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Abstract. Grain shape is commonly perceived as a characteristic of snow beyond the optical diameter (or specific surface

area) which influences the physical properties. In this study we use tomography images of snow to investigate two objectively

defined metrics of grain shape which naturally extend the characterization of snow in terms of the optical diameter. One is the

curvature-length, λ2, related to the third order term in the expansion of the correlation function and the other is the second

moment of the chord length distributions, µ2. From the first, we make contact to microwave modeling via the exponential5

correlation length ξ and show that grain shape explains the remaining scatter when ξ is statistically related to the optical

diameter. From the second, we make contact to a geometrical optics framework via the absorption enhancement parameter B

and asymmetry factor gG. We establish various statistical relations between all size metrics obtained from correlation functions

and chord length distributions. Overall our results suggest that the definition of grain shape via λ2 or µ2 is virtually equivalent.

Both capture aspects of size dispersity in snow and constitute an intersection between microstructure characterization for10

optical or microwave modeling.

1 Introduction

Linking physical properties of snow to the microstructure always requires to identify appropriate metrics of grain size. In this

regard, the two-point correlation function has become a key quantity for the prediction of various properties such as thermal

conductivity, permeability and electromagnetic properties of snow (Wiesmann and Mätzler, 1999; Löwe et al., 2013; Calonne15

et al., 2014b; Löwe and Picard, 2015). The correlation function carries, in essence, information about a distribution of relevant

sizes in the microstructure. For microwave applications, the analysis of correlation functions was already used in the era before

micro-computed tomography (µCT), where thin section data and stereology were employed to obtain the required information

(Vallese and Kong, 1981; Zurk et al., 1997; Mätzler and Wiesmann, 1999). The recently gained interest in correlation functions

is mainly driven by available data from µCT, from which the correlation function can be conveniently estimated. The relevance20

of the two-point correlation function for microwave modeling originates from the connection between its Fourier transform

and the scattering phase function in the Born approximation for small scatterers (Mätzler, 1998; Ding et al., 2010; Löwe and

Picard, 2015), or the connection to the effective dielectric tensor via depolarization factors (Leinss et al., 2015).

A common practical way to characterize the correlation function is a fit to an exponential, such that the fit parameter, the so

called exponential correlation length ξ, can be used to model the decay of microstructural correlations in snow by a single size25
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parameter. This approach dates back to Debye et al. (1957) in the context of small angle scattering of heterogeneous materials.

However the characterization of snow by a single length ξ is only an approximation since the occurrence of multiple length

scales (Löwe et al., 2011) are known to play a role, in particular to characterize anisotropy (Löwe et al., 2013; Calonne et al.,

2014b). Despite this caveat, ξ still constitutes the main microstructural parameter for microwave modeling of snow (Proksch

et al., 2015a; Pan et al., 2016) when the Microwave Emission Model of layered snowpacks (Wiesmann et al., 1998) is used.5

The exponential correlation length is often inferred from measurements of the optical equivalent diameter dopt or, equiv-

alently, from the specific surface area (SSA). This link was established statistically (Mätzler, 2002) leading to the empirical

relation

ξ ≈ 0.5dopt(1−φ), (1)

where φ is the ice volume fraction. This relation facilitates using the measured optical diameter as the primary input for10

microwave modeling (Durand et al., 2008; Proksch et al., 2015b; Tan et al., 2015). However, this link between ξ and dopt can

only serve as a first approximation. The numerical prefactor in Eq. (1) seems to depend on snow type (Mätzler, 2002) which

causes a significant scatter in estimating correlation length from optical diameter. This poses the question which additional size

metric captures variations in grain shape and explains the scatter.

A similar issue of grain shape emerges in the context of optical measurements. Optical properties (e.g. reflectance) can15

be largely predicted from the optical diameter or SSA (Kokhanovsky and Zege, 2004). The remaining scatter is commonly

attributed to shape which influences the absorption enhancement parameter B and the asymmetry factor gG (Picard et al.,

2009). The influence of grain shape on B for light penetration was recently addressed and measured by Libois et al. (2013,

2014). Also in this case it remains the question which additional size metric of the microstructure can be used to capture

variations in grain shape and measured scatter in B.20

The two examples from microwave or optical modeling above reflect the known fact that the optical diameter as a single

metric of grain size is not sufficient to characterize the microstructure for many physical properties. It is thus necessary to

account for additional grain size metrics which implement the idea of grain shape. A key requirement for potential, new shape

metrics is a well-defined geometrical meaning. Present snowpack models (Vionnet et al., 2012; Lehning et al., 2002) contain

empirical shape descriptors such as sphericity (Brun et al., 1992). An objective definition of these quantities for arbitrary two-25

phase materials is, however, not possible. New shape metrics should thus ideally seek to replace empirical parameters by an

objective, measurable and geometrically comprehensible metrics.

One appealing route to define shape is via curvatures of the ice-air interface because curvatures i) have already been used

to comprehend snow metamorphism via mean and Gaussian curvatures (Brzoska et al., 2008; Schleef et al., 2014; Calonne

et al., 2014a) ii) are natural quantities to assess shape via deviations from a sphere, very close to the definition of sphericity30

in Lesaffre et al. (1998) and iii) naturally emerge as higher order terms in the expansion of the correlation function (Torquato,

2002). The latter fact can be used in turn to assess variations of the microwave parameter (ξ) from µCT images which links

back to the aforementioned microwave modeling problem.
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Another appealing route to define shape is via chord length distributions because they i) naturally implement the idea of size

dispersity and ii) have been recently put forward by Malinka (2014) to derive closed-form expressions for the averaged optical

properties of a porous medium. Again, the latter fact can in turn be used to assess variations in the optical parameters (gG,B)

from µCT images which links back to the aforementioned optical modeling problem.

The motivation of the present paper is to investigate and interconnect these two routes of objectively defining grain shape.5

First, we will assess the curvature-length in the expansion of the correlation function. We will be guided by the question if

and how the well-known statistical relation Eq. (1) between the exponential correlation length and the optical diameter can be

improved by incorporating curvatures. Second, we will characterize the microstructure in terms of chord length distributions

in order to make contact to aspects of shape in snow optics. An interconnection between the two routes can be established by

an approximate relation between the correlation function and the chord length distribution that was originally suggested in the10

context of small angle scattering (Méring and Tchoubar, 1968). By means of this approximate relation we establish various

statistical links between all involved size metrics, the moments of the chord length distributions, optical diameter, surface

areas, curvatures and the exponential correlation length. The established links imply a microstructural connection between

geometrical optics and microwave scattering via size dispersity, which constitutes one aspect of grain shape.

The paper is organized as follows. In Section 2 we present the theoretical background for the correlation function, the15

chord length distribution, the connection between both quantities and the governing length scales. In Section 3 we provide a

summary of the µCT image analysis methods. To provide confidence of the interpretation of the curvature metrics derived from

the correlation function, we present an independent validation of these quantities via the triangulation of the ice-air interface.

