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Abstract. In this paper we investigate the potential of melt pond fraction retrieval from X-band po-

larimetric synthetic aperture radar (SAR) on drifting first-year sea ice. Melt pond fractions retrieved

from a helicopter-borne camera system were compared to polarimetric features extracted from four

dual polarimetric X-band SAR scenes, revealing significant relationships. The correlations were

strongly dependent on wind speed and SAR incidence angle. Co-polarisation ratio was found to be5

the most promising SAR feature for melt pond fraction estimation at intermediate wind speeds (6.2

m/s), with a Spearman’s correlation coefficient of 0.46. At low wind speeds (0.6 m/s), this relation

disappeared due to low backscatter from the melt ponds, and backscatter VV-polarisation intensity

had the strongest relationship to melt pond fraction with a correlation coefficient of−0.53. To further

investigate these relations, regression fits were made both for the intermediate (R2
fit = 0.21) and low10

(R2
fit = 0.26) wind case, and the fits were tested on the satellite scenes in the study. The regression

fits gave good estimates of mean melt pond fraction for the full satellite scenes, deviating with less

than 4% from the airborne retrieved melt pond fractions in the investigated area. A smoothing win-

dow of 51×51 pixels gave the best reproduction of the width of the melt pond fraction distribution. A

considerable part of the backscatter signal was below the noise floor at SAR incidence angles above15

∼ 40◦, restricting the information gain from polarimetric features above this threshold. Compared to

previous studies in C-band, limitations concerning wind speed and noise floor set stricter constraints

on melt pond fraction retrieval in X-band. Despite this, our findings suggest new possibilities in melt

pond fraction estimation from SAR, opening for expanded monitoring of melt ponds during melt

season. In the next step, melt pond estimation from SAR may supplement surveillance from optical20

satellites, providing melt pond information to climate applications during cloudy conditions.
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1 Introduction

Melt ponds form from snow and ice melt water on the Arctic sea ice during spring and summer, and

can cover up to 50− 60% of the sea ice surface (Perovich, 2002; Eicken et al., 2004; Inoue et al.,

2008; Perovich et al., 2009; Polashenski et al., 2012). Their presence affects the heat budget of the25

sea ice by decreasing the surface albedo, which increases the solar absorption in the ice volume and

the transmission of solar energy to the ocean (Eicken et al., 2004; Ehn et al., 2011; Nicolaus et al.,

2012; Perovich and Polashenski, 2012). The transmission is generally larger for first-year ice (FYI)

than for multiyear ice (MYI) due to FYI’s lower sea ice thickness. (Light et al., 2008; Nicolaus et al.,

2012; Hudson et al., 2013). FYI also often experiences higher melt pond fractions (fMP ) than MYI30

(Fetterer and Untersteiner, 1998; Nicolaus et al., 2012). The increased absorption induced by melt

ponds accelerates the decay of sea ice, and the intensified warming of the ocean possibly delays the

ice growth in the autumn (Flocco et al., 2012; Holland et al., 2012; Hudson et al., 2013; Schröder

et al., 2014; Flocco et al., 2015). Formation and evolution of melt ponds are poorly represented in sea

ice models, potentially contributing to an underestimation of the observed sea ice extent reduction35

in model projections (Flocco et al., 2012; Holland et al., 2012; Flocco et al., 2015). An increased

number of observations of melt pond fraction (fMP ) for different sea ice types at regional scale is

needed to improve the understanding of the role of melt ponds in the Arctic climate system. Satellite

imagery offers good opportunities for such large scale monitoring of melt ponds.

Several algorithms have been developed for retrieval of melt pond fraction from optical satellites,40

measuring the spectral reflectance from open water, sea ice and melt ponds. The algorithms apply

to different multispectral sensors; the enhanced thematic mapper plus (ETM+) on board Landsat 7

(Markus et al., 2003; Rösel and Kaleschke, 2011), moderate-resolution imaging spectroradiometer

(MODIS) on board Aqua and Terra (Tschudi et al., 2008; Rösel et al., 2012; Rösel and Kaleschke,

2012), and medium resolution imaging spectrometer (MERIS) on board Envisat (Zege et al., 2015;45

Istomina et al., 2015). Commonly, the retrieval algorithms are vulnerable to correction for atmo-

spheric constituents and influences of the viewing angles and the solar geometry. They also require

cloud-free conditions, limiting their applicability in the Arctic due to the persistent cloud cover

present during summer. Satellite microwave radiometers and scatterometers can on the other hand

penetrate clouds, but their resolution is in general too coarse for automated melt pond monitoring50

(Comiso and Kwok, 1996; Howell et al., 2006).

Satellite synthetic aperture radar (SAR) offers independence of cloud cover, atmospheric con-

stituents, and daylight, combined with high spatial resolution. Several studies have focused on fMP

retrieval from single polarisation SAR, transmitting and receiving either vertical (VV) or horizontal

(HH) polarised waves. Jeffries et al. (1997) developed a model for fMP retrieval over MYI floes55

in the Beaufort sea from ERS-1 SAR satellite images, but lack of wind consideration limit the va-

lidity of the model. Wind speed was found to be a key parameter when Yackel and Barber (2000)

demonstrated a significant relation between fMP and HH intensity on land-fast FYI within the Cana-
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dian Arctic Archipelago using SAR satellite scenes from Radarsat-1. The relationship was strong at

intermediate wind speeds, but lacking at low wind speeds. Mäkynen et al. (2014) compared fMP60

retrieved from MODIS and from a large amount of ENVISAT ASAR satellite scenes. The study area

covered both FYI and MYI north of the Fram Strait. The study concluded that fMP estimation was

not possible based on the investigated data set. The above-mentioned studies all focus on C-band

frequency ( 5.4 GHz) SAR. Kern et al. (2010) investigated the use of supplementary frequencies

for fMP retrieval on MYI in the Arctic Ocean, and showed promising results in combining C, Ku65

( 17.2 GHz) and X ( 9.6 GHz) band data from a helicopter-borne scatterometer. Estimation of fMP

in X-band satellite SAR was further explored by Kim et al. (2013), investigating melt ponds in a

TerraSAR-X scene acquired over MYI in the Chukchi Sea. Only large melt ponds were found de-

tectable in the study, leading to an underestimation of fMP . All in all, retrieval of fMP from single

polarimetric SAR has proven to be difficult.70

Dual and quad polarimetric SAR transmit and receive both vertical and horizontal waves, result-

ing in four possible channel combinations (HH, HV, VH and VV), and give information about the

polarisation properties of the backscatter in addition to single channel intensity variations. The chan-

nels can be combined into polarimetric SAR features, e.g. channel ratios, reducing the dependency

of sensor geometry. Based on C-band scatterometer measurements, Scharien et al. (2012) suggested75

co-polarisation ratio (RV V/HH ) to give an unambiguous estimation of fMP at large incidence an-

gles for land-fast FYI in the Canadian Arctic Archipelago and the Beaufort Sea. The topic was

further investigated (Scharien et al., 2014b), and expanded to Radarsat-2 satellite scenes in Scharien

et al. (2014a), demonstrating a strong potential of fMP estimation from C-band dual polarimetric

space-borne SAR. Both studies were performed in the central Canadian Arctic Archipelago. The80

findings were partly confirmed by Fors et al. (2015), who also suggest a relationship between fMP

and the statistical SAR feature relative kurtosis (RK) utilizing Radarsat-2 on iceberg-fast FYI and

MYI in the Fram Strait. Han et al. (2016) combined multiple polarimetric SAR features in fMP es-

timation by machine learning methods, employing the co-polarisation channels of the MYI X-band

SAR scene explored in Kim et al. (2013). An additional scene was also included in the study, though85

without melt pond information. The study showed promising results, but the authors claim that more

scenes with various sea ice types and incidence angles are needed to develop a general propose fMP

model. Lack of wind information is also limiting the relevance of the study.

