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Interactive comment on “Relating optical and microwave grain metrics of snow: The relevance of grain 
shape”, by Q. Krol and H. Löwe. 

General comments 

The current version of the manuscript has been significantly reshaped since the initial submission. The 
authors followed most of the reviewers suggestions, which is appreciated. The overall clarity of the 
manuscript has been improved and critical issues are now discussed in an appropriate way. 

Below I provide some complementary suggestions, mostly for the consequent parts that are entirely new at 
this stage. I let the authors decide whether they find those valuable or not. 

Page an line numbers correspond to the changes-tracking version of the revised manuscript. 

Technical comments 

Abstract 

The first sentence could probably be improved. I would start with something like:�“At first order, specific 
surface area (or optical grain size) is the primary parameter used to simulate snow optical and microwave 
properties. However, the latter also depend on grain shape....” 

I would also suggest being more explicit in the results:�l.5-8 : e.g.: “We show that the exponential 
correlation length, widely used for snow microwave modeling, can be expressed in terms of SSA and λ2. 
Likewise, we show that the absorption enhancement parameter B and the asymmetry factor g, that 
determine snow optical properties, can be related to μ2.” 

The last sentence is rather unclear. State that this approach allows a simultaneous understanding of snow 
microwave and optics. Or allows to reconciliate both fields. I would also add a more practical sentence at 
the end, pointing to the potential applications or suggestions for future work etc. 

Generally speaking, an abstract should give as much as possible quantitative results and implications of the 
work. It should avoid general statements such as : “We derive relationships, we present a method, we 
introduce a concept...”. Such statements should be placed in the introduction rather than in the abstract. 

 



Reply: We agree with the second and third suggestions. The first sentence we would prefer to keep, since it 
emphasizes the overall topic of the paper.   
 
The abstract is reformulated to: Grain shape is commonly perceived as a morphological characteristic of 
snow beyond the optical diameter (or specific surface area) which has an influence on physical properties. 
In this study we use tomography images to investigate two objectively defined metrics of grain shape that 
naturally extend the characterization of snow in terms of the optical diameter. One is the curvature-length 
λ2, related to the third order term in the expansion of the two-point correlation function and the other is the 
second moment mu2 of the chord length distributions. We show that the exponential correlation length, 
widely used for microwave modeling, can be related to the optical diameter and λ2. Likewise, we show that 
the absorption enhancement parameter B and the asymmetry factor g, required for optical modeling, can be 
related to the optical diameter and µ2. We establish various statistical relations between all size metrics 
obtained from the two-point correlation function and the chord length distribution. Overall our results 
suggest that the characterization of grain shape via λ2 or µ2 is virtually equivalent since both capture 
similar aspects of size dispersity. Our results provide a common ground for the different grain metrics 
required for optical and microwave modeling of snow. 
 
 
 

Introduction 

Use either correlation function or two-point correlation function, but try not to alternate. Reply: We agree. 
We systematically use the two-point correlation function. 

P2 l.25 : Picard et al. (2009) do not really mention B and g. They use Monte Carlo ray-tracing on different 
collections of geometrical shapes instead. Hence for sake of clarity, the reference should be put after 
“attributed to shape”, rather than at the end of the sentence. It might be useful to add The Kokhanovsky and 
Zege (2004) reference after introducing B and g, because this is where they originate from (at least B). 
Reply: We agree. The suggested references are placed accordingly.  

P2 l.27 : “the question remains which...” Reply: We agree. The sentence is changed accordingly. 

p5 l.17 : in terms of the ?”.  Reply: We agree. The sentence is changed accordingly. 

p7 l.22 : g is the asymmetry factor. In fact I would say “(phase function, single scattering albedo, etc)” 
because g is just computed from the phase function. Reply: We agree. The sentence is changed accordingly. 

Fig. 2 caption : parameter Reply: Yes. The typo is corrected. 

�p18 l.8 : are calculated ? � Reply: We agree, sentence is changed accordingly. 

P20 l.18 : in the obtaining ? Reply: ‘the’ is removed to make the sentence correct.   

P20 l.22 : I do not understand the argumentation. Why should this ratio be constant? And constant for all 
samples? On the contrary, I would expect λ2 to depend on the samples, because this is a shape parameter. 
To me, λ2 should be resolution insensitive. I would have expected you used different resolutions for the 
same sample and check that the retrieved λ2 does not change. Maybe I just did not understand well your 
point, but it might be useful to rephrase this part of the paragraph.  

Reply: The confusion might come from the fact that λ2 is still a length scale, and not a dimensionless shape 
parameter. So it is naturally affected by resolution. In general the fraction of any physical length-scale and 
resolution should be high to sufficiently resolve that length scales by a discrete representation. By showing 
that the fraction of  λ2/voxelsize is approximately the same over the data set (and sufficiently large), we can 
exclude a resolution bias. We will explicitly stress in the discussion that our shape metrics are still length 



scales in contrast to a perception of a dimensionless parameter. Sentence in 5.3.1 last paragraph is added: 
“Note that within this definition grain shape is not a dimensionless parameter. With this perception of shape 
we now…” 

P21 l 1-2 : is there a problem with the syntax of the sentence ? Yes, sentence restructured to “The present 
dataset was previously used to study the anisotropic properties of snow ( Löwe et al. 2013). Therefore it is 
necessary to elaborate on the impact …  ” 

P21 l.3 : remove “is”, remove “the” We agree. Sentence is adjusted to: “Therefore it is necessary to 
elaborate on the impact of anisotropy in the present analysis that exclusively involves isotropic two-point 
correlation functions.” 

p21 l.12 : a corollary is whether anisotropic media can be satisfactorily represented by “equivalent” 
isotropic media, for microwave and optical properties. This is probably beyond the scope of this paper, but 
one sentence at the end of this section 5.1.3 might be relevant if you have an opinion on this.  

Reply: In general it will depend on the quantity of interest if anisotropy would play a role. If the quantity of 
interest “performs” a similar type of volume or directional averaging the ‘isotropic’ approach is fine. 
However, commenting on these type of issues is beyond the scope of the paper and very speculative.  