The results of the statistical models are presented in Section 4 and discussed in Section 5.

2 Theoretical background20

2.1 Two-point correlation function and microwave metrics

The interaction of microwaves with snow are commonly interpreted as scattering at permittivity fluctuations in the microstruc-

ture which can be described by the two-point correlation function (Vallese and Kong, 1981; Mätzler, 1998; Ding et al., 2010;

Löwe and Picard, 2015). The correlation function can be derived from spatial distribution of ice and air that is characterized

by the ice phase indicator function I(x), which is equal to 1 for a point x in ice and 0 for x in air. From that, a covariance25

function can be defined which is often referred to as the correlation function

C(r) = I(x+ r)I(x)−φ2. (2)

In the following we disregard anisotropy by stating that C(r) only depends on the magnitude of r = |r|. To interpret snow with

this approach, an average over different coordinate directions must be carried out.

The value of the correlation function C(0) = φ(1−φ) is simply related to the volume fractions of ice and air. Therefore,30

often only the normalized correlation function

A(r) = C(r)/C(0) (3)
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is used, (see Fig. 1b). Since A(r) must decay from A(0) = 1 to zero for r→∞, the correlation function is often described by

an exponential form

A(r) = exp(−r/ξ) , (4)

in terms of a single length scale, the exponential correlation length ξ, which empirically characterizes the decay of A(r).

For small arguments r, also rigorous results for the decay of the correlation can be inferred since the expansion of A(r) can5

be interpreted in terms of geometrical properties of the interface. According to Torquato (2002), the expansion for an isotropic

medium reads

A(r) = 1− r

λ1

[
1− r2

λ2
2

+O(r3)

]
(5)

in terms of the length scales λ1,λ2. The first order term

1

λ1
=− d

dr
A(r)

∣∣∣∣
r=0

=
s

4φ(1−φ)
, (6)10

is the slope of the correlation function at the origin and can be expressed in terms of the interfacial area per unit volume s

(Debye et al., 1957). The size metric λ1 is one of the most fundamental lengths scales for a two-phase medium and commonly

referred to as the Porod length in small angle scattering, or correlation length in Mätzler (2002). We will adhere to Porod length

here to clearly distinguish λ1 from the exponential correlation length ξ. The metric λ1 can be also related to the SSA, defined

as the surface area per ice mass (m2kg−1), or in turn to the equivalent optical diameter dopt of snow via15

λ1 =
4φ(1−φ)

s
=

4(1−φ)

ρi SSA
=

2(1−φ)

3
dopt (7)

with ρi representing the density of ice. The last equality is obtained when the definition of dopt = 6/ρiSSA is inserted (see

Mätzler (2002)).

For a two-phase material with a smooth interface, the second order term ∼ r2 is missing in the expansion Eq. (5) and the

next non-zero term is the cubic one with a prefactor 1/λ1λ
2
2 . Here the length scale λ2 has a geometric interpretation in terms of20

interfacial curvatures and is therfore referred to as the curvature length hereafter. As originally shown by Frisch and Stillinger

(1963), the following identity holds

1

λ2
2

= λ1
d3

dr3
A(r)

∣∣∣∣
r=0

=
1

8

(
H2− K

3

)
(8)

in terms average squared mean curvature H2 and the averaged Gaussian curvature K. The quantity λ−22 is proportional to the

orientationally averaged normal curvature of an interface (Tomita, 1986).25

2.2 Chord length distributions and optical metrics

In snow optics the microstructural characterization within radiative transfer theory (Kokhanovsky and Zege, 2004) commonly

involves a single metric, the optical diameter. An interesting approach for geometrical optics in arbitrary two-phase media was
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Figure 1. a) Illustration of the chord lengths obtained from an ice sample. The mean chord length is defined as the average length of the green

line lengths. A stereological approach (Underwood, 1969) to calculate s is to count the number of blue dots per unit length. The estimation

for smf is given by the red contour. b) Illustration of the correlation function A(r) and the method obtaining an estimate for the Porod length

λ1 to get scf by fitting the slope at the origin, and the exponential correlation length ξ by fitting A(r) to exp(−r/ξ) over a larger span.

recently put forward by Malinka (2014). Thereby, the microstructure is taken into account by the chord length distribution

of medium which can be unambiguously defined for arbitrary two-phase random media (Torquato, 2002). Chord lengths in

an isotropic medium are defined as the lengths of the intersections of random rays through the sample with the ice phase, as

illustrated in the schematic in Fig. 1a. The chord length distribution p(`) of the ice phase denotes the probability (density) for

finding a chord of length `.5

In contrast to the Born approximation for microwaves, where the microstructure enters as the Fourier transform of the

correlation function, the theoretical approach Malinka (2014) relates the key optical quantities (absorption, phase function,
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asymmetry-factor) to the Laplace transform of the chord length distribution p(`) which is denoted by

p̂(z) =

∞∫
0

d`p(`)e−z` (9)

with Laplace variable z. For small z, the Laplace transform can be approximated by the expansion

p̂(z) = 1−µ1z+
µ2

2
z2 +O(z3), (10)

where µi denotes the i−th moment of the chord length distribution, viz5

µi =

∞∫
0

d``ip(`). (11)

Hence within the approach from (Malinka, 2014), the optical response of snow can be systematically improved by successively

including higher moments of the chord length distribution. According to the theory Malinka (2014), the Laplace transform has

to be evaluated at z = α, with the absorption coefficient α= 4πκ/λ. Here λ is the wavelength and κ the imaginary part of the

refractive index of ice. It is generally sufficient (Malinka, 2014) to retain only a few terms in Eq. (10). It is straightforward to10

show (Underwood, 1969) that the first moment, i.e, the mean chord length µ1 is given by

µ1 =
4φ

s
=

λ1
1−φ =

2

3
dopt (12)

and thus related to the surface area per unit volume s from Eq. (6), or the optical diameter dopt via Eq. (7). Therefore, in lowest

order, the Laplace transform Eq. (9) only contains the Porod length or specific surface area of snow. The next order correction

involves the second moment µ2 for which no geometric interpretation has been hitherto given for arbitrary two-phase random15

media.

For known chord length distribution, all optical quantities (phase function, anisotropy factor gG, etc) can be directly com-

puted from Malinka (2014). To make contact to Libois et al. (2013) later and discuss our results for the chord lengths in light

of shape, an expression of the absorption enhancement parameterB is required within the framework of Malinka (2014) which

is done in the Appendix A. From these expressions we can asses the relative importance of the µ2 correction to the optical20

diameter µ1.

2.3 Connection between chord lengths and the Porod length and the curvature-length

Following the previous two sections, a link between optical and microwave metrics of snow thus requires to establish a link

between correlation functions and chord length distributions. To this end we employ a relation between the correlation function

and chord length distribution that was put forward in the early stages of small angle scattering (Méring and Tchoubar, 1968)25

to interpret the scattering curve in terms of particle properties. In the present notation the relation can be written as

p(`) = µ1
d2

d`2
A(`), (13)
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which was also used by Gille (2000).

