatial

::::::::::
distribution,

::::
time

::::::
series,

:::
and

:::::::::
power-law

::::::
scaling

::::::
metrics.

1 Introduction

The Arctic sea ice in many respects is an important component of the Earth’s climate system, e.g., sea ice governs the ocean to

atmosphere heat flux, freezing and melting influences the upper ocean salinity and density, and sea ice dynamics act as a latent

energy transport (Barry et al., 1993). During recent years substantial changes of the Arctic sea ice cover have been observed

(e.g., Comiso et al., 2008; Kwok and Rothrock, 2009; Nghiem et al., 2007). Coupled ocean-sea ice models can reproduce

some aspects of sea ice and its recent changes (e.g., Zhang et al., 2008; Lindsay et al., 2009; Nguyen et al., 2011). In part

this can be attributed to the fact that model parameters can be adjusted to produce observed ice concentration (extent) and

drift distributions (Nguyen et al., 2011; Fenty et al., 2015). Detailed comparisons between satellite remote sensing data with
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model results, however, reveal big differences in certain aspects of the sea ice cover, e.g., for fracture zones and for small

scale dynamic processes (Kwok et al., 2008; Girard et al., 2009). It remains unclear whether current model physics are suited

to reproduce these observed sea-ice deformation features (Coon et al., 2007) or if new sea-ice rheologies (e.g., Bouillon and

Rampal, 2015b; Girard et al., 2011; Sulsky et al., 2007) have to be used. Sea-ice deformation is an important process for (1) sea

ice mass balance due to new ice production and ridged ice formation, (2) brine rejection into the ocean due to freezing in open

water areas, (3) regulation of ocean-to-air heat and gas fluxes, and (4) altering the air and water drag coefficients. Therefore a

realistic representation of sea-ice deformation in coupled sea ice-ocean models is important.

Here we study sea-ice deformation strain rates in the Arctic obtained from Synthetic Aperture Radar (SAR) satellite mea-

surements using the RADARSAT Geophysical Processor System (RGPS) in comparison to coupled ocean-sea ice simulations

carried out with the Massachusetts Institute of Technology general circulation model (MITgcm) as configured for the Esti-

mating the Circulation and Climate of the Ocean, Phase II (ECCO2) project (Menemenlis et al., 2008). Model integrations

with horizontal grid spacing of 18, 9, and 4.5 km are carried out. The model sensitivity to the model ice strength parameteri-

zation is assessed by comparing the model solutions with different ice strength parameters to the RGPS satellite observations

spatially and temporally. These comparisons also allow us to study the model uncertainties regarding the sea-ice deformation

representation in the current formulation of viscous-plastic sea ice models.

Traditionally sea ice model performance is evaluated by comparing satellite-derived ice area and velocities to model results

(e.g., Nguyen et al., 2011; Zhang et al., 2003). However, it can be shown that the Arctic sea ice velocity field can be divided

into mean and fluctuating fields with the fluctuating field not behaving significantly different from a turbulent fluid (Rampal

et al., 2009). It is therefore not sufficient to evaluate models on the basis of their first order mean velocity fieldas these can

be correctly predicted even by simple

:
.

::
It

:::
was

::::::
shown

::::
that

:
sea ice models (i. e., any nonlinear rheology).

:::
that

:::::
show

:::::
good

::::::::::
performance

::
in

:::::::::::
reproducing

:::
the

::
ice

:::::::
velocity

:::::
field

:::
still

::::
can

::::
have

::::
large

::::::::
problems

:::
in

::::::::::
reproducing

:::
sea

:::
ice

:::::::::::
deformations

::::::::
correctly

::::::::::::::::
(Kwok et al., 2008).

:
The second order sea-ice velocity field, represented by the sea ice deformation fields (strain rates

:::
rate

::::::::
invariants), has to be used for comparison to take into account the high frequency fluctuations of the sea-ice velocity field and

to assess the quality of the sea-ice rheology formulation.

Sea ice strain rates do not scale linearly in space and time but follow a power law depending on the length scale L and time

interval �T over which the strain rates are integrated. For RGPS total deformation rates

˙

D in the Arctic, Marsan et al. (2004)

and Stern and Lindsay (2009) observe a spatial scale dependence of

˙

D ⇡ dL

�0.2
over a scale range from 10 to 1000 km. The

constant d can be interpreted as the mean deformation rate at a given base scale. To make meaningful comparisons between

observations and model simulations both have to be brought to the same reference frame in space and time, i.e., averages have

to be calculated for the same area and time interval. Otherwise the scaling nonlinearity will cause nonphysical differences

between the datasets.

It can be shown that traditional sea ice models using the Hibler (1979) viscous-plastic (VP) or elastic-visco-plastic (EVP)

(Hunke and Dukowicz, 1997) ice rheology have difficulties in correctly representing the sea-ice deformation fields, especially

the distribution of the observed linear kinematic features (LKFs) (Kwok et al., 2008; Lindsay et al., 2003; Wang and Wang,

2009). Girard et al. (2009) also report distinct differences in the statistical scaling behavior of RGPS data and models using a
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VP and EVP sea ice rheology showing that the modeled deformation distributions can be close to Gaussian while the observed

ones follow a power law. Improvements in modeled sea-ice deformation and thickness can be obtained by modifying the form

of the yield curve away from an elliptical shape and/or changing the ratio of major to minor axes (Wang and Wang, 2009;

Miller et al., 2005). To overcome some of the deficiencies of the viscous-plastic rheology, new ice rheologies with improved

ice physics are under development in the hope of better representing the observed sea ice dynamics (e.g., Heil and Hibler,

2002; Sulsky et al., 2007; Girard et al., 2011; Bouillon and Rampal, 2015b). A recent example is the study of Tsamados et al.

(2013), which demonstrates how an anisotropic ice rheology changes the sea ice mass balance and ice dynamics compared to

the EVP rheology. Current VP and EVP sea ice model implementations, however, are robust and their parameters well tuned to

reproduce the broad features of sea ice extent and drift. Therefore, they are widely used in coupled ocean-sea ice and in global

climate simulations and thus their evaluation is necessary.

The main purpose of this article is to examine how model grid spacing influences simulated sea-ice deformation represen-

tation when compared to satellite observations. Different from previous studies we focus on direct comparison between the

modeled and observed strain rates. Using the VP model, we construct simulated deformation fields on the same spatial and

temporal scales as in the RGPS observations (Section

:::::
section

:
2.3) and compare them spatially (Section

:::::
section

:
3.1). We then

analyze the power law scaling properties of the modeled and observed deformation rates (Sections

:::::::
sections

:
3.2). Ultimately,

we would like to highlight why the sea-ice strength representation and the sea-ice rheology should receive more attention in

models.

The remainder of this article is laid out as follows: Section 2 describes the model setup and introduces the RGPS satellite

data. Section 3 contains the comparison between modeled sea-ice deformation and RGPS satellite observations. It contains

an evaluation of the representation of sea-ice deformation dependencies on horizontal grid spacing both spatially and as time

series, and shows the power law scaling behavior of the modeled and observed sea-ice deformation fields. Finally, Section

::::::
section 4 concludes and further discusses the results.

2 Model Setup and Satellite Data

2.1 MITgcm Arctic Model Setup

The model output used for this study is obtained from integrations of a coupled ocean and sea ice configuration of the Mas-

sachusetts Institute of Technology general circulation model (MITgcm) (e.g., Losch et al., 2010). The model configuration is

similar to that used for global integrations by the Estimating the Circulation and Climate of the Ocean, Phase II (ECCO2)

project (Menemenlis et al., 2008), but only a sub-domain covering the Arctic Ocean including the surrounding marginal seas

and parts of the North Atlantic and Pacific is used (see Figure 1a).

Briefly, the ECCO2 project uses a cube-sphere grid projection in a volume-conserving C-grid configuration. The ocean model

has 50 vertical levels and employs the K-Profile Parameterization (KPP) of Large et al. (1994) for vertical mixing. The cold

halocline layer of the Arctic Ocean is realistically reproduced with the use of the subgrid-scale brine rejection parameterization

of Nguyen et al. (2009). The sea ice model uses 2-category, zero-layer thermodynamics (Hibler, 1980) and viscous-plastic
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(VP) dynamics (Zhang and Hibler, 1997; Hibler, 1979). The snow cover is simulated following Zhang et al. (1998). Table 1

summarizes the relevant sea ice parameters used for all model solutions presented herein

:::
(see

::::
also

::::::::::::::::::::
Nguyen et al. (2011) for

::::
more

::::::
details).

The International Bathymetric Chart of the Arctic Ocean (IBCAO) (Jakobsson et al., 2008) is used as bathymetry, where

available. For the remaining part of the model domain, which is not covered by IBCAO, the merged Smith and Sandwell/General

Bathymetric Charts of the Oceans (GEBCO) is used and blended with IBCAO along the borders. Sea ice initial conditions (area

and thickness) for January 1992 are from the Polar Science Center (Zhang and Rothrock, 2003) and ocean initial conditions

(temperature, salinity, velocity) are from the World Ocean Atlas 2005 (Locarnini et al., 2006; Antonov et al., 2006). As lateral

boundary conditions the globally optimized simulation from ECCO2 (Menemenlis et al., 2008) are used. The model simulations

are started from these initial conditions on January 1st 1992 and end on December 31st 2009. Surface boundary conditions are

obtained from the Japanese 25-year ReAnalysis (JRA-25; Onogi et al., 2007) with a spatial and temporal resolution of 1.125

�

(⇡ 120 km) and 6 hours, respectively. These spatial and temporal resolutions do not allow to fully resolve all high frequency

atmospheric forcing on the sea ice. Some ice deformation events will be missed, which adds uncertainty to the derived sea-ice

deformation rates by the model.

Integrations with three different nominal horizontal grid spacings, 18 km, 9 km and 4.5 km, were performed. An example of

the simulated sea ice thickness on 15 November 1999, after about eight years of model integration, is shown in Figure 1b–d for

the three different grid spacings. The 4.5-km solutions clearly shows more details, e.g., clearer lead patterns (i.e. patterns with

reduced ice thickness, as typical lead width is smaller than the model grid spacing the ice thickness does not drop to zero). The

18-km model solution was constrained by least squares fit to available satellite and in-situ data (e.g. ice drift, area, thickness)

using a Green’s function approach (Menemenlis et al., 2005; Nguyen et al., 2011) and is here referred to as the “baseline”

simulation. A comprehensive evaluation of the 18-km model simulation and more detailed description of the optimization can

be found in Nguyen et al. (2011). They show, by comparison to measurements, that the model using the optimized parameter set

can realistically reproduce most important features of the coupled Arctic ocean and sea ice system. For example, sea ice extent

and thickness as well as their trends are in good agreement with satellite and in situ measurements. Also the sea ice export

through Fram Strait is modeled realistically compared to observations from Kwok et al. (2004). For the higher resolution (9 km

and 4.5 km grid spacing) simulations we use the same set of parameters as those derived for the 18-km

::
18

:::
-km

:
configuration.

As a consequence these higher-resolution simulations exhibit somewhat larger model deviations relative to observations than

the 18-km simulation. For example, the mean ice thickness on 15 November 1999 shown in Figure 1b–d is similar for the 4.5

and 18-km simulations but higher by 24 and 28 cm, respectively, compared to the 9-km simulation. They nevertheless have

been found of sufficient quality for process studies in the Arctic Ocean and adjacent seas (Nguyen et al., 2012; Rignot et al.,

2012).

2.2 RGPS Satellite Observations

The RADARSAT Geophysical Processor System (RGPS) produces sea ice data products covering the Arctic Ocean derived

from Synthetic Aperture Radar (SAR) imagery acquired by the Canadian RADARSAT satellite. Details of the analysis proce-
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dures can be found in the papers of Kwok (1998) and Kwok and Cunningham (2002). In this study the “Lagrangian ice motion”

dataset, one of the eight RGPS data products, is used as initial dataset. Sea-ice deformation, i.e., strain rates, are calculated

from this ice motion dataset as described below. We start with the “Lagrangian ice motion” dataset to allow highest possible

consistency between the observed and modeled deformation rates.

