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Abstract. While optical properties of snow are predominantly determined by the specific surface area (SSA), microwave mea-

surements are often analyzed in terms of the exponential correlation length ξ. A statistical relation between both is commonly

employed to facilitate forcing of microwave models by optical measurements. To improve the understanding of ξ and establish

a link between optical and microwave grain metrics we analyzed the third order term in the expansion of the correlation func-

tion that can be regarded as a shape parameter related to mean and Gaussian curvature. We show that the statistical prediction5

of the correlation length via SSA is considerably improved by including the shape metric. In a second step we address the

chord-length distribution as a key quantity for geometrical optics. We show that the second moment of the distribution can be

accurately related to density, SSA and the shape parameter. This empirical finding is supported by a theoretical relation be-

tween the chord length distribution and the correlation function as suggested by small angle scattering methods. As a practical

implication, we compute the optical shape factor B from tomography data. Our results indicate a possibility of estimating ξ by10

a careful analysis of shape corrections in geometrical optics.

1 Introduction

Linking physical properties and microstructure of snow is a fundamental task of snow science. The two-point correlation

function of snow has become a key quantity in this respect for the prediction of various properties such as thermal conductivity,

permeability and electromagnetic properties of snow (Wiesmann and Mätzler, 1999; Löwe et al., 2013; Calonne et al., 2014b;15

Löwe and Picard, 2015). The recent gain in interest of correlation functions is mainly driven by available data from micro-

computed tomography (µCT), from which the correlation function can be conveniently estimated. The analysis of correlation

functions for microwave application dates back to the pre-µCT era, where thin section data and stereology were used to obtain

the required information (Vallese and Kong, 1981; Zurk et al., 1997; Mätzler and Wiesmann, 1999).

The relevance of the two-point correlation function for microwave modeling originates from the connection between its20

Fourier transform and the scattering phase function in the Born approximation for small scatterers (Mätzler, 1998; Ding et al.,

2010; Löwe and Picard, 2015), or the connection to the effective dielectric tensor via depolarization factors (Leinss et al.,

2015). A common way to characterize the correlation function is a fit to an exponential, such that the fit parameter, the so

called exponential correlation length ξ, can be used to model the decay of structural correlations in snow. This approach dates

back to Debye et al. (1957) in the context of small angle scattering of heterogeneous materials. However the characterization25
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of snow in terms of a single size metric ξ is only an approximation since the occurence of multiple length scales (Löwe et al.,

2011) are known to play a role in anisotropy (Löwe et al., 2013; Calonne et al., 2014b). Despite these fundamental caveats,

the correlation length ξ still constitutes the main microstructural parameter for microwave modeling of snow (Proksch et al.,

2015a; Pan et al., 2016) if the Microwave Emission Model of layered snowpacks (Wiesmann et al., 1998) is used. However,

direct measurements of ξ, besides µCT, do not exist and the correlation length is often statistically inferred from measurements5

of the optical equivalent diameter dopt or of specific surface area (SSA). This link was established statistically (Mätzler, 2002)

leading to the empirical relation

ξ ≈ 0.5dopt(1−φ), (1)

where φ is the ice volume fraction. This relation facilitates the use of the measured optical diameter as the primary input for

microwave modeling (Durand et al., 2008; Proksch et al., 2015b; Tan et al., 2015). Despite this practical advantage, such a10

relation can only serve as a first approximation, since the prefactor in Eq. (1) seems to depend on snow type (Mätzler, 2002),

causing significant scatter in the estimates. This has neither been investigated in detail nor traced back to additional shape

metrics.

A similar issue of shape, though less significant in order of magnitude, emerges in the context of optical measurements.

Optical properties (e.g. reflectance) can be largely predicted from the optical diameter or SSA (Kokhanovsky and Zege, 2004).15

The remaining scatter is small but commonly also attributed to grain shape. The influence of shape on light penetration was

recently quantified by Libois et al. (2013) in terms of a shape factorB, which originates from Kokhanovsky and Zege (2004). A

systematic framework that principally allows to analyze this issue for geometrical optics was recently put forward by Malinka

(2014) who derived closed-form expressions for the averaged optical properties. The relevant microstructural quantity is the

chord length distribution (Torquato, 2002) or, more precisely, its Laplace transform. Thereby, the microstructural metrics used20

by Malinka (2014), is not limited to a particular model microstructure (e.g, spheres) but can be applied to generic two-phase

media which implicitly incorporates shape.

A key requirement for potential shape metrics is a well-defined geometrical meaning of the quantity. Presently, the expo-

nential correlation length is essentially a statistical object which is still difficult to interpret beyond the empirical correlation in

Eq. (1). This hinders the development of evolution equations in snowpack models, and the development of alternative, portable25

measurement techniques to estimate new parameters in the field for validation campaigns. Present snowpack models (Vionnet

et al., 2012; Lehning et al., 2002) contain empirical shape descriptors such as sphericity (Brun et al., 1992). An objective

definition of these quantities for arbitrary two-phase materials is, however, not possible. New shape metrics should thus ideally

seek to replace empirical microstructure parameters by an objective, measurable and geometrically comprehensible metric

of the microstructure. An appealing candidate is a curvatures based metric, because i) curvatures have already been used to30

comprehend snow metamorphism via mean and Gaussian curvatures (Brzoska et al., 2008; Schleef et al., 2014; Calonne et al.,

2014a) ii) curvatures are natural to assess shape via deviations from a sphere, very close to the original idea of sphericity (Brun

et al., 1992) and iii) curvatures also emerge as higher order terms in the expansion of the correlation function (Torquato, 2002),

which closes the circle with the microwave context.
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The motivation of the present paper is three-fold. First, we will systematically assess the curvature term in the expansion

of the correlation function as a potential shape parameter. We will be guided by the question if and how the well-known sta-

tistical relation Eq. (1) between the exponential correlation length and the optical diameter can be improved by incorporating

curvatures. Second, we will characterize the microstructure in terms of chord length distributions in order to make contact to

aspects of shape in snow optics. Third, we motivate an approximate relation between the correlation function and the chord5

length distribution that was suggested in the context of small angle scattering (Méring and Tchoubar, 1968). The relation sug-

gests various connections between the moments of the chord length distributions, surface areas, curvatures and the exponential

correlation length. The statistical analysis of these metric inter-relations leads to the announced microstructural connection

between geometrical optics and microwave scattering in the Born approximation, and an expression for the optical shape factor

B.10

In Section 2 we present the theoretical background for the correlation function, the chord length distribution, the relation

between both quantities and the governing length scales. In Section 3 we provide a summary of the image analysis methods.

To provide confidence of the interpretation of the curvature metrics from the correlation function we present an independent

validation of these quantities via the triangulation of the ice-air interface. The results of the statistical models are presented

in Section 4 and discussed in Section 5. Due to the differences in lengthscales between optical and microwave metrics a15

connection between the two via shape may seem surprising. We therefore aim to illustrate this connection by discussing it in

view of the appealing but limited picture of snow as a packing of irregularly shaped grains.

2 Theoretical background

2.1 Two-point correlation function and microwave metrics

The interaction of microwaves with snow are commonly interpreted as scattering at permittivity fluctuations in the microstruc-20

ture. This is reflected for example by the fact that in the Born approximation the scattering coefficient or the phase matrix is

proportional to the Fourier transform of the two-point correlation function (Mätzler, 1998; Ding et al., 2010; Löwe and Picard,

2015). The correlation function can be derived from spatial distribution of ice and air that is characterized by the ice phase

indicator function I(x), which is equal to 1 for a point x in ice and 0 for x in air. From that, a covariance function can be

defined which is often referred to as the correlation function25

C(r) = I(x+ r)I(x)−φ2. (2)

In the following we disregard anisotropy by stating that C(r) only depends on the magnitude of r = |r|. To interpret snow with

this approach, an average over different coordinate directions must be carried out.