In summary, the main achievements on fMP retrieval with SAR come from dual polarimetric

C-band studies on land-fast FYI. The potential of fMP retrieval with polarimetric X-band SAR has90

only been explored in one single study by Han et al. (2016), focusing on MYI. Hence, there is a need

for more studies on the influence of fMP on polarimetric X-band SAR imagery. As MYI and land-

fast FYI have been the main focus in previous studies, there is also a need to expand to other sea ice

types. Drifting FYI is becoming more prominent in the Arctic with the recent shift to a thinner, more
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seasonal, and more mobile sea ice cover (Perovich et al., 2015), and the polarimetric SAR signature95

of fMP in drifting FYI needs more attention.

The objective of this study is to investigate the potential of melt pond fraction retrieval from level

drifting FYI with dual-polarisation X-band satellite SAR. A data set consisting of four high reso-

lution dual-polarisation TerraSAR-X satellite scenes, combined with melt pond fraction retrieved

from a helicopter-borne camera system forms the basis of the study. TerraSAR-X offers very high100

resolution multi-polarimetric data, with a strong sensitivity to micro-scale surface roughness due to

the high frequency. Both the high resolution and sensitivity to surface roughness can be advantages

in fMP investigations. The data were collected north of Svalbard in summer 2012. We explore the

correlation between fMP and different polarimetric SAR features extracted from the HH and VV

channels. Based on the results, we suggest two simple empirical regression fits for fMP estimation105

adjusted to an intermediate and a low-wind speed case. The influence and limitations related to wind

conditions, incidence angle, noise floor, scale and surface roughness are discussed in light of the

results.

2 Melt ponds in SAR imagery

The signature of melt ponds in SAR imagery depends on both melt pond properties and radar pa-110

rameters. Wind at the sea ice surface changes the surface roughness of the melt ponds, and hence

their SAR backscatter signature and contrast to the surrounding sea ice. The influence of wind is

dependent on fetch length, depth of the ponds, orientation of the ponds and the topography of the

surrounding sea ice (Scharien et al., 2012, 2014b). During very calm conditions, the SAR signal

of melt ponds is mainly specular. This occurs at wind speeds of 2− 3 m/s in 10 m height (U10) in115

C-band, in agreement with findings for ocean surfaces (∼ 2.0 m/s at 0◦C) (Donelan and Pierson,

1987; Scharien et al., 2012, 2014b). A similar threshold in X-band equals ∼ 2.8 m/s (Donelan and

Pierson, 1987). Refrozen ponds suppress the wind wave surface roughness induced on open ponds,

and yield a signature closer to newly formed sea ice (Yackel et al., 2007; Scharien et al., 2014b, a).

The size distribution of melt ponds also affects their SAR signature. Ponds smaller than the SAR120

resolution return a signal mixed with sea ice and possibly leads, while very large melt ponds could

fill a resolution cell. Choice of SAR resolution and speckle smoothing window size could hence

affect the SAR fMP signature. The coverage of melt ponds varies during the melt season, starting

out with a high fractional cover, and reducing as the ponds drains. At the end of the melt season, the

melt ponds refreezes. This evolution is mirrored by a seasonal variation in the sea ice SAR signature125

(Barber et al., 2001).

The SAR signature of melt ponds changes with incidence angle of the satellite. Scharien et al.

(2012) found a larger decrease in C-band SAR intensity (σ0) with increasing incidence angle for

melt ponds than for sea ice. In contrast to sea ice, σ0
HH decreased more than σ0

V V for melt ponds.
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The most suitable incidence angle ranges for fMP retrieval is method dependent. SAR frequency130

also influences the melt pond signature (Kern et al., 2010). X-band is more sensitive to small-scale

surface roughness than C-band, as the effect of surface roughness depends on radar wavelength. In

addition, the sea ice volume penetration depth decreases with increasing frequency, leading to less

volume scattering from sea ice at higher frequencies.

Several dual-polarimetric SAR features have been suggested for fMP retrieval from SAR, uti-135

lizing different expected relations to physical properties of sea ice and melt ponds (Scharien et al.,

2012, 2014a; Fors et al., 2015; Han et al., 2016). Eight of these features are included in our study

and are described in the following subsection.

2.1 Polarimetric SAR features

For a fully polarimetric SAR system, which transmits and receives both horizontally (H) and verti-140

cally (V) polarised waves, the scattering matrix can be written as

S =

SHH SV H

SHV SV V

=

|SHH |ejφHH |SV H |ejφVH

|SHV |ejφHV |SV V |ejφV V

 , (1)

where | · | and φxx denote the amplitude and the phase of the measured complex scattering coef-

ficients, respectively (Lee and Pottier, 2009). Assuming reciprocity (SHV = SV H ), the Pauli basis

scattering vector, k, can be extracted from S as145

k =
1√
2

[
SHH +SV V SHH −SV V 2SHV

]†
, (2)

where † denotes the transpose operator (Lee and Pottier, 2009). In our study, we are only utilizing

the co-polarisation channels (HH and VV), and so the scattering vector reduceds to

k =
1√
2

[
SHH +SV V SHH −SV V

]†
. (3)

The sample coherency matrix, T , is defined as the mean Hermitian outer product of the Pauli basis150

scattering vector:

T =
1

L

L∑
i=1

kik
∗†
i , (4)

where ki is the single-look complex vector corresponding to pixel i, L is the number of scattering

vectors in a local neighborhood, and ∗ denotes the complex conjugate (Lee and Pottier, 2009). Sim-

ilarly, in the dual-polarisation case, the Lexicographic basis scattering vector, s, can be written as155

s=
[
SHH SV V

]†
. (5)

Based on s , the sample covariance matrix, C, is defined as

C =
1

L

L∑
i=1

sis
∗†
i , (6)
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where si is the single look complex vector corresponding to pixel i (Lee and Pottier, 2009).160

The SAR intensity (σ0) is retrieved from a single polarisation channel, defined by the amplitudes

of the complex scattering coefficients,

σ0
V V = 〈|SV V |2〉 and σ0

HH = 〈|SHH |2〉, (7)

were 〈·〉 denotes an ensemble average. The relation between these basic features and fMP have been

investigated in several studies (Jeffries et al., 1997; Yackel and Barber, 2000; Mäkynen et al., 2014;165

Kern et al., 2010; Kim et al., 2013). However, carrying information from one single polarisation

channel only, makes them less robust than polarimetric features that hold information from several

channels.