The 460-km wide swath ScanSAR Wide B (SWB) mode of RADARSAT (Raney et al., 1991) is selected to provide routine

coverage of the Arctic Ocean for the RGPS system. The western Arctic Ocean is covered by RADARSAT images approxi-

mately once every three days. At the beginning of the season (winter or summer) an initial Lagrangian grid with 10 km grid

spacing is set up. For the start and end dates of winter and summer periods see Table 2. The movement and deformation of

the Lagrangian grid cells are followed throughout the season. Grid cells are removed if they are advected out of the region of

interest. Gaps in the ice motion data sets are due to the lack of backscatter contrast for tracking ice features in the SAR im-

agery. The actual sea ice tracking is very accurate. Lindsay and Stern (2003) report that the median magnitude of displacement

differences between buoy drift (via ARGOS positioning) and RGPS motion estimates is 323 m.

RGPS observations are available since November 1996 until

::::
May

:
2008. In this study we use RGPS data from 20 periods (11

winter and 9 summer) or 97 months between 1996 and 2008 (see Table 2).

2.3 Common Reference Frame for Model Solutions and Observations

As a prerequisite for a meaningful comparison, the Lagrangian RGPS observations and Eulerian model output have to be

brought to a common reference frame. We use the RGPS Lagrangian reference frame. This ensures that both RGPS and model

sea ice strain rates are calculated for the same area and time interval. This procedure avoids differences between the datasets

caused by the non-linearity of the strain rate scaling (power law dependence, see Sections

:::::::
sections 1, 3.2, and 3.2.2). The

starting point is the RGPS ice drift velocity dataset. After the RGPS and model velocities are brought onto the same reference

frame, strain rates are calculate from both datasets in exactly the same way.

Every RGPS Lagrangian point k(xi, ti) has a location, time, and time difference �t until the next observation attached to

it. From this �t= ti+1 � ti and the new position xi+1 the velocity of point k during the time interval �t can be calculated.

We interpolate the Eulerian model velocities to the Lagrangian RGPS positions using a bilinear interpolation. The mean RGPS

time interval �t is about 3 days, but �t varies from a few hours to about two weeks. We interpolate the mean model sea ice

velocity during the individual �t’s from the daily model output covering the �t time period.

After this consistent RGPS and model sea ice velocity dataset is established, sea ice strain rates are calculated using Delaunay

Triangulation. From the triangle area A and the sea ice velocity components u in x direction and v in y direction at the three

triangle corners, the following partial derivatives can be calculated using the Divergence Theorem and the line integral around
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the triangle boundary:
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=
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@y

=� 1
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I
udx
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=
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A

I
vdy ,

@v

@y

=� 1

A

I
vdx (1)

Using Equations

::::::::
equations 1 the strain-rates invariants divergence

˙r, shear ⌧̇ , and vorticity

˙

⇣ can be calculated:

˙r=

@u

@x

+

@v

@y

, (2)

⌧̇ =

s✓
@u

@x

� @v

@y

◆2

+

✓
@u

@y

+

@v

@x

◆2

, (3)

˙

⇣ =

@v

@x

� @u

@y

. (4)

As a measure of the total sea-ice deformation rate

˙

D we use

˙

D =

p
˙r2

+ ⌧̇

2
, (5)

which is used as a measure for the overall sea-ice deformation occurring at a certain point in space (e.g., Stern and Lindsay,

2009).

Erroneous cells, which might, e.g., arise due to errors in the ice tracking or from badly defined triangles from the Delaunay

triangulation, are filtered out using the following constrains: (1) The triangle cell area A has to be between 5 and 400 km

2
. For

the statistical comparisons and model to RGPS difference calculations, this condition is further restricted to 25<A< 100 km

2
.

This second condition assures that the length scale of all observations can be considered to be ⇠10 km, which is the initial

RGPS grid spacing. This is important as sea ice strain rates are scale-dependent (see Section

::::::
section 1). (2) Triangles are not

allowed to be overly distorted, i.e., not to be acute. To achieve this condition all angles have to be larger than 10

�
. (3) The

time interval �t between two observations must be between 12 hours and 7 days. (4) Cells with a deformation rate

˙

D (see

Equation

:::::::
equation 5) higher than 1 day

�1
are considered outliers and are removed. Only filter (4) creates a different number of

observations for the RGPS and model dataset (because

˙

D can differ between model and RGPS). However, to keep the number

of observations equal in both datasets, filtered data points from one dataset are also removed from the other one. We do not use

a specific smoother as suggested in Bouillon and Rampal (2015a) to remove artificial noise in the sea ice motion fields . This

may

2.4
:::::::::

Anisotropic
::::::::::
Smoothing

:::::
Filter

:::::::::::::::::::::::::::::
Bouillon and Rampal (2015a) show

:::
that

:::::::
artificial

:::::
noise

::::
can

::
be

::::::
present

:::
in

:::
sea

:::
ice

::::::::::
deformation

:::::
fields

:::::::
derived

::::
from

::::::::::
Lagrangian

::::::::
sampling.

::::
The

:::::::
simplest

:::::::
example

:::
to

:::::::::
understand

:::
the

::::::::
problem,

::::::::
discussed

::
in

:::::
more

:::::
detail

:::
in

:::
the

::::::
article,

::::::
would

::
be

::
a

:::::
linear

:::::
shear

::::
fault

:::
line

:::::::
without

:::
any

::::::::::
divergence,

::::
i.e.,

:::
two

::::
floes

:::
of

:::
ice

:::::
move

::::::
parallel

::
to

::::
each

:::::
other

::
in

::::::::
opposite

:::::::::
directions.

::
If

::
we

::::
now

::::::::
consider

:::::::::
Lagrangian

::::::
points

::
on

::::
both

:::::
sides

::
of

:::
the

:::::
shear

::::
line

:::
and

:::
the

::::::::
triangles

::::
they

::::
form

::
it

:::::::
becomes

:::::
clear

:::
that

:::
the

::::
area

:::
of

::::
these

::::::::
triangles
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:::
will

::::::
change

:::
for

:
a

:::::::
parallel

:::
but

:::::::
opposite

::::::::
movement

:::
of

::
the

::::
two

::::
floes:

:::::::::
alternating

:::
the

::::
area

::
of

:::
the

:::::::
triangles

::::
will

:::::::
increase

:::
and

::::::::
decrease.

::::::::
Following

:::::::
equation

::
2

:::
this

::::
will lead to an overestimation in the magnitude of the scaling exponent b (Bouillon and Rampal, 2015a) investigated

in Sections 3.2 and 3.2.2. We , however, remove the acute triangles susceptible to noise and the deformation rates higher

than 1

::::::::
alternating

:::::::
pattern

::
of

:::::::::
divergence

::::
and

::::::::::
convergence

::::::
while

:::::::
actually

::::
there

::
is

:::
no

:::::::::
divergence

::
at

:::
all

:::
(no

::::
lead

::
is

:::::::
opening

:::
or

:::::::
closing).

::::
This

::::::::
sampling

:::::
noise

:::
can,

::::::::
however,

:::::
cause

:::
the

::::::::::
deformation

:::::
fields

::
to

::::::
appear

:::::
noisy

::::
and

:::
also

::::
will

:::::::::
artificially

:::::::
increase

:::
the

:::::::
absolute

:::::::::
divergence,

::::::::
vorticity,

:::
and

::::::::::
deformation

::::
rate

::::
(see

:::::::
equation

:::
5).

:::::::::::::::::::::::::::::::
Bouillon and Rampal (2015a) estimate

::
an

:::::::::::::
overestimation

::
of

:::::::
opening

:::
and

::::::
closing

:::
by

:::::
about

::::
60%

:::
for

:::
the

:::::
RGPS

:::::::
dataset.

:::
We

::::
apply

:::
the

::::::::::
anisotropic

::::::::
smoothing

:::::
filter

::::::::
suggested

::
by

:::::::::::::::::::::::::::
Bouillon and Rampal (2015a) to

::
all

:::
our

::::::::::
Lagrangian

:::::
RGPS

:::
and

::::::
model

:::::::
datasets.

:::
We

:::
use

:::
the

::::
same

::::::::::
parameters

::
for

:::
the

:::::
filter

::
as

::::::::
suggested

::
in

::::
their

:::::
study,

::::
i.e.,

:
a

::::::::
threshold

::
of

::::
0.02 day

�1
as described above

::
for

:::
the

:::::::::::
deformation

:::
rate

:::
˙

D

::
to

:::::::
identify

::::::::
deformed

:::::::
triangles

::::
and

:
a

:::::::::
smoothing

::::::
kernel

:::
size

:::
of

:::::
n= 3.

:
n

:::::
gives

:::
the

:::::::
number

::
of

:::::
times

::
the

::::::
kernel

::::
size

::
is

::::::
grown

::::::
starting

:::::
from

:::
the

:::::::
initialy

::::::::
analyzedl

:::::::
triangle,

::::
i.e.,

:::
for

:::::
n= 1

:::::
only

:::
the

::::
three

::::::::
triangles

:::::::
adjacent

:::
to

:::
the

:::::::
analyzed

::::::::
triangles

:::::
would

:::
be

::::
used

:::
for

:::
the

::::::::
smoother.

::::
For

:::::
n= 3

:::
this

:::::::::
procedure

::
is

:::::::
repeated

::::
two

::::
more

::::::
times.

:::
All

:::::::
triangles

::::::
above

::
the

::::::::
threshold

::::::
values

::::::
within

:::
that

::::::
kernel

:::
are

::::
then

:::::::
averaged

::
to

:::::
yield

:::
the

::::
new

::::
value

:::
for

:::
the

::::::::
analyzed

:::::::
triangle.

:::
For

:::::
more

::::::
details

:::
see

::::::::::::::::::::::::
Bouillon and Rampal (2015a).

::::
This

::::::::::
anisotropic

::::
filter

::::
will

::::::::
conserve

:::::
linear

::::::::
structures

::::::
typical

:::
for

:::
ice

::::::::::
deformation

::
in

:::::
most

:::::
cases

:::
and

::::::::::
significantly

::::::
reduce

:::
the

:::::::
artificial

:::::
noise

::::::::
discussed

::::::
above.

:::
The

::::::::
obtained

:::::
fields

:::
will

:::
be

::::
more

:::::::
realistic

:::
and

::::::
closer

::
to

::::::
reality.

::::
This

:::::::::
smoothing

::::
filter

::
is

::::::
applied

::
to

:::
all

:::::
partial

:::::::::
derivatives

:::
in

::::::::
equations

:
1

::::::
before

:::
any

::::::
further

::::::::::
calculations

:::
are

::::::::::
performed.

::
In

:::
the

::::::::
following

::
all

::::::
results

:::
are

:::::
based

:::
on

::::
these

:::::::::
smoothed

:::
ice

::::::::::
deformation

:::::
fields.

:::
As

::::::::
explained

::::::
above

:::
the

:::::::
absolute

::::::::::
deformation

::::::
values

:::::::
therefore

::::
will

:::
be

:::::
lower

::::
than

::
in

:::::::
studies

:::
that

::::
use

:::
the

::::::::
unfiltered

:::::::::::
deformation

:::::
fields.

::::
The

::::::::
smoother

::::
will

::::
also

:::::
affect

:::
the

:::::::
scaling

::::::::
exponents

::::::::
discussed

:::
in

::::::
section

::::
3.2.

::
As

::::::::
reference

:::
for

:::::
other

::::::
studies

:::
we

::::::::
therefore

::::::::
repeated

::
all

:::::::
analysis

:::::::
without

:::
the

::::::::::
anisotropic

:::::::
smoother

::::
and

::::::
present

::::
the

::::::
results

::
in

::::::
section

::::
S-1

::
of

:::
the

:::::::::::::
Supplementary

:::::::
Material

:::::::::
document.

:::
In

::::::
section

:::
3.3

:::
we

::::::::
compare

:::::
some

::::::::
examples

::
of

:::
the

::::::
filtered

:::
and

::::::::
unfiltered

:::::::
results,

:::::
which

::::
will

::::::::::
demonstrate

:::
that

:::::::::::
qualitatively

::
all

::::::::::
conclusions

::::::::
presented

::
in

::::
this

:::::
study

:::
will

::::
hold

:::
for

::::
both

:::
the

::::::
filtered

::::
and

::::::::
unfiltered

:::::::
datasets.