The value of the correlation function C(0) = φ(1−φ) is simply related to the volume fractions of ice and air. Therefore,

often only the normalized correlation function30

A(r) = C(r)/C(0) (3)

3

The Cryosphere Discuss., doi:10.5194/tc-2016-119, 2016
Manuscript under review for journal The Cryosphere
Published: 10 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



is used, (see Fig. 1b). Since A(r) must decay from A(0) = 1 to zero for r→∞, the correlation function is often described by

an exponential form

A(r) = exp(−r/ξ) , (4)

in terms of a single length scale, the exponential correlation length ξ, which empirically characterizes the decay of A(r).

In contrast, for small arguments r, also rigorous results for the correlation can be inferred since the expansion of A(r) can5

be interpreted in terms of geometrical properties of the interface. According to Torquato (2002), the expansion for an isotropic

medium reads

A(r) = 1− r

λ1

[
1− r2

λ2
2

+O(r3)
]

(5)

in terms of the length scales λ1,λ2. The first order term

1
λ1

=− d

dr
A(r)

∣∣∣∣
r=0

=
s

4φ(1−φ)
, (6)10

is the slope of the correlation function at the origin and can be expressed in terms of s which is the interfacial area per unit

volume (Debye et al., 1957). The size metric λ1 is one of the most fundamental lengths scales for a two-phase medium and

commonly referred to as the Porod length in small angle scattering, or simply correlation length in Mätzler (2002). The metric

λ1 can be also related to the SSA, defined as the surface area per ice mass (m2/kg), or in turn to the equivalent optical diameter

dopt of snow via15

λ1 =
4φ(1−φ)

s
=

4(1−φ)
ρi SSA

=
2(1−φ)

3
dopt (7)

with ρi representing the density of ice. The last equality is obtained when the definition of dopt = 6/ρiSSA is inserted (see

Mätzler (2002)). For a two-phase material with a smooth interface, the second order term ∼ r2 is missing in the expansion

Eq. (5) and the next non-zero term is the cubic one with a prefactor 1/λ1λ
2
2 . Here the length scale λ2 also has a geometric

interpretation in terms of interfacial curvatures, hereafter referred to as the curvature length. As originally shown by Frisch and20

Stillinger (1963), the following identity holds

1
λ2

2

= λ1
d3

dr3
A(r)

∣∣∣∣
r=0

=
H2

8
− K

24
(8)

in terms average squared mean curvature H2 and the averaged Gaussian curvature K. The quantity λ−2
2 it also referred to as

Eulerian curvature of an interface (Tomita, 1986). The averaged Gaussian curvature K is related to a topological quantity of

the ice-air interface. It can be related to the Euler characteristic χ via the Gauss–Bonnet theorem25

χ=
1

2π

∫
d2xK(x) = V sK, (9)

with V representing the total volume. This is noteworthy insofar, as the (local) expansion of the correlation function at the

origin contains a topological (i.e. a global) property of the interface.
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Figure 1. a) Illustration of the chord lengths obtained from an ice sample. The mean chord length is defined as the average length of the green

line lengths. A stereological approach (Underwood, 1969) to calculate s is to count the number of blue dots per unit length. The estimation

for smf is given by the red contour. b) Illustration of the correlation function A(r) and the method obtaining an estimate for scf by fitting the

slope at the origin.

2.2 Chord length distributions and optical metrics

In contrast to the interaction with microwaves, snow optics is based on a different microstructural characterization within

radiative transfer theory (Kokhanovsky and Zege, 2004), which commonly employs a single metric, the optical diameter. An

interesting extension for geometrical optics in arbitrary two-phase media was recently put forward by Malinka (2014). Thereby,

the microstructure is taken into account by the chord length distribution of medium which can be unambiguously defined for5

arbitrary two-phase random media (Torquato, 2002).
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Chord lengths in an isotropic medium can be defined as the lengths of the intersections of random rays through the sample

with the ice phase as shown in the schematic in Fig. 1a. The chord length distribution p(`) of the ice phase denotes the

probability (density) for finding a chord of length `.

In contrast to the Born approximation for microwaves, where the microstructure enters as the Fourier transform of the

correlation function, the theoretical approach Malinka (2014) relates the key optical quantities (absorption, phase function,5

asymmetry-factor) to the Laplace transform of the chord length distribution p(`) which is denoted by

p̂(z) =

∞∫

0

d`p(`)e−z` (10)

with Laplace variable z. The Laplace transform is closely related to the moments of the chord length distribution

µn =

∞∫

0

d``np(`) (11)

since the expansion of the Laplace transform Eq. (10) for small z can be written as10

p̂(z) = 1−µ1z+
µ2

2
z2 +O(z3). (12)

This implies that the optical response of snow can be systematically improved by successively including higher moments of

the chord length distribution. According to theory of Malinka (2014), the Laplace transform has to be evaluated for z = α with

the absorption coefficient α= 2πκ/λ. Here λ is the wavelength and κ the imaginary part of the refractive index of ice. It is

generally sufficient (Malinka, 2014) to retain only a few terms in Eq. (12). It is straightforward to show (Underwood, 1969)15

that the first moment, i.e, the mean chord length µ1 is given by

µ1 =
4φ
s

=
λ1

1−φ (13)

and thus related to the surface area per unit volume s from Eq. (6) or one of its counterparts via Eq. (7). Thus, in lowest order,

the Laplace transform Eq. (10) only contains the optical radius or specific surface area of snow. The next order correction

involves the second moment µ2 for which no geometric interpretation has been hitherto given for arbitrary two-phase random20

media.

The chord length distribution is closely related to stereological principles which have been widely used in the pre-µCT

era (e.g, Buser and Good (1987); Good (1989)), to estimate the density and the surface area per unit volume for snow and

other crystalline materials. The connection to stereology is illustrated in Fig. 1a, where the well-known counting of the blue

intersection points per unit length gives an estimate for the averaged interfacial area s.25

2.3 Connection between chord lengths and correlation lengths

Following the previous two sections, a link between optical and microwave metrics of snow thus requires to establish a link

between correlation functions and chord length distributions. This issue has been discussed by Roberts and Torquato (1999),
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who established an exact relation between the Laplace transforms of i) the correlation function, ii) the chord length distribution,

and iii) the surface-void correlation function (Torquato, 2002). Despite the apparent complexity, the approach in Roberts and

Torquato (1999) still involves the simplified assumption that consecutive chords on the random ray in Fig. 1a are statistically

independent. Though this assumption is never strictly met, it is shown in Roberts and Torquato (1999) that this is not a practical

limitation. Their relation also provides a very good approximation for correlated structures such as bicontinuous Gaussian5

random fields, but at the expense of the complexity from the numerical inversion of Laplace transforms.

To this end we start from a yet simpler relation between the correlation function and chord length distribution that was put

forward in the early stages of small angle scattering (Méring and Tchoubar, 1968) to interpret the scattering curve in terms of

particle properties. In the present notation the relation can be written as

p(`) = µ1
d2

d`2
A(`), (14)10

which was also used by Gille (2000). The equation was derived for dilute assemblies of convex particles, an assumption which

is not valid for snow. However, Eq. (14) has already some non-trivial implications which can be used for the subsequent

analysis.

As a first consistency check of the approximation Eq. (14), we can compute the first moment of the chord length distribution

from Eq. (11) for n= 1, by inserting Eq. (14) and integrating by parts. This yields µ1 = µ1A(0) which is correct by virtue of15

Eq. (3).

As a next step, we aim at an expression for the second moment of the chord length distribution in terms of interfacial

curvatures according to Eq. (11) for n= 2. Again, inserting Eq. (14) and integrating by parts yields

µ2 = 2µ1

∞∫

0

A(r) = 2µ1λ1f

(
λ2

λ1

)
(15)

with an unknown scaling function f . To motivate the second equality in (15) we note that the expansion (5) implies that20

A(r) depends at least on two independent length scales, λ1 and λ2. As a dimensionless quantity, A(r) can only depend on

(arbitrarily chosen) ratios of involves length scales. In the absence of other relevant scales, the correlation function must

have the form A(r) =A(r/λ1,λ2/λ1). In turn, the integral over A(r) in (15) has units of length and must have the form
∫∞
0
A(r) = λ1f(λ2/λ2) with an unknown function f . The representation (15) is thus an implication of dimensional analysis.