Although Eq. (13) is only valid under certain assumptions which will be discussed in sec.5, it has already some non-trivial

implications that can be exploited for the subsequent analysis. As a first consistency check of the approximation Eq. (13), we

can compute the first moment of the chord length distribution from Eq. (11) for n= 1, by inserting Eq. (13) and integrating by

parts. This yields µ1 = µ1A(0) which is correct by virtue of Eq. (3). As a next step, we aim at an expression for the second5

moment of the chord length distribution in terms of interfacial curvatures by using Eq. (11) for n= 2. Again, inserting Eq. (13)

and integrating by parts yields

µ2 = 2µ1

∞∫
0

A(r) dr = 2µ1f(φ,λ1,λ2, . . .). (14)

Though f is an unknown function here, this link shows that the chord length metric µ2 must be somehow related to the

correlation function metrics λ1 and λ2. In section 4 we will statistically investigate the dependence of f on its arguments.10

3 Methods

3.1 Data

For the following analysis we used an existing µCT dataset of 3D microstructure images described and used in Löwe et al.

(2013) for a thermal conductivity analysis and Löwe and Picard (2015) for a comparison of microwave scattering coefficients.

All samples were classified according to Fierz et al. (2009) as described in the supplement of Löwe et al. (2013). The data set15

comprises 167 different samples including two time series of isothermal experiments, four time series of temperature gradient

metamorphism experiments and a set of 37 individual samples. In total, the set includes 62 samples of depth hoar (DH), 54

of rounded grains (RG), 33 of faceted crystals (FC) 10 of decomposing and fragmented precipitation particles (DF), 5 of melt

forms (MF) and 3 of precipitation particles (PP).

3.2 Geometry from correlation functions20

Obtaining the normalized correlation function A(r) from a µCT image can be conveniently done by using the Fast Fourier

Transform (FFT) as e.g. described in Newman and Barkema (1999). The FFT is typically used for performance issues to

evaluate the convolution integral Eq. (2) since direct methods can be very slow. The spatial resolution of the correlation

function depends on the voxel size ∆ of the µCT image which ranges from 10 to 50 µm.

Since the snow samples in the data set are anisotropic (Löwe et al., 2013), the normalized correlation function is first obtained25

in the x,y and z direction and then averaged arithmetically over the three directions i.e, A(r) = (Ax(r) +Ay(r) +Az(r))/3.

From the normalized correlation function two types of parameter fittings are performed. First, the exponential correlation

length ξ is obtained by fitting the µCT data to the exponential form Eq. (4). Technically, we estimated the inverse parameter

k by least-squares optimization of the model A(r) = exp(−kr) to the data in a fixed range of 0< r < 50∆. An illustration

of this method is shown in Fig. 1b. In the following we denote by ξ the inverse of the optimal fit parameter ξ := 1/k. Second,30
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we estimated the expansion parameters λ1 and λ2 of the correlation function by a least-squares regression to the expansion

Eq. (5). Technically, we fitted A(r) = 1− k1r(1− k2r2) in the fixed range of 0< r < 3∆ which determines the derivatives at

the origin. We denote by λcf1 and λcf2 the inverse of the optimal fit parameters λcf1 := 1/k1 and λcf2 := 1/k2. The superscript

is added to discern these correlation function based estimates from those presented in the next section for a validation. The

influence of resolution and anisotropy to the estimates of λ1 and λ2 is discussed in section 5.5

3.3 Geometry from triangulations

To confirm the geometrical interpretation of λcf1 and λcf2 we use an alternative and independent method to estimate these

parameters by measuring the surface area and the local curvatures with a VTK-based image analysis as described in Krol

and Löwe (2016). In short, a triangulated ice-air interface is obtained by applying the VTKContour filter. After this step, the

interface still resembles the underlying voxel structure. Therefore, in a second step the triangulated interface is smoothed by10

applying the VTKSmoothing filter which involves a smoothing parameter S which is the number of iterations a Laplacian

smoothing on a mesh is repeated. For further details we refer to Krol and Löwe (2016).

3.4 Accuracy of surface area and curvatures estimates

The measured total surface area is obtained by integrating (summing) the surface area of the triangles over the surface and

the estimate λvtk1 which naturally depends on the smoothing parameter. A comparison of the triangulation and the correlation15

function based length scale is shown in Fig. 2 (middle row). A higher value of the smoothing parameter implies a lower surface

area s (caused by shrinking of the enclosed volume upon smoothing) and in turn higher estimates for λvtk1 . Using higher

smoothing also results in a higher variance in the data. This is likely due to filtering of small perturbations in the surface

causing the individual samples to react differently.

It is illustrative to note that even without smoothing for S = 0 the obtained triangulated surface is still different from the voxel20

surface smf , which is obtained by the union of ice-air transition faces in the voxel based image (as illustrated by the red contour

in Fig. 1a). The quantity smf is one of the four Minkowski functionals and can be computed by standard counting algorithms

(Michielsen and Raedt, 2001). For isotropic systems, and statistically representative samples, the relation between the surface

obtained from the correlation function scf = 4φ(1−φ)/λcf1 and the Minkowski functionals is known to be scf = 2smf/3 as

discussed in Torquato (2002, p. 290).25

An estimate for the curvature-length λvtk2 is obtained from the VTKCurvature filter on the triangulated ice-air interface

yielding local values for mean and Gaussian curvature which can be integrated to compute λvtk2 via Eq. (8). The comparison

of the triangulation based curvature-length and the correlation function based curvature length is shown in Fig. 2 (bottom

row). Again, λvtk2 depends strongly on the smoothing parameter S. The value S = 200 performed best by comparing the value

λcf2 to λvtk2 , see Fig. 2 (bottom row). The deviations from the 1:1 line are caused by the overestimation of the curvatures30

by the remaining steps in the triangulation from the underlying voxel-based data, and is thus anti-correlated with the size of

the structures and the resolution. In the end, we chose a smoothing parameter S = 200 that is, on average, acceptable for all

involved samples.
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Figure 2. Comparison between smoothing paramater S = 50 (left) and S = 200 (right) for the top: Representation of the surface of a

subsection of a snow sample. In the middle: Scatter plots of the Porod length λcf
1 versus λvtk

1 , including a fit (red dotted line). At the bottom:

Scatter plots of the curvature-length λcf
2 versus λvtk

2 , including a fit (red dotted line).
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Overall, the comparison provides reasonable confidence that the geometrical interpretation of the correlation function pa-

rameters is correct, though uncertainties inherent to the smoothing operations must be acknowledged. In the following we

solely use the quantities derived from the correlation function, viz. λ1 = λcf1 and λ2 = λcf2 where the superscripts are omitted

for brevity.