P25 l.2 : reference in parentheses � We agree. Changed accordingly. 

p25 l.18 : remove parentheses for reference We agree. Changed accordingly. 

p25 l.22 : statistically We agree. Changed accordingly. 

p25 l.24 : an exponential � We agree. Changed accordingly. 

p25 l.29 : correlation We agree. Changed accordingly. 

p27 l.24 : in Libois et al. (2013) We agree. Changed accordingly. 

p27 l.31 : although the range of B obtained experimentally is larger than that resulting from Malinka 
(2014), because the latter implies a shape independent B at weakly absorbing wavelengths, it is worth 
noting that the actual values are very similar, which suggests that the random two-phase medium is not 
inconsistent with laboratory and field measurements. Reply: The sentence is changed to include this 
consistency to  “The predicted values for B (Fig. 7) are very similar to the values obtained by experiments 
(Libois et al., 2014) but show a smaller variation. It should be noted that, as the authors discuss, the 
correlation between the experimentally obtained B and shape, as defined by Fierz et al. (2009), is 
statistically not significant and variations might be attributed to shadowing effects relevant at higher 
densities.” 

P28 l.25 : “length scales () of snow samples, which” Reply: We agree. Changed accordingly.  

p30 l.11 : involves � Reply: We agree. Changed accordingly. 

p31 l.10 : moments Reply: We agree. Changed accordingly. 
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Abstract. Grain shape is commonly understood as a morphological characteristic of snow that is independent of the optical

diameter (or specific surface area) influencing its physical properties. In this study we use tomography images to investigate two

objectively defined metrics of grain shape that naturally extend the characterization of snow in terms of the optical diameter.

One is the curvature length �
2

, related to the third order term in the expansion of the two-point correlation function and the

other is the second moment µ
2

of the chord length distributions. We show that the exponential correlation length, widely used5

for microwave modeling, can be related to the optical diameter and �
2

. Likewise, we show that the absorption enhancement

parameter B and the asymmetry factor gG, required for optical modeling, can be related to the optical diameter and µ
2

. We

establish various statistical relations between all size metrics obtained from the two-point correlation function and the chord

length distribution. Overall our results suggest that the characterization of grain shape via �
2

or µ
2

is virtually equivalent

since both capture similar aspects of size dispersity. Our results provide a common ground to interrelate different grain metrics10

required for optical and microwave modeling of snow.

1 Introduction

Linking physical properties of snow to the microstructure always requires to identify appropriate metrics of grain size. In this

regard , the two-point correlation function has become a key quantity for the prediction of various properties such as thermal

conductivity, permeability and electromagnetic properties of snow (Wiesmann and Mätzler, 1999; Löwe et al., 2013; Calonne15

et al., 2014b; Löwe and Picard, 2015). The
::::::::
two-point correlation function carries, in essence, information about a distribution

of relevant sizes in the microstructure. For microwave applications, the analysis of
::::::::
two-point correlation functions was already

used in the era before micro-computed tomography (µCT), where thin section data and stereology were employed to obtain the

required information (Vallese and Kong, 1981; Zurk et al., 1997; Mätzler and Wiesmann, 1999). The recently gained interest

in
::::::::
two-point correlation functions is mainly driven by available data from µCT, from which the

:::::::
two-point

:
correlation function20

can be conveniently estimated. The relevance of the two-point correlation function for microwave modeling originates from

the connection between its Fourier transform and the scattering phase function in the Born approximation for small scatterers

(Mätzler, 1998; Ding et al., 2010; Löwe and Picard, 2015), or the connection to the effective dielectric tensor via depolarization

factors (Leinss et al., 2015).
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A common practical way to characterize the
:::::::
two-point

:
correlation function is a fit to an exponential, such that the fit param-

eter, the so called exponential correlation length ⇠, can be used to model the decay of microstructural correlations in snow by

a single size parameter. This approach dates back to Debye et al. (1957) in the context of small angle scattering of heteroge-

neous materials. However the characterization of snow by a single length ⇠ is only an approximation since the occurrence of

multiple length scales (Löwe et al., 2011) are known to play a role, in particular to characterize anisotropy (Löwe et al., 2013;5

Calonne et al., 2014b). Despite this caveat, ⇠ still constitutes the main microstructural parameter for microwave modeling of

snow (Proksch et al., 2015a; Pan et al., 2016) when the Microwave Emission Model of layered snowpacks (Wiesmann et al.,

1998) is used.

The exponential correlation length is often inferred from measurements of the optical equivalent diameter d
opt

or, equiv-

alently, from the specific surface area (SSA). This link was established statistically (Mätzler, 2002) leading to the empirical10

relation

⇠ ⇡ 0.5d
opt

(1��), (1)

where � is the ice volume fraction. This relation facilitates using the measured optical diameter as the primary input for

microwave modeling (Durand et al., 2008; Proksch et al., 2015b; Tan et al., 2015). However, this link between ⇠ and d
opt

can

only serve as a first approximation. The numerical prefactor in Eq. (1) seems to depend on snow type (Mätzler, 2002) which15

causes a significant scatter in estimating
::
the

::::::::::
exponential

:
correlation length from optical diameter. This poses the question which

additional size metric captures variations in grain shape and explains the scatter.

A similar issue of grain shape emerges in the context of optical measurements. Optical properties (e.g. reflectance) can

be largely predicted from the optical diameter or SSA (Kokhanovsky and Zege, 2004). The remaining scatter is commonly

attributed to shape
::::::::::::::::
(Picard et al., 2009) which influences the absorption enhancement parameter B and the asymmetry factor20

gG (Picard et al., 2009)
::::::::::::::::::::::::::
(Kokhanovsky and Zege, 2004) . The influence of grain shape on B for light penetration was recently

addressed and measured by Libois et al. (2013, 2014). Also in this case it remains the question
:::
The

:::::::
question

:::::::
remains

:
which

additional size metric of the microstructure can be used to capture variations in grain shape and measured scatter in B.