The validity of the main relation for the chord length distribution Eq. (14) can be assessed by experimental data and the25

inferred connection Eq. (15) between the second moment of the chord length distribution and interfacial curvatures will guide

us in retrieving an empirical relation for the second moment µ2 in terms of shape.
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3 Methods

3.1 Data

For the following analysis we used an existing dataset of microstructures reconstructed by µCT previously used in Löwe et al.

(2013) for thermal conductivity analysis and Löwe and Picard (2015) for a comparison of microwave scattering coefficients.

All samples were classified according to Fierz et al. (2009) as described in the supplement of Löwe et al. (2013).5

3.2 Geometry from correlation functions

Obtaining the normalized correlation function A(r) from a µCT image can be conveniently done by using the Fast Fourier

Transform (FFT) as e.g. described in Newman and Barkema (1999). The FFT is typically used for performance issues to

evaluate the convolution integral Eq. (2) since direct methods can be very slow. The spatial resolution of the correlation

function depends on the voxel size ∆ which ranges from 18 to 50 µm. The normalized correlation function is obtained in the10

x,y and z direction and averaged arithmetically over these three directions i.e,A(r) = (Ax(r) +Ay(r) +Az(r))/3, to average

out anisotropy.

From the normalized correlation function two types of parameter fittings are performed. First, the exponential correlation

length ξ is obtained by fitting the µCT data to the exponential form Eq. (4). Technically, we estimated the inverse parameter

k by least-squares optimization of the model A(r) = exp(−kr) to the data in a fixed range of 0< r < 50∆. An illustration15

of this method is shown in Fig. 1b. In the following we denote by ξ the inverse of the optimal fit parameter ξ := 1/k. Second,

we estimated the expansion parameters λ1 and λ2 of the correlation function by a least-squares regression to the expansion

Eq. (5). Technically, we fitted A(r) = 1− k1r(1− k2r
2) in the fixed range of 0< r < 3∆ which determines the derivatives at

the origin. In the following we denote λcf
1 and λcf

2 by the inverse of the optimal fit parameters λcf
1 := 1/k1 and λcf

2 := 1/k2.

The superscript is added to discern these correlation function based estimates from those presented in the next section for a20

validation.

3.3 Geometry from triangulations

Essential for the present analysis in view of shape is the geometrical interpretation (Eq. (6) and Eq. (8)) of the parameters λcf
1

and λcf
2 obtained from the correlation function. To confirm this interpretation, and to make contact of the present method to

previous work on curvature properties of the ice-air interface, we also compute these parameters by independent means.25

To this end we provide alternative estimates λvtk
1 and λvtk

2 from a VTK-based image analysis (www.vtk.org) yielding esti-

mates of the surface area and local curvatures via triangulation as described in Krol and Löwe (2016). In short, a triangulated

ice-air interface is obtained by applying a VTKContour filter. After this step, the interface still resembles the underlying voxel

structure. Therefore, in a second step the triangulated interface is smoothed by applying the VTKSmoothing filter which in-

volves a smoothing parameter S. For further details see Krol and Löwe (2016).30
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3.4 Accuracy of surface area and curvatures estimates

The measured total surface area is obtained by integrating (summing) the surface area of the triangles over the surface and the

estimate λvtk
1 naturally depends on the smoothing parameter. A comparison of the triangulation and the correlation function

based length scale is shown in Fig. 2 (middle row). A higher value of the smoothing parameter implies a lower surface area s

(caused by shrinking of the enclosed volume upon smoothing) and in turn higher estimates for λvtk
1 . It is illustrative to show5

that even without smoothing for S = 0 the obtained triangulated surface is still different from the voxel surface smf , which is

obtained by the union of ice-air transition faces in the voxel based image (as illustrated by the red contour in Fig. 1a). The

quantity smf is one of the four Minkowski functionals and can be computed by standard counting algorithms (Michielsen and

Raedt, 2001). For isotropic systems, and statistically representative samples, the relation between the surface obtained from the

correlation function scf = 4φ(1−φ)/λcf
1 and the Minkowski functionals is known to be scf = 2smf/3 as discussed in Torquato10

(2002, p. 290) and shown here in Fig. 3.

An estimate for the curvature length λvtk
2 is obtained from the VTKCurvature filter on the triangulated ice-air interface

yielding local values for mean and Gaussian curvature which can be integrated to compute λvtk
2 via Eq. (8). The comparison

of the triangulation based curvature length and the correlation function based curvature length is shown in Fig. 2 (bottom row).

The parameters λvtk
1 and λvtk

2 depend strongly on the smoothing parameter S. The value S = 200 performed best by comparing15

the value λvtk
2 to λvtk

2 , see Fig. 2 (bottom row).

Overall, the comparison provides reasonable confidence that the geometrical interpretation of the correlation function pa-

rameters is correct, though uncertainties inherent to the smoothing operations must be acknowledged. In the following we

solely use the quantities derived from the correlation function, viz. λ1 = λcf
1 and λ2 = λcf

2 where the superscripts are omitted

for brevity.20

3.5 Chord length distribution

To compute the ice chord length distribution from the binary images, all linear lines through the sample in all three Cartesian

directions β = x,y,z are considered and all ice chords were measured and binned to obtain direction dependent counting

densities nβ(`). Here nx(`) denotes the total number of chords in x direction which have length `. For a binary CT image, `

can take integer values 0< ` < Lx which are restricted by the sample size Lx =Nx∆ and the voxel size ∆ of the image. The25

mean chord length and other moments µi are then computed from

µi =
1∑

`,β n
α(`)

∑

`,β

`inβ(`) (16)

3.6 Statistical models

A main part of the following analysis comprises statistical relations between the length scales derived from the chord length

distribution and the correlation function in section 2. In total, we will consider a few statistical models that first relate the30

exponential correlation length ξ and µ2 to the geometrical length scales λ1 and λ2 and second, relate ξ to µ1 and µ2. We will
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Figure 2. Comparison between smoothing paramater S = 50 (left) and S = 200 (right) for the top: Representation of the surface of a

subsection of a snow sample. In the middle: Scatter plots of the correlation length λcf
1 versus λvtk

1 , including a fit (red dotted line). At the

bottom: Scatter plots of the curvature length λcf
2 versus λvtk

2 , including a fit (red dotted line).
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Figure 3. Scatter plot of the averaged interfacial area obtained by the the correlation function method scf versus Minkowski functionals

method smf .

start with a one-parameter statistical model and compare the results to the two parameter models. We will assess the quality of

the fits with the correlation coefficient R2.

4 Results

4.1 Relating exponential correlation length to optical diameter

As a starting point for the statistical analysis we revisit the empirical relation5

ξ = 0.75λ1, (17)

which is equivalent to Eq. (1) by virtue of Eq. (7), as suggested by Mätzler (2002). To this end we fitted ξ and λ1 and obtained

an average slope of 0.79 with a correlation coefficient of R2 = 0.733, shown by the green dashed line in Fig. 4a. In the next

step we fitted the same data to include an intercept parameter

ξ = a0 + a1λ1. (18)10

Here the correlation coefficient is R2 = 0.731 and and the parameters are given by a0 = 5.93× 10−2 mm, a1 = 0.794, with

very low p-values (p < 5×10−4) for the intercept and the slope ensuring the significance of the parameters of the fit. The order

of magnitude of the intercept a0 is negligible.
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Figure 4. Scatter plots of a) the exponential correlation length ξ versus the correlation length λ1. A linear fit is plotted in green. Additionally

the prediction of Eq. (17) (MM) is plotted in red. b) The residuals of ξ and the statistical model Eq. (18), versus the curvature length λ2. c)

The statistical model Eq. (19) predicting ξ depending on the optical diameter λ1 and the curvature length λ2.
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Figure 5. Plot of the chord length distributions computed by Eq. (14) (symbols) and by direct analysis, Eq. (16) (solid-line).