Co-polarisation ratio (RV V/HH ) has so far been the most promising SAR feature for fMP ex-

traction in C-band (Scharien et al., 2014a). It is defined as the ratio between the intensities of the170

co-polarisation complex scattering coefficients

RV V/HH =
〈|SV V |2〉
〈|SHH |2〉

. (8)

For smooth surfaces within the Bragg scatter validity region, RV V/HH depends only on the surface

complex permittivity and local incidence angle, and is independent of surface roughness (Hajnsek

et al., 2003). Both freshwater and saline melt ponds have considerably higher complex permittivity175

than sea ice, and RV V/HH has therefore been suggested for fMP retrieval (Scharien et al., 2012,

2014b, a). The Bragg criterion is fulfilled for ksRMS < 0.3, where k is the wavenumber and sRMS is

the root mean square height of the sea ice surface, describing its surface roughness. This corresponds

to sRMS < 2.8 mm in C-band, and sRMS < 1.4 mm in X-band. The sea ice surface roughness was

found to high to fill the criterion in studies north of Spitsbergen and in the Fram Strait (Beckers et al.,180

2015; Fors et al., 2016b), while Scharien et al. (2014b) found land-fast ice in the central Canadian

Arctic Archipelago to fulfill the criterion at C-band, and partly at X-band. In the same study, melt

ponds filled the criterion at wind speeds below 6.4 m/s in C-band, corresponding to ∼ 5.5 m/s in

X-band (Scharien et al., 2014b). When the Bragg criterion is exceeded, RV V/HH decreases with

increasing surface roughness. RV V/HH increases with incidence angle, and Scharien et al. (2012)185

found incidence angles above 35◦ to be most appropriate for fMP retrieval based on RV V/HH in

C-band.

Relative kurtosis (RK) is a statistical measure of non-Gaussianity, which describes the shape of

the distribution of scattering coefficients in SAR scenes. It has previously been used for sea ice

segmentation (Moen et al., 2013; Fors et al., 2016a). It is defined as Mardia’s multivariate kurtosis190

of a sample, divided by the expected multivariate kurtosis of a complex normal distribution

RK =
1

L

1

d(d+1)

L∑
i=1

[
s∗†i C−1si

]2
, (9)
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where d is the number of polarimetric channels (Mardia, 1970; Doulgeris and Eltoft, 2010). It has

a potential in fMP retrieval as it is sensitive to mixtures of surfaces. At C-band, RK was found

significantly correlated to fMP over iceberg-fast sea ice in the Fram Strait (Fors et al., 2015).195

Entropy (H) is a part of the H/A/α polarimetric decomposition, based on the eigenvectors and

eigenvalues of T , describing SAR scattering mechanisms. H is a measure of the randomness of the

scattering processes, and is defined as

H =−
d∑
i=1

pilogdpi, (10)

where pi is the relative magnitude of each eigenvalue200

pi =
λi∑d
k=1λk

, (11)

and λi is the ith eigenvalue of T (λ1 > λ2) (Cloude and Pottier, 1997). Only the co-polarisation

channels (HH and VV) are included in our study (d= 2), and a dual polarisation version of the

entropy, denoted H ′, is therefore used (Cloude, 2007; Skrunes et al., 2014). H ′ = 0 indicates a

single dominant scattering mechanism, while H ′ = 1 indicates a depolarized signal. In the case of205

dual polarisation, H ′ and anisotropy represent the same information as they both only depends on

λ1 and λ2, and anisotropy is therefore not included in our study.

The alpha angle of the largest eigenvalue (α′1) describes the type of the dominating scattering

mechanism. It is expressed as

α′1 = cos−1
|x1|
|v1|

, (12)210

where x1 is the first element of the largest eigenvector, and |v1| is the norm of the first eigenvector

(Lee and Pottier, 2009). The feature can be written as a function of RV V/HH for slightly rough

surfaces, and will then increase with increasing complex permittivity (van Zyl and Kim, 2011).

Co-polarisation correlation magnitude (|ρ|) is defined as

|ρ|=

∣∣∣∣∣∣
〈
SHHS

∗
VV

〉√〈
SHHS

∗
HH

〉〈
SVVS

∗
VV

〉
∣∣∣∣∣∣ , (13)215

and describes the degree of correlation between the co-polarisation channels (Drinkwater et al.,

1992). A perfect correlation returns unity, while depolarisation of the signal will reduce the mag-

nitude. Complex surfaces, multiple scattering surface layers and/or presence of system noise could

depolarize the signal (Drinkwater et al., 1992).

Phase difference (∠ρ) is expressed as (Drinkwater et al., 1992)220

∠ρ= ∠
(〈
SHHS

∗
VV

〉)
. (14)

As the relative phase of the co-polarisation waves is changed in every scattering event, the mean and

standard deviation of ∠ρ are related to the scattering history (Eom and Boerner, 1991; Drinkwater
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et al., 1992). Han et al. (2016) found H , α′1, |ρ|, and ∠ρ to give useful information for fMP retrieval

at X-band.225

3 Methods

3.1 Study region and sea ice conditions

The ICE2012 campaign took place on drifting FYI north of Svalbard, in the southwestern Nansen

Basin (Fig. 1), where the research vessel R/V Lance was moored up to an ice floe for eight days.

The sea ice cover in the area is generally dominated by first- or second-year ice with only moderate230

amounts of deformation (Renner et al., 2013). While large seasonal variability exists in the area,

summer ice thickness has been fairly stable since 2007. However, Renner et al. (2013) found further

indicators for a trend towards younger sea ice in the region. Little deformation and dominance of

young ice leads to relatively low sea ice surface roughness, with a root mean square height of around

or less than 0.1 m in the region (Beckers et al., 2015). Substantial snow cover can accumulate during235

spring, however, during the summer season, the snow melts completely contributing to extensive

melt pond formation.

During the ICE2012 campaign, regular sea ice thickness and melt pond surveys were performed

on the ice and from helicopter. Modal ice thickness in the region was less than in previous years

with 0.7 to 0.9 m (Divine et al., 2015). The very close drift ice was fairly level with less than 10%240

deformed ice. Sea ice surface roughness retrieved from the floe by R/V Lance is given in Table 3.

The surface roughness values are expected to be representative for the whole study region, as the sea

ice in the area was found to be very uniform (Hudson et al., 2013; Divine et al., 2015). The values

also agree well with values derived from laser altimeter observations by Beckers et al. (2015).

At the time of the campaign, all snow had melted and extensive networks of melt ponds led to an245

average fMP of 26% of the sea ice area (Divine et al., 2015). The melt ponds were mostly whithin

15 to 30 cm deep, however, extensive melt led to some ponds having melted through the ice slab.

The water in the pond networks was therefore mostly saline.

Hudson et al. (2013) report an average thinning of the sea ice next to R/V Lance of over 17 cm

between 28 July and 2 August which to a large degree can be explained by absorption of atmospheric250

and oceanic heat by the ice. Air temperatures were varied little between−1 to 1.5◦C. Combined with

the oceanic heat flux, the ice was therefore in continuous melt even at nighttime. Meteorological

conditions were dominated by heavy cloud cover with only short spells of incomplete or thin cloud

cover. Ice cores were taken every other day between 27 July and 2 August with an additional core

on 28 July for chemical analysis. They confirm the presence of a consistent 4 to 5 cm thick surface255

scattering layer of white, granular, deteriorated ice. Temperature profiles through the ice were fairly

stable with vertical variations between near 0◦C at the surface to −1 to −1.3◦C at the bottom.