The two examples from microwave or optical modeling above reflect the known fact that the optical diameter as a single

metric of grain size is not sufficient to characterize the microstructure for many physical properties. It is thus necessary to25

account for additional grain size metrics which implement the idea of grain shape. A key requirement for potential, new shape

metrics is a well-defined geometrical meaning. Present snowpack models (Vionnet et al., 2012; Lehning et al., 2002) contain

empirical shape descriptors such as sphericity (Brun et al., 1992). An objective definition of these quantities for arbitrary two-

phase materials is, however, not possible. New shape metrics should thus ideally seek to replace empirical parameters by an

objective, measurable and geometrically comprehensible metrics
:::::
metric.30

One appealing route to define shape is via curvatures of the ice-air interface because curvatures i) have already been used

to comprehend snow metamorphism via mean and Gaussian curvatures (Brzoska et al., 2008; Schleef et al., 2014; Calonne

et al., 2014a) ii) are natural quantities to assess shape via deviations from a sphere, very close to the definition of sphericity

in Lesaffre et al. (1998) and iii) naturally emerge as higher order terms in the expansion of the
:::::::
two-point

:
correlation function
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(Torquato, 2002). The latter fact can be used in turn to assess variations of the microwave parameter (⇠) from µCT images

which links back to the aforementioned microwave modeling problem.

Another appealing route to define shape is via chord length distributions because they i) naturally implement the idea of size

dispersity and ii) have been recently
::::::
recently

:::::
been

:
put forward by Malinka (2014) to derive closed-form expressions for the

averaged optical properties of a porous medium. Again, the latter fact can in turn be used to assess variations in the optical5

parameters (gG,B) from µCT images which links back to the aforementioned optical modeling problem.

The motivation of the present paper is to investigate and interconnect these two routes of objectively
:::::::::::
(objectively) defining

grain shape. First, we will assess the curvature-length in the expansion of the
::::::::
two-point

:
correlation function. We will be guided

by the question if and how the well-known statistical relation Eq. (1) between the exponential correlation length and the optical

diameter can be improved by incorporating curvatures. Second, we will characterize the microstructure in terms of chord length10

distributions in order to make contact to aspects of shape in snow optics. An interconnection between the two routes can be

established by an approximate relation between the
::::::::
two-point correlation function and the chord length distribution that was

originally suggested in the context of small angle scattering (Méring and Tchoubar, 1968). By means of this approximate

relation we establish various statistical links between all involved size metrics, the moments of the chord length distributions,

optical diameter, surface areas, curvatures and the exponential correlation length. The established links imply a microstructural15

connection between geometrical optics and microwave scattering via size dispersity, which constitutes one aspect of grain

shape.

The paper is organized as follows. In Section
::::::
section 2 we present the theoretical background for the

::::::::
two-point correlation

function, the chord length distribution, the connection between both quantities and the governing length scales. In Section

::::::
section 3 we provide a summary of the µCT image analysis methods. To provide confidence of the interpretation of the20

curvature metrics derived from the
::::::::
two-point correlation function, we present an independent validation of these quantities via

the triangulation of the ice-air interface. The results of the statistical models are presented in Section 4 and discussed in Section

::::::
section 5.

2 Theoretical background

2.1 Two-point correlation function and microwave metrics25

The interaction of microwaves with snow are
::
is commonly interpreted as scattering at permittivity fluctuations in the mi-

crostructure which can be described by the two-point correlation function (Vallese and Kong, 1981; Mätzler, 1998; Ding et al.,

2010; Löwe and Picard, 2015). The
::::::::
two-point

:
correlation function can be derived from

:::
the spatial distribution of ice and air

that is characterized by the ice phase indicator function I(x), which is equal to 1 for a point x in ice and 0 for x in air. From

that, a covariance function can be defined which is often referred to as the
:::::::
two-point

:
correlation function30

C(r) = I(x+ r)I(x)��2. (2)
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In the following we disregard anisotropy by stating that C(r) only depends on the magnitude of r = |r|. To interpret snow with

this approach, an average over different coordinate directions must be carried out.

The value of the
::::::::
two-point

:
correlation function C(0) = �(1��) is simply related to the volume fractions of ice and air.

Therefore, often only the normalized
::::::::
two-point correlation function

A(r) = C(r)/C(0) (3)5

is used, (see Fig. 1b). Since A(r) must decay from A(0) = 1 to zero for r !1, the
:::::::
two-point

:
correlation function is often

described by an exponential form

A(r) = exp(�r/⇠) , (4)

in terms of a single length scale, the exponential correlation length ⇠, which .
::::
This

:::::
single

::::::
length

::::
scale

:
empirically characterizes

the decay of A(r).10

For small arguments r, also rigorous results for the decay of the correlation can be inferred since the expansion of A(r) can

be interpreted in terms of geometrical properties of the interface. According to Torquato (2002), the expansion for an isotropic

medium reads

A(r) = 1� r

�
1


1� r2

�2

2

+O(r3)

�
(5)

in terms of the length scales �
1

,�
2

. The first order term15

1

�
1

=� d

dr
A(r)

����
r=0

=

s

4�(1��)
, (6)

is the slope of the
::::::::
two-point

:
correlation function at the origin and can be expressed in terms of the interfacial area per unit

volume s (Debye et al., 1957). The size metric �
1

is one of the most fundamental lengths scales for a two-phase medium and

commonly referred to as the Porod length in small angle scattering, or correlation length in Mätzler (2002). We will adhere to

Porod length here to clearly distinguish �
1

from the exponential correlation length ⇠. The metric �
1

can be also related to the20

SSA, defined as the surface area per ice mass (m2

kg

�1), or in turn to the equivalent optical diameter d
opt

of snow via

�
1

=

4�(1��)

s
=

4(1��)

⇢
i

SSA

=

2(1��)

3

d
opt

(7)

with ⇢
i

representing the density of ice. The last equality is obtained when the definition of d
opt

= 6/⇢
i

SSA is inserted (see

Mätzler (2002)).