3.5 Chord length distribution5

To compute the ice chord length distribution from the binary images, all linear lines through the sample in all three Cartesian

directions β = x,y,z are considered and all ice chords were measured and binned to obtain direction dependent counting

densities nβ(`). Here nx(`) denotes the total number of chords in x direction which have length `. For a binary CT image, `

can take integer values 0< ` < Lx which are restricted by the sample size Lx =Nx∆ and the voxel size ∆ of the image. The

mean chord length and other moments µi are then computed from10

µi =
1∑

`,β n
α(`)

∑
`,β

`inβ(`) (15)

3.6 Statistical models

The main part of the following analysis comprises statistical relations between the length scales derived from the chord length

distribution and the correlation function in section 2. In total, we will consider a few statistical models that first relate the

exponential correlation length ξ and µ2 to the geometrical length scales λ1 and λ2 and second, relate ξ to µ1 and µ2. We will15

start with a one-parameter statistical model and compare the results to the two parameter models. We will assess and compare

the quality of the fits with the adjusted correlation coefficient R2.

4 Results

4.1 Relating exponential correlation length to the Porod length and curvature-length

As a starting point for the statistical analysis we revisit the empirical relation20

ξ = 0.75λ1, (16)

which is equivalent to Eq. (1) by virtue of Eq. (7), as suggested by Mätzler (2002). To this end we fitted ξ and λ1 and obtained

an average slope of 0.79 with a correlation coefficient of R2 = 0.733, shown by the green dashed line in Fig. 3a. In the next

step we fitted the same data to include an intercept parameter

ξ = a0 + a1λ1. (17)25

Here the adjusted correlation coefficient, accounting for the inclusion of extra parameters, isR2 = 0.731 and the parameters are

given by a0 = 5.93×10−2 mm, a1 = 0.794, with very low p-values (p < 5×10−4) for the intercept and the slope ensuring the
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Figure 3. Scatter plots of a) the exponential correlation length ξ versus the Porod length λ1. A linear fit is plotted in green. Additionally the

prediction of Eq. (16) (MM) is plotted in red. b) The residuals of ξ and the statistical model Eq. (17), versus the curvature-length λ2. c) The

statistical model Eq. (18) predicting ξ depending on the Porod length λ1 and the curvature-length λ2.

significance of the parameters of the fit. The order of magnitude of the intercept a0 is negligible. To understand the remaining

scatter we have plotted the residuals ξ− (a0 + a1λ1) versus the curvature-length λ2 as shown in Fig. 3b. The correlation
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Figure 4. Comparison of the chord length distributions computed from Eq. (13) (symbols) and by direct analysis of the µCT data (solid-line)

for three examples of snow types (PP, RG and DH).

coefficient is given by R2 = 0.644 and suggest that including the curvature lengths can improve Eq. (17). For an overview, this

and all other statistical models will be listed in Table 1.

In the next step we include the curvature-length λ2 where we fitted the exponential correlation length ξ to the model

ξ = b0 + b1λ1 + b2λ2. (18)

The results are shown in Fig. 3c. Here we find an improvement compared to Eq. (17). The correlation coefficient isR2 = 0.9225

and the fit parameters are given by b0 = 1.23× 10−2 mm, b1 = 1.32 and b2 =−3.85× 10−1. The p-values are very small for

all coefficients bi. The order of magnitude of the improvement can already be roughly estimated from the ratio of the prefactors

b1 and b2.

4.2 Connection between chord length distributions and correlation functions

To relate the chord length metrics to the Porod length and the curvature-length, we first assess the relation between the chord10

length distribution p(`) and the correlation function A(`) as suggested by Eq. (13). To this end we compared the chord length

distribution obtained directly from the µCT image (cf. section 3.5) with the prediction of Eq. (13) via the correlation function

for a few examples of different snow types. The results are shown in Fig. 4. The selected snow samples are the same as those

used in Löwe and Picard (2015, Fig. 8 and Fig. 9). Qualitatively, the characteristic form (i.e, single maximum), the location

of the maximum, and the width of the distribution are correctly predicted by Eq. (13). On the other hand, there are obvious15

shortcomings, such as the oscillatory tail for the RG example when the chord length distribution is derived via Eq. (15). We

will revisit these characteristics in the discussion.
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4.3 Relating the second moment of the chord length distribution to the Porod length and the curvature-length

Using the previous results we can derive an approximate relation between the second moment of the chord length distribution

and the interfacial curvatures. To motivate a statistical model, we start from Eq. (14),

µ2

2µ1
= f (φ,λ1,λ2, . . .) . (19)

We investigate the dependency of the function f on parameters λ1,λ2 and φ of this expression by successively including λ1,λ25

and φ in a statistical model. In a first step we approximate f by a statistical model including only λ1

µ2

2µ1
= l0 + l1λ1. (20)

The optimal parameters for model Eq. (20) are l0 =−2.40×10−2 mm and l1 = 1.25, with negligible p−values and a correla-

tion coefficient of R2 = 0.898. The results are shown in Fig. 5a.

In view of the inclusion of the curvature-length λ2, we analyzed the residuals of the previous statistical model and plotted10

them as a function of λ2 (Fig. 5b). The correlation coefficient (R2 = 0.295) is small but including λ2 in the analysis further

improves the fit. The respective statistical model

µ2

2µ1
= n0 +n1λ1 +n2λ2 (21)

yields optimal parameters n0 =−3.95× 10−3 mm, n1 = 1.50 and n2 =−2.46× 10−1 with a correlation coefficient R2 =

0.949. The p-value for the intercept n0 is 0.36. For n1 and n2 the p-values are again very low.15

We have heuristically found a possibility of improving Eq. (21) even further. This was achieved by including a factor (1−φ)

on the left-hand side. More precisely, we tried

(1−φ)µ2

2µ1
= q0 + q1λ1 + q2λ2 (22)

as a statistical model. Here the optimal parameters are q0 =−1.23×10−2 mm,q1 = 1.03, and q2 =−1.98×10−1. The p-values

for all coefficients are negligible and the correlation coefficient is R2 = 0.980. The results are shown in Fig. 5c.20

4.4 Relating microwave metrics and optical metrics

In the previous sections we found a statistical relation between the exponential correlation length ξ and the geometrical lengths

λ1 and λ2 on one hand and a relation between the first and second moment of the chord length distribution (µ1 and µ2) and λ1

and λ2 on the other hand. Both findings can be recast into a direct connection between the moments of the chord lengths µ1

and µ2 and the exponential correlation length ξ. We express this relation in the statistical model25

ξ = c0 + c1(1−φ)µ1 + c2
(1−φ)µ2

2µ1
. (23)

Note that (1−φ)µ1 = λ1 by virtue of Eq. (12), which means that we essentially replace λ2 by (1−φ)µ2/2µ1 in the statistical

model Eq. (18) that relates ξ to λ1 and λ2. We obtained the correlation coefficient R2 = 0.985 for the optimal parameters
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Figure 5. Scatter plots of a) the statistical model see Eq. (20) predicting µ2/2µ1 depending on the Porod length λ1, b) the residuals of

µ2/2µ1 and the statistical model Eq. (20) versus the curvature-length scale parameter λ2, c) the statistical model predicting (1−φ)µ2/2µ1

(see Eq. (22)) depending on the Porod length λ1 and the curvature-length λ2.

c0 = 9.28×10−3 mm, c1 =−7.53×10−1, c2 = 2.00. This final relation Eq. (23) significantly improves both models Eq. (17)

and Eq. (18).
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Figure 6. Scatterplot of the exponential correlation length ξ versus the statistical model Eq. (23) that depends on the first and second moment

of the chord length distribution, µ1 and µ2.