4.2 Relating the exponential correlation length to the correlation length and curvature length

As a next step we have included the curvature length λ2 and fitted the exponential correlation length ξ to the model

ξ = b0 + b1λ1 + b2λ2 (19)

The results are shown in Fig. 4c. Here we find an improvement compared to Eq. (17). The correlation coefficient isR2 = 0.922

and the fit parameters are given by b0 = 1.23× 10−2 mm, b1 = 1.32 and b2 =−3.85× 10−1. The p-values are very small for5

all coefficients bi. The order of magnitude of the improvement can already be roughly estimated from the ratio of the prefactors

b1 and b2. To provide further evidence that the improvement of the prediction comes from the curvature length, we analyzed

the residuals of the prediction Eq. (18) and plotted ξ− (a0 + a1λ1) versus the curvature length scale λ2 as shown in Fig. 4b.

The residuals of ξ with the statistical model Eq. (18) show a correlation with λ2 of R2 = 0.644, which eventually causes the

improvement for the exponential correlation length.10

4.3 Connection between chord length distributions and correlation functions

To bridge to the chord length metrics, we first assess the relation between the chord length distribution p(`) and the correlation

function A(`) as suggested by Eq. (16). To this end we compared the chord length distribution obtained directly from the

µCT image (cf. section 3.5) with the prediction of Eq. (16) via the correlation function for a few examples of different snow

types. The results are shown in Fig. 5. The selected snow samples are the same as those used in Löwe and Picard (2015, Fig.15

8 and Fig. 9). Qualitatively, the characteristic form (i.e, single maximum), the location of the maximum, and the width of the

distribution are correctly predicted by Eq. (16). On the other hand, there are obvious shortcomings, such as the oscillatory tail

for the RG example when the chord length distribution is derived via Eq. (16). We will revisit this feature in the discussion.
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4.4 Second moment of the chord length distribution

Using the previous results we can derive an approximate relation between the second moment of the chord length distribution

and the interfacial curvatures. To motivate a statistical model we build on Eq. (14), which suggests a general scaling form

µ2

2µ1
= λ1f

(
λ2

λ1

)
. (20)

We investigate the validity of this expression by approximating the unknown function f by successively higher orders of λ2/λ15

in a statistical model. In a first step we approximate f by a constant using the statistical model

µ2

2µ1
= l0 + l1λ1. (21)

Although not predicted by Eq. (20), we again allow for an interception term l0 similar to Eq. (18), and Eq. (19). The optimal

parameters for the model Eq. (21) are l0 =−2.40× 10−2 mm and l1 = 1.25, with negligible p−values and a correlation

coefficient of R2 = 0.898. The results are shown in Fig. 6a.10

In view of the inclusion of the curvature length λ2, we analyzed the residuals of the previous statistical model and plotted

them as a function of λ2 (Fig. 6b). We find a correlation coefficient of R2 = 0.295, which indicates only a small benefit of

including λ2 in the analysis. The respective statistical model

µ2

2µ1
= n0 +n1λ1 +n2λ2 (22)

yields optimal parameters n0 = 3.95×10−3 mm, n1 = 1.50 and n2 =−2.46×10−1 with a correlation coefficientR2 = 0.949.15

The p-value for the intercept n0 is 0.36. For n1 and n2 the p-values are again very low.

We have heuristically found a possibility of improving Eq. (22) even further. This was achieved by including a factor (1−φ)

on the left-hand side. More precisely, we tried

(1−φ)µ2

2µ1
= q0 + q1λ1 + q2λ2 (23)

as a statistical model. Here the optimal parameters are q0 =−1.23 mm,q1 = 1.03, and q2 =−1.98× 10−1. The p-values for20

all coefficients are negligible and the correlation coefficient is R2 = 0.980. The results are shown in Fig. 6c. The origin of the

improvement of Eq. (23) over Eq. (22) is discussed in section 5.4.

4.5 Relating microwave metrics and optical metrics

In the previous sections we found a statistical relation between the correlation length and the geometrical scales λ1 and λ2

on one hand and a relation between the exponential correlation length and the chord length moments on the other hand. Both25

findings can be recast into a direct connection between the moments of the chord lengths µ1 and µ2 and the exponential

correlation length ξ. We express this relation in the statistical model

ξ = c0 + c1(1−φ)µ1 + c2
(1−φ)µ2

2µ1
. (24)

We obtained the correlation coefficient R2 = 0.985 for the optimal parameters c0 = 9.28× 10−3 mm, c1 =−7.53× 10−1,

c2 = 2.00. This final relation Eq. (24) significantly improves both models Eq. (18) and Eq. (19).30
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Figure 6. Scatter plots of a) the statistical model see Eq. (21) predicting µ2/2µ1 depending on the optical diameter λ1, b) the residuals of

µ2/2µ1 and the statistical model Eq. (21) versus the curvature length scale parameter λ2, c) the statistical model predicting (1−φ)µ2/2µ1

(see Eq. (23)) depending on the optical diameter λ1 and the curvature length λ2.
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Figure 7. Scatterplot of the exponential correlation length ξ versus the statistical model Eq. (24) that depends on the first and second moment

of the chord length distribution, µ1 and µ2.

5 Discussion

5.1 Retrieval of size metrics from µCT data

Retrieving geometrical properties of the ice-air interface from tomography data must be generally taken with care. In addition

to the uncertainties related to filtering and segmentation pointed out by Hagenmuller et al. (2016), the present analysis and

cross-validation of a curvature metric imposes additional requirements on the smoothness of the interface. The subtle influence5

of the smoothing parameter on the surface area s and averaged mean and Gaussian curvaturesH andK is apparent from Fig. 2.

Naturally, H2 is most sensitive to smoothing. We found a competing performance of λ1 and λ2 with the smoothing parameter

when comparing the triangulation based estimates with the correlation function based values. The agreement for the surface

area seems to be best with smoothing parameter S = 50. In contrast, more smoothing is indeed required to obtain an agreement

for the curvature length. This higher sensitivity on the smoothing parameter is reasonable, since curvatures are defined by10

surface gradients which are more sensitive to a smooth representation than the surface area. The competing behavior is caused

by the smoothing filter, which neither preserves volume nor the surface area of the enclosed ice upon smoothing iterations.

This causes the drop in agreement for λ1 in Fig. 2 (left, middle) with increased smoothing. As a remedy, more sophisticated

smoothing filters could be used which, for example, ensure the conservation of the enclosed volume (Kuprat et al., 2001). Such

problems could be partly avoided by computing normal vector fields and curvatures directly from voxel-based distance maps15

(Flin et al., 2005). A detailed comparison of all these different methods however, is beyond the scope of this paper.
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5.2 Linking exponential correlation lengths and curvatures

Accepting the methodological uncertainties discussed in the previous section, we shall now discuss our findings of the statistical

analysis and their relevance for the interpretation of snow microstructure.

As a first step we have analyzed the statistical relation between correlation length and grain size (Mätzler, 2002) which is

consistent with our data. Compared to Mäzler’s model that predicts a1 = 0.75, we find a slightly higher value of a1 = 0.79.5

This can be explained by a large number of depth hoar samples where ξ is generally higher than for other snow types. This is

also suggested by the data from Mätzler (2002, Tab. 1), which indicates an influence of snow type or grain shape. This influence

was made quantitative by the subsequent analysis where we found a clear improvement of the prediction of the exponential

correlation length when incorporating the curvatures length as an additional size metric (Fig. 4c). The quantitative improvement

on the statistical model Eq. (17) by using Eq. (19) or Eq. (24) is given by the increase in the correlation coefficient from10

R2 = 0.733 to R2 = 0.922 and R2 = 0.985, respectively. To ensure that the inclusion of an additional parameter in Eq. (19)

and Eq. (24) indeed improves on eq. (17), we have employed the Akaike information criterion (AIC) measure (Akaike, 1998).