Salinity measurements show very low values in the upper 20 cm with salinities of less than 1 psu
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and increasing to 3 to 4 psu near the bottom, in agreement with the advanced stage of melt of the ice

cover.260

3.2 Data set

In situ and helicopter-borne measurements from ICE2012 are combined with four high-resolution

TerraSAR-X (TS-X) satellite scenes. The satellite scenes are StripMap mode acqusitions, with a HH-

VV channel combination (see Table 1 and Fig. 1). The scene labeled T1 was acquired in descending

orbit, while T2-T4 were acquired in ascending orbits. All scenes were converted to ground range265

and radiometrically calibrated to σ0. The noise equivalent σ0 (NESZ) was then subtracted. The

absolute radiometric calibration accuracy of TSX is 0.6 dB (Airbus Defence and Space, 2013). For

comparison with fMP retrieved from helicopter-borne data, the scenes were geocoded with ESA’s

Sentinel-1 toolbox, SNAP (European Space Agency, 2016). All analysis were, however, performed

in SLC range and azimuth coordinates. Open water areas were not included in our study. For each270

satellite scene, these areas were masked out with a simple binary mask. The mask was created by

filtering the scenes with a 13×13 pixels averaging sliding window, and manually setting a lower sea

ice threshold value on σ0
HH in each scene (-18 dB,-17 dB,-16 dB and -18 dB, for T1-T4 respectively).

Regions with less than 750 pixels (∼ 5000m2) were merged into the surrounding region (open water

or sea ice) to smooth the mask.275

A stereocamera system (ICE stereocamera system) was mounted in a single enclosure outside the

helicopter during ICE2012 (Divine et al., 2016, in review). The system consisted of two cameras

(Canon 5D Mark II), combined with GPS/INS (Novatel) and a laser altimeter. fMP was retrieved

from downward-looking images captured by one of the cameras during five helicopter surveys per-

formed between 31 July and 2 August 2012 (see Table 2 and Fig. 1). The footprint of the images280

was about 60×40 m for a typical flight altitude of about 35 m, and the images were not overlapping.

A full description of the method is given in Divine et al. (2015). In our study, fMP was calculated

from the processed images without sea water fraction (∼ 5700 images), to better match the sea ice

mask. This excluded melt pond fractions from the ice edges and small floes, resulting in a slightly

higher fMP than that obtained in Divine et al. (2015).285

The ICE stereocamera system was also used to investigate sea ice surface topography at the floe

where R/V Lance was anchored. For this purpose, the cameras shot sequentially with a frequency of

1 Hz to ensure sufficient overlap between subsequent images during the flights. Using photogram-

metric technique, the sequences of overlapping images were used to construct a digital terrain model

(DTM) of the sea ice surface. DTMs were generated for five selected segments of the ICE12 ice floe290

with a spatial resolution of 2 cm. Surface roughness, in form of root mean square height of the sea

ice surface (sRMS), was estimated from the DTMs using random sampling to account for spatial

auto-correlation. Only grid nodes above the water level were used. The accuracy of the retrieved

9



sRMS were ±4 cm according to in situ measurements from two test areas. A full description of the

method is given in Divine et al. (2016, in review).295

An automatic weather station located at the floe where R/V Lance was moored during ICE2012

measured wind speed and air temperature 2 m above the sea ice surface(Hudson et al., 2013). Wind

speed (U2) was measured with a three-dimensional ultrasonic anemometer (Campbell Scientific Inc.,

CSAT3), and air temperature was measured with a temperature probe (Vaisala, HMP155) in an

unventilated radiation shield. Tab. 1 presents air temperature and 10 minutes averaged wind speed at300

the time of the satellite acquisitions.

3.3 Design of study

An easy recognizable sea ice floe present in two of the investigated satellite scenes (T3 and T4) is

the main focus of our study (see Fig. 2). The floe had a diameter of ∼ 3.6 km, and a collection of

43 images was captured across the floe during the 2nd helicopter flight on 2 August 2012 (see Tab.305

2). The time offset between the flight and acquision of T4 was ∼ 40 minutes. The position of the

helicopter images had to be corrected for sea ice drift to retrieve co-location between the images

and the floe captured in T4. As a first step, the image center coordinates were shifted according to

drift information from GPS tracks of R/V Lance, positioned ∼ 25 km south of the floe at the time

of acquisition. Second, the track was manually adjusted by fitting the helicopter images with ground310

features, such as ice edges and areas with open water. Co-location of the helicopter images and the

floe in T3 was based on the one of T4. The maximum error of the co-location was estimated to

be 7 m lengthwise and crosswise the flight direction, resulting in a maximum possible areal offset

of 27% between the satellite scene and each helicopter image. After co-location, mean and standard

deviation of the polarimetric SAR features were calculated for the pixels underlying each of the315

helicopter images.

The statistical dependence between the extracted SAR features and the corresponding fMP re-

trieved from each of the 43 helicopter images was evaluated with the non-parametric Spearman’s

rank correlation coefficient (r). For a sample size of n images, r is defined as

r = 1− 6
∑
d2i

n(n2− 1)
, (15)320

where di is the difference in paired rank number i (Corder and Foreman, 2009). Rank ties are as-

signed a rank equal to the average of their position in the ascending order of the values. The co-

efficient takes values between -1 and 1, where values of ±1 correspond to full correlation, while 0

corresponds to no correlation. A negative sign indicates an inverse relationship. Spearman’s correla-

tion coefficient assumes a monotonic relationship. It is used instead of Pearson’s linear correlation325

coefficient, to allow for non-linear correlations. It is also less sensitive to outliers than Pearson’s

correlation coefficient.
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Two regression fits were proposed from the correlation results, representing an intermediate and a

low-wind case. A least squares linear fit with bisquare weights was used to construct the regression

fits (Hoaglin et al., 1983). The regression fits were applied to the full area of the floe in T3 and T4,330

and to the full area of the four satellite scenes included in the study (T1-T4). The estimated fMP

distributions were compared and evaluated towards the global empirical fMP distribution retrieved

from the helicopter flights included in the study (see bottom entries Tab. 2). Scale sensitivity was

tested by using a range of different smoothing window sizes (13× 13 to 51× 51 pixels) in the fMP

estimation. Incidence angle correction was applied to the scenes for a better comparison, employing335

the following equation (Kellndorfer et al., 1998)

σ0
corr = σ0 sin(θ)

sin(θref )
, (16)

where σ0 is the original backscatter coefficient, θ is the center incidence angle of the scene to be

corrected, and θref is the reference incidence angle of scene T4. The correction was only applied in

the low-wind case, as it canceled in the intermediate wind case due to the use of a co-polarisation340

ratio.

4 Results

4.1 Correlation between polarimetric SAR features and fMP

Correlation coefficients (r) between fMP retrieved from the 43 helicopter images of the investi-

gated floe, and the mean and standard deviation of the polarimetric SAR features extracted from the345

corresponding areas in scenes T3 and T4, are presented in Table 4. Values significant within a 95%

confidence interval are highlighted in bold, and values in parentheses show results before NESZ sub-

traction of the signal. In scene T3,RV V/HH shows the strongest correlation to fMP . In addition, the

mean of α1 is significantly correlated to fMP . None of the other investigated SAR features are sig-

nificantly correlated to fMP in scene T3. In scene T4, the mean values of σ0
HH , σ0

V V and RV V/HH350

are significantly correlated to fMP , the strongest correlation is found for σ0
V V . Some of the standard

deviation values are also correlated to fMP . Without NESZ subtraction in the calibration, however,

almost all features are correlated to fMP . The large difference before and after NESZ subtraction

indicates that the signal is close to, or reaching the noise floor.