:

3 Modeled Sea-Ice Deformation Compared to RGPS Observations

In this section, we compare the simulated sea-ice deformation distribution to satellite observations. Big differences between

observed and modeled sea-ice deformation fields have been reported (Lindsay et al., 2003; Kwok et al., 2008; Girard et al.,

2009; Wang and Wang, 2009, see also section 1). Kwok et al. (2008) evaluated four common sea ice models with horizontal

grid spacing ranging from 9 to 40 km. None of these models could produce realistic distributions of small-scale deformation

features and linear kinematic features (LKFs), although the large-scale sea-ice deformation pattern was reproduced correctly

by some of the models. The model with the smallest grid spacing (9 km) showed the most confined LKFs. It was speculated

that if the model grid spacing would be further decreased, the model could eventually produce more realistic details and have a

better representation of LKF distribution. Girard et al. (2009) compared the statistics of VP and EVP simulations with 12-km

grid spacing to RGPS data and also reported large differences, as did Wang and Wang (2009) and Lindsay and Stern (2003) for

different model setups. We reconstruct the RGPS observations from model velocity fields for best inter-comparability (section

7



2.3) and explore how the LKF representation changes when the model resolution increases (section 3.1). We also compare the

power law scaling between our model simulations and the RGPS data (section 3.2).

3.1 Dependence on Model Grid Spacing

3.1.1 Spatial Patterns and LKFs: Divergence, Vorticity, and Shear

Figures 2, 3, and, 4 show the monthly November 1999 divergence, vorticity, and shear fields, respectively, obtained from RGPS

data and from the three model solutions with 4.5, 9, and 18 km grid spacing. November 1999 is shown as an example. Conclu-

sions drawn in this section are qualitatively valid also for other months. The supplement S1

::::::
Section

:::
S-2

::
of

:::
the

:::::::::::::
Supplementary

:::::::
Material

::::::::
document

:
shows further examples of all three deformation variables for months December 1999 and March and April

2000 to also provide some information about the seasonality of the deformation fields.

Divergence, vorticity, and shear in Figures 2, 3, and, 4 are not calculated from monthly mean ice velocities but are monthly

aggregates of the about 3-daily Lagrangian dataset described in Section

::::::
section 2.3. The patterns shown are therefore not

representative for a single day but are an aggregate of all patterns that have occurred during one month. Reoccurring LKFs

might overlap each other. For all maps both the Lagrangian RGPS data and the reconstructed Lagrangian model solutions (see

Section

:::::
section

:
2.3) were interpolated on

:
to

:
the same polar stereographic grid with 12.5-km grid spacing. This means that all

differences visible in the model maps (at least for the 9 and 4.5-km ones) are due to changed behavior of the model physics

and can not be attributed to the different model grid spacing alone. The 12.5-km grid spacing are a slight oversampling for

the 18-km model output but an undersampling for the 9 and 4.5-km model solutions. Figures 2 to 5 also show a black contour

discriminating multiyear ice from first-year sea ice based on QuikSCAT backscatter data.

In general, the large-scale sea-ice deformation patterns are reproduced by the model for all three grid spacings. In November

1999 a pattern of high divergence (Figure 2) can be observed in the Beaufort Sea and a more convergent situation north of the

Chukchi and East Siberian Sea (see Figures 1 and 2 for locations). This pattern is also present in all three model solutions,

but much weaker. In the RGPS observations the pattern is broader and covering most of the seasonal sea ice in that region.

The high divergence in the Beaufort Sea is accompanied by negative vorticity (Figure 3), which can be observed in the RGPS

data as well as in the three model solutions. Also the positive vorticity pattern north of Ellesmere Island with strong LKFs is

reproduced in all three model integrations. The same is true for the positive vorticity pattern in the East Siberian Sea and the

negative vorticity north of the Laptev Sea.

The RGPS data show strong sea ice shear almost everywhere in the marginal sea ice zone (Figure 4). This area of high shear is

only partly reproduced by all three model solutions. All three model solutions show almost no large-scale shear patterns. In the

Beaufort and East Siberian Seas, only small areas of high shear are present. From the three deformation variables divergence,

shear, and vorticity the agreement between the large scale RGPS and model shear is the worst. The agreement of the vorticity

patterns between RGPS and models is the best, which is expected because it is strongly inherited from the atmospheric and

ocean forcing. However, the magnitudes of divergence, shear, and vorticity for all three model solutions are much smaller (less

than half

:::::
about

::::
40%

::::::
smaller, see next section) than the RGPS ones. These statements are true not only for the November 1999

8



example shown here but also for almost all of the other months with available RGPS data (see Table 2) and will be further

discussed in Section

:::::
section

:
3.1.2.

We now qualitatively compare the distribution and frequency of occurrence of LKFs followed by more quantitative compar-

isons in the next sections. The model solutions for all three grid spacings do have significantly less LKFs than the RGPS data.

This is true for all three deformation variables: divergence, shear and vorticity. Between the three model solutions there are,

however, significant differences for the LKF distribution. While, e.g., the sea ice shear for the 18-km model solution in Figure

4 shows very little identifiable LKFs, the number of LKFs slightly increase for the 9-km solution and significantly increase

for the 4.5-km solution. The same can be observed for the divergence and vorticity fields. The 4.5-km model solution always

shows the most LKFs and its deformation distribution is most consistent with RGPS observations based on visual inspection.

This conclusion holds for all 97 months with available RGPS data that were analyzed and will be further discussed in Section

3.1.3

:::::
section

:::::
3.1.3

:::
(see

::::
also

::::::
section

::::
S-2

::
in

:::
the

::::::::::::
Supplementary

:::::::
Material

:::
for

:::::
maps

::
of

:::::
more

:::::::
example

:::::::
months).

The large-scale difference in sea-ice deformation between RGPS observations and model solutions is not evenly distributed

over the Arctic Basin as can already be seen from Figures 2 to 4. Figure 5 shows the deformation rate difference �

˙

D =

˙

DRGPS� ˙

DMODEL for the 4.5, 9, and 18-km solutions during November 1999. All three difference maps are smoothed with a

150-km kernel to remove small scale differences (e.g., LKFs) and highlight the large-scale difference patterns. The large-scale

difference patterns are very similar for all three model grid spacings. The representation of large-scale sea-ice deformation

in the model is therefore less dependent on the model grid spacing than the small scale deformation distribution. There is,

however, some seasonal dependence as we will see in Section

:::::
section

:
3.1.2.

The main differences in �

˙

D are confined to the seasonal ice zone (outside the black contour in Figure 5). In general the

seasonal sea ice is thinner and more mobile than the older, thicker perennial ice. For the perennial ice, �

˙

D is much smaller

and mainly stays below 0.02 day

�1
. This discrepancy between seasonal and perennial ice hints to a shortcoming of the sea ice

rheology used in the simulations. To first order the main difference between seasonal and perennial sea ice is the ice thickness.

Our November 1999 example month, however, also covers very young ice in the marginal ice zone (MIZ), where also floe size

and the level of fragmentation and fracturing of the ice is very different from the perennial ice. These factors are not adequately

included in the model.

In our model configuration, we use the typical ice pressure formulation P (or strength) of Hibler (1979):

P = P

⇤
he

[C⇤(1�C)]
(6)

The ice strength P depends linearly on the ice thickness h and exponentially on the ice concentration C. P

⇤
and C

⇤
are scaling

constants for the ice strength parameterization. That P depends linearly on ice thickness h is a typical formulation for a VP

or EVP sea ice rheology with two ice classes and might not be the best representation of the P to h relationship. Models with

more ice thickness classes often use a P / h

3/2
formulation (Rothrock, 1975; Lipscomb et al., 2007), which can be considered

more realistic. As mentioned there are, however, also other differences between the seasonal and perennial ice zone than the

ice thickness. The proximity to open water in the MIZ, for example, will allow more cases of ice divergence at the ice margins

than in the ice pack, which might be less well represented by the VP rheology. The examples for late winter in March an April

9



2000 in supplement S1

:::::
section

::::
S-2

::
in

::
the

:::::::::::::
Supplementary

:::::::
Material

::::::::
document

:
show a reduced difference in divergence and shear

for the seasonal ice zone. The ice has consolidated by then and the Arctic Basin is fully covered by sea ice, which reduces the

mobility of the ice pack. In times of a changing Arctic environment, however, where seasonal sea ice is becoming the dominant

ice type (Comiso, 2012), the problem of large discrepancies in simulated sea-ice deformation of the seasonal ice zone and MIZ

will have an important impact.

3.1.2 Deformation Rate Time Series

For this study RGPS observations from all 20 available periods of RGPS observations (i.e. 97 months, between November 1996

and May 2008) are used (Table 2). Figure 6 shows (a) the period-averaged sea-ice deformation rate

˙

D and (b) the monthly-

mean seasonal cycle of

˙

D. The months of September and October are not covered by RGPS data. The time series of

˙

D, | ˙r|,
|⌧̇ |, and

˙

⇣ behave very similarly. For simplicity we will therefore concentrate the discussion on the sea-ice deformation rate

˙

D

(Figure 6) but the statistics for all variables are presented in Table 3.

The RGPS deformation rate (black) is consistently higher than all of the 4.5-km (total mean +51

:::
+37%), 9-km (+55

::::
+40%),

and 18-km (+57

:::
+44%) simulations. The same is true for divergence, shear, and vorticity. The largest difference occurs for

absolute divergence, which is 67% to 79

:::
49%

::
to

:::
66% lower than the RGPS data (Table 3). Overall, we conclude that the absolute

amount of sea-ice deformation in our current sea ice model setup is about 50

::
40% too low in comparison to RGPS observations

and this underrepresentation of deformation is almost independent of model grid spacing during winter months. During summer

months, however, the model performance differs depending on horizontal grid spacing and the 4.5-km simulation shows the

smallest difference to RGPS observations. This can be seen in the seasonal cycle in Figure 6b where during December to

April the three model solutions are indistinguishable

::::
close

::
to

:::::
each

::::
other

:
and agree within their standard deviation. Only during

summer months (June to August) the 4.5-km solution shows a higher deformation rate than the 9-km solution, which again

shows a higher deformation rate than the 18-km solution. The RGPS data show a clean, sinusoidal-like seasonal cycle with

a clear minimum in March and maximum in August (likely the real maximum would occur during the unobserved month

of September). The

::
For

:::
the

:
9 and 18-km model solutions do not show a sinusoidal behavior

:::
the

:::::::::
sinusoidal

:::::::
behavior

:::
of

:::
the

:::::::
seasonal

:::::
cycle

::
is

:::
less

::::::::::
pronounced. They have a clear maximum during August but no defined minimum

::::
only

:
a

::::
very

:::::::
weakly

::::::
defined

::::::::
minimum

::
in

::::::
March.

˙

D is almost constant during January to May. The 4.5-km solution slightly differs from this general

behavior and shows a small but not very pronounced March minimum compared to RGPS data

:::::
clearer

:::::::::
sinusoidal

:::::::
seasonal

:::::
cycle

:::
than

::::
the

::::
other

::::
two

::::::
model

:::::::
solutions

:::::
with

:
a

:::::::
defined

::::::::
minimum

::
in

::::::::::::::
February/March. That is, the 4.5-km solution again shows a

better performance than the lower-resolution simulations.

The RGPS and all model deformation time series are highly correlated (R

2 ⇡ 0.9). As is the case for the mean deformation

rate, however, the

:::::::::
R

2 ⇡ 0.85).

::::
The

:
variability of the modeled deformation rate is also much smaller than

::::::
slightly

:::::::
smaller

:::
but

:::::::::
comparable

::
to

:
the observed RGPS variability. The standard deviation � of the monthly

˙

D time series (not shown) is about 50%

smaller for the

::::
with

:::::::::::::::::
� = 0.6 · 10�2

day

�1
::::::::::
comparable

::
to

:::
the

:::::::
standard

:::::::::
deviations

::
of

:::
the 18, 9, and 4.5-km solutions (� = 0.4 to

0.7 · 10�2
::::::::
0.6 · 10�2

day

�1
) compared to RGPS data (� = 1.1 · 10�2

day

�1
, see Table 3). Again the 4.5-km solution

:::::
shows

:::
the

::::::
highest

::::::::
variability

::::
and performs best.
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3.1.3 Localization of Deformation

As seen in Section

::::::
section 3.1.2, the absolute magnitude of sea-ice deformation in the model is much too low. Nevertheless, in

Section

:::::
section

:
3.1.1 it was shown that the modeled sea-ice deformation distribution gets more similar to the observed one if

::
the

:
model grid spacing is decreased. In particular, more and better-confined LKFs appear for smaller grid spacing (e.g., Figure

4). To show this change in the sea-ice deformation distribution more quantitatively we now look at the "localization" of the

deformation rate (Marsan et al., 2004). Following Stern and Lindsay (2009) we calculate the area fraction Q, which contains

the highest 15% of all sea-ice deformation rates. Q is calculated as:

˙

D1 � ˙

D2 . . .
˙

Dn�1 � ˙

Dn

pX

i=1

˙

Di = 0.15

nX

i=1

˙

Di

Q=

pX

i=1

Ai

� nX

i=1

Ai ,

where

˙

Di are the individual Lagrangian deformation rate observations sorted by their magnitude starting with the highest. Ai

are the accordant triangle areas. The number of observations n is identical for all model simulations and the RGPS data. This

measure is independent of the absolute amount of deformation rate.