Table 1. Summary Statistical Models

model Eq.(#) parameters (in order) (adj.) R2

ξ = a0 + a1λ1 (17) 5.93× 10−2 mm,0.79 0.731

ξ = b0 + b1λ1 + b2λ2 (18) 1.23× 10−2 mm, 1.32, −3.85× 10−1 0.922

ξ = b0 + c1(1−φ)µ1 + c2(1−φ)µ2/2µ1 (23) 9.28× 10−3 mm, −7.53× 10−1, 2.00 0.985

µ2/2µ1 = l0 + l1λ1 (20) −2.40× 10−2 mm, 1.25 0.898

µ2/2µ1 = n0 +n1λ1 +n2λ2 (21) −3.95× 10−3 mm, 1.50,−2.46× 10−1 0.949

(1−φ)µ2/2µ1 = q0 + q1λ1 + q2λ2 (22) −1.23× 10−2 mm, 1.03,−1.98× 10−1 0.980

The summary of all models is given in Table 1. To ensure that the inclusion of an additional parameter e.g. by going from

model Eq. (17) to model Eq. (18), is indeed an improvement, we have employed the Akaike information criterion (AIC)

(Akaike, 1998). The AIC measure allows to discern if the improvement of the correlation coefficient is trivially caused by an

increasing number of fit parameters or an actual improvement on the likelihood of the fit due to the relevance of the added

parameters. Absolute AIC-measures have no direct meaning, however a decrease of at least 2k between two models, where5

k is the number of extra parameters, implies a statistical improvement. For our case k = 1 the difference in the AIC-measure

between Eq. (17) and Eq. (18) is 177 confirming the statistical relevance significance of λ2.
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Table 2. Determination of the absorption coefficient α (Warren and Brandt, 2008), the first order, the fraction of the first and second order of

Eq. (10), and the obtained estimates for B and gG averaged over all snowsamples, including the standard deviation σ.

wavelength (µm) α (m−1) αµ1 ±σ µ2/2µ1α±σ (%) B 1− gG

0.90 4.1 0.00094± 0.0003 < 0.5 1.71± 0.00 0.323± 0.000

1.31 1.2× 102 0.026± 0.008 2± 1 1.64± 0.02 0.316± 0.000

1.63 2.0× 103 0.45± 0.14 37± 13 0.89± 0.20 0.253± 0.011

1.74 1.1× 103 0.24± 0.079 20± 7 1.19± 0.14 0.272± 0.010

2.00∗ 9.4× 103 2.1± 0.68 172± 60 - -

2.26 1.1× 103 0.25± 0.08 20± 7 1.14± 0.13 0.240± 0.010

∗ wavelength is not used for optical measurements

4.5 Shape factors gG and B

As an application of the values obtained for the moments of the chord length distribution we can now compute the “shape dia-

gram” of the optical parameters (gG,B) suggested in Libois et al. (2013) derived from (Malinka, 2014, Eq. 60), and Eq. (A4).

The results depend on the value of the Laplace transform at the absorption coefficient α, and thus on wavelengths. For most

wavelengths in the visible and near infrared regime αµ1� 1 is small and therefore the Laplace transform Eq. (9) can be ap-5

proximated by a few terms in the expansion Eq. (10). Taking typical values for α allows us to estimate the relative importance

αµ2/2µ1 of the second-order term compared to the first-order term in the expansion Eq. (10). These values are obtained by

using the values for κ provided by Warren and Brandt (2008). The first order αµ1 and ratio αµ2/2µ1 is calculated for typical

wavelengths and shown in Table 2. The values and standard deviations denote averages taken over all samples. Wavelengths

are selected to match common optical methods, namely 0.9 µm (Matzl and Schneebeli, 2006), 1.31 µm (Arnaud et al., 2011),10

and the SWIR wavelengths 1.63 µm, 1.74 µm and 2.26 µm used by Domine et al. (2006). We added the wavelength 2.00 µm,

which is not used by any instrument, but has the highest value for α in this range. Note that for this wavelength αµ1 is not

small and the expansion of the Laplace transform, Eq. 10, likely not a good approximation. The standard deviations are high

as a result of the variations due to grain type. The lowest values of µ2/2µ1 are found for fresh snow (PP) and highest for depth

hoar (DH) and melt forms (MF).15

The values in Fig. 7 for gG and B are computed for wavelength 1.3µm and shown as a scatter plot of B versus 1− gG

similar to Libois et al. (2013). The range of values for B ∈ [1.54,1.72] and (1− gG) ∈ [0.315,0.335] is within the range

B ∈ [1.25,2.09] and (1− gG) ∈ [0.2,0.5] obtained by ray-tracing simulations for different geometrical shapes (Libois et al.,

2013). The variations of the values for different snow types is however very small. To complete the analysis we have computed

gG and B for higher absorbing wavelengths for which the shape signature might be higher, but the expansion of Eq. (10), less20

reliable. The results are averaged over all snow samples and included in Table 2.
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Figure 7. Scatterplot of the asymmetry factor gG and the optical shape factor B evaluated for refractive index at wavelength λ= 1.3µm.

5 Discussion

5.1 Methodology

Before turning to the discussion of physical implications of the results, we first address methodological details. Retrieving

parameters from µCT images must be taken with care. In addition to the uncertainties related to filtering and segmentation

pointed out by Hagenmuller et al. (2016), the present method also requires to discuss the interface-smoothing for the validation5

of λ1 and λ2, the image resolution, and the anisotropy of the samples.

5.1.1 Geometrical interpretation

The present analysis and cross-validation of the curvature metric imposes requirements on the smoothness of the interface.

The subtle influence of the smoothing parameter on the surface area s and averaged mean and Gaussian curvatures H and K

is apparent from Fig. 2. Naturally, H2 is most sensitive to smoothing. We found a competing performance of λ1 and λ2 with10

the smoothing parameter when comparing the triangulation based estimates with the correlation function based values. The

agreement for the surface area seems to be best with smoothing parameter S = 50. In contrast, more smoothing is required to

obtain an agreement for the curvature-length. This higher sensitivity on the smoothing parameter is reasonable, since curvatures

are defined by surface gradients which are more sensitive to a smooth mesh representation than the surface area. The competing

behavior is caused by the smoothing filter, which neither preserves the volume nor the surface area of the enclosed ice upon15

smoothing iterations. This causes the drop in agreement for λ1 in Fig. 2 (left, middle) with increased smoothing. As a remedy,

more sophisticated smoothing filters could be used which, for example, ensure the conservation of the enclosed volume (Kuprat

et al., 2001). Such problems could be partly avoided by computing normal vector fields and curvatures directly from voxel-

based distance maps (Flin et al., 2005). A detailed comparison of all these different methods however, is beyond the scope of
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this paper. In contrast to λ1 and λ2, the interpretation of first and second moments of the chord length distribution, µ1 and µ2,

is rather straightforward, where µ1 is directly related to the optical diameter dopt, and µ2 is a measure of the variations of this

size metric.