This allows us to discern if the improvement of the correlation coefficient is trivially caused by an increasing number of

fit parameters or an actual improvement on the likelihood of the fit due to the relevance of the added parameters. Absolute

AIC-measures have no direct meaning, however a decrease of at least 2k between two models, where k is the number of15

extra parameters, implies a statistical improvement. For our case k = 1 the difference in the AIC-measure between Eq. (18)

and Eq. (19) is 177 and the AIC difference between models Eq. (19) and Eq. (24) was 275, which confirms the statistical

significance of the model Eq. (24).

All statistical models indicate that at least two different length scales λ1 and λ2 or µ1 and µ2 are required to obtain a

reasonable prediction of the exponential correlation length. While λ1 and µ1 are both trivially related to the optical radius via20

Eq. (1) and Eq. (13), the two other size metrics µ2 or λ2 significantly increase the performance of the statistical model. As

further detailed below, both parameters can be regarded as a two possibilities of defining grain shape.

5.3 The notion of grain shape

The international classification for seasonal snow on the ground (Fierz et al., 2009) considers grain shape as the morphological

classification into snow types. This is motivated by the common but loose perception of shape as the basic geometrical form25

of constituent particles. It is clear that grain shape remains a vague concept unless it is formulated in terms of quantities which

are unambiguously defined on the 3D microstructure.

Local curvatures are often regarded as shape parameters and used to characterize snow on a more fundamental level. The

relevance of the mean curvature is described and analyzed in detail in Calonne et al. (2015), where morphological transitions

(e.g, faceting) of snow during temperature gradient metamorphism are visible in the distribution of mean curvatures. The30

present description of grain shape in snowpack models (Lehning et al., 2002; Vionnet et al., 2012) is in fact based on the

variance of the mean curvature, by the “sphericity” parameter as introduced by Brun et al. (1992). There are attempts to measure

the sphericity from digital photographs as described by Lesaffre et al. (1998) and Bartlett et al. (2008). This definition is valid

17

The Cryosphere Discuss., doi:10.5194/tc-2016-119, 2016
Manuscript under review for journal The Cryosphere
Published: 10 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



only in two dimensions and therefore difficult to compare to their 3D counterparts in Calonne et al. (2015). Another aspect of

shape is captured by the averaged Gaussian curvature K. Though K is computed from local properties of the interface, it has a

strict topological meaning due to its relation to the Euler characteristic χ via Eq. (9). The Euler characteristic was e.g. used by

Schleef et al. (2014) to characterize microstructural changes during densification. As a topological quantity, χ is by definition

strictly independent of local (shape) variations of the ice-air interface. We found however, that the contributionK/3 in λ2 from5

Eq. (8) ranges from 1-13% and is on average 3.7 % of H2. Hence the curvature length λ2 is dominated by the second moment

H2, and thus closely related to the variance of the distribution of mean curvatures, which is a well-defined shape concept for

the 3D microstructure.

There is a conceptual pitfall associated with shape metrics of 3D microstructures. To illustrate this, we consider a microstruc-

ture of polydisperse spherical particles. The definition of grain shape from the classification (Fierz et al., 2009) would assign10

a spherical shape to this microstructure, while the averaged squared mean curvature H2 would be rather governed by the

variance of particle radii. This indicates that polydispersity must also be considered as a particular aspect of shape. The equiv-

alence between polydispersity and shape can be made more rigorous as pointed out by Tomita (1986): a low-density assembly

of irregularly shaped but identical particles can always be mapped uniquely, by solving an integral equation, onto a system of

polydisperse spherical particles if only the correlation function is considered. Irregularity can be equivalent to polydispersity.15

Hence, snow types which can be clearly discerned visually might still have very similar physical properties. Shape must be

generally understood as a distribution of size metrics. This also explains why the objectively defined shape parameter λ2 cannot

be mapped directly onto the classical definition of grain type from Fierz et al. (2009).

5.4 Linking optical and microwave metrics

Finally, we turn to the implications of different descriptions of grain shape for modeling microwave scattering or geometrical20

optics in snow.

The exponential correlation length must be understood as a proxy to characterize the entire correlation function by a single

length scale. By construction, this single length scale contains signatures of both, properties that dominate the behavior of the

correlation function for small arguments (λ1 and λ2) and other properties that dominate the tail-behavior of the correlation

function for large arguments. Within the scope of such a single length scale metric, we found clear evidence from the statistical25

relation Eq. (19) that the tail is already largely determined by properties of the correlation function at the origin (λ1 and λ2).

This seems surprising at first sight. Why should local aspects of the interface (λ1 and λ2) determine the (non-local) decay

of structural correlations (ξ) relevant for microwave scattering? To illustrate our explanation for this finding, we resort to a

particle picture and consider a dense, random packing of monodisperse hard spheres. For such a packing, the particle “shape”

is trivial and fully determined by the sphere diameter d, which determines the slope of the correlation function at the origin.30

However, also particle positions and thus the decay of correlations is fixed by d. This becomes obvious from the representation

C(r) = nvint(r) +n2vint(r) ∗h(r) for the correlation function for such as system at number density n (Löwe and Picard,

2015). In this representation, the spherical intersection volume vint and the statistics of particle positions h(r) both depend

on d. Now imagine that each sphere is deformed by a hypothetical, volume-conserving re-shape operation to an irregular,
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Table 1. Determination of the absorption coefficient α (Warren and Brandt, 2008) and the fraction of the first and second order of Eq. (12)

including the standard deviation σ.

wavelength (µm) α (m−1) µ2/2µ1α (%) σ (%)

0.90 4.1 7.6× 10−2 2.6× 10−2

1.31 1.2× 102 2.1 7.2× 10−1

1.63 2.0× 103 37 13

1.74 1.1× 103 20 6.8

2.00∗ 9.4× 103 1.7× 102 60

2.26 1.1× 103 20 7

∗ wavelength is not used for optical measurements

non-convex particle, which is still located at the center of the original sphere. Due to re-shaping, the parameter H2 would

increase. After the re-shape, neighboring particles would overlap (on average), since their maximum extension must have been

increased compared to the sphere diameter. To recover a non-overlapping configuration, all particle positions must be dilated.

The latter, however, also affects the tail of the correlation function. This is exactly what we observe: the “shape of structural

units” in snow, as exemplified by H2 is always correlated with the “position of the structural units” in space. We note that such5

a particle analogy has clear limitations and only serves here as an attempt to illustrate the rather abstract statistical relations

between different length scales. They must be taken with caution, since snow is a bicontinuous material if probed by µCT, and

individual particles cannot be distinguished.

The previous analogy also helps to understand why geometrical optics of snow should be related to microwave scattering,

despite the difference in wave lengths by orders of magnitude. For snow optics, it has been shown that shape influences the10

penetration of light (Libois et al., 2013). The authors conclude that a collection of spheres cannot sufficiently predict irradiance

profiles in snow due the underestimation of the asymmetry factor gG. This factor is known to include shape of different grain

types as predicted by the theory from Kokhanovsky and Zege (2004). However an expression of the shape parameterB in terms

of the microstructure is not provided by the theory. The analysis of Malinka (2014) shows that the optical properties can be

expressed in terms of the Laplace transform p̂(α) of the chord length distribution, which has to be evaluated at the absorption15

coefficient of ice, α= 2πκ/λ, where λ is the wavelength and κ the imaginary part of the refractive index. Since for most

wavelengths in the visible and infrared regime αµ1� 1 is small, the Laplace transform Eq. (10) can be approximated by a few

terms in the expansion Eq. (12). The results in Malinka (2014) are mainly based on the Laplace transform of an exponential,

p̂(α) = 1/(1 +µ1α), which only involves µ1 (or the optical radius via Eq. 1). Assessing typical values for α allows us to

estimate the relative importance αµ2/2µ1 of the second-order term compared to the first-order term in the expansion Eq. (12).20

Typical values for α are obtained by using the values for κ provided by Warren and Brandt (2008). The ratio αµ2/2µ1 is

calculated for typical wavelenghts and shown in Table 1. Wavelengths are selected to match common optical methods, namely

0.9 µm (Matzl and Schneebeli, 2006), 1.31 µm (Arnaud et al., 2011), and the SWIR wavelengths 1.63 µm, 1.74 µm and
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Figure 8. Scatterplot of the dimensionless quantity µ2/2µ
2
1 and the optical shape factor B evaluated for refractive index at wavelength

λ= 1.3µm.