The smaller the percentage Q gets, the more localized the deformation is distributed. If the deformation rates would be

evenly distributed the highest 15% would also occupy 15% of the area. We will see that Q indeed is much smaller than that.

Figure 7 shows (a) the time series of Q for all 20 RGPS periods for the three model solutions and the RGPS data and (b) the

seasonal cycle of Q (also see Table 3 for statistics).

Sea ice deformation in both the RGPS observations and all three model solutions is very localized. The highest 15% of all

deformation rates Q is only occupying between 0.5 and 1.5

:::
0.8

:::
and

:::
2.9% of the total area

::
for

::
all

:::::::
models

:::
and

::::
data. Q decreases

with decreasing model grid spacing. There is a big difference in Q for the 4.5-km simulation (Q= 0.5%

:::::::::
Q= 0.8%) compared

to Q of the 9 and 18-km simulations (Q= 1.2% and Q= 1.5%

::::::::
Q= 2.3%

::::
and

:::::::::
Q= 2.9%, respectively). The mean Q= 0.5%

::::::::
Q= 0.8%

:
of the 4.5-km simulation is even lower

::::::::::
significantly

:::::
lower

:::::::
(�47%)

:
than the localization Q= 0.7%

::::::::
Q= 1.5%

:
of

the RGPS observations, which

:
.

::::
This

:
shows that the sea-ice deformation distribution got considerably more confined for the

4.5-km simulation compared to the other two lower-resolution simulations,

::::::
which

:::
are

::::
49%

::::
and

::::
95%

::::::
higher

::::
than

:::
the

::::::
RGPS

::::
data,

::::::::::
respectively. This can also be seen in the examples of Figures 2 to 4, which show a strong increase in the number of LKFs

when the grid spacing is reduced from 18 and 9 km to 4.5 km. The strain rate distributions for the 18 and 9-km simulations

are much more similar. This increase in LKFs is confirmed here by the very strong localization Q for the 4.5-km solution,

which is also closest to the RGPS observations. It is not clear why the change in Q is so big for the 4.5-km solution compared

to the other two solutions. Despite the big difference in the mean deformation rate

::::::::
compared

::
to

:::
the

::::::
RGPS

::::
data, the 4.5-km

simulation is able to reproduce the fraction of the total area, in which the strong sea-ice deformation events are concentrated

very well.

:::
The

::::::
events

:::
are

::::
even

:::
too

::::::::
confined

::::::::
compared

:::
to

::::::
RGPS. Also the seasonal cycle of Q in Figure 7b is more similar

for the 4.5-km solutions compared to RGPS observationsthan for the other two simulations.

::::
The

:::::::
increase

:::
in

::
Q

::
in

::::::::
summer,
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:::::::
however,

::::::
comes

::::
later

:::
and

:::::
stays

::
at

:::::
lower

::::::
values

:::
for

:::
the

::::::
4.5-km

:::::::
solution. The seasonal cycle for the 18 and 9-km simulation is

strongly enhanced and shows a drop during summer months July and August, which is not the case for the RGPS observations

and the 4.5-km simulation. The unnatural seasonal cycle for these two simulations also significantly increases the standard

deviation

:::
also

::::::
similar

:::
to

:::::
RGPS

::
in

:::::
terms

:::
of

:::::
timing

::::
but

:::
the

:::::::::
magnitude

::
is

:
a

:::
bit

::::::::
enhanced.

::::
The

::::::::
standard

::::::::
deviations

:
of Q for the

monthly time series : 1.2% for the 18 and 9-km model solutions and 0.4% for the RGPS data and

::
are

:::::
with

::::
0.7%

::::
and

:::::
0.6%

::::
very

::::::
similar

::
for

::::::
RGPS

:::
and

:::
the

:
4.5-km simulation . This results in larger differences in Q between

::
but

:::
are

:::::
about

::::::
double

:::
for

:::
the

18 and 9-km model simulations and RGPS during summerand

:::::::
solutions

:::::
(1.1%

::::
and

:::::
1.2%,

:::::::::::
respectively).

:::::::::
Especially

:::
the

::::::
18-km

:::::
model

:::::::::
simulation

::::::
shows

:::::
much

::::::
higher

::
Q

:::::
values

::::::
during

::::::::
summer,

:::::
which

:
hints towards a degraded performance of the 18 and

9-km model simulations to represent sea ice deformation during summer.

In summary, sea-ice deformation in the model solution with the finest grid spacing of 4.5 km is most confined and localized,

as had already been seen in the examples of Section 3.1.1

::::::
section

:::::
3.1.1

::::
8and

:::
the

:::::::::::::
Supplementary

::::::::
MAterial

:::::::::
document). One

has to keep in mind, however, that the absolute model deformation is only about half

:::
rate

::
is

:::::
about

::::::
�40%

:::::
lower

::::
than that of

the observations. From the three model solutions, the 4.5-km simulation can be considered most consistent with the RGPS

observations.

3.2 Power Law Scaling of Deformation Rates

Sea ice strain rates do not scale linearly in space and time. Instead the scaling follows a power law. Some details about the

nature of this scaling dependence are given in, e.g., Weiss (2003, 2013). In Sections

::::::
sections

:
3.2.1 and 3.2.2 we will compare

the power law scaling of the model solutions with the RGPS data based on length scale and their respective probability density

functions. There is some discussion in current literature how well the VP ice rheology is able to reproduce this power law

scaling (e.g. Girard et al., 2009). In Section

:::::
section

:
3.2.3 we use the power laws scaling dependence to compare the sea ice

deformation rate for three model solutions with different grid spacing.

3.2.1 Dependence on Length Scale

The magnitude of sea ice strain rates and their invariants depends on the spatial scale over which they are determined. In

this section we exemplary use the absolute divergence | ˙r| and shear rate ⌧̇

::
as

::::::::
examples but similar relationships exist for the

deformation rate

˙

D, and vorticity

˙

⇣. For absolute divergence | ˙r| and length scale L over which | ˙r| is determined this power

law scaling can be expressed as:

| ˙r|⇡ dL

b
(7)

For ⌧̇ the equation is equivalent. b is the scaling exponent, and d a constant of proportionality, which can be interpreted as mean

deformation rate at a given base scale. We use the consistent Lagrangian strain rate dataset described in Section 2.3

::::::
section

:::
2.3

:::
and

:::
2.4 to compare RGPS observations with model solutions. Following the procedure described in Stern and Lindsay (2009)

strain rates at different spatial scales are calculated. The six nominal length scales L

⇤
= 10, 20, 50, 100, 200, 500, and 1000 km
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are used. The initial length scale of the RGPS data is 10 km and therefore this is the smallest scale that can be obtained. We

obtain those strain rates as follows:

– All Lagrangian cells within a 5-day window are aggregated on a regular grid with grid cell size L

⇤
. All Lagrangian cells

whose center coordinate fall within a grid cell form the aggregate for that cell.

– A filter is applied: The time interval �t of the individual Lagrangian cells must be between 2 and 5 days and their

individual area between 25 and 100 km

2
. The total area of the remaining aggregated cells must be greater than 0.75L

⇤2
.

– For each aggregate, mean strain rates (@u/@x, @u/@y, etc. – see equation 1) are computed from the individual strain

rates in the aggregate by using the cell areas as weight. The deformation invariants (

˙r, ⌧̇ ,

˙

⇣) for the aggregates are then

computed with those mean strain rates.

– The actual length scale L for each aggregate is determined by the square root of all cell areas.

Figure 8 shows the absolute divergence | ˙r| and shear

:::
rate

:
⌧̇ versus the length scale L for RGPS observations and the three

model solutions with 4.5, 9 and 18 km grid spacing on a log-log scale. The dataset was split in the winter and summer RGPS

periods (Table 2). The averages of | ˙r| and ⌧̇ for the six nominal scales 10, 20, 50, 100, 200, 500, and 1000 km are marked by

symbols.

The RGPS observations and as well all three model solutions follow a power-law scaling, both during winter and during

summer. Figure 8 shows least square fits for the six mean values between 10 and 1000 km as dashed lines. While both the

observations and model solutions follow a power-law, the inclinations of the fit, i.e., the scaling exponent b in equation 7 is

steeper for RGPS than for the model solutions. All b values (and uncertainty estimates) are summarized in Table 3, including

values for deformation rate

˙

D.

For absolute divergence | ˙r| the exponent b for RGPS is �0.36

:::::
�0.24

:
during winter and �0.38

:::::
�0.27

:
during summer. The

::::::::
magnitude

:::
of b value for the model solutions is lower. During winter they all show a

:::
The

:
b of about �0.18± 0.01. During

summer the b exponent of the model solutions differ with b=�0.22 for the

:::::
values

::
of

:::
the

:
4.5-km solution , closest to RGPS,

and b=�0.13 and �0.12 for the

::
are

::::
with

::::::
�0.13

:::
for

::::::
winter

::::::
�0.19

:::
for

:::::::
summer

::::::
closest

::
to

:::
the

::::::
RGPS

::::
data.

::::
The 9 and 18-km

solutions , respectively

::::
show

::::::
similar

::
b

:::::
values

:::
taht

:::::
differ

:::::::
stronger

:::::
from

::
the

::::::
RGPS

::::
ones

::::::
(�0.09

::::::
during

:::::
winter

::::
and

:::::
�0.12

::
to

::::::
�0.10

:::::
during

::::::::
summer).

For shear ⌧̇ the situation is similar. During winter the RGPS b value is �0.20

:::::
�0.15

:
and during summer b=�0.24

::::::::
b=�0.19.

The b value

::::::::
magnitude

:
for the model solutions is again smaller. During winter all model solutions have

::::::
similar b exponents of

about �0.11± 0.01

:::::::::::
(�0.09± 0.04

:::
for

:::
the

:::
4.5

::::
and

::::::
�0.08

::
for

:::
the

::
9

:::
and

::::::
18-km

:::::::::
solutions). During summer the 4.5-km solution

again comes closest to RGPS with b=�0.19

::::::::
b=�0.16, while the 9 and 18-km solutions have b exponents of �0.13 and

�0.12

::
and

::::::
�0.11, respectively.

Our estimates of b for RGPS agree well with previous estimates from, e.g., Marsan et al. (2004) and Stern and Lindsay

(2009), who report for the deformation rate

˙

D a b value of ⇡�0.2 during winter and ⇡�0.3 during summer in the Arctic.

This agrees well with our values of b=�0.22 and �0.25 for summerand winter, respectively (

:::
We

:::::
obtain

::
b

:::::
values

::
of

:::::::::
somewhat
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:::::
lower

:::::::::
magnitude

::::::
(�0.16

:::
for

::::::
winter

::::
and

::::::
�0.19

:::
for

:::::::
summer;

:
see Table 39). Based on the same RGPS sea ice drift dataset

Bouillon and Rampal (2015a) find the magnitude of the scaling exponent to be about 50% lower (i.e., b⇡�0.12 during winter)

for the deformation rate. They attribute the higher scaling exponent in the original RGPS data to artificial noise, which they

reduce by a smoother. This could be one explanation for the difference in the scaling exponent between our not smoothed

RGPS results and the model solutions. The

:
).

::
In

:::::::
contrast

::
to

:::::
these

::::::
studies

:::
we,

::::::::
however,

:::
use

:
a

::::::::::
anisotropic

::::::
spatial

::::
filter

::
to

::::::
reduce

:::::::
sampling

:::::
noise

:::::::
(section

::::
2.4).