Figure 3 confirms the low signal-to-noise ratio in T4. We show the 10, 25, 50, 75 and 90 percentiles355

of σ0
HH (dB) and σ0

V V (dB) retrieved for four different fMP intervals on the floe present in scene T3

(top) and T4 (bottom), combined with the noise floor of the HH and VV channels. In T3, less than

10% of the signal is below the noise floor (∼−25 dB). Both σ0
HH and σ0

V V are increasing with fMP .

σ0
V V has the steepest increase, confirming an increase in RV V/HH with fMP (Tab. 4). In scene T4,

the backscatter signal is weaker and noise floor is higher than in scene T3 (∼−21 dB), both due to360

the higher incidence angle of scene T4 (see Tab. 1). This brings as much as 25% of the signal below
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the noise floor. The strength of the signal decreases with fMP , implying specular reflection from the

melt ponds, supported by the low wind speed (0.6 m/s) at acquisition of scene T4 (see Tab. 1). The

difference between σ0
HH and σ0

V V is decreasing with fMP , confirming an inverse relation between

RV V/HH and fMP in T4 (Tab. 4). In scene T1 and T2, the noise floors are ∼ 23 dB, leaving ∼ 15%365

of the signal below the noise floor.

The melt ponds affect the polarimetric signatures in scene T3 and T4 differently (Table 4 and

Fig. 3), mainly due to different wind conditions, but also due to different incidence angles and noise

floors. In the following, we look closer into the feature displaying the strongest correlation to fMP

in each of the scenes, RV V/HH in T3 and σ0
V V in T4.370

4.2 Intermediate-wind case

In the intermediate-wind case of scene T3, RV V/HH was found to be the SAR feature with the

strongest correlation to fMP . Combining fMP retrieved from the 43 helicopter images covering

the investigated floe with RV V/HH extracted from the corresponding areas in scene T3, we see an

increase in RV V/HH with fMP in Fig. 4, as well as a large variability between the samples. Grey375

dots correspond to areas with some degree of sea ice deformation, while blue dots correspond to

areas with completely level ice. Deformation information is extracted from visual inspection of the

helicopter images. The partly negative values of RV V/HH imply that σ0
HH > σ0

V V . This might be a

result of multiple scattering events in the sea ice volume or sea ice surface, possibly connected with

sea ice deformation. A majority of the lowest RV V/HH values are appearing in partly deformed380

areas. Areas with some degree of deformation also represent the lowest fMP . A robust least squares

linear fit is applied to the scatter plot, displaying a relationship of:

fMP (RV V/HH) = 0.49 ·RV V/HH(dB)+ 0.30. (17)

The goodness of fit of the regression is reflecting large sample variation, with R2
fit = 0.21 and

RMSE = 0.40. This implies a weak correlation, corresponding well to the Spearman’s correla-385

tion of 0.45 (Table 4). However, the co-location between the helicopter images and the sea ice floe

contain some uncertainty (a maximum areal offset of 27%) possibly introducing a random error to

the regression, resulting in an artificially low R2
fit.

Applying the regression fit from on Eq. 17 to the full floe in scene T3 results in the regression fit

probability density distributions (PDFs) presented in the top panel of Fig. 5. The results are presented390

both for a 21×21 and a 51×51 pixels smoothing window. Empirical distributions of fMP retrieved

from the 43 images covering the floe (floe) and from images in all included flights (global), are also

included in the figure. Statistics of the distributions are given in Tables 2 and 5. The empirical global

distribution has a slightly higher mean than the empirical floe distribution. Due to the few samples

of the floe distribution, we consider the global distribution more appropriate for comparison with the395

regression fit distributions. Employing the regression fit with a 21× 21 pixels smoothing window,
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equaling the areal size of the helicopter images, results in a mean close to the global empirical. The

regression distribution is however too wide compared to the empirical ones, reflecting the large sam-

ple variation seen in Fig. 4. Speckle (noise like interference between scatterers within a resolution

cell) in the SAR image might explain the wider distribution. Increasing the smoothing window size400

reduces speckle, and a better correspondence between the width of the regression and empirical dis-

tributions is achieved by employing a 51× 51 pixels window. The bottom panel of Fig. 5 displays

fMP estimated for the floe in T3 based on eq.17 with a 51×51 pixels window. Open water is masked

out. The estimation shows a highly spatially variable fMP , with few homogenous areas. Areas of

deformed sea ice displayed with bright colors in Fig. 2 cannot be recognized, even if these areas are405

expected to have a lower melt pond fraction.

Zooming in to the southern part of the area covered by the helicopter survey on the floe in T3, Fig.

6 displays fMP estimated from Eq. 17 with the observed fMP from the helicopter images overlaid.

Two different pixels smoothing windows are shown (21×21 and 51×51). Note that the center pixel

underlying each helicopter image frame would give the most representative value for comparison to410

the observed fMP , as pixels closer to the frame contain a larger amount of information from outside

the frame. The middle panel displays the mean estimated fMP value for each frame together with

the observed fMP values along the track. The maps confirm some overlap between the estimated

and observed fMP , but also illustrates that there is room for improvement. The estimation with a

51× 51 pixel smoothing window appears less variegated than the 21× 21 estimation, and the range415

of the estimated fMP values also corresponds better to those observed from the helicopter images in

the 51× 51 estimation.

Applying the regression fit from Eq. 17 with a 51× 51 pixel window to the four full SAR scenes

included in our study reveals a high correlation between the regression fit distribution and the em-

pirical global fMP distribution for T3 (see Fig. 7 and Tables 2 and 5). On the full scene scale, the420

regression fit manages to reproduce both the mean and the standard deviation of the global distri-

bution representative for the area. Scene T1 and T2 are acquired at ∼ 8◦ higher incidence angle

than scene T3, and fMP is slightly overestimated in these scenes. From Fig. 7, the overestimation

is lower for scene T1 than for T2, possibly reflecting the low wind speed at acquisition of T1 (Tab

1). The least consistency between the regression fit distribution and the empirical distribution is, as425

expected, found for scene T4, confirming the results shown in Table 4 and Fig. 3.

4.3 Low-wind case

In the low-wind case of scene T4, σ0
V V was found to have the strongest correlation to fMP among

the investigated SAR features. Combining fMP retrieved from the 43 helicopter images covering the

floe with σ0
V V extracted from the corresponding areas in T4, we see a decrease in σ0

V V with fMP430

in Fig. 8. A large variability between the samples can be observed. Grey dots correspond to partly

deformed areas, while blue dots represent level ice. As for the intermediate wind case, a robust least
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square linear fit was applied to the data to describe the relationship between σ0
V V and fMP :

fMP (σ
0
V V ) =−52.83 ·σ0

V V +1.89. (18)

Note that σ0
V V is not in dB. Again, the goodness of fit of the regression is reflecting large sample435

variation, with R2
fit = 0.26 and RMSE = 0.0039.