5.1.2 Resolution

Resolution plays an important role in the obtaining estimates for λ1 and λ2. For a µCT measurement the resolution is commonly5

chosen appropriately depending on snow type. While fresh Snow (PP) is typically reconstructed with 10µm voxel size, melt

forms (MF) and larger particles have larger voxel sizes of 35µm or 54µm. Since we have obtained λ1 and λ2 with two

independent methods that agree reasonably well we conclude that the resolution is generally sufficient to estimate the involved

length scales. To further confirm that that there is no remaining bias with resolution we assessed the ratio λ2/voxelsize. Ideally

this would be constant for all samples, implying that λ2 is equally well resolved for all snow samples. For our data, this this10

ratio is 9.8 with a standard deviation of 2.6. The correlation coefficient with the voxel size is R2 =−.2, which implies that

there is a slight dependence on resolution. A systematic assessment is however difficult since snow types and grain sizes are

not equally distributed over the resolution.

The image resolution plays another important role in the interpretation of the expansion of the correlation function. As

pointed out by Torquato (2002), a missing r2 term is generally equivalent to a smooth interface while discontinuities, like15

sharp edges, would lead to a second order term. Fresh snow and depth hoar crystals are known to have these discontinuities,

at least visually. But it remains questionable if these features can be detected objectively at the micrometer scale from image

analysis. In an image, discontinuities are always smeared out, virtually contributing to the third order term.

5.1.3 Anisotropy

The present data set of snow samples embodies a large number of anisotropic samples, which was specifically the subject of20

Löwe et al. (2013) the data is based on. It is thus necessary to elaborate the impact of anisotropy on the present analysis which

is exclusively involves isotropic correlation functions. It is important to note that the our analysis does not assume isotropy,

but it rather includes the orientational averaging in the three Cartesian directions as a part of the method. Such a procedure

is principally valid for arbitrary samples. Moreover, also the geometrical interpretation of the quantities remains valid. This

was rigorously shown for λ1 Berryman (1998) which relates the slope of the correlation function at the origin for arbitrary25

anisotropic structures after orientational averaging to the surface area per unit volume s. Though we did not find a mathematical

proof for the corresponding statement for λ2, the agreement of λcf2 (obtained from the correlation function, orientationally

averaged) with λvtk2 (obtained from direct computation of the interfacial curvatures) strongly suggests its validity. In addition,

we assessed that the residuals between λvtk2 (where anisotropy does not play a role) and λcf2 are not correlated with anisotropy

(R2 = .026).30

Overall, we are confident that the method can be applied to arbitrary anisotropic samples to provide orientationally averaged

length scales with the correct geometric interpretation with acceptable uncertainties due to image resolution.
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5.2 Linking size metrics in snow

Accepting the methodological uncertainties, we shall now discuss our findings of the statistical analysis and their relevance for

the interpretation of snow microstructure.

5.2.1 Including size dispersity to estimate the exponential correlation length

By construction, the exponential correlation length ξ must be understood as a proxy to characterize the entire correlation5

function with a single length scale. This single length scale contains signatures of both, properties that dominate the behavior of

the correlation function for small arguments (λ1 and λ2) and other properties that dominate the tail-behavior of the correlation

function for large arguments.

To discuss the statistical relations we found we will start with recovering Mäzler’s model (Mätzler, 2002). This statistical

model covers a relation between the exponential correlation length and the optical grain size, or in their nomenclature: the10

correlation length. Mäzler’s model predicts the slope to be a1 = 0.75, which is an average of a1 = 0.8 for depth hoar and

a1 = 0.6 for other snow types. This is consistent with our finding a1 = 0.79 since we have many depth hoar samples in the

data set, suggesting that grain shape has a direct influence on the statistical relation. This influence was made quantitative by

including the curvature-length to the statistical analysis, resulting in the statistical model Eq. (18) (Fig. 3c). The quantitative

improvement on the statistical model Eq. (16) by using Eq. (18) is given by the increase in the correlation coefficient from15

R2 = 0.733 to R2 = 0.922.

In addition we established a new statistical relation Eq. (23) between ξ and the moments of the chord length distribution,

µ1 and µ2. This model performs even better when the correlation coefficient R2 = 0.985 is taken as a quality measure. We

confirmed that the inclusion of an additional parameter in Eq. (18) and Eq. (23) indeed improves on eq. (16), by employing the

Akaike information criterion (AIC) measure (Akaike, 1998).20

All statistical models showing improvements of (1) indicate that at least two different length scales λ1 and λ2 or µ1 and µ2

are required to obtain a reasonable prediction of the exponential correlation length. While λ1 and µ1 are both trivially related

to the optical radius via Eq. (7) and Eq. (12), the two other size metrics µ2 or λ2 are the origin of performance increase.

This seems surprising at first sight. Why should local aspects of the interface (λ1 and λ2) determine the non-local decay of

structural correlations (ξ)? To illustrate our explanation for this finding, we resort to a particle picture and consider a dense,25

random packing of monodisperse hard spheres. For such a packing, the particle “shape” is trivial and fully determined by the

sphere diameter d, which determines the slope of the correlation function at the origin. However, also particle positions and

thus the decay of correlations is fixed by d. This becomes obvious from the representation C(r) = nvint(r) +n2vint(r) ∗h(r)

for the correlation function for such a system at number density n (Löwe and Picard, 2015). In this representation, the spherical

intersection volume vint and the statistics of particle positions h(r) both depend on d. Now imagine that each sphere is deformed30

by a hypothetical, volume-conserving re-shape operation to an irregular, non-convex particle, which is still located at the center

of the original sphere. Due to re-shaping, the parameter H2 would increase. After the re-shape, neighboring particles would

overlap (on average), since their maximum extension must have been increased compared to the sphere diameter. To recover a
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non-overlapping configuration, all particle positions must be dilated. The latter, however, also affects the tail of the correlation

function. This is exactly what we observe: the “shape of structural units” in snow, as exemplified by H2 is always correlated

with the “position of the structural units” in space. We note that this particle analogy has clear limitations and only serves

here to illustrate the rather abstract statistical relations between different length scales. Snow remains a bi-continuous material

where individual particles cannot be distinguished.5

Overall, we conclude that both, λ2 or µ2 can be used to significantly improve estimates of ξ when compared to optical

diameter based estimates.

5.2.2 Linking moments of the chord length distributions to Porod and curvature-length

Hitherto no geometrical interpretation for the second moment µ2 of the chord length distribution was known. Our results

suggest an empirical relation, Eq. (22), that involves the two geometrical length scales λ1 and λ2. In the following we provide10

supporting arguments for the link between µ2 and λ1 and λ2 by discussing the relation Eq. (13) between the chord length

distribution and the correlation function.