::::
Our

:
b values of our model solutions during winteragree within their uncertainty estimates with

the

:::::
values

:::
for

:::
the

:::::::::
unfiltered

:::::
RGPS

::::
data

:::
of

:::::::::
b=�0.22

:::
and

::::::
�0.25

:::
for

:::::::
summer

:::
and

:::::::
winter,

::::::::::
respectively,

:::::
agree

::::
very

:::::
well

::::
with

:::::::
previous

::::::
studies

::::
(see

::::::
section

:::
3.3

::::
and

:::::::::::::
Supplementary

::::::::
Material).

:::
A

::::::
similar

::::::
change

::
of

:
b value of �0.12 found

::
for

:::::::
filtered

:::
vs.

::::::::
unfiltered

:::::
RGPS

::::
data

::::
was

:::::::
reported by Bouillon and Rampal (2015a).

More importantly, for the model solutions our results do not agree with previous studies. Our model solutions reproduce the

power-law scaling properties well.

::::
very

::::
well.

::::::
While

:::
the

:
b

:::::
values

:::
are

::::::::
different

:::
the

::::::
quality

::
of

:::
the

::
fit

:::
for

:::
the

::::::
model

:::::::
solutions

::::
and

:::::
RGPS

::::
data

:::
are

::::
very

::::::
similar

::::
and

::::
very

::::
good

:::
for

::::
both

::::
(see

::::::
Figure

:::
8). We do not observe the strong divergence from power-law

scaling for models with VP ice rheology reported by Girard et al. (2009).

3.2.2 Probability Density Function

Another way to look at the power-law scaling behavior of sea ice deformation rates is by comparing probability density

functions (PDFs) obtained from model solutions and RGPS data. The PDFs for observed sea ice strain rates follow a power

law. For example, Girard et al. (2009) report that the PDF of RGPS strain rates during January to March 1997 follows a linear

relation in log-log space:

p(| ˙r|)/ | ˙r|n (8)

For the comparisons, the same 5-day aggregated RGPS and model datasets described in the last Section

::::::
section 3.2.1 were

used. We show results obtained for the nominal length scale L

⇤
= 20

:::::::
L

⇤
= 10 km. Results for the other length scales are similar,

:
.

::::
Even

:
a bit more noisy at 10 km and smoother at lower resolutions, but qualitatively the conclusions are the same. PDFs p for

absolute divergence | ˙r| and shear rate ⌧̇ are then calculated for all winter (11 years) and summer (9 years) RGPS periods (see

Table 2). Figure 9 shows the PDFs for the three model solutions with 4.5 (blue), 9 (green), and 18 km (red) grid spacing and

the RGPS data (black) on a log-log scale. Table 3 summarizes the obtained n exponents including uncertainty estimates.

A linear least squares regression was applied to the PDFs in log-log space for the range 0.05

:::
0.1–1 day

�1
, shown as dashed

lines in Figure 9. The same range was used for all four plots. For very small and large deformation rates outside that range, the

RGPS PDFs diverge from the power law relationship. The accuracy of the RGPS observations is about 100 m and noisy at that

scale. This noise, which is not removed in this study, can cause artificially higher strain rates (Bouillon and Rampal, 2015a).

Low deformation rates therefore could be underrepresented in the RGPS PDF, which potentially could explain the deviation

from a straight line for low deformation rates in Figure 9. For very high deformation rates the low number of data points causes

artificial variability in the PDFs.
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The slope of | ˙r| and ⌧̇ for both the winter and summer RGPS PDF is n⇡�2.75

::::::::
n⇡�3.3, only the summer slope of | ˙r|

diverges with n=�2.46

::::::::
n=�2.4 (more values in Table 3). This is consistent with

:::
but

::::
more

::::::::
negative

::::
than

::::
what

::
is

::::::
found

::
in Marsan et al. (2004) and Girard et al. (2009), who report winter RGPS PDF slopes of about �2.5 for strain rates at the

⇡10-km scale. During winter, the slope for the PDFs of all three model solutions for absolute divergence

:::::
Again

::::
one

:::::
needs

::
to

:::::::
consider

::::
that

:::
our

:::::::
datasets

:::
are

::::::::
spatially

::::::
filtered

:::::::
(section

:::::
2.4),

:::::
which

::::
will

::::::
impact

::::
the

::::::::
statistical

::::::
values

:::
but

:::
not

:::
the

:::::::
overall

:::::::
behavior.

::::
All

:::::
model

::::::::
solutions

:::::
show

:
a

::::::
power

::::
law

::::::
scaling

::
of

:::
the

:::::
PDFs

:::::::
similar

::
to

:::
the

::::::
RGPS

::::
data

:::
for

::::
both

:
| ˙r| is very similar

(4.5 km: n=�2.5; 9 km: n=�2.8; 18 km: n=�2.6) and agrees very well, mainly within the error bars (Table 3), with the

RGPS slope. Also the magnitude agrees and the PDFs largely overlap. For shear

:::
and

:
⌧̇ the slope .

::::
The

:::::::::
magnitude

::
of

::
n

:::
for

:::
the

:::::
model

::::::::
solutions

::::::
always

::::::
follows

:::
the

:::::
same

:::::::
pattern:

:
it

::
is

::::::
lowest

:::
for

:::
the

::::::
4.5-km

::::::::
solutions,

::::::::
followed

::
by

:::
the

:::::
9-km

::::
one,

:::
and

:::::::
highest

::
for

:::
the

::::::
18-km

::::::::::
simulation.

:::
The

:::::::
scaling

::::::::
exponents

:
of the 9-km solution agrees with n=�2.9± 0.1 with the RGPS slope, the

::::
agree

::::
best

::::
with

::::::
RGPS

::::
ones

:::
and

:::::
often

::::::
overlap

::::::
within

::::
they

:::::::::
uncertainty

::::::::
estimates

::::::
(Table

::
3).

::::
The 4.5-km solution has a shallower

(�2.41)

:::::
always

::::
has

:
a

:::::::
shallow and the 18-km solution a steeper (�3.23) slope . The magnitudes do not agree as well as for | ˙r|.

During summer, the model simulation slopes are more variable and diverge more from the RGPS data (Figure 9 and Table 3).

Especially the 4.5-km solution diverges from the fit line. Still the agreement can be considered as good.

:::
one

::
a

::::::
steeper

:::::
slope

:::
than

:::
the

::::::
RGPS

::::
data

:::
for

::::
both

:::
| ˙r|

:::
and

::
⌧̇ .

:

For absolute divergence | ˙r|,
::
In

::::
most

:::::
cases the three model solutions show a power-law scaling behavior over an even larger

absolute range than the RGPS data (approximately 10

�2
to 1 day

�1
::
for

:::::::::
divergence). During summer, the model solutions PDFs

are more noisy

::::::
variable and the 4.5 km solutions especially diverges from the power-law relationship for both | ˙r| and ⌧̇ . The

model solutions show a higher probability for small shear rates ⌧̇ than the RGPS data as can be expected since the deformation

rates are about 50% lower as discussed in section 3.1.2.

Overall the slopes of the PDF tails for simulated and observed RGPS absolute divergence and shear rates show good agree-

ment. The observed and simulated power law exponents n agree

::
are

::
of

:::
the

:::::
same

:::::
order during both winter and summer months

(RGPS: n⇡�2.75

:::::::
n⇡�3.1; model solutions: n=�2.2 to �3.2

::::
�3.5). During winter months both the exponent n and the

PDF shapes from the 4.5-km model solutions is closest to the RGPS data. During summer there is a larger spread between the

model solutions and

:::
and

:::::::
summer the

:::::
PDFs

::
of

:::
the 9 km solutions agrees

:::::::
solution

::::
agree

:
best with the RGPS data

:::
but

::
all

::::::
model

:::::::
solutions

:::::
show

:::::
good

:::::::::
agreement. Again, we do not observe the strong deviation from power-law scaling reported by Girard

et al. (2009) for model simulations using the VP and EVP sea ice rheology. In our model setup the used VP rheology seems to

be able to reproduce a realistic distribution of deformation rates, which follow a power-law relationship.

3.2.3 Comparing models with different grid size

In this section, we examine whether sea-ice deformation rates in the three model simulation with different horizontal grid

spacing follow a similar power law scaling as found in observations and as discussed in Section

::::::
section 3.2.1. The motivation

is to make the deformation rates of the three model solutions directly comparable to each other. We will show that this is not

possible generally speaking.
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It is a common problem that one wants to compare sea ice deformation rates from different model simulations. These model

simulations then, in general, have a different grid resolution and a direct comparison is not possible due to the different length

scales involved. We will explore if the power law in equation 7 with a constant exponent b can be used to compare mean absolute

deformation rates of model solutions with different grid spacing as it was suggested by, e.g., Stern and Lindsay (2009). We use

the deformation rate

˙

D here again to not discuss the three different strain rate invariants separately, which give similar results.

Due to the different averaging length scale L one would not expect

˙

D to be the same for model solutions with different

grid spacing. In Section

::::::
section 3.1 we avoided this problem by interpolating the model solutions to the RGPS Lagrangian

locations.

::::
Here

:::
we

::::
keep

:::
the

::::::
spatial

:::::::::
resolution

::
of

:::
the

::::
three

::::::
model

:::::::::
simulation

:::
and

::::::::
calculate

:::
all

:::::
strain

::::
rates

::
on

:::
the

:::::
three

:::::::
original

:::::
model

::::
grids

:::::
with

:::
4.5,

::
9

:::
and

::::::
18-km

:::::::::
resolution,

::::::::::
respectively.

:
At least for the model solutions with higher or similar spatial scale

as the RGPS data, i.e., the 4.5 and 9-km solutions, this will create comparable datasets. Due to its lower spatial scale, the 18-km

solution cannot, in theory, fully recreate the RGPS data, regardless of the sea ice rheology formulation.

Figure 10a shows the 1992–2008 time series of the mean sea-ice deformation rate

˙

D in the complete model domain shown in

the Figure 1a inset. Different to the previous sections and, e.g., Figure 6, the complete model domain is now considered, not only

the areas covered by RGPS data. As expected the deformation rate for the 4.5-km model solution (blue, mean

˙

D = 0.123/day)

is consistently higher than that of the 9-km solution (green, mean

˙

D = 0.085/day, �31%), which itself is higher than that of

the 18-km solution (red, mean

˙

D = 0.054/day, �36%). The variability from year to year of the mean deformation rate is large,

especially during summer. Some years, e.g., 1997–1999, have clearly reduced summer deformation rates in comparison to,

e.g., the beginning of the 1990s or 2007 and 2008. The deformation rate during 2008, both during summer and winter, is the

highest of the complete time series (Figure 10a).

We assume that the model deformation rate

˙

D follows the same power-law as given in equation 7 and apply a least-squares

fit in log space to equation 7:

log(

˙

Di) = log(d)+ b log(Li) (i= 1 to 3)

with daily mean deformation rates

˙

Di from model solutions with grid spacing Li, i.e., in our case 4.5, 9 and 18 km. The

deformation rates for all sea-ice covered grid cells (C > 0) is averaged and b calculated on a daily basis. For all sea-ice-covered

areas in the model domain and for the complete time series, the power law scaling exponent b is estimated to be �0.54. The

exponent is different from the ones found in Section

::::::
section

:
3.2.1. First, a different method is used here but more importantly

a different regional domain is covered. The model domain used here contains the complete MIZ and low ice concentrations,

which allow more free drift cases that result in a more negative b exponent.

Figure 10b shows the deformation rate time series for the three model solutions normalized to a length scale of L= 10 km,

using the estimated scaling exponent b=�0.54 and equation 7. The length scale of 10 km was chosen to be comparable to

the RGPS data. Using this scaling, the three time series become much more similar than the original ones in Figure 10a. If

looked in detail, however, there remain some quite large differences. For example, the mean

˙

D of the 9-km simulation is now

higher than that of the other two simulations; and the standard deviations of all three simulation are still different (not shown:

the standard deviation of the 18-km simulation is > 0.05/day smaller than that of the 9 and 4.5-km simulations).
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These differences imply that a single, constant scaling exponent b is not sufficient to make the strain rates of the three

model solutions comparable. b varies seasonally and regionally. Figure 10c and d show, respectively, the dependence of sea-ice

deformation rate

˙

D on sea ice concentration C and sea ice thickness h for the three model solutions during the complete 1992

to 2008 time series. In Figure 10c, the deformation rate decreases with increasing sea ice concentration for all three model runs

and

˙

D approaches zero linearly for 100% ice-covered grid cells. Also for increasing ice thickness in Figure 10d the deformation

rate decreases but here the deformation rate decreases exponentially. For sea ice thickness above 2 m,

˙

D is near zero. It has to

be noted that the ice thicknesses h are the effective ice thicknesses of a complete grid cell, which also can contain open water

(C < 100%).