Estimated fMP PDFs based on Eq. 18 for the full floe in scene T4 are presented in the top panel

of Fig. 9 together with empirical distributions from the floe and from all flights included in the study.

The regression fit distributions give a good reproduction of the empirical mean (see Tables 2 and

5). As in the intermediate-wind case, a smoothing window of 51× 51 pixels results in a distribution440

width closer to the empirical than a 21×21 pixels window. The σ0
V V -based estimation of fMP with

a 51× 51 smoothing window for the full floe in scene T4 result in a large spatial variability in fMP

(see bottom panel of Fig. 9). In contrast to the fMP estimation based on RV V/HH for the floe in

scene T3 (Fig. 5), the estimation based on σ0
V V partly manages to produce lower melt pond fraction

in areas with deformed sea ice.445

Figure 10 shows fMP estimated from Eq. 18 with the observed fMP from the helicopter images

overlaid for two different pixels smoothing windows (21×21 and 51×51). Note that the center pixel

underlying each helicopter image frame would give the most representative value for comparison

to the observed fMP . To illustrate this, the middle panel shows the mean estimated fMP value

for each frame together with the observed fMP values along the track. In general, a good overlap450

between the estimated and observed fMP can be seen, even though some scatter exists. As in Fig.

6, the estimation with a 51× 51 pixel smoothing window appears less variegated than the 21× 21

estimation, and the range of the estimated fMP values also corresponds better to those observed

from the helicopter images in the 51× 51 estimation than to those in the 21 x 21 estimation.

Investigating the regression fit’s capacity of estimating fMP in the 4 full satellite scenes included455

in the study reveals that it is only applicable to give a good estimate in scene T4 (see Fig. 11 and Table

2 and 5)). In the three other scenes, it underestimates fMP , and also introduces negative fractions.

Incidence angle correction according to Eq. 16 is applied to the figure, accounting for σ0
V V decrease

with incidence angle.

5 Discussion460

The results of this study show that fMP influences the signature of several X-band polarimetric

features. The strongest correlations were found for RV V/HH and σ0
V V , where linear regression fits

gave R2
fit values of 0.21 and 0.26, respectively. These correlations are not strong enough for the

results to be used directly in operational models. However, with improved methods and more satellite

data added, our results imply a future potential in retrieving fMP from X-band SAR. For comparison,465

the method developed for retrieval of fMP from MODIS has R2
fit values ranging from 0.28 to 0.45

(Rösel et al., 2012). As in C-band, parameters like wind speed, incidence angle, surface roughness,
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and SAR scale and resolution will affect the interpretation of the polarimetric melt pond signature

of a X-band SAR scene. In the following, these factors will be discussed based on the results.

Accurate information about wind speed at the time of scene acquisition is crucial in fMP re-470

trieval from SAR. In scene T3, the intermediate wind speed at acquisition (U2 = 6.2 m/s) allowed

for backscatter from the melt ponds, making use of RV V/HH for fMP estimation possible. Scharien

et al. (2014b) finds that the Bragg criterion is exceeded for melt ponds at wind speeds above

U10 =∼ 5 m/s in X-band, reducing the expected correlation between RV V/HH and fMP above this

wind speed. This indicates that even better results could be achieved at lower wind speeds, but it also475

leaves a very narrow wind speed interval for melt pond retrieval with X-band SAR. Scene T4 rep-

resents a low wind speed situation (U2 = 0.6 m/s), and our results indicate specular reflection from

the melt ponds in this case, disrupting the use of polarimetric SAR features for melt pond estimation

as the melt pond signal is too weak. This is in agreement with findings in Scharien et al. (2012,

2014b). However, the lack of backscatter from the melt pond surfaces compared to the sea ice could480

potentially be used for fMP retrieval utilizing σ0. This is confirmed by Han et al. (2016), suggesting

σ0 to be a key feature in fMP estimation for MYI in X-band during calm winds. On the other hand,

our results deviate from findings in C-band, where no correlation was found between σ0
HH and fMP

at low wind speeds by Yackel and Barber (2000).

Medium to high incidence angles (> 35◦) have been found most suitable for RV V/HH -based485

retrieval of fMP in C-band (Scharien et al., 2012, 2014b). In our study we found a significant corre-

lation betweenRV V/HH and fMP at an incidence angle of 29◦ (T3), demonstrating that fMP has an

impact on polarimetric X-band SAR signatures also at lower incidence angles. Scene T1 and T2 are

acquired at higher incidence angles (36.9◦ and 37.9◦) than T3. In these two scenes, fMP is overesti-

mated by the RV V/HH -based regression fit developed for scene T3. This is consistent with Scharien490

et al. (2014b), showing an increase in RV V/HH with increasing incidence angle for melt ponds in

C-band. In the same study,RV V/HH for bare ice was not found to increase with incidence angle. The

difference in estimated fMP between scene T1 and T2 is most likely related to the low wind speed

in T1, which is below the expected wind speed limit for fMP estimation based on RV V/HH in both

C and X-band (Scharien et al., 2012, 2014b). However, the different acquisition geometry observed495

in Fig. 1 could also play a role. At an incidence angle of 44◦, a considerable part of the backscatter

signal was below the noise floor in our study. The low signal-to-noise ratio of TerraSAR-X limits

fMP retrieval based on RV V/HH at high incidence angles, leaving the suitable range of incidence

angles smaller than for Radarsat -2 (Scharien et al., 2014a). The accuracy of fMP estimation based

on σ0
V V is also strongly dependent on incidence angle, as σ0

V V in general decreases with increasing500

incidence angle for sea ice. The underestimation of fMP in scenes T1-T3 is likely related to higher

wind speeds at the time of acquisition.

The Brag criterion (ks < 0.3) is exceeded when sRMS > 1.4 mm in X-band. The surface rough-

ness estimations performed during the ICE2012 campaign indicates that the sea ice in the study
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region exceeds this criterion, introducing a roughness dependency ofRV V/HH . This is in agreement505

with previous findings in the study region (Beckers et al., 2015), but deviates from findings reported

by Scharien et al. (2014b), where fast ice at the Central Canadian Archipelago partly filled the cri-

terion in X-band. From the helicopter images, some of the very low RV V/HH values observed at

the investigated floe in scene T3 were from slightly deformed areas, possibly explaining the nega-

tive ratios. However, no general trend in low RV V/HH values in deformed areas was found in our510

study. Multiple scattering events in the sea ice surface and sea ice volume may also have contributed

to the large sample variations observed in Figs. 4 and 8. Detailed surface roughness measurements

combined with fMP observations are needed to further investigate the influence of sea ice surface

roughness on fMP based on RV V/HH .