For a two-phase material with a smooth interface, the second order term ⇠ r2 is missing in the expansion Eq. (5) and the25

next non-zero term is the cubic one with a prefactor 1/�
1

�2

2

. Here the length scale �
2

has a geometric interpretation in terms of

interfacial curvatures and is therfore referred to as the curvature length hereafter. As originally shown by Frisch and Stillinger

(1963), the following identity holds

1

�2

2

= �
1

d3

dr3
A(r)

����
r=0

=

1

8

✓
H2 � K

3

◆
(8)

in terms
::
of

:::
the average squared mean curvature H2 and the averaged Gaussian curvature K. The quantity ��2

2

is proportional30

to the orientationally averaged normal curvature of an interface (Tomita, 1986).
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(a)

(b)

0
r

1

A
(r
)

�1⇠

scf =
4�(1��)

�
1

A(r)

exp(�r/⇠)

1� r/�
1

1� r/⇠

Figure 1. a) Illustration of the chord lengths obtained from an ice sample. The mean chord length is defined as the average length of the green

line lengths. A stereological approach (Underwood, 1969) to calculate s is to count the number of blue dots per unit length. The estimation

for smf is given by the red contour. b) Illustration of the
:::::::
two-point

:
correlation function A(r) and the method obtaining an estimate for the

Porod length �1 to get scf by fitting the slope at the origin, and the exponential correlation length ⇠ by fitting A(r) to exp(�r/⇠) over a

larger span.

2.2 Chord length distributions and optical metrics

In snow optics the microstructural characterization within radiative transfer theory (Kokhanovsky and Zege, 2004) commonly

involves a single metric, the optical diameter. An interesting approach for geometrical optics in arbitrary two-phase media was

recently put forward by Malinka (2014). Thereby, the microstructure is taken into account by the chord length distribution

of
:
a
:
medium which can be unambiguously defined for arbitrary two-phase random media (Torquato, 2002). Chord lengths in5

an isotropic medium are defined as the lengths of the intersections of random rays through the sample with the ice phase, as

5



illustrated in the schematic in Fig. 1a. The chord length distribution p(`) of the ice phase denotes the probability (density) for

finding a chord of length `.

In contrast to the Born approximation for microwaves, where the microstructure enters as the Fourier transform of the

::::::::
two-point correlation function, the theoretical approach Malinka (2014)

:::::::::::::
(Malinka, 2014) relates the key optical quantities (ab-

sorption, phase function, asymmetry-factor) to the Laplace transform of the chord length distribution p(`) which is denoted by5

bp(z) =
1Z

0

d`p(`)e�z` (9)

with Laplace variable z. For small z, the Laplace transform can be approximated by the expansion

bp(z) = 1�µ
1

z+
µ
2

2

z2 +O(z3), (10)

where µ
i

denotes the i�th moment of the chord length distribution, viz10

µ
i

=

1Z

0

d``ip(`). (11)

Hence
:
, within the approach from (Malinka, 2014)

:::::::::::::
Malinka (2014) , the optical response of snow can be systematically im-

proved by successively including higher moments of the chord length distribution. According to the theory Malinka (2014),

the Laplace transform has to be evaluated at z = ↵, with the absorption coefficient ↵= 4⇡/�. Here � is the wavelength and 

the imaginary part of the refractive index of ice. It is generally sufficient (Malinka, 2014) to retain only a few terms in Eq. (10).15

It is straightforward to show (Underwood, 1969) that the first moment, i.e, the mean chord length µ
1

is given by

µ
1

=

4�

s
=

�
1

1��
=

2

3

d
opt

(12)

and thus related to the surface area per unit volume s from Eq. (6), or the optical diameter d
opt

via Eq. (7). Therefore, in lowest

order, the Laplace transform Eq. (9) only contains the Porod length or specific surface area of snow. The next order correction

involves the second moment µ
2

for which no geometric interpretation has been hitherto given for arbitrary two-phase random20

media.

For known chord length distribution, all optical quantities (phase function, anisotropy factor gG
:::::
single

::::::::
scattering

::::::
albedo, etc)

can be directly computed from Malinka (2014). To make contact to Libois et al. (2013) later
::::
other

:::::::::
approaches

:::
e.g.

:::::::::::::::::
Libois et al. (2013) and

discuss our results for the chord lengths in light of shape, an expression of the absorption enhancement parameter B is required

within the framework of Malinka (2014) which is done in the
::::::
derived

::
in

:
Appendix A. From these expressions we can asses the25

relative importance of the µ
2

correction to the optical diameter µ
1

.

2.3 Connection between chord lengths and the Porod length and the curvature-length

Following the previous two sections, a link between optical and microwave metrics of snow thus requires to establish a link

between
::::::::
two-point correlation functions and chord length distributions. To this end we employ a relation between the

::::::::
two-point

6



correlation function and chord length distribution that was put forward in the early stages of small angle scattering (Méring

and Tchoubar, 1968) to interpret the scattering curve in terms of particle properties. In the present notation the relation can be

written as

p(`) = µ
1

d2

d`2
A(`), (13)

which was also used by Gille (2000).5

Although Eq. (13) is only valid under certain assumptions which will be discussed in sec.
::::::
section

:
5, it has already some

non-trivial implications that can be exploited for the subsequent analysis. As a first consistency check of the approximation

Eq. (13), we can compute the first moment of the chord length distribution from Eq. (11) for n= 1, by inserting Eq. (13) and

integrating by parts. This yields µ
1

= µ
1

A(0) which is correct by virtue of Eq. (3). As a next step, we aim at an expression

for the second moment of the chord length distribution in terms of interfacial curvatures by using Eq. (11) for n= 2. Again,10

inserting Eq. (13) and integrating by parts yields

µ
2

= 2µ
1

1Z

0

A(r) dr = 2µ
1

f(�,�
1

,�
2

, . . .). (14)

Though f is an unknown function here, this link shows that the chord length metric µ
2

must be somehow related to the

::::::::
two-point correlation function metrics �

1

and �
2

. In section
::

4 we will statistically investigate the dependence of f on its

arguments.15

3 Methods

3.1 Data

For the following analysis we used an existing µCT dataset of 3D microstructure images described and used in Löwe et al.