The relation Eq. (13) was originally raised in the context of small angle scattering long time ago (Méring and Tchoubar,

1968) and later revisited e.g. by Levitz and Tchoubar (1992), revealing two different approximation steps. A first simplification

comes from the assumption that consecutive chords on the random ray in Fig. 1 are statistically independent. This issue has been15

discussed in detail also by Roberts and Torquato (1999), who established an exact relation between the Laplace transforms of

the correlation function, the chord length distribution, and a surface-void correlation function based on this assumption. Their

results however show that for level-cut Gaussian random fields, where this assumption is violated, the prediction of the chord

length distribution can be still very accurate. This indicates that assuming independent chords is per se not a serious limitation.

Secondly, Eq. (13) is actually an approximation for dilute systems which is generally not valid for snow.20

To test the range of validity of the relation (13) for snow, we have taken three samples and computed the chord length

distribution directly to compare them to the prediction of Eq. (13) as shown in Fig. 4. An obvious drawback of Eq. (13) can

be seen for the rounded grains (RG) sample. Due to the quasi-oscillations in the correlation function (cf. Löwe et al. (2011)),

A(`) and its second derivative assume negative values, which would imply negative values for p(r) via Eq. (13). This is in

contradiction to the meaning of p(r) as a probability density and likely a consequence of the assumptions which are not valid25

for snow. Despite this obvious drawback, Fig. 4 shows that Eq. (13) yields three, qualitatively consistent results for different

snow types where the basic features of the chord length distrbution are well predicted: First, it captures the considerable

variations of the position of the maximum, the width, and decay of the chord length distribution. Second, the relation Eq. (13)

predicts that the chord length distribution tends to zero for small values i.e. p(0) = 0 (as confirmed in Fig. 4). This is a direct

consequence of a smooth interface as shown in Wu and Schmidt (1971). Third, it leads to Eq. (14), that involves the integral30

over the correlation function. The latter indicated a connection between µ2 and λ1 and λ2, which was confirmed quantitatively

via Eq. (21). Given the assumptions discussed above, it is not surprising that a heuristic improvement could be achieved by

including a term (1−φ) in Eq. (22), since snow is not a dilute particle system and corrections containing φ-terms are to be

expected.
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Overall, our analysis confirms that both approaches to microstructure characterization, via correlation functions (with metrics

λ1,λ2) or via chord length distribution (with metrics µ1,µ2) are not independent. They rather describe, slightly different but

interrelated, structural properties which are now discussed in view of grain shape.

5.3 Grain shape

5.3.1 Grain shape, a geometrical interpretation5

The international classification for seasonal snow on the ground (Fierz et al., 2009) considers grain shape as the morphological

classification into snow types. This is motivated by the common but loose perception of shape as the basic geometrical form

of constituent particles. It is clear that grain shape remains a vague concept unless it is formulated in terms of quantities which

are unambiguously defined on the 3D microstructure.

Local curvatures are often regarded as shape parameters and used to characterize snow on a more fundamental level. The10

relevance of the mean curvature is described and analyzed in detail in Calonne et al. (2015), where morphological transitions

(e.g, faceting) of snow during temperature gradient metamorphism are visible in the distribution of mean curvatures. The

present description of grain shape in snowpack models (Lehning et al., 2002; Vionnet et al., 2012) is in fact based on the

variance of the mean curvature, by the sphericity parameter as defined by Lesaffre et al. (1998). There were attempts to

measure the sphericity from digital photographs as described by Lesaffre et al. (1998) and Bartlett et al. (2008). This definition15

is valid only in two dimensions and therefore difficult to compare directly to their 3D counterparts in Calonne et al. (2015).

It is therefore natural to use objective measures as the mean and Gaussian curvature H and K to quantify shape. Though

K is computed from local properties of the interface, it has a strict topological meaning due to its relation to the Euler char-

acteristic which is by definition strictly independent of local shape variations of the ice-air interface. The Euler characteristic

was e.g. used by Schleef et al. (2014) to characterize microstructural changes during densification. We found however, that20

the contribution K/3 in λ2 from Eq. (8) ranges from 1-13% and is on average 3.7 % of H2. Hence the curvature-length λ2 is

dominated by the second moment H2, and thus closely related to the variance of an (inverse) size distribution, the distribution

of mean curvatures. This indicates the formal similarity to µ2 which is also a second moment of a size distribution, the chord

length distribution. Hence, both metrics can be regarded as accounting for size dispersity in snow.

Overall, we suggest that both parameters, µ2 and λ2 can be used to objectively define a grain shape for 3D microstructures25

which is closely connected to size dispersity and which naturally extends grain size (optical diameter) determining µ1 or λ1.

With this perception, we now connect back to the original applications of microwave and optical modeling.

5.3.2 Grain shape for microwave modeling

Thus far, the exponential correlation length ξ as a key parameter for MEMLS based microwave modeling (MEMLS) was

mainly predicted from the optical diameter. Our conclusions from section 5.2.1 could now be restated: The inclusion of a30

grain shape parameter, λ2 or µ2 improves the prediction of the exponential correlation length significantly. Or, according to

the conclusion from the previous section, one may alternatively restate that size dispersity has an influence on microwave
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properties. This is known from other models than MEMLS, where an influence of polydispersity on the effective grain scaling

parameter within DMRT-ML microwave modeling was found Roy et al. (2013).

This equivalence of shape and size dispersity at the level of correlation functions can be further illustrated by an interesting

example. Consider a microstructure of polydisperse spherical particles. The definition of grain shape from the classification

(Fierz et al., 2009) would assign a spherical shape to this microstructure, while the averaged squared mean curvature H25

would instead vary depending on the variance of particle radii. As pointed out by Tomita (1986), for low density, such a

system of polydisperse spherical particles can always be mapped uniquely onto an assembly of monodisperse but irregularly

shaped particles by solving an integral equation, if only the correlation function is considered. Shape can be equivalent to

polydispersity, and snow types which are visually very different might still have very similar physical properties. This example

also explains why the objective size dispersity parameters λ2 or µ2 cannot be mapped onto the classical definition of grain type10

from Fierz et al. (2009).

5.3.3 Grain shape in geometrical optics

Finally, we turn to the implications of size dispersity or grain shape on geometrical optics within the scope of (Malinka, 2014)

based on chord length distributions.

As pointed out by (Malinka, 2014), if consecutive chords were statistical independent i.e. a Markovian process, then the15

obtained distribution would be exponential, and all optical properties solely determined by the optical diameter (or µ1). To

quantify the deviation from an exponential chord length distributions we calculated the fraction µ2/2µ
2
1 which is unity for a

exponential chord length distribution. This fraction is on average 0.75 for rounded grains (RG), 0.76 for melt forms (MF), 0.77

for precipitation particles (PP) and defragmented particles (DF), 0.79 for faceted crystals (FC) and the closest value to unity is

0.876 for depth hoar (DH). This implies that the chord length distribution for depth hoar is closest to an exponential, which can20

be visually confirmed by Fig. 4. We reach a similar conclusion for the correlation function where λ1 is already a fairly good

predictor for the exponential corrrelation length when depth hoar is considered (see Fig. 3)a). But due to the deviations from

an exponential, an influence of shape via µ2 on the optical properties would be expected from Malinka (2014).