2.26 µm used by Domine et al. (2006). We added the wavelength 2.00 µm, which is not used by any instrument, but has the

highest value for α in this range. Note that the standard deviation σ is high as a result of the variations due to grain shape.

The lowest values of µ2/2µ1 are found for fresh snow (PP) and highest for depth hoar (DH) and melt forms (MF). Given

the order of magnitude, it seems likely that shape corrections could be measured by some SWIR based optical techniques. To

confirm the relevance of the shape correction from a different perspective, we can directly compute the optical shape parameter5

B in terms of µ1,µ2. It is straightforward to derive an expression for B using (Libois et al., 2013; Malinka, 2014) as shown

in the Appendix A. The results are shown in Fig. 8 where B is shown as a function of the dimensionless quantity µ2/2µ2
1

which can be constructed from the two relevant parameters. The range of values B ∈ [1.54,1.72] is well within the range

B ∈ [1.25,2.09] obtained by ray-tracing calculations for different geometrical shapes (Libois et al., 2013). Further details

remain to be elucidated by combining tomography imaging together with optical measurements or pore scale simulations.10

Along these lines our results suggest a new route of assessing the remaining discrepancies in Haussener et al. (2012) using the

moments of the chord length distribution.

The established connection between µ2 and shape (via λ2) is demonstrated by the statistical model Eq. (23) and the residual

analysis (Fig. 6). Together with the relation between ξ and λ2 discussed in 5.2, we have finally established a connection between

all involves size metrics. This leads to the statistical relation Eq. (24), which involves density, the microwave metric ξ and the15

optical metrics µ2 and µ1.

The statistical relations between all the size metrics was motivated by the connection between chord length distributions and

correlation functions. This connection is an old topic which was raised in the context of small angle scattering half a century ago

(Méring and Tchoubar, 1968). The approximation Eq. (14) used here actually contains two different approximation steps. A

first simplification comes from the assumption that consecutive ice chords are statistically independent. Such an approximation20
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was used by Roberts and Torquato (1999) to derive an exact, but more complicated, relation between the Laplace transforms

of the ice chord length distribution and the correlation function. A similar result was obtained by Levitz and Tchoubar (1992).

The used relation Eq. (14) underlies even an additional approximation of strong dilution of the inclusion particles (Méring and

Tchoubar, 1968). Despite the two-step approximation outlined above, we however confirmed that Eq. (14) has a practical value

and yields three, qualitatively consistent results for different snow types (Fig. 5). First, it captures the considerable variations5

of the position of the maximum, the width, and decay of the chord length density function. Second, it leads to the suggested

Eq. (22) which indicates that moments of the chord length distribution and the second derivative of the correlation function

must be related. An heuristically found improvement on Eq. (22) by including the term (1−φ) in Eq. (23) is not surprising

since snow is not a dilute particle system and corrections containing φ-terms must be expected. Third, the relation Eq. (14)

predicts that the chord length distribution tends to zero for small values i.e. p(`= 0) = 0 (as confirmed in Fig. 5). This is a10

direct consequence of a smooth interface as shown in Wu and Schmidt (1971). The latter work also derived the real space

expansion of the chord length distribution which can be written as p(`) = 6`/λ2
2 +O(`3). This result based on the assumption

of a dilute suspension of identical, randomly oriented particles, can be taken as an independent confirmation that the variance

of the chord length distribution µ2−µ2
1 must be related to the interfacial curvatures via λ2. Under the minimal assumption that

the chord length distribution is governed by at least two independent length scales, the width of the distribution must result15

from a competition of the rate at which the probability increases for small arguments ` (equal to 6/λ2
2) and the rate at which

probability density decays to zero for large arguments ` (which must contain the optical radius λ1).

An obvious drawback of Eq. (14) is, however, also revealed by Fig. 5 for the RG snow. Due to the quasi-oscillations in

the correlation function (cf. (Löwe et al., 2011)), A(`) and its second derivative assume negative values, which would imply

negative values for p(r) via Eq. (14). This is in contradiction to the meaning of p(r) as a probability density. The results20

from Roberts and Torquato (1999) for similar systems of oscillatory correlation functions indicate that the more sophisticated

approach using numerical Laplace inversion seems to be a remedy, however this is beyond the scope of the present work.

As a convenient side product of our analysis, we obtained an approximate relation for the second moment of µ2 of the chord

length distribution in terms of the curvature length λ2 (predominately via H2). The parameter H2 has also been used for shape

recognition in stereology for a long time and can be obtained from particular vertex and edges counting algorithms, as shown25

by Cahn (1967) and DeHoff et al. (2015). An analytical relation between the chord length distributions and curvatures was,

however, never derived. Due to the lack of closed form expression for µ2, our results may be relevant also for other applications.

6 Conclusions

In this work we have we analyzed snow microstructure and suggested a size metric which objectively, but not uniquely,

characterizes shape from the expansion of the correlation function in terms of interfacial curvatures. We have shown that the30

geometrical interpretation of the shape parameter is indeed correct by a comparison to VTK-based triangulation methods.

This also highlighted the remaining difficulties when processing the ice-air interface, such as smoothing. Independent of these

difficulties, the shape analysis allowed us to improve a widely used statistical model for the exponential correlation length
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(as a key size metric for MEMLS based microwave modeling) from the optical radius by including shape via curvatures.

Alternatively, the exponential correlation length can also be expressed in terms of moments of the chord length distribution (as

the key metric for geometrical optics modeling). We analyzed the connection between chord length distributions and correlation

functions which was suggested by old arguments from small angle scattering. Loosely speaking, the established connection

states that local shape of irregular snow grains (determining optical response via the chord lengths or curvatures) and the5

packing of these irregular grains (determining microwave response via the correlation length) is intimately correlated. Our

results suggest a new experimental route to connect optical in-situ field measurements with microwave measurements. This

requires to design an experimental method which is able to retrieve the µ2 corrections (shape) in the optical properties when

compared to the µ1 term (optical radius). This seems possible given the predicted values for the optical shape factor B. In a

second step, using the statistical relation Eq. (24), a direct connection to the correlation length can be made. Even by treating10

snow here as an isotropic medium (by averaging all quantities over directions) we have found statistically robust relations

between all size metrics. With ongoing progress in models for the correlation function that include anisotropy and more general

forms other than exponential ones, we can expect further refinement in the relation between optical and microwave metrics in

the future.

Appendix A: Optical shape factorB from moments of the chord length distribution15

To derive an expression of the optical shape factor B in terms of the moments of the chord length distribution, we start from

expression (Libois et al., 2013, Eq. 6) for the single scattering co-albedo (1−ω) as defining equation

(1−ω) =B
γV

2Σ
, (A1)

which relates B to the average volume of a particle V , the average projected area of a particle Σ, and the absorption coefficient

γ. This can be reformulated in the chord-length picture by using (Malinka, 2014, Eq. 6). Then, adopting the notation of the20

present paper, the relation (A1) can be written as

(1−ω) =B
αµ1

2
(A2)

Using the expression of the single scattering albedo from Malinka (2014, Eq. 56), inserting (Malinka, 2014, Eq. 29,42,49,18)

and re-arranging terms we obtain

(1−ω) =
Tout(n)

1 +
Tout(n)
n2

p̂(α)
1− p̂(α)

(A3)25

in terms of the real part of the refractive index n, the averaged Fresnel transmittance coefficient Tout(n) (given by Malinka

(2014, Eq. 19) in closed form) and the Laplace transform of the chord length distribution p̂(α). By comparing (A2) and (A3),

and taking into account an additional factor of 2 between (Malinka, 2014) and (Libois et al., 2013) due to a different treatment
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of the extinction efficiency, we end up with

B =
1
αµ1

Tout(n)

1 +
Tout(n)
n2

p̂(α)
1− p̂(α)

(A4)

Complemented by the approximation (12) for the Laplace transform p̂, the expression (Malinka, 2014, Eq. 19) for Tout(n) this

yields an expression of the shape factor B in terms of the first and second moment, µ1,µ2, of the chord length distribution, the

real part of the refractive index n and the absorption coefficient α.5

Acknowledgements. The authors thank G. Picard for a constructive feedback on an earlier version of the manuscript and S. Torquato for

helpful clarifications on the factor 2/3 between smf and scf . M. Lehning provided valuable suggestions on the statistical methods. The work

was funded my the Swiss National Science Foundation via Grant No. 200021_143839.