From Figures 10c and d, it becomes clear that the scale dependence is much stronger for small ice concentrations and

thicknesses than for large ones. The scaling exponent b gets more negative for weaker sea ice and approaches zero for very

strong sea ice, i.e., thick ice and 100% ice concentration (see Equation

:::::::
equation 6 for how the ice strength dependencies are

incorporated in the model).

There are additional external factors that influence b. For free-drift ice, b gets more negative as can be seen by the strong

dependence on C. Therefore, the surrounding geography, i.e., landmasses, influence the scaling exponent with b values closer

to zero in channels and near the coast, where the ice cannot drift freely. The estimated power-law scaling factor b represents the

balance between all these factors. That is, sea ice concentration, thickness, and geographic location are important contributors

to the estimated scaling exponent.

The factors mentioned in the last paragraph also explain why the scaling exponent b=�0.54 found here for the three

simulations is significantly lower than the values of b of about �0.2 found for RGPS data in Section

::::::
section 3.2.1 or by Stern

and Lindsay (2009). There are other factors influencing the deformation rate for the different model solutions compared to the

averaging of different scales in Section

::::::
section 3.2.1 but the different regions covered will have the dominating influence. In

the model, the values of b between �0.3 to �0.2 are typical for ice concentrations � 80%. These are typical ice concentrations

for the RGPS region, which rarely extends to the marginal ice zones with low ice concentrations. If the calculation of the

scaling exponent b in the model is restricted to the region covered by RGPS data, a mean b value of ⇡�0.2 is found, which is

comparable to the b values found for RGPS data. This scaling exponent, however, is not applicable to the complete Arctic. For

this reason, it is difficult to compare sea-ice deformation rates obtained at different spatial scales. For direct comparison, strain

rates need to be calculated for identical areas, as was done in Section

::::::
section 2.3. At the very least, for meaningful statistical

comparisons, the different scaling behavior for different ice concentrations needs to be considered.

In summary, the three simulations with different horizontal grid spacing, i.e., different resolved spatial scales, follow a similar

power law scaling as that estimated using RGPS and buoy observations. We attribute most of the differences between simulated

and observed scaling factor b to the different sea ice concentration and thickness ranges of each dataset. The simulated power

law scaling strongly depends on ice strength, which itself depends on ice concentration and thickness. For strong sea ice, all

model solutions converge to comparably small deformation rates. In reality, i.e. for the observations, ice strength depends on

many more factors, e.g., floe size and level of fragmentation and fracturing. The power-law scaling exponent b therefore varies
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in space and time. Due to all these factors in most cases it will not be possible to directly compare the deformation rates of

model solutions with different grid spacing based on the power-law relationship.

3.3
::::::::::

Comparison
:::::::
Filtered

:::
vs.

:::::::::
Unfiltered

::::::::
Datasets

:::
The

:::::::::::
aniosotropic

:::::::::
smoothing

::::
filter

::::::::
described

::
in

:::::::
section

:::
2.4

:::
will

::::::
change

::::
the

::::::::
statistical

::::::::
properties

::
of

:::::
both

:::
the

:::::
RGPS

::::::
dataset

::::
and

:::::
model

::::::::
solutions.

::::::
Figure

::
11

::::::
shows

:::::::::
examplary

::::
how

:::
the

::::
filter

:::::::
changes

:::
the

:::
sea

:::
ice

:::::::::
divergence

:::::
fields

:::
and

::::::
spatial

::::::
scaling

:::::::::
properties.

::::
More

::::::::
examples

:::
are

:::::
given

::
in

:::
the

:::::::::::::
Supplementary

:::::::
Material

:::::::::
document,

:::::
where

:::
all

::::::
figures

::::
from

:::
the

:::::
main

:::
text

:::
are

::::::::::
reproduced

:::::
based

::
on

:::
the

::::::::
unfiltered

:::::::
datasets.

::::
For

:::
the

:::::::::
comparison

:::
we

::::::
obtain

::::::
similar

::::::
results

::
as

::::::::
described

::
in

:::::::::::::::::::::::::
Bouillon and Rampal (2015a).

:::
The

::::
goal

::
of

::::
the

:::::::::
anisotropic

:::::::
filtering

::
is

::
to

:::::
keep

:::
the

:::::
shape

::
of

:::
the

:::::
LKFs

::::
but

::::::
reduce

:::
the

:::::
noise

:::::::::
introduced

::
by

:::
the

::::::::
sampling

:::
of

::
the

::::::::::
Lagrangian

::::
cells

::::
(see

::::::
section

:::::
2.4).

:::::
Figure

::::
11a

:::
and

::
b

::::::
clearly

::::::::::
demonstrate

::::
that

:::
the

:::::::::
divergence

:::::
fields

:::
get

:::::
much

::::::::
improved

:::
by

:::::::
applying

:::
the

:::::
filter.

::::
One

:::::
would

::::::
expect

::::
that

:
a

:::::::::
particular

::::
LKF

::
is

:::::
either

::::::::
divergent

::
or

::::::::::
convergent,

::::
i.e.,

:::::
either

:
a

::::
lead

::
is

:::::::
opening

:::
or

::::::
closing.

::::
The

::::::::
unfiltered

:::::::::
divergence

::::
field

::
in

::::::
Figure

:::
11b

::::::
shows

:
a

::
lot

:::
of

:::::
LKFs

::::
with

:::::::
divergent

::::
and

:::::::::
convergent

::::
grid

::::
cells

::::
next

::
to

::::
each

:::::
other.

::::
For

:::
the

::::::
filtered

:::::::::
divergence

:::::
field

::
in

::::::
Figure

:::
11a,

::::::
LKFs

:::
are

::::::
mainly

:::::
either

::::::::
divergent

::
or

::::::::::
convergent,

::::::
which

::
is

:
a

:::::
much

:::::
more

:::::::
physical

:::::
result.

::::
The

::::
large

:::::
scale

:::::::::
divergence

:::::::
pattern,

:::::::
however,

::::
stay

:::
the

:::::
same

::
for

:::
the

:::::::
filtered

:::
and

::::::::
unfiltered

:::::::::
divergence

:::::
fields

::::
and

::
all

:::::
other

:::::
strain

::::
rates.

:

::
As

::
a

:::::
result

::
of

:::
the

::::::::::
smoothing

:::
the

:::::::
absolute

::::::::::
divergence

::::
(and

::::
also

:::
the

:::::::::
magnitude

::
of

:::
all

:::::
other

:::::
strain

:::::
rates)

::::
gets

:::::::::::
significantly

:::::::
reduced.

::::
This

::::::::
reduction

::
is

::::
with

::::
50%

:::::::
highest

:::
for

:::::
RGPS

:::::::::
divergence

::::
but

:::
also

::::::
shear,

:::::::
vorticity,

::::
and

::::::::::
deformation

::::
rate

:::::::
decrease

:::
by

::::
about

:::::
30%

::::::::
(compare

:::::
Table

:
3

::::
with

:::::
Table

::::
S-1

::
in

:::
the

:::::::::::::
Supplementary

:::::::
Material

::::::::::
document).

:::
For

:::
the

:::::
model

::::::::
solutions

:::
the

::::::::
decrease

:
is

::::
with

:::::
47%

:::
and

:::::
15%,

::::::::::
respectively,

:::::::
smaller.

::::
This

::::::::
reduction

::
in

:::::::::
divergence

:::::::::
magnitude

:::
can

:::
be

::::
seen

::
in

::::::
Figure

:::
11c

::::
and

::
d,

:::::
where

:::
the

::::::::
absolute

:::::::::
divergence

::
is

:::::
much

:::::
lower

:::
for

::
the

:::::::
filtered

:::::
RGPS

::::
data

:::
and

::::::
model

::::::::
solutions

::::
than

::
for

:::
the

:::::::::
unfiltered

::::
ones

:::::
(mind

:::
the

::::::::::
logarithmic

:::::
scale).

::::
This

:::::::::
reduction,

::::::::
however,

:
is

:::
not

:::::::
uniform

::
at

:::
all

::::::
spatial

:::::
scales

:::::::
because

:::
the

::::::::::
anisotropic

::::
filter

:::::::
smooths

::::
only

:::::::
regional

::::::
within

::
a

::::
given

::::::
kernel

::::
size

:::
(see

:::::::
section

::::
2.4).

:::
For

:::::
large

:::::
spatial

::::::
scales

:::
the

::::::
filtered

::::
and

::::::::
unfiltered

::::::
results

::::::::
therefore

::::::::
converge

::
to

::::
each

:::::
other

:::
and

::
at

:::
the

::::::::
1000 km

:::::
scale

:::
the

::::
mean

:::::::::
divergence

::
is

::::::
almost

:::
the

:::::
same

:::
(see

::::::
Figure

::::
11c

:::
and

:::
d).

::
As

::
a

:::::
result

:::
the

:::::::
gradient

::
of

:::
the

::::::
log-log

:::
fit,

:::
i.e.

:::
the

::::::
scaling

::::::::
exponent

:
b,

::
is

:::::
much

:::::::::
shallower

::
for

:::
the

:::::::
filtered

:::::::
datasets.

::::
The

::::::
quality

::
of

:::
the

:::
fit,

::::::::
however,

:::
gets

::::::
better

:::
for

:::
the

::::::
filtered

:::::::
datasets:

:::
the

::::::::
averages

::
for

:::
the

:::::
seven

:::::::::::
investigated

:::::
spatial

::::::
scales

:::::::
between

:::
10

:::
and

::::::::
1000 km

:::
lay

:::::
almost

::::::::
perfectly

:::
on

:::
the

::
fit

::::
line

:::
for

::::
both

:::::
RGPS

::::
data

::::
and

:::::
model

::::::::
solutions

::
in

::::
case

::
of

:::
the

::::::
filtered

::::::::
datasets.

:::
For

:::
the

::::::::
unfiltered

:::::::
datasets

:::
the

::
fit

::
is

::::
still

::::
very

::::
good

:::
but

:::::
some

:::::::::
deviations

:::
can

:::
be

:::::::
observed

:::
for

:::
the

:::::
RGPS

::::::::::::
observations.

:::
The

::::::::::
anisotropic

::::
filter

::::::::
described

:::
in

::::::::::::::::::::::::::::::::
Bouillon and Rampal (2015a) improves

:::
the

::::::::::::
representation

::
of

:::
the

:::::::::::
deformation

:::::
fields

:::
for

::::
both

:::::
RGPS

::::
data

:::
and

::::::
model

::::::::
solutions.

::::
The

:::::::
absolute

:::::::
numbers

::::
and

:::::::
statistics

:::::::
obtained

:::::
from

:::
the

::::::
filtered

::::::::::
deformation

:::::
fields

::::::
should

::
be

:::::
more

:::::::
realistic

:::
and

::::::::
physical

::::
than

:::
the

::::::::
unfiltered

:::::
ones.

::::
One

::::
will

::::::
obtain

:::::
quite

:::::::
different

::::::::
numbers

:::
for

:::
the

::::::
means

:::
and

:::::::
scaling

::::::::
exponents

:::
for

:::
the

:::::::
filtered

:::::::
datasets

::
as

::::
was

:::::::::
exemplary

:::::::::::
demonstrated

:::::
here.

::::
The

::::::
general

::::::::
behavior

::
of

:::
the

:::::::::::
deformation

::::
field

::::
and

::::
their

::::::::
statistical

:::::::::
properties,

::
as

:::
for

:::::::
example

:::
the

::::::::::::::::
power-law-scaling,

:::::
does

::::::::::::::::::
qualitatively,however,

:::
not

::::::
change

:::
for

:::
the

::::::
filtered

:::::
data.

:::
The

::::::::::
conclusions

::::::
drawn

::::
from

::
a

::::::::::
comparison

:::::::
between

::::::::
different

:::::::
datasets,

::::
like

::
in

:::
our

::::::::
example

:::::::
between

:::
the

::::::
RGPS

:::::::::::
observations

:::
and

::::::
model

::::::::::
simulations,

::::::
would

::
be

:::::
very

::::::
similar

:::
for

:::
the

:::::::
filtered

:::
and

:::::::::
unfiltered

:::::::
datasets

::::::::
(compare

:::
the

::::::
results

:::::
here

:::
and

:::
in

:::
the
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::::::::::::
Supplementary

:::::::
Material

::::::::::
document).