The smoothing window size used for direct comparison between fMP retrieved from the heli-515

copter images and the polarimetric SAR features was appointed by the areal coverage of the heli-

copter images in our study. However, a 40× 60 m window (corresponding to 21× 21 pixels) might

not be the ideal scale of investigation. Advancing the regression fits suggested in our study to the full

floe or full scenes with a larger window (51× 51 pixels) gave better reproductions of the width of

the fMP distribution retrieved from the helicopter images. A larger window size reduces the amount520

of speckle in the SAR scenes, which possibly explains the improvement. Even larger window sizes

were used in Scharien et al. (2014a), estimating fMP based on RV V/HH in a 7.5× 7.5 km grid

from C-band Radarsat-2. Opposite to this, Han et al. (2016) found a 15× 15 pixels window to give

the best estimate of mean fMP based on a combination of several SAR features in a TerraSAR-X

scene. In climate applications, fMP estimation from a full scene is more applicable than estimation525

from small areas within the scene. The large sample variability observed in Fig. 4 might therefore

be negligible, as long as the RV V/HH -based regression fit produces a good estimate of the mean

fMP for a larger area. A wider study of the influence of scale on SAR fMP retrieval is needed in the

future.

In addition to RV V/HH , five other dual-polarimetric SAR features were included in our study,530

after NESZ subtraction most of these showed no statistical significant relationship to fMP in our

data set. This is also an important result, implying useful knowledge for instance in classification of

summer sea ice based on X-band imagery. The statistical feature RK showed a promising relation

to fMP in C-band on fast ice in the Fram Strait (Fors et al., 2015), but no relation was found in

our investigation. Lack of the HV-channel, or less dominant height difference between ponds and535

sea ice could both possibly explain the absence of correlation. H ′ and α′1 were found significantly

correlated with fMP in scene T4 and T3, respectively. In scene T4, the correlation toH ′ disappeared

when NESZ subtraction was included in the calibration. This indicates that the correlation only

reflected the low signal-to-noise ratio of the scene, as has previously been described in oil/water

discrimination (Minchew et al., 2012). In scene T3, the correlation between fMP and α′1 is likely a540

result of the expected relation between α′1 and RV V/HH (van Zyl and Kim, 2011). The correlations
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found between fMP and mean and standard deviations of |ρ| and ∠ρ in scene T4 are, as for H ′,

most likely related to the low wind speed and low signal-to-noise ratio of the scene.

The findings in our study deviate from the findings of Han et al. (2016), where σ0
HH , ∠ρ and α′1

were found to be the most prominent polarimetric features in separating melt ponds, sea ice and open545

water in high resolution X-band SAR imagery. Differences in sea ice type, sea ice surface roughness,

wind conditions and SAR incidence angle could possibly explain why different polarimetric features

are sensitive to fMP in the two studies. The methods of the two studies are also slightly different, as

Han et al. (2016) classify each pixel into melt pond, sea ice or open water, while our study focuses on

mixtures of melt ponds and sea ice. Exact wind information lacks in Han et al. (2016), but the wind550

speed is expected to be low. This could explain why σ0
HH contributes strongly in fMP estimation,

and is then in accordance to our findings. The diverging results in the two studies emphasize the need

of investigating melt ponds impact on SAR imagery under different conditions and for a variety of

sea ice types. It also stresses the importance of supplementary measurements of parameters like wind

speed and sea ice surface roughness.555

The correlations found in our study are not very strong. The weak to moderate correlations might

suggest a limited sensitivity to fMP in X-band SAR imagery, but they could also reflect limitations in

the data set. The co-location between the helicopter images and the SAR imagery is estimated to have

a possible offset of at most 27%, potentially introducing a large random error into our investigation,

lowering the correlation values. A larger degree of smoothing than the area covered by the helicopter560

images allows for might also be needed to improve the results. The absolute radiometric accuracy

of TSX scenes could also influence the results of our study, but this influence is expected to be very

small compared to other uncertainties. All the above-mentioned issues should be addressed in future

studies.

6 Conclusions565

Melt ponds play an important role in the sea-ice-ocean energy budget, but the evolution of melt pond

fraction (fMP ) through the melt season is poorly monitored. Satellite-borne polarimetric SAR has

shown promising results for fMP retrieval in C-band, but few studies have investigated the oppor-

tunities in X-band. In this study we demonstrate statistically significant relations between fMP and

several polarimetric SAR features on drifting FYI in X-band, based on helicopter-borne images of570

the sea ice surface combined with four dual polarimetric SAR scenes. The study reveals a prospec-

tive potential for fMP estimation from X-band SAR, but also stresses the importance of including

wind speed and incidence angle in a future robust fMP retrieval algorithm. Such an algorithm could

supplement optical methods, and be used as a tool in climate applications, both as input in climate

models and in studies of melt pond evolution mechanisms.575
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RV V/HH was found to be the most promising SAR feature for fMP estimation in our study, in

agreement with previous findings in C-band. The theoretical range of suitable wind speeds (< 5

m/s) and sea ice surface roughnesses (sRMS < 1.4 mm) for fMP extraction based on RV V/HH are

slightly more limited in X-band than in C-band, but our results show that fMP also influences the

X-band SAR signature when these criteria are partly exceeded. The high noise floor of TerraSAR-X580

also restricted use of scenes with incidence angles above∼ 40◦, while an incidence angle of 29◦ gave

better results. At very low wind speeds (0.6 m/s), the backscatter signal from the melt ponds became

too low for fMP retrieval based on polarimetric features. In that case, σ0
V V was found suitable for

fMP estimation. In the future, use of X-band scenes can possibly increase the total amount of SAR

data accessible for fMP retrieval, despite their limitations compared to C-band scenes.585

An extended amount of in situ and airborne measurements together with satellite scenes are

needed to establish robust fMP estimation algorithms for X-band SAR. Information about wind

speed is crucial for fMP retrieval, and can be retrieved from existing meteorological models or au-

tonomous buoys measuring wind speed, where no ship or camp is present. Challenges in co-location

of airborne observations and SAR imagery limited coordinated use of existing data in our study and590

introduced uncertainties in our results, possibly causing artificially low correlation values. Better

co-location, for instance through corner reflectors or GPS senders located in the specific study area,

should be aimed for in future studies. With a shift towards more seasonal drifting FYI, it is impor-

tant to include this sea ice type in the studies, despite difficulties in comparing in situ and airborne

measurements with satellite SAR scenes during drift.595

Our study only investigates a few SAR scenes under similar sea ice conditions, and the ability of

the suggested regression fits to predict changes in fMP is not included. This is an important aspect.

For development of a robust operational method, future studies should aim to include a larger number

of satellite scenes acquired with various sea ice conditions, melt pond evolution stages, wind speeds,

and incidence angles. The effect and limitations of sea ice surface roughness and dependency on600

filtering size and scale should also be further investigated.
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Table 1. Overview of the satellite scenes.

Date Time

(UTC)

Scene

ID

Incidence

angle

Pixel spacing

(az.× ground range)

Wind speed

(2 m.a.s.)

Air temperature

(2 m.a.s.)

28 Jul 2012 06:52 T1 36.9◦ 2.4 m× 1.5 m 1.6 m/s 0.1◦C

29 Jul 2012 14:25 T2 37.9◦ 2.5 m× 1.5 m 5.1 m/s 1.1◦C

31 Jul 2012 13:51 T3 29.4◦ 2.4 m× 1.9 m 6.2 m/s −0.8◦C

2 Aug 2012 14:51 T4 44.2◦ 3.0 m× 1.3 m 0.6 m/s 0.8◦C

Table 2. Overview of the images captured during the helicopter flights. Only images without open water fraction

are included in the study. The bottom entries show the global values derived from all five flights, and the local

values of the floe investigated in T3 and T4.