(2013) for a thermal conductivity analysis and Löwe and Picard (2015) for a comparison of microwave scattering coefficients.

All samples were classified according to Fierz et al. (2009) as described in the supplement of Löwe et al. (2013). The data set20

comprises 167 different samples including two time series of isothermal experiments, four time series of temperature gradient

metamorphism experiments and a set of 37 individual samples. In total, the set includes 62 samples of depth hoar (DH), 54

of rounded grains (RG), 33 of faceted crystals (FC) 10 of decomposing and fragmented precipitation particles (DF), 5 of melt

forms (MF) and 3 of precipitation particles (PP).

3.2 Geometry from
::::::::
two-point

:
correlation functions25

Obtaining the normalized
::::::::
two-point correlation function A(r) from a µCT image can be conveniently done by using the Fast

Fourier Transform (FFT) as e.g. described in Newman and Barkema (1999). The FFT is typically used for performance issues

to evaluate the convolution integral Eq. (2) since direct methods can be very slow. The spatial resolution of the
::::::::
two-point

correlation function depends on the voxel size � of the µCT image which ranges from 10 to 50 µm.
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Since the snow samples in the data set are anisotropic (Löwe et al., 2013), the normalized
:::::::
two-point

:
correlation function is

first obtained in the x,y and z direction and then averaged arithmetically over the three directions i.e, A(r) = (A
x

(r)+A
y

(r)+A
z

(r))/3.

From the normalized
::::::::
two-point correlation function two types of parameter fittings are performed. First, the exponential

correlation length ⇠ is obtained by fitting the µCT data to the exponential form Eq. (4). Technically, we estimated the inverse

parameter k by least-squares optimization of the model A(r) = exp(�kr) to the data in a fixed range of 0< r < 50�. An5

illustration of this method is shown in Fig. 1b. In the following we denote by ⇠ the inverse of the optimal fit parameter ⇠ := 1/k.

Second
:::::::
Secondly, we estimated the expansion parameters �

1

and �
2

of the
::::::::
two-point

:
correlation function by a least-squares

regression to the expansion Eq. (5). Technically, we fitted A(r) = 1� k
1

r(1� k
2

r2) in the fixed range of 0< r < 3� which

determines the derivatives at the origin. We denote by �cf

1

and �cf

2

the inverse of the optimal fit parameters �cf

1

:= 1/k
1

and

�cf

2

:= 1/k
2

. The superscript is added to discern these
::::::::
two-point correlation function based estimates from those presented in10

the next section for a validation. The influence of resolution and anisotropy to the estimates of �
1

and �
2

is discussed in section

5.

3.3 Geometry from triangulations

To confirm the geometrical interpretation of �cf

1

and �cf

2

we use an alternative and independent method to estimate these

parameters by measuring the surface area and the local curvatures with a VTK-based image analysis as described in Krol15

and Löwe (2016). In short, a triangulated ice-air interface is obtained by applying the VTKContour filter. After this step, the

interface still resembles the underlying voxel structure. Therefore, in a second step the triangulated interface is smoothed by

applying the VTKSmoothing filter which involves a smoothing parameter S which is the number of iterations a Laplacian

smoothing on a mesh is repeated. For further details we refer to Krol and Löwe (2016).

3.4 Accuracy of surface area and curvatures estimates20

The measured total surface area is obtained by integrating (summing) the surface area of the triangles over the surface and

the estimate �vtk

1

which naturally depends on the smoothing parameter. A comparison of the triangulation and the
::::::::
two-point

correlation function based length scale is shown in Fig. 2 (middle row). A higher value of the smoothing parameter implies a

lower surface area s (caused by shrinking of the enclosed volume upon smoothing) and in turn higher estimates for �vtk

1

. Using

higher smoothing also results in a higher variance in the data. This is likely due to filtering of small perturbations in the surface25

causing the individual samples to react differently.

It is illustrative to note that even without smoothing for S = 0 the obtained triangulated surface is still different from the

voxel surface s
mf

, which is obtained by the union of ice-air transition faces in the voxel based image (as illustrated by the

red contour in Fig. 1a). The quantity s
mf

is one of the four Minkowski functionals and can be computed by standard counting

algorithms (Michielsen and Raedt, 2001). For isotropic systems, and statistically representative samples, the relation between30

the surface obtained from the
::::::::
two-point correlation function s

cf

= 4�(1��)/�cf

1

and the Minkowski functionals is known to

be s
cf

= 2s
mf

/3 as discussed in Torquato (2002, p. 290).
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Figure 2. Comparison between smoothing paramater
:::::::
parameter S = 50 (left) and S = 200 (right)for the top

:
.
:::
Top: Representation of the

:::::::::
triangulated surface of a subsection of a snow sample. In the middle

:::::
Middle: Scatter plots of the Porod length �cf

1 versus �vtk
1 , including a fit

(red dotted line). At the bottom
::::::
Bottom: Scatter plots of the curvature-length �cf

2 versus �vtk
2 , including a fit (red dotted line).
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An estimate for the curvature-length �vtk

2

is obtained from the VTKCurvature filter on the triangulated ice-air interface

yielding local values for mean and Gaussian curvature which can be integrated to compute �vtk

2

via Eq. (8). The comparison

of the triangulation based curvature-length and the
::::::::
two-point correlation function based curvature length is shown in Fig. 2

(bottom row). Again, �vtk

2

depends strongly on the smoothing parameter S. The value S = 200 performed best by comparing

the value �cf

2

to �vtk

2

, see Fig. 2 (bottom row). The deviations from the 1:1 line are caused by the overestimation of the curva-5

tures by the remaining steps in the triangulation from the underlying voxel-based data, and is thus anti-correlated
::::::::
negatively

::::::::
correlated

:
with the size of the structures and the resolution. In the end, we chose a smoothing parameter S = 200 that is, on

average, acceptable for all involved samples.

Overall, the comparison provides reasonable confidence that the geometrical interpretation of the
::::::::
two-point correlation func-

tion parameters is correct, though uncertainties inherent to the smoothing operations must be acknowledged. In the following10

we solely use the quantities derived from the
::::::::
two-point correlation function, viz. �

1

= �cf

1

and �
2

= �cf

2

where the superscripts

are omitted for brevity.