::
In

:::::
most

::::
cases

:::
the

:::::
filter

:::
will

:::::
affect

::::::::
different

:::::::
datasets

::
in

:
a

::::::
similar

::::
way

::::
and

::
for

:::::::::::
comparative

::::::
studies

:::
the

::::::
results,

:::::::::::
qualitatively,

:::::::
should

::::
stay

:::
the

::::::
similar.

::::
But

::::::
again,

:::
the

::::::
filtered

::::::::
datasets

:::
will

:::::::
provide

:::::
more

:::::::::
consistent

::::
and

::::::::
physically

:::::
more

::::::::
plausible

:::::
results

:::
for

:::
all

:::
sea

::
ice

:::::::::::
deformation

:::::
fields.

:

4 Summary and Concluding Remarks

Deformations in

:::
Sea

::
ice

::::::::::::
deformations

::::
from

:::::::
coupled

:
Arctic ocean and sea ice simulations with horizontal grid spacing of 18,

9, and 4.5 km were compared to RGPS satellite observations during the 1992–2008 period (Section

:::::
section

:
3). Lagrangian sea

ice drift was reconstructed from the three model solutions for a direct comparison with the RGPS data

::::::
(section

::::
2.3)

:::
and

:::::
noise

:::::
related

:::
to

:::
the

::::::::
sampling

::
of

:::
the

::::::::::
Lagrangian

::::
data

::::::
points

:::
was

::::::::
removed

:::
by

::
an

::::::::::
anisotropic

::::
filter

:::::::
(section

::::
2.4). Sea ice strain rate

invariants divergence , vorticity, and shear

:::
and

:::::
shear

::
as

::::
well

::
as

:::::::
vorticity

::::
and

::::::::::
deformation

:::
rate

:
were calculated in the same way

for the three simulations and for satellite observations from the Lagrangian ice drift datasets. Even though the viscous-plastic

dynamic sea ice model with elliptical yield curve is able to produce what appears to be linear kinematic features (LKFs),

the orientation and spatial density of these LKFs are very different from what is observed in the RGPS data. For the 4.5 km

simulation, however, many more and more confined LKFs are visible compared to the two lower resolution simulations. A

small model grid spacing seems to be essential to represent LKFs using a VP sea ice rheology. The mean sea-ice deformation

rate, however, is between 51% to 57

::::
37%

::
to

::
44% lower in all simulations than in the RGPS data. The largest difference occurs

for the magnitude of divergence, which is 67% to 79

::::
49%

::
to

::
66% too low (Table 3). Also the large-scale shear pattern is not

well reproduced in the model solutions (Figure 4). In addition the LKFs occur less frequently in the simulations. Of the three

model solutions, the one with the smallest grid spacing of 4.5 km has characteristics closest to RGPS observations.

While RGPS sea-ice deformation data show a clear discrimination between the thinner seasonal sea ice with more defor-

mation and the thicker perennial sea ice, the model deformation zones are mainly confined to a few LKFs at the ice margins.

Differences are largest for seasonal sea ice, where the model strongly underestimates sea-ice deformation. This suggests a

shortcoming of the ice rheology, for example, the linear dependence between ice strength and ice thickness. Model solutions

with smaller grid spacing, however, result in more small-scale deformation features. In particular, the 4.5

::
4.5-km simulation

has more LKF-like features in the Central Arctic than the coarser-resolution simulations and, visually, the spatial distribution

of these LKF-like features agrees better with RGPS observations. This improved realism is evaluated by computing the per-

centage Q of sea ice area containing the highest 15% of sea-ice deformation rates, which is a measure of how confined the

deformation processes are. For this metric, the 4.5-km model solution performs closest to the RGPS data,

:::::
shows

:::
the

:::::
most

:::::::
confined

::::::::::
deformation

:::::::
features

:
with a Q value of 0.5%compared to Q= 0.7% for RGPS, while the

:::::
0.8%,

::::::
which

:
is

:::::
even

:::::
lower

:::
than

::::
the

:::::
RGPS

::::
data

::::
with

::::::::::
Q= 1.5%.

:::
The

:
9 and 18-km simulations have

:::::
much higher Q values of 1.2 and 1.5

:::
2.3

:::
and

::::
2.9%,

receptively, i.e., the deformation features are much less confined. These differences in small-scale deformation features can be

important because ocean-to-atmosphere heat transfer tends to occurs on small scales. For example, the heat flux from narrow

leads can be twice as high as that from larger leads (Marcq and Weiss, 2012) and ocean upwelling events caused by sea ice

shear motion happen on small scales (McPhee et al., 2005).
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In Section

:::::
section

:
3.2 we compare the power-law scaling behavior of the three model solutions with the RGPS observations.

Both the RGPS data and all model solutions show a clear power-law dependence of the absolute divergence | ˙r| and shear

rate ⌧̇ to the length scale L. The scaling exponents b for the RGPS data, however, is about twice as negative as for the three

:
9

:::
and

::::::
18-km

:
model solutions (e.g., for ⌧̇ : b⇡�0.22

:::
| ˙r|:

:::::::::
b⇡�0.25 for RGPS, and b⇡�0.12 for the

:::::::
b⇡�0.1

:::
for

:::
the

:
9

::::
and

:::::
18-km

:
model solutions). The b

:::::
value

::
of

:::
the

::::::
4.5-km

:::::::::
simulation

::::::
comes

::::::
closest

::
to

:::
the

:::::
RGPS

:::::
value

:::::
(e.g.,

::
for

::::
| ˙r|:

::::::::::
b⇡�0.16).

::::
The

power-law scaling for the tail of the probability density functions (PDF) of absolute divergence and shear for the three model

solutions is very similar to the RGPS data, especially during winter where the models and RGPS exhibit the same power law

exponent n⇡�2.8. During summer the PDFs of the three model solutions get more different but, however, still follow a power

law.

::::::
During

:::::
both

::::::
summer

::::
and

:::::
winter

:::
the

::::::
power

:::
law

::::::
scaling

::::::::
exponent

::
n

::
for

:::
the

::::::
models

:::::::::
(n=�2.2

::
to

::::::
�3.5)

:
is

:::
of

::
the

:::::
same

:::::
order

::
of

:::
the

:::
one

:::
for

:::
the

:::::
RGPS

::::
data

::::::::::
(n⇡�3.1).

::::
The

::::
PDF

::
of

:::
the

::::::
4.5-km

:::::::
solution

::::::
always

::::::
shows

:::
the

:::::::::
shallowest

:::::
slope,

:::::::
followed

:::
by

:::
the

::::
9-km

::::::::
solution,

:::
and

:::
the

::::::
18-km

:::::::
solution

:::
has

:::
the

:::::::
steepest

::::
slope. Neither for the spatial scale dependence nor for the PDFs we do

observe the strong divergence from power-law scaling for the VP sea ice rheology reported by Girard et al. (2009).

We tested if the power-law dependence can be used to compare deformation rates obtained with model simulations using

different grid spacings. The scaling of the deformation rate in our three model solutions with different grid spacing, i.e.,

different length scales follows a similar power law as is observed for the RGPS observations (Section

::::::
section

:
3.2.3). The

power law scaling exponent strongly depends on ice concentration and thickness, i.e., the factors that for the model determine

the internal ice stress. In most cases it therefore will not be possible to compare absolute numbers of strain rates obtained from

models with different grid spacing.

:::
The

:::::::::
anisotropic

:::::
filter

::::::::
presented

::
in

::::::::::::::::::::::::::::::::
Bouillon and Rampal (2015a) improves

::
all

::::::::::
deformation

:::::
fields

:::
but

::::::::
especially

:::
the

:::
ice

:::::::::
divergence.

:::
The

:::::
filter

:::::::
changes

::::
both

:::
the

:::::::
average

::::::
values

::::
and

:::::::::
magnitude

::
of

:::
the

::::::::::
power-law

::::::
scaling

:::::::::
exponents

:::::::
(section

::::
2.4).

::::::::::::
Qualitatively,

:::::::
however,

:::
the

::::::::::
conclusions

::::::
drawn

::::
from

:
a

::::::::::
comparison

::
of

:::
the

::::::
RGPS

::::
data

::::
with

:::::
model

::::::::::
simulations

::::
will

::
be

:::
the

:::::
same

:::
for

:::
the

::::::
filtered

:::
and

::::::::
unfiltered

:::::::
datasets.

:

On larger scales the sea-ice deformation rate of all three model solutions is very similar, with only small improvements

for the 4.5-km simulation (Figure 5). Almost independent of grid spacing, the modeled sea-ice deformation is much lower

than the RGPS observations (⇠ 50%). Bouillon and Rampal (2015a) suggest that RGPS deformation rates are too high due to

artificial noise in the motion fields, which could explain part of this difference.

:::::::
⇠ 40%).

:
Nevertheless, the large scale pattern

of divergence (Figure 2) and vorticity (Figure 3), but not

:
to

::
a

:::::
lesser

::::::
degree

:
shear (Figure 4), are reproduced by all model

simulations. Even if the differences are small for the large scale deformation patterns, the 4.5-km simulation, the one with the

smallest horizontal grid spacing, always performs best out of the three solutions. This difference becomes more pronounced if

small scale deformation features are considered. The 4.5-km simulation is the only one that reproduces a reasonable number

of LKFs in the Central Arctic, even on length scales (2⇥ the grid spacing) where the lower resolution models theoretically

are capable of reproducing these features. We conclude that increasing the spatial model resolution can improve the sea-ice

deformation representation for a viscous-plastic sea ice rheology. However, big differences to the observed sea-ice deformation

strain rates still remain.
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A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea ice mass balance.

Multiple equilibrium flow states (i.e., when ice growth equals ice export) can exist for the Arctic Basin, and their character-

istics are influenced by sea ice strength and ice rheology (Hibler et al., 2006). Steele et al. (1997) show that the ice strength

parameterization in a VP sea-ice model influences the sea ice mass balance in the Arctic Ocean. Reducing the sea ice strength

in the model decreases internal stress gradient and results in faster mean ice motion and thicker ice, which in turn strengthens

and slows the ice. Steele et al. (1997) attribute this thickening to increased ice piling up in the weaker ice simulation.

An interesting future study would be to attempt to adjust sea ice and ocean model parameters in order to reproduce the

metrics discussed in this paper. For example, in a separate sensitivity experiment, not discussed in this manuscript, we changed

the sea ice strength dependence on sea ice thickness (Equation

::::::
equation

:
6) from linear to cubic, which considerably increased

deformation rate in both perennial and seasonal ice zones. Of course, adjusting a single parameter can improve a certain set

of model features but is likely to make others, e.g., sea ice velocity, worse. What is needed is the simultaneous adjustment of

several key model parameters, in the manner discussed in Menemenlis et al. (2005) and Nguyen et al. (2011). Other possible

approaches for improving the representation of sea ice strain rates include the introduction of multiple categories for different

ice thicknesses and deformed and undeformed ice, since multicategory models allow weaker resistance, more leads, and en-

hanced ice growth (Mårtensson et al., 2012); and experimentation with new ice rheologies that do not rely on the viscous-plastic

assumptions (Sulsky et al., 2007; Girard et al., 2011; Tsamados et al., 2013; Bouillon and Rampal, 2015b).
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Figures

Figure 1. a) The Arctic face of the cube sphere grid used by the ECCO2 project. The March 2005 ice thickness inset shows the regional grid

used in this study. Note that North Pacific coastline in the regional grid is modified relative to the global set-up in order to remove unconnected

seas. Boundary conditions are obtained from the ECCO2 18-km cube sphere solution. b) – d) Sea ice thickness on 15 November 1999 after

about 8 years of model integration for the 4.5, 9, and 18 km simulation, respectively. Sea ice thickness is shown on the respective original

model grid.
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Figure 2. Examples of monthly mean November 1999 sea ice divergence. The divergence from (a) RGPS and the model runs with (b) 4.5-

km, (c) 9-km, and (d) 18-km grid spacing are shown. The number of LKFs increases with decreasing model grid spacing. All maps are shown

on the same 12.5 km grid and are constructed from the same number of observations (see Section