Using the chord length distributions we were able to calculate the shape factors B and gG from Malinka (2014) and Libois

et al. (2013) in the limit of low absorption where both approaches can be compared. The (B,gG) shape diagram (cf. Fig 1.(a) in25

Libois et al. (2013)) in Fig. 7 was obtained for wavelength 1.3µm where the Laplace transform Eq. (10) can be approximated by

the first and second order. The variations of the absolute values for B,gG shown in Fig. 7 predominantly stem from corrections

which are linear in µ1 (by virtue of (A5)), while the small, scattered deviations from a perfect straight line are caused by µ2. If

B and gG were evaluated for wavelength 0.9µm, the influence of µ2 would be even smaller. Our results show that the values

for B and gG are exactly within the range that is suggested by ray-tracing simulations for various geometrical shapes for a30

wavelength of 0.9µm Libois et al. (2013), but show a much smaller variation over the entire set of snow samples. Comparing

our results to ray-tracing of geometrical shapes is however not straightforward, since the 3D microstructures cannot be mapped

on an ensemble of regular geometrical objects.
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If the obtained values forB are compared to actual measurements (Libois et al., 2014) also a larger variation is observed than

predicted from the geometrical optics framework Malinka (2014). It should be noted however that, as the authors discuss, the

correlation between the experimentally obtained B and shape, as defined by Fierz et al. (2009), is statistically not significant

and variations might be attributed to shadowing effects relevant at higher densities.

Overall, our analysis indicates a smaller variation of optical properties with shape via µ2 according to Malinka (2014) when5

compared other methods. We can only hypothesize potential origins which are connected to the present analysis. A crucial

assumption made in the geometrical optics framework (Malinka, 2014) is the statistical independence of the chord length

and the consecutive ice-air incidence angle for a ray which passes through a grain. Such an assumption might be progressively

violated for lower absorption where a higher number of internal reflections in fact probes this assumption more often. Hence the

true effect of shape on B and gG might be still more pronounced as captured by size dispersity via µ2 within (Malinka, 2014).10

Further details on the discrepancies between measurements, simulations and theory remain to be elucidated by combining

tomography imaging and shape analysis together with optical measurements and ray-tracing simulations in the future.

6 Conclusions

We have analyzed different microstructural length scales (λ1,λ2 and µ1,µ2) which were derived from the correlation function

and chord length distribution, respectively. All length scales have a well-defined geometrical meaning. While the first order15

quantities (µ1, λ1) are both related to the mean size (optical equivalent diameter), their higher order counterparts (λ2,µ2) are

objective measures of size dispersity present in the snow microstructure.

For the correlation function, the length scale λ2 is essentially determined by the second moment of the mean curvature

distribution. For the chord lengths, µ2 is the second moment of the chord length distribution. Both quantities naturally extend

the concept of mean grain size as covered by the optical equivalent diameter. The statistical relation established between (λ1,20

λ2, µ1, µ2) indicates that practically the two measures of size dispersity can be used interchangeably.

We have argued that size dispersity is one possible route towards an objective definition of grain shape, and thus both

quantities (λ2,µ2) can be regarded as measures of shape. Within this interpretation, we found that grain shape or size dispersity

significantly improves a widely used statistical model for the exponential correlation length (as a key size metric for MEMLS

based microwave modeling).25

We have also used this interpretation of shape to assess the so called optical shape factor B which can be related to µ1 and

µ2 in the framework of Malinka (2014). The results suggest that size dispersity is only a first, but likely not a complete step to

characterize shape for optical modeling.

Overall, defining grain shape via dispersity measures µ2 or λ2 provides a clear intersection between microwave modeling of

snow (if based on the exponential correlation length) and optical modeling of snow (if based on Malinka (2014)). We do not30

believe this intersection to be exhaustive: The influence of shape in snow optics likely involve more than size dispersity. And

size dispersity is likely not sufficient to explain the full diversity of microwave properties of snow. But the established overlap

of relevant microstructure parameters provides a clear quantitative starting point for further improvements.
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Appendix A: Optical shape factor B from moments of the chord length distribution

To derive an expression of the optical shape factor B in terms of the moments of the chord length distribution, we start from

expression (Libois et al., 2013, Eq. 6) for the single scattering co-albedo

(1−ω) =B
γV

2Σ
, (A1)

which is related to B, the average volume of a particle V , the average projected area of a particle Σ, and the absorption5

coefficient γ. This can be recast in terms of the mean chord-length using (Malinka, 2014, Eq. 6), which yields, adopting the

notation of the present paper, the relation

(1−ω) =B
αµ1

2
(A2)

On the other hand, an expression for the single scattering co-albedo is directly provided by Malinka (2014, Eq. 56). Inserting

(Malinka, 2014, Eq. 29,42,49,18) and re-arranging terms we obtain10

(1−ω) =
Tout(n)

1 +
Tout(n)

n2
p̂(α)

1− p̂(α)

(A3)

in terms of the real part of the refractive index n, the averaged Fresnel transmittance coefficient Tout(n) (given by Malinka

(2014, Eq. 19) in closed form) and the Laplace transform of the chord length distribution p̂(α).

To obtain an expression for B by comparing Eq. (A2) and Eq. (A3) it must be noted that both expression are based on

slightly different assumptions. While Eq. (A1) is meant to be valid only in the limit of low absorption (Libois et al., 2013),15

Eq. (A3) is valid for arbitrary values of α. This is reflected by the existence of the limit α→∞ in Eq. (A3), while Eq. (A2)

diverges if B is regarded as a constant which is strictly independent of α. Hence the comparison of Eq. (A2) and Eq. (A3) must

be limited to small values of αµ1 in order to obtain an expression for B which can be compared to the results from (Libois

et al., 2013). That said, we equate Eq. (A2) and Eq. (A3), take into account an additional factor of 2 between Malinka (2014)

and Libois et al. (2013) due to a different treatment of the extinction efficiency, we end up with20

B =
1

αµ1

Tout(n)

1 +
Tout(n)

n2
p̂(α)

1− p̂(α)

(A4)

Complemented by the approximation Eq. (10) for the Laplace transform p̂, the expression (Malinka, 2014, Eq. 19) for Tout(n),

this yields an expression of the shape factor B in terms of the first and second moment, µ1 and µ2, of the chord length

distribution, the real part of the refractive index n and the absorption coefficient α.

To explicitly reveal the correction of B for small α which involves the second moment of the chord-length distribution, we25

expand Eq. (A4) around α= 0 to obtain

B = n2
[
1− (αµ1)

(
n2

Tout(n)
− 1 +

µ2

2µ2
1

)]
(A5)
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