3.5 Chord length distribution

To compute the ice chord length distribution from the binary images, all linear lines through the sample in all three Cartesian

directions � = x,y,z are considered and all ice chords were measured and binned to obtain direction dependent counting15

densities n�

(`). Here nx

(`) denotes the total number of chords in x direction which have length `. For a binary CT image, `

can take integer values 0< `< L
x

which are restricted by the sample size L
x

=N
x

� and the voxel size � of the image. The

mean chord length and other moments µ
i

are then computed from

µ
i

=

1P
`,�

n↵

(`)

X

`,�

`in�

(`). (15)

3.6 Statistical models20

The main part of the following analysis comprises statistical relations between the length scales derived from the chord length

distribution and the
:::::::
two-point

:
correlation function in section 2. In total, we will consider a few statistical models that first

relate the exponential correlation length ⇠ and µ
2

to the geometrical length scales �
1

and �
2

and second, relate ⇠ to µ
1

and µ
2

.

We will start with a one-parameter statistical model and compare the results to the two parameter models. We will assess and

compare the quality of the fits with the adjusted correlation coefficient R2.25

4 Results

4.1 Relating exponential correlation length to the Porod length and curvature-length

As a starting point for the statistical analysis we revisit the empirical relation

⇠ = 0.75�
1

, (16)

10



which is equivalent to Eq. (1) by virtue of Eq. (7), as suggested by Mätzler (2002). To this end we fitted ⇠ and �
1

and obtained

an average slope of 0.79 with a correlation coefficient of R2

= 0.733, shown by the green dashed line in Fig. 3a. In the next

step we fitted the same data to include an intercept parameter

⇠ = a
0

+ a
1

�
1

. (17)

Here the adjusted correlation coefficient, accounting for the inclusion of extra parameters, is R2

= 0.731 and the parameters are5

given by a
0

= 5.93⇥10

�2

mm, a
1

= 0.794, with very low p-values (p < 5⇥10

�4) for the intercept and the slope ensuring the

significance of the parameters of the fit. The order of magnitude of the intercept a
0

is negligible. To understand the remaining

scatter we have plotted the residuals ⇠� (a
0

+ a
1

�
1

) versus the curvature-length �
2

as shown in Fig. 3b. The correlation

coefficient is given by R2

= 0.644 and suggest
:::::::
suggests

:
that including the curvature lengths can improve Eq. (17). For an

overview, this and all other statistical models will be listed in Table 1.10

In the next step we include the curvature-length �
2

where we fitted the exponential correlation length ⇠ to the model

⇠ = b
0

+ b
1

�
1

+ b
2

�
2

. (18)

The results are shown in Fig. 3c. Here we find an improvement compared to Eq. (17). The correlation coefficient is R2

= 0.922

and the fit parameters are given by b
0

= 1.23⇥ 10

�2

mm, b
1

= 1.32 and b
2

=�3.85⇥ 10

�1. The p-values are very small for

all coefficients b
i

. The order of magnitude of the improvement can already be roughly estimated from the ratio of the prefactors15

b
1

and b
2

.

4.2 Connection between chord length distributions and
::::::::
two-point correlation functions

To relate the chord length metrics to the Porod length and the curvature-length, we first assess
::::::
assessed

:
the relation between the

chord length distribution p(`) and the
:::::::
two-point

:
correlation function A(`) as suggested by Eq. (13). To this end we compared

the chord length distribution obtained directly from the µCT image (cf. section 3.5) with the prediction of Eq. (13) via the20

::::::::
two-point correlation function for a few examples of different snow types. The results are shown in Fig. 4. The selected snow

samples are the same as those used in Löwe and Picard (2015, Fig. 8 and Fig. 9). Qualitatively, the characteristic form (i.e,

single maximum), the location of the maximum, and the width of the distribution are correctly predicted by Eq. (13). On the

other hand, there are obvious shortcomings, such as the oscillatory tail for the RG example when the chord length distribution

is derived via Eq. (15). We will revisit these characteristics in the discussion.25

4.3 Relating the second moment of the chord length distribution to the Porod length and the curvature-length

Using the previous results we can derive an approximate relation between the second moment of the chord length distribution

and the interfacial curvatures. To motivate a statistical model, we start from Eq. (14),

µ
2

2µ
1

= f (�,�
1

,�
2

, . . .) . (19)
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Figure 3. Scatter plots of a) the exponential correlation length ⇠ versus the Porod length �1. A linear fit is plotted in green. Additionally the

prediction of Eq. (16) (MM) is plotted in red. b) The residuals of ⇠ and the statistical model Eq. (17), versus the curvature-length �2. c) The

statistical model Eq. (18) predicting ⇠ depending on the Porod length �1 and the curvature-length �2.

We investigate the dependency of the function f on parameters �
1

,�
2

and � of this expression by successively including �
1

,�
2

and � in a statistical model. In a first step we approximate f by a statistical model including only �
1

µ
2

2µ
1

= l
0

+ l
1

�
1

. (20)
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Figure 4. Comparison of the chord length distributions computed from Eq. (13) (symbols) and by direct analysis of the µCT data (solid-line)

for three examples of snow types (PP, RG and DH).

The optimal parameters for model Eq. (20) are l
0

=�2.40⇥10

�2

mm and l
1

= 1.25, with negligible p�values and a correla-

tion coefficient of R2

= 0.898. The results are shown in Fig. 5a.

In view of the inclusion of the curvature-length �
2

, we analyzed the residuals of the previous statistical model and plotted

them as a function of �
2

(Fig. 5b). The correlation coefficient (R2

= 0.295) is small but including �
2

in the analysis further

improves the fit. The respective statistical model5

µ
2

2µ
1

= n
0

+n
1

�
1

+n
2

�
2

(21)

yields optimal parameters n
0

=�3.95⇥ 10

�3

mm, n
1

= 1.50 and n
2

=�2.46⇥ 10

�1 with a correlation coefficient R2

=

0.949. The p-value for the intercept n
0

is 0.36. For n
1

and n
2

the p-values are again very low.