23

The Cryosphere Discuss., doi:10.5194/tc-2016-119, 2016
Manuscript under review for journal The Cryosphere
Published: 10 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



References

Akaike, H.: Selected papers of Hirotugu Akaike, pp. 199–213, Springer New York, doi:10.1007/978-1-4612-1694-0_15, 1998.

Arnaud, L., Picard, G., Champollion, N., Domine, F., Gallet, J., Lefebvre, E., Fily, M., and Barnola, J.: Measurement of vertical profiles of

snow specific surface area with a 1 cm resolution using infrared reflectance: instrument description and validation, J. Glaciol., 57, 17–29,

doi:doi:10.3189/002214311795306664, 2011.5

Bartlett, S. J., Rüedi, J.-D., Craig, A., and Fierz, C.: Assessment of techniques for analyzing snow crystals in two dimensions, Ann. Glaciol.,

48, 103–112, doi:10.3189/172756408784700752, 2008.

Brun, E., David, P., Sudul, M., and Brunot, G.: A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting,

J. Glac., 38, 13–22, doi:doi:10.3198/1992JoG38-128-13-22, 1992.

Brzoska, J.-B., Flin, F., and Barckicke, J.: Explicit iterative computation of diffusive vapour field in the 3D snow matrix: preliminary results10

for low flux metamorphism, Ann. Glaciol., 48, 13–18, doi:10.3189/172756408784700798, 2008.

Buser, O. and Good, W.: Acoustic, geometric and mechanical parameters of snow, IAHS Publ, 162, 61–71, 1987.

Cahn, J.: Significance of average mean curvature and its determination by quantititative metallography, T. Metall. Soc. Aime., 239, 610–&,

1967.

Calonne, N., Flin, F., Geindreau, C., Lesaffre, B., and Rolland du Roscoat, S.: Study of a temperature gradient metamorphism of snow15

from 3D images: time evolution of microstructures, physical properties and their associated anisotropy, Cryosphere, 8, 2255–2274,

doi:10.5194/tc-8-2255-2014, 2014a.

Calonne, N., Geindreau, C., and Flin, F.: Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization,

J. Phys. Chem. B, 118, 13 393–13 403, doi:10.1021/jp5052535, pMID: 25011981, 2014b.

Calonne, N., Flin, F., Lesaffre, B., Dufour, A., Roulle, J., Puglièse, P., Philip, A., Lahoucine, F., Geindreau, C., Panel, J.-M., Rolland du20

Roscoat, S., and Charrier, P.: CellDyM: A room temperature operating cryogenic cell for the dynamic monitoring of snow metamorphism

by time-lapse X-ray microtomography, Geophys. Res. Lett., 42, 3911–3918, doi:10.1002/2015GL063541, 2015.

Debye, P., Anderson, H., and Brumberger, H.: Scattering by an inhomogeneous solid .2. The correlation function and its application,

J. Appl. Phys., 28, 679–683, doi:10.1063/1.1722830, 1957.

DeHoff, R. T., Patterson, B. R., Sahi, C. A., and Chiu, S.: Use of stereology to derive a new kinetic equation for mean curvature driven grain25

growth, Acta Materialia, 100, 240 – 246, doi:10.1016/j.actamat.2015.08.011, 2015.

Ding, K.-H., Xu, X., and Tsang, L.: Electromagnetic scattering by bicontinuous random microstructures with discrete permittivities,

IEEE Trans. Geosci. Remote Sens., 48, 3139–3151, doi:10.1109/TGRS.2010.2043953, 2010.

Domine, F., Salvatori, R., Legagneux, L., Salzano, R., Fily, M., and Casacchia, R.: Correlation between the specific surface area and the short

wave infrared (SWIR) reflectance of snow, Cold Reg. Sci. Technol., 46, 60 – 68, doi:10.1016/j.coldregions.2006.06.002, 2006.30

Durand, M., Kim, E. J., and Margulis, S. A.: Quantifying uncertainty in modeling snow microwave radiance for a mountain snowpack at the

point-scale, including stratigraphic effects, IEEE T Geosci. Remote, 46, 1753–1767, doi:10.1109/TGRS.2008.916221, 2008.

Fierz, C., Armstrong, R. L., Durand, Y., Etchevers, P., Greene, E., McClung, D. M., Nishimura, K., Satyawali, P. K., and Sokratov, S.: The

international classification for seasonal snow on the ground, IHP-VII Technical Documents in Hydrology, 83, IACS Contribution (1),

UNESCO-IHP, Paris, 2009.35

24

The Cryosphere Discuss., doi:10.5194/tc-2016-119, 2016
Manuscript under review for journal The Cryosphere
Published: 10 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



Flin, F., Brzoska, J.-B., Coeurjolly, D., Pieritz, R., Lesaffre, B., Coleou, C., Lamboley, P., Teytaud, F., Vignoles, G. L., and Delesse, J.-F.:

Adaptive estimation of normals and surface area for discrete 3D objects: application to snow binary data from X-ray tomography, Image

Processing, IEEE Transactions on, 14, 585–596, doi:10.1109/TIP.2005.846021, 2005.

Frisch, H. L. and Stillinger, F. H.: Contribution to the statistical geometric basis of radiation scattering, J. Chem. Phys., 38, 2200–2207,

doi:10.1063/1.1733950, 1963.5

Gille, W.: Chord length distributions and small-angle scattering, Eur. Phys. J. B, 17, 371–383, doi:10.1007/s100510070116, 2000.

Good, W.: Laboratory techniques for the characterization of snow, in: Proceedings of an International Workshop on Physics and Mechanics

of Cometary Materials, edited by ESA, pp. 147–151, Proceedings of an International Workshop on Physics and Mechanics of Cometary

Materials, 1989.

Hagenmuller, P., Matzl, M., Chambon, G., and Schneebeli, M.: Sensitivity of snow density and specific surface area measured by microto-10

mography to different image processing algorithms, The Cryosphere Discuss., 2016, 1–28, doi:10.5194/tc-2015-217, 2016.

Haussener, S., Gergely, M., Schneebeli, M., and Steinfeld, A.: Determination of the macroscopic optical properties of snow based on exact

morphology and direct pore-level heat transfer modeling, J. Geophys. Res-Earth, 117, doi:10.1029/2012JF002332, f03009, 2012.

Kokhanovsky, A. A. and Zege, E. P.: Scattering optics of snow, Appl. Opt., 43, 1589–1602, doi:10.1364/AO.43.001589, 2004.

Krol, Q. and Löwe, H.: Analysis of local ice crystal growth in snow, J. Glaciol, doi:10.1017/jog.2016.32, 2016.15

Kuprat, A., Khamayseh, A., George, D., and Larkey, L.: Volume Conserving Smoothing for Piecewise Linear Curves, Surfaces, and Triple

Lines, J. Comput. Phys., 172, 99–118, doi:http://dx.doi.org/10.1006/jcph.2001.6816, http://www.sciencedirect.com/science/article/pii/

S0021999101968160, 2001.

Lehning, M., Bartelt, P., Brown, B., Fierz, C., and Satyawali, P.: A physical snowpack model for the Swiss avalanche warning: Part II. Snow

microstructure, Cold Reg. Sci. Technol., 35, 147 – 167, doi:10.1016/S0165-232X(02)00073-3, 2002.20

Leinss, S., Löwe, H., Proksch, M., Lemmetyinen, J., Wiesmann, A., and Hajnsek, I.: Anisotropy of seasonal snow measured by po-

larimetric phase differences in radar time series, The Cryosphere Discuss., 9, 6061–6123, doi:10.5194/tcd-9-6061-2015, http://www.

the-cryosphere-discuss.net/9/6061/2015/, 2015.