Date Time (UTC) No. of images Transect length Mean fMP Std. fMP

31 Jul 2012 7:36-8:10 848 67 km 30.1% 10.0%

1 Aug 2012 7:22-8:34 1364 139 km 31.1% 12.3%

1 Aug 2012 16:45-18:03 1383 154 km 34.8% 12.8%

2 Aug 2012 11:21-12:00 676 78 km 33.0% 13.7%

2 Aug 2012 14:43-16:04 1458 170 km 33.2% 11.4%

Global values - 5729 608 km 33.2% 11.4%

Floe values - 43 4 km 30.6% 11.1%

Table 3. Estimated sea ice surface roughness (sRMS) from five segments at the floe by R/V Lance. Values in

parenthesis displays standard deviations (std) of sRMS .

Segment Nr. Area sRMS (std(sRMS))

1 11000 m2 6.7 (0.3) cm

2 13530 m2 11.0 (10) cm

3 11670 m2 7.4 (0.6) cm

4 13820 m2 9.0 (0.4) cm

5 12380 m2 10.0 (0.4) cm
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Table 4. Spearman’s correlation coefficient (r) between fMP retrieved from the helicopter images at the in-

vestigated floe, and mean and standard deviation of the polarimetric SAR features from the corresponding area

in T3 and T4. Bold indicate significant values within a 95% confidence interval, and values in parentheses are

retrieved before NESZ subtraction in the calibration process.

r (T3) r (T4)

SAR feature Mean Std. Mean Std.

σ0
HH 0.04 (0.05) 0.10 (0.09) -0.33 (-0.33) -0.27 (-0.22)

σ0
V V 0.21 (0.21) 0.09 (0.09) -0.54 (-0.53) -0.54 (-0.52)

RV V/HH 0.45 (0.46) 0.03 (-0.07) -0.31 (-0.31 ) -0.48 (-0.01)

H 0.11 (0.21) 0.25 (0.14) 0.22 (0.45) -0.17 (0.07)

α1 0.40 (0.26) 0.00 (0.17) -0.24 (-0.18) 0.11 (0.30)

RK 0.07 (0.03) 0.07 (0.04) -0.15 (0.04) 0.08 (0.13)

|ρ| -0.13 (-0.22) 0.04 (0.00) -0.17 (-0.40) -0.44(-0.06 )

∠ρ -0.14 (0.01) 0.10 (0.23) -0.08 (-0.10 ) 0.12(0.55)

Table 5. Statistics of modeled fMP distributions.

fMP (RV V/HH) fMP (σ
0
V V )

Area Window size (pixels) Mean Std. Mean Std.

T3, floe 21× 21 34.9% 24.8% - -

T3, floe 51× 51 35.0% 11.0% - -

T4, floe 21× 21 - - 30.6% 26.0%

T4, floe 51× 51 - - 31.4% 16.7%

T1, full scene 51× 51 36.5% 12.3% 19.0% 29.9%

T2, full scene 51× 51 45.1% 13.3% −1.6% 27.8%

T3, full scene 51× 51 31.2% 11.2% 19.7% 29.7%

T4, full scene 51× 51 51.9% 12.3% 36.3% 15.7%
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Figure 1. Map of the study area north of Svalbard, showing the location of the satellite scenes and the track

of the helicopter flights. Blue dots mark the starting points of the flights. The red box in the inset map of the

northern hemisphere shows the geographical position of the area displayed.

Figure 2. The floe investigated in scene T3 (left) and T4 (right). The black line marks the transect along which

the helicopter image were taken.
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Figure 3. Signal-to-noise analysis of HH and VV channels for areas with different fmp retrieved from the

investigated floe in scene T3 (top) and T4 (bottom). The triangles displays the median of σ0
HH (dB) (upward

pointing) and σ0
V V (downward pointing). The thin line represents the part of σ0 falling between the 10 and the

90 percentile, while the thick line represents the part of σ0 falling between the 25 and 75 percentile. Hence, the

lines indicate the distributions. All markers are offset from the middle position for clarity.
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Figure 4. Scatter plot displaying fMP retrieved from the 43 helicopter images covering the investigated floe in

T3, and meanRV V/HH extracted from the corresponding areas. Grey dots represent areas with partly deformed

sea ice, wile blue dots represent areas of level ice. The trend line represents a robust bisquare weights least

squares linear fit of the data, and the dotted line represent the 95% confidence interval of the regression. R2
fit

equals 0.21.
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Figure 5. Top: Probability density distributions of fMP for the investigated floe in T3. Curves represent dis-

tributions produced by the regression fit based on RV V/HH with 21× 21 and 51× 51 pixels windows, and

empirical distributions from all helicopter flights (global) and from the specific floe (floe). Bottom: Estimated

fMP from the RV V/HH based regression with a 51× 51 pixels window for investigated floe in T3. The frame

outlines the area displayed in Fig. 6.
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Figure 6. Melt pond fraction (fMP ) estimated from RV V/HH , with the observed fMP from the helicopter

images overlaid as colored frames. The area displayed is outlined with a frame in Fig. 5. The estimation is

performed with 21× 21 (left) and 51× 51 (right) pixels windows. Note that the center pixel underlying each

helicopter image frame would give the most representative value for comparison to the observed fMP , as pixels

closer to the frame contain a larger amount of information from outside the frame. The middle panel displays

the mean estimated fMP value for each frame together with the observed value.
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Figure 7. Probability density distributions of fMP for the four investigated scenes (T1-T4). Curves represent

distributions produced from the RV V/HH based regression fit with a 51× 51 pixels window, and the empirical

distribution retrieved from all five helicopter flights.
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Figure 8. Scatter plot displaying fMP retrieved from the 43 helicopter images covering the investigated floe

in T4, and mean σ0
V V extracted from the corresponding areas. Grey dots represent areas with partly deformed

sea ice, while blue dots represent areas of level ice. The trend line represents a robust bisquare weights least

squares linear fit of the data, and the dotted line represent the 95% confidence interval of the regression. R2
fit

equals 0.26.
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Figure 9. Top: Probability density distributions of fMP for the investigated floe in T4. Curves represent distri-

butions produced by the regression fit based on σ0
V V with 21× 21 and 51× 51 pixels windows, and empirical

distributions from all helicopter flights (global) and from the specific floe (floe). Bottom: Estimated fMP from

the σ0
V V based regression with a 51× 51 pixels window for investigated floe in T4.The frame outlines the area

displayed in Fig. 10.
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Figure 10. Melt pond fraction (fMP ) estimated from sigma0V V , with the observed fMP from the helicopter

images overlaid as colored frames. The area displayed is outlined with a frame in Fig. 9. The estimation is

performed with 21× 21 (left) and 51× 51 (right) pixels windows. Note that the center pixel underlying each

helicopter image frame would give the most representative value for comparison to the observed fMP , as pixels

closer to the frame contain a larger amount of information from outside the frame. The middle panel displays

the mean estimated fMP value for each frame together with the observed value.
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Figure 11. Probability density distributions of fMP for the four investigated scenes (T1-T4). Curves repre-

sent distributions produced from the σ0
V V based regression with a 51× 51 pixels window, and the empirical

distribution retrieved from all five helicopter flights.
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