We have heuristically found a possibility of improving Eq. (21) even further. This was achieved by including a factor (1��)

on the left-hand side. More precisely, we tried10

(1��)µ
2

2µ
1

= q
0

+ q
1

�
1

+ q
2

�
2

(22)

as a statistical model. Here the optimal parameters are q
0

=�1.23⇥ 10

�2

mm,q
1

= 1.03,
::::::::::::::::::::
q
0

=�1.23⇥ 10

�2

mm,
:::::::::
q
1

= 1.03,

and q
2

=�1.98⇥10

�1. The p-values for all coefficients are negligible and the correlation coefficient is R2

= 0.980. The results

are shown in Fig. 5c.

4.4 Relating microwave metrics and optical metrics15

In the previous sections we found a statistical relation between the exponential correlation length ⇠ and the geometrical lengths

�
1

and �
2

on one hand and a relation between the first and second moment of the chord length distribution (µ
1

and µ
2

) and �
1
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Figure 5. Scatter plots of a) the statistical model see Eq. (20) predicting µ2/2µ1 depending on the Porod length �1, b) the residuals of

µ2/2µ1 and the statistical model Eq. (20) versus the curvature-length scale parameter �2, c) the statistical model predicting (1��)µ2/2µ1

(see Eq. (22)) depending on the Porod length �1 and the curvature-length �2.

and �
2

on the other hand. Both findings can be recast into a direct connection between the moments of the chord lengths µ
1
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Figure 6. Scatterplot of the exponential correlation length ⇠ versus the statistical model Eq. (23) that depends on the first and second moment

of the chord length distribution, µ1 and µ2.

and µ
2

and the exponential correlation length ⇠. We express this relation in the statistical model

⇠ = c
0

+ c
1

(1��)µ
1

+ c
2

(1��)µ
2

2µ
1

. (23)

Note that (1��)µ
1

= �
1

by virtue of Eq. (12), which means that we essentially replace �
2

by (1��)µ
2

/2µ
1

in the statistical

model Eq. (18) that relates ⇠ to �
1

and �
2

. We obtained the correlation coefficient R2

= 0.985 for the optimal parameters

c
0

= 9.28⇥10

�3

mm, c
1

=�7.53⇥10

�1, c
2

= 2.00. This final relation Eq. (23) significantly improves both models Eq. (17)5

and Eq. (18).

The summary of all models is given in Table 1. To ensure that the inclusion of an additional parameter
:
,
:
e.g. by going

from model Eq. (17) to model Eq. (18), is indeed an improvement, we have employed the Akaike information criterion (AIC)

(Akaike, 1998). The AIC measure allows to discern if the improvement of the correlation coefficient is trivially caused by an

increasing number of fit parameters or an actual improvement on the likelihood of the fit due to the relevance of the added10

parameters. Absolute AIC-measures have no direct meaning, however a decrease of at least 2k between two models, where

k is the number of extra parameters, implies a statistical improvement. For our case k = 1 the difference in the AIC-measure

between Eq. (17) and Eq. (18) is 177 confirming the statistical relevance significance of �
2

.

4.5 Shape factors gG and B

As an application of the values obtained for the moments of the chord length distribution we can now compute the “shape dia-15

gram” of the optical parameters (gG,B) suggested in Libois et al. (2013) derived from (Malinka, 2014, Eq. 60), and Eq. (A4).

The results depend on the value of the Laplace transform at the absorption coefficient ↵, and thus on wavelengths. For most

wavelengths in the visible and near infrared regime ↵µ
1

⌧ 1 is small and therefore the Laplace transform Eq. (9) can be ap-

15



Table 1. Summary Statistical Models

model Eq.(#) parameters (in order) (adj.) R2

⇠ = a0 + a1�1 (17) 5.93⇥ 10

�2
mm,0.79 0.731

⇠ = b0 + b1�1 + b2�2 (18) 1.23⇥ 10

�2
mm, 1.32, �3.85⇥ 10

�1
0.922

⇠ = b0 + c1(1��)µ1 + c2(1��)µ2/2µ1 (23) 9.28⇥ 10

�3
mm, �7.53⇥ 10

�1, 2.00 0.985

µ2/2µ1 = l0 + l1�1 (20) �2.40⇥ 10

�2
mm, 1.25 0.898

µ2/2µ1 = n0 +n1�1 +n2�2 (21) �3.95⇥ 10

�3
mm, 1.50,�2.46⇥ 10

�1
0.949

(1��)µ2/2µ1 = q0 + q1�1 + q2�2 (22) �1.23⇥ 10

�2
mm, 1.03,�1.98⇥ 10

�1
0.980

Table 2. Determination of the absorption coefficient ↵ (Warren and Brandt, 2008), the first order, the fraction of the first and second order of

Eq. (10), and the obtained estimates for B and gG averaged over all snowsamples, including the standard deviation �.

wavelength (µm) ↵ (m

�1
) ↵µ1 ±� µ2/2µ1↵±� (%) B 1� gG

0.90 4.1 0.00094± 0.0003 < 0.5 1.71± 0.00 0.323± 0.000

1.31 1.2⇥ 10

2
0.026± 0.008 2± 1 1.64± 0.02 0.316± 0.000

1.63 2.0⇥ 10

3
0.45± 0.14 37± 13 0.89± 0.20 0.253± 0.011

1.74 1.1⇥ 10

3
0.24± 0.079 20± 7 1.19± 0.14 0.272± 0.010

2.00⇤ 9.4⇥ 10

3
2.1± 0.68 172± 60 - -

2.26 1.1⇥ 10

3
0.25± 0.08 20± 7 1.14± 0.13 0.240± 0.010

⇤ wavelength is not used for optical measurements

proximated by a few terms in the expansion Eq. (10). Taking typical values for ↵ allows us to estimate the relative importance