Lesaffre, B., Pougatch, E., and Martin, E.: Objective determination of snow-grain characteristics from images, Ann. Glaciol., 26, 112–118,

1998.25

Levitz, P. and Tchoubar, D.: Disordered porous solids : from chord distributions to small angle scattering, J. Phys. I, 2, 771–790,

doi:10.1051/jp1:1992174, 1992.

Libois, Q., Picard, G., France, J. L., Arnaud, L., Dumont, M., Carmagnola, C. M., and King, M. D.: Influence of grain shape on light

penetration in snow, Cryosphere, 7, 1803–1818, doi:10.5194/tc-7-1803-2013, 2013.

Löwe, H. and Picard, G.: Microwave scattering coefficient of snow in MEMLS and DMRT-ML revisited: the relevance of sticky hard spheres30

and tomography-based estimates of stickiness, Cryosphere, 9, 2101–2117, doi:10.5194/tc-9-2101-2015, 2015.

Löwe, H., Spiegel, J. K., and Schneebeli, M.: Interfacial and structural relaxations of snow under isothermal conditions, J. Glaciol., 57,

499–510, doi:10.3189/002214311796905569, 2011.

Löwe, H., Riche, F., and Schneebeli, M.: A general treatment of snow microstructure exemplified by an improved relation for thermal

conductivity, The Cryosphere, 7, 1473–1480, doi:10.5194/tc-7-1473-2013, 2013.35

Malinka, A. V.: Light scattering in porous materials: Geometrical optics and stereological approach, J. Quant. Spectrosc. Ra., 141, 14–23,

doi:10.1016/j.jqsrt.2014.02.022, 2014.

25

The Cryosphere Discuss., doi:10.5194/tc-2016-119, 2016
Manuscript under review for journal The Cryosphere
Published: 10 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



Matzl, M. and Schneebeli, M.: Measuring specific surface area of snow by near-infrared photography, J. Glaciol., 52, 558–564,

doi:10.3189/172756506781828412, 2006.

Mätzler, C.: Improved Born approximation for scattering of radiation in a granular medium, J. Appl. Phys., 83, 6111–6117, 1998.

Mätzler, C.: Relation between grain-size and correlation length of snow, J. Glac., 48, 461–466, doi:10.3189/172756502781831287, 2002.

Mätzler, C. and Wiesmann, A.: Extension of the microwave emission model of layered snowpacks to coarse-grained snow, Rem. Sens. Env-5

iron., 70, 317–325, doi:10.1016/S0034-4257(99)00047-4, 1999.

Méring, J. and Tchoubar, D.: Interprétation de la diffusion centrale des rayons X par les systèmes poreux. I, J. App. Crystallogr., 1, 153–165,

doi:10.1107/S0021889868005212, 1968.

Michielsen, K. and Raedt, H. D.: Integral-geometry morphological image analysis, Phys. Rep., 347, 461 – 538, doi:10.1016/S0370-

1573(00)00106-X, 2001.10

Newman, M. and Barkema, G.: Monte carlo methods in statistical physics, Clarendon Press, 1999.

Pan, J., Durand, M., Sandells, M., Lemmetyinen, J., Kim, E. J., Pulliainen, J., Kontu, A., and Derksen, C.: Differences Between the HUT

Snow Emission Model and MEMLS and Their Effects on Brightness Temperature Simulation, IEEE T Geosci. Remote, 54, 2001–2019,

doi:10.1109/TGRS.2015.2493505, 2016.

Proksch, M., Löwe, H., and Schneebeli, M.: Density, specific surface area and correlation length of snow measured by high-resolution15

penetrometry, J. Geophys. Res.–Earth, 120, 346–362, doi:10.1002/2014JF003266, 2015a.

Proksch, M., Mätzler, C., Wiesmann, A., Lemmetyinen, J., Schwank, M., Löwe, H., and Schneebeli, M.: MEMLS3&a: Microwave emission

model of layered snowpacks adapted to include backscattering, Geosci. Mod. Dev., 8, 2611–2626, doi:10.5194/gmd-8-2611-2015, 2015b.

Roberts, A. and Torquato, S.: Chord-distribution functions of three-dimensional random media: Approximate first-passage times of Gaussian

processes, Phys. Rev. E, 59, 4953–4963, doi:10.1103/PhysRevE.59.4953, 1999.20

Schleef, S., Löwe, H., and Schneebeli, M.: Influence of stress, temperature and crystal morphology on isothermal densification and specific

surface area decrease of new snow, The Cryosphere, 8, 1825–1838, doi:10.5194/tc-8-1825-2014, 2014.

Schleef, S., Loewe, H., and Schneebeli, M.: Hot-pressure sintering of low-density snow analyzed by X-ray microtomography and in situ

microcompression, Act. Mater., 71, 185–194, doi:10.1016/j.actamat.2014.03.004, 2014.

Tan, S., Aksoy, M., Brogioni, M., Macelloni, G., Durand, M., Jezek, K. C., Wang, T. L., Tsang, L., Johnson, J. T., Drinkwater, M. R., and25

Brucker, L.: Physical models of layered polar firn brightness temperatures from 0.5 to 2 GHz, IEEE J. Sel. Top. Appl., 8, 3681–3691,

doi:10.1109/JSTARS.2015.2403286, 2015.

Tomita, H.: Statistical properties of random interface system, Prog. Theo. Phys, 75, 482–495, doi:10.1143/PTP.75.482, 1986.

Torquato, S.: Random heterogeneous materials: Microstructure and macroscopic Properties, Interdisciplinary Applied Mathematics, Springer,

2002.30

Underwood, E. E.: Stereology, or the quantitative evaluation of microstructures, J. Microsc., 89, 161–180, doi:10.1111/j.1365-

2818.1969.tb00663.x, 1969.

Vallese, F. and Kong, J.: Correlation-function studies for snow and ice, J. Appl. Phys., 52, 4921–4925, doi:10.1063/1.329453, 1981.

Vionnet, V., Brun, E., Morin, S., Boone, a., Faroux, S., Le Moigne, P., Martin, E., and Willemet, J.-M.: The detailed snowpack scheme Crocus

and its implementation in SURFEX v7.2, Geosci. Model. Develop., 5, 773–791, doi:10.5194/gmd-5-773-2012, 2012.35

Warren, S. G. and Brandt, R. E.: Optical constants of ice from the ultraviolet to the microwave: A revised compilation, J. Geophys. Res-

Atmos, 113, doi:10.1029/2007JD009744, d14220, 2008.

26

The Cryosphere Discuss., doi:10.5194/tc-2016-119, 2016
Manuscript under review for journal The Cryosphere
Published: 10 June 2016
c© Author(s) 2016. CC-BY 3.0 License.



Wiesmann, A. and Mätzler, C.: Microwave Emission Model of Layered Snowpacks, Rem. Sens. Environ., 70, 307–316, doi:10.1016/S0034-

4257(99)00046-2, 1999.

Wiesmann, A., Mätzler, C., and Weise, T.: Radiometric and structural measurements of snow samples, Radio Sci., 33, 273–289, 1998.

Wu, H.-I. and Schmidt, P. W.: Intersect distributions and small-angle X-ray scattering theory, J. Appl. Crystallogr., 4, 224–231,

doi:10.1107/S0021889871006745, 1971.5

Zurk, L., Tsang, L., Shi, J., and Davis, R.: Electromagnetic scattering calculated from pair distribution functions retrieved from planar snow

sections, IEEE T. Geosci. Remote, 35, 1419–1428, doi:10.1109/36.649796, 1997.

27

The Cryosphere Discuss., doi:10.5194/tc-2016-119, 2016
Manuscript under review for journal The Cryosphere
Published: 10 June 2016
c© Author(s) 2016. CC-BY 3.0 License.