:::::
section

:
2.3). The black line discriminates

seasonal and perennial sea ice. White areas are not covered by RGPS observations.
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Vorticity, Nov 1999
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Figure 3. As Figure 2 but for vorticity.
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Shear, Nov 1999
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Figure 4. As Figure 2 but for shear.
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Deformation Rate Difference, Nov 1999
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Figure 5. Smoothed (150 km) difference in deformation rate Ḋ between RGPS and model solutions with 4.5 km

::
-km

:
(left), 9 km

::::
9-km

(middle), and 18 km

:::::
18-km (right) grid spacing. Largest differences occur in the seasonal ice zone outside the black contour.
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Figure 6. a) Mean deformation rate Ḋ for all 20 RGPS periods and the corresponding modeled values. Circles mark winter periods and

triangles summer periods; note that periods have different length (see Table 2). b) Seasonal cycle of Ḋ; shaded areas show standard deviations

for RGPS and the 4.5-km solution (9 and 18-km solutions are similar); horizontal dashed lines show the mean calculated from the monthly

time series; note that no data is available for September and October.
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Figure 7. The percentage Q of area containing the highest 15% of all sea-ice deformation rates shows the localization of deformation. a)

Time series showing the absolute percentage Q for RGPS data (black) and model solutions with 4.5 (blue), 9 (green), and 18 km (red) grid

spacing for all 20 RGPS periods. Circles mark winter periods and triangles summer periods; note that periods have different length (see Table

2). b) Seasonal cycle of Q; shaded areas show standard deviations for RGPS and the 4.5-km solution (9 and 18-km solutions are similar);

note that no data is available for September and October.
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Figure 8. Scaling properties of absolute sea-ice divergence |ṙ| (a, b) and shear rate ⌧̇ (c, d) for RGPS and model solutions for all winter

(Nov–Apr

::::::::
Nov–May;

::
a,

:
c) and summer (May–Jun

::::::::
May–Aug;

::
b,

:
d) periods. For length scales of 10, 20, 50, 100, 200, 500, and 1000 km the ice

divergence and shear from the Lagrangian cells were aggregated over 5-day periods. Individual data points for the RGPS dataset are shown

in grey. Mean values for the six different length scales are marked with symbols. Dashed lines are least square fits to the six mean values

from 10 to 1000 km. Note the logarithmic axes scaling.
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Figure 9. Probability density function of absolute sea-ice divergence |ṙ| (a, b) and shear rate ⌧̇ (c, d) for a length scale of 20

:
10 km based

on 5-daily aggregated Lagrangian cells for all winter (Nov–Apr

:::::::
Nov–May) and summer (May–Jun

::::::::
May–Aug) periods for RGPS and model

solutions. Dashed lines are least square fits to the approximately linear part of the PDFs between 0.05 and 1.0 day

�1
. Note the logarithmic

axes scaling.
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Figure 10. a) Time series 1992–2008 of mean deformation rate Ḋ in the complete model domain (see Fig. 1) for model runs with 4.5 (blue),

9 (green), and 18 km (red) grid spacing. b) as a) but for deformations normalized to a 10 km scale using equation 7 with b=�0.54. All

curves are one month running means. c) and d) show, respectively, the dependence of sea-ice deformation rate Ḋ on sea ice concentration C

and sea ice thickness h for the three model integrations. Blue shaded color areas mark ± one standard deviation for the 4.5 km solution.
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Figure 11.
:::::::::
Comparison

::
of

::::::
filtered

:::
and

:::::::
unfiltered

:::::::
datasets

::::
using

:::
the

::::::::
anisotropic

::::::::
smoother

:::::::
described

::
in

::::::
section

:::
2.4.

::
a)

:::::
RGPS

::::::::
divergence

:::
for

::::::::
November

::::
1999.

::::
This

:
is

:::
the

::::
same

::::::::
sub-figure

::
as

::
in

:::::
Figure

:::
2a.

::
b)

::
as

:
a)

:::
but

::::
using

:::
the

::::::::
unfiltered

::::
RGPS

::::
data.

::::
The

::::::::
divergence

::::
field

::::::
appears

::::
more

::::
noisy.

::
c)

::::
The

:::::
spatial

::::::
scaling

::
of

::
the

::::::
RGPS

:::
data

:::
and

:::::
model

::::::::
solutions

::::
based

:::
on

::
the

::::::
filtered

::::::
datasets

:::
for

:::
all

:::::
winter

::::::
periods.

::::
This

::
is

::
the

:::::
same

:::::::
sub-figure

::
as

::
in

:::::
Figure

:::
8a.

::
d)

::
as

::
c)

:::
but

::
for

:::
the

:::::::
unfiltered

:::::::
datasets.

:::
The

:::::
slopes

:::
are

::::::::
shallower

::
for

:::
the

:::::
filtered

:::::::
datasets

:::
and

:::
the

:::::
quality

::
of

:::
the

::
fit

:::::::
improves.
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Tables

Table 1. Selected sea ice model parameters

:::
(see

:::::::::::::::::
Nguyen et al. (2011) for

:::::
more

::::::
details).

Atmospheric forcing JRA-25

Sea ice dry albedo 0.7

Sea ice wet albedo 0.71

Snow dry albedo 0.87

Snow wet albedo 0.81

Ocean albedo 0.16

Air/sea ice drag coefficient 0.0011

Ocean/sea ice drag coefficient 0.0054

Ice strength parameter P ⇤
23 kN/m

2

Lead closing parameter H
o

0.6

elliptical yield curve major to

minor axis ratio e 2
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Table 2. RGPS periods used in this study. Column 3 gives the number of monthly mean values used.

start date end date no. months season

1996-11-07 1997-06-01 7 winter

1997-05-18 1997-08-01 2 summer

1997-11-02 1998-06-01 7 winter

1998-05-10 1998-09-01 2 summer

1998-10-28 1999-05-17 6 winter

1999-05-08 1999-09-01 4 summer

1999-11-01 2000-05-14 7 winter

2000-11-04 2001-06-01 7 winter

2001-05-15 2001-09-01 3 summer

2001-11-05 2002-06-01 7 winter

2002-05-16 2002-08-01 2 summer

2003-12-04 2004-06-01 6 winter

2004-05-11 2004-09-01 3 summer

2004-11-10 2005-06-01 7 winter

2005-05-15 2005-09-01 3 summer

2005-11-29 2006-06-01 6 winter

2006-05-19 2006-09-01 3 summer

2006-12-03 2007-06-01 6 winter

2007-05-14 2007-09-01 3 summer

2007-12-01 2008-06-01 6 winter

20 periods (11 winter/9 summer) 97

37



Table 3. Overview of some statistical parameters for the complete 97-month time series of RGPS and model sea ice strain rate invariants.

All units are 10�2
day

�1
if not otherwise indicated; ± values denote the standard deviation of the time series; ‘difference’ is the difference

between model and RGPS in %; and ‘correlation’ is the correlation coefficient between the model and RGPS time series. The last rows

summarize the power-law scaling exponents b
::
for

:::::
spatial

::::
scale

:
and n

::
for

:::::
PDFs

:
at

:::::
10 km

::::
scale

:
(plus 95% confidence pounds

:::::
bounds) discussed

in Section

:::::
section 3.2 (no units, see also equations 7 and 8).

·10�2
RGPS 4.5 km 9 km 18 km

deformation rate Ḋ mean 2.8± 1.1
:::::::
1.9± 0.6

:
1.4± 0.7

:::::::
1.2± 0.6

:
1.3± 0.5

:::::::
1.1± 0.5

:
1.2± 0.4

:::::::
1.1± 0.4

:

difference �51%
:::::
�37%

:
�55%

:::::
�40%

:
�57%

:::::
�44%

:

correlation 0.89
:::
0.84

:
0.90

:::
0.87

:
0.90

:::
0.88

:

absolute divergence |ṙ| mean 1.1± 0.5
:::::::
0.6± 0.3

:
0.4± 0.2 0.3± 0.2 0.2± 0.1

:::::::
0.2± 0.1

difference �67%
:::::
�49%

:
�77%

:::::
�63%

:
�79%

:::::
�66%

:

correlation 0.85
:::
0.79

:
0.87

:::
0.83

:
0.86

:::
0.84

:

absolute vorticity |⇣̇| mean 2.3± 0.7
:::::::
1.9± 0.5

:
1.4± 0.6

:::::::
1.2± 0.5

:
1.3± 0.4

:::::::
1.2± 0.4

:
1.2± 0.4

difference �40%
:::::
�33%

:
�43%

:::::
�34%

:
�47%

:::::
�37%

:

correlation 0.82
:::
0.75

:
0.84

:::
0.78

:
0.82

:::
0.79

:

shear ⌧̇ mean 2.4± 0.9
:::::::
1.8± 0.5

:
1.3± 0.6

:::::::
1.1± 0.6

:
1.2± 0.5

:::::::
1.1± 0.5

:
1.1± 0.4

:::::::
1.0± 0.4

:

difference �47%
:::::
�35%

:
�50%

:::::
�37%

:
�53%

:::::
�41%

:

correlation 0.89
:::
0.84

:
0.90

:::
0.87

:
0.90

:::
0.87

:

percentage Q of area mean 0.7± 0.4%
::::::::
1.5± 0.7%

:
0.5± 0.4%

::::::::
0.8± 0.6%

:
1.2± 1.1%

::::::::
2.3± 1.1%

:
1.5± 1.4%

::::::::
2.9± 1.2%

:

containing highest 15% difference �36
::::
�47% 65

::
49% 122

::
95%

of deformation rates correlation 0.59
:::
0.51

:
0.60

:::
0.52

:
0.75

:::
0.72

:

spatial scaling exponent b for winter �0.36± 0.06
::::::::::
�0.24± 0.03 �0.19± 0.03

::::::::::
�0.13± 0.03 �0.18± 0.02

::::::::::
�0.09± 0.03 �0.18± 0.02

::::::::::
�0.09± 0.04

absolute divergence |ṙ| summer �0.38± 0.07
::::::::::
�0.27± 0.01 �0.22± 0.02

::::::::::
�0.19± 0.03 �0.13± 0.03 �0.12± 0.03

::::::::::
�0.10± 0.03

:

spatial scaling exponent b for winter �0.20± 0.03
::::::::::
�0.15± 0.04 �0.12± 0.04

::::::::::
�0.09± 0.04 �0.10± 0.03

::::::::::
�0.08± 0.04 �0.10± 0.04

::::::::::
�0.08± 0.05

shear ⌧̇ summer �0.24± 0.02
::::::::::
�0.19± 0.05 �0.19± 0.06

::::::::::
�0.16± 0.05 �0.13± 0.05

::::::::::
�0.12± 0.05 �0.12± 0.06

::::::::::
�0.11± 0.06

spatial scaling exponent b for winter �0.22± 0.03
::::::::::
�0.16± 0.04 �0.12± 0.04

::::::::::
�0.10± 0.04 �0.11± 0.03

::::::::::
�0.08± 0.04 �0.11± 0.04

::::::::::
�0.08± 0.05

deformation rate Ḋ summer �0.25± 0.02
::::::::::
�0.19± 0.04 �0.19± 0.05

::::::::::
�0.16± 0.05 �0.13± 0.05 �0.12± 0.05

::::::::::
�0.11± 0.06

:

PDF scaling exponent n for winter �2.76± 0.06
::::::::::
�3.26± 0.08 �2.5± 0.1

::::::::::
�2.12± 0.04 �2.8± 0.1

::::::::
�2.9± 0.2

:
�2.60± 0.09

::::::::
�3.3± 0.2

absolute divergence |ṙ| summer �2.46± 0.07
::::::::
�2.4± 0.2 �2.5± 0.2 �2.5± 0.1 �2.2± 0.2

::::::::
�2.6± 0.2

: ::::::::
�2.9± 0.2

:

PDF scaling exponent n for winter �2.75± 0.09
::::::::
�3.4± 0.1 �2.41± 0.05

::::::::::
�2.22± 0.04 �2.9± 0.1 �3.23± 0.09

::::::::
�4.1± 0.2

shear ⌧̇ summer �2.77± 0.07
::::::::::
�3.22± 0.07 �2.4± 0.2

::::::::::
�2.11± 0.08 �2.4± 0.1

::::::::
�2.7± 0.1

:
�3.0± 0.1

::::::::
�3.6± 0.2

:
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