↵µ
2

/2µ
1

of the second-order term compared to the first-order term in the expansion Eq. (10). These values are obtained by us-

ing the values for  provided by Warren and Brandt (2008). The first order ↵µ
1

and ratio ↵µ
2

/2µ
1

is
::
are

:
calculated for typical

wavelengths and shown in Table 2. The values and standard deviations denote averages taken over all samples. Wavelengths

are selected to match common optical methods, namely 0.9 µm (Matzl and Schneebeli, 2006), 1.31 µm (Arnaud et al., 2011),5

and the SWIR wavelengths 1.63 µm, 1.74 µm and 2.26 µm used by Domine et al. (2006). We added the wavelength 2.00 µm,

which is not used by any instrument, but has the highest value for ↵ in this range. Note that for this wavelength ↵µ
1

is not

small and the expansion of the Laplace transform, Eq. 10, likely not a good approximation. The standard deviations are high

as a result of the variations due to grain type. The lowest values of µ
2

/2µ
1 :::::::
↵µ

2

/2µ
1:

are found for fresh snow (PP) and highest

for depth hoar (DH) and melt forms (MF).10

The values in Fig. 7 for gG and B are computed for wavelength 1.3µm and shown as a scatter plot of B versus 1� gG

similar to Libois et al. (2013). The range of values for B 2 [1.54,1.72] and (1� gG) 2 [0.315,0.335] is within the range

B 2 [1.25,2.09] and (1� gG) 2 [0.2,0.5] obtained by ray-tracing simulations for different geometrical shapes (Libois et al.,

2013). The variations of the values for different snow types is however very small. To complete the analysis we have computed
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Figure 7. Scatterplot of the asymmetry factor gG and the optical shape factor B evaluated for
::
the

:
refractive index at wavelength �= 1.3µm.

gG and B for higher absorbing wavelengths for which the shape signature might be higher, but the expansion of Eq. (10), less

reliable. The results are averaged over all snow samples and included in Table 2.

5 Discussion

5.1 Methodology

Before turning to the discussion of physical implications of the results, we first address methodological details. Retrieving5

parameters from µCT images must be taken with care. In addition to the uncertainties related to filtering and segmentation

pointed out by Hagenmuller et al. (2016), the present method also requires to discuss the interface-smoothing for the validation

of �
1

and �
2

, the image resolution, and the anisotropy of the samples.

5.1.1 Geometrical interpretation

The present analysis and cross-validation of the curvature metric imposes requirements on the smoothness of the interface.10

The subtle influence of the smoothing parameter on the surface area s and averaged mean and Gaussian curvatures H and

K is apparent from Fig. 2. Naturally, H2 is most sensitive to smoothing. We found a competing performance of �
1

and �
2

with the smoothing parameter when comparing the triangulation based estimates with the
:::::::
two-point

:
correlation function based

values. The agreement for the surface area seems to be best with smoothing parameter S = 50. In contrast, more smoothing

is required to obtain an agreement for the curvature-length. This higher sensitivity on the smoothing parameter is reasonable,15

since curvatures are defined by surface gradients which are more sensitive to a smooth mesh representation than the surface

area. The competing behavior is caused by the smoothing filter, which neither preserves the volume nor the surface area of

17



the enclosed ice upon smoothing iterations. This causes the drop in agreement for �
1

in Fig. 2 (left, middle) with increased

smoothing. As a remedy, more sophisticated smoothing filters could be used which, for example, ensure the conservation of

the enclosed volume (Kuprat et al., 2001). Such problems could be partly avoided by computing normal vector fields and

curvatures directly from voxel-based distance maps (Flin et al., 2005). A detailed comparison of all these different methods

however, is beyond the scope of this paper. In contrast to �
1

and �
2

, the interpretation of first and second moments of the chord5

length distribution, µ
1

and µ
2

, is rather straightforward, where µ
1

is directly related to the optical diameter d
opt

, and µ
2

is a

measure of the variations of this size metric.

5.1.2 Resolution

Resolution plays an important role in the obtaining estimates for �
1

and �
2

. For a µCT measurement the resolution is commonly

chosen appropriately depending on snow type. While fresh Snow (PP) is typically reconstructed with 10µm voxel size, melt10

forms (MF) and larger particles have larger voxel sizes of 35µm or 54µm. Since we have obtained �
1

and �
2

with two

independent methods that agree reasonably well we conclude that the resolution is generally sufficient to estimate the involved

length scales. To further confirm that that there is no remaining bias with resolution we assessed the ratio �
2

/voxelsize. Ideally

this would be constant for all samples, implying that �
2

is equally well resolved for all snow samples. For our data, this this

ratio is 9.8 with a standard deviation of 2.6. The correlation coefficient with the voxel size is R2

=�.2, which implies that15

there is a slight dependence on resolution. A systematic assessment is however difficult since snow types and grain sizes are

not equally distributed over the resolution.

The image resolution plays another important role in the interpretation of the expansion of the
::::::::
two-point correlation function.

As pointed out by Torquato (2002), a missing r2 term is generally equivalent to a smooth interface while discontinuities, like

sharp edges, would lead to a second order term. Fresh snow and depth hoar crystals are known to have these discontinuities,20

at least visually. But it remains questionable if these features can be detected objectively at the micrometer scale from image

analysis. In an image, discontinuities are always smeared out, virtually contributing to the third order term.

5.1.3 Anisotropy

The present data set of snow samples embodies a large number of anisotropic samples, which was specifically the subject

of Löwe et al. (2013) the data is based on. It is thus
:::::
dataset

::::
was

:::::::::
previously

::::
used

::
to
:::::

study
:::

the
::::::::::

anisotropic
:::::::::
properties

::
of

:::::
snow25

::::::::::::::::
(Löwe et al., 2013) .

:::::::::
Therefore

::
it

::
is

:
necessary to elaborate

::
on

:
the impact of anisotropy on

:
in

:
the present analysis which is

exclusively involves isotropic
:::::::
two-point

:
correlation functions. It is important to note that the our analysis does not assume

isotropy, but it rather includes the orientational averaging in the three Cartesian directions as a part of the method. Such a

procedure is principally valid for arbitrary samples. Moreover, also the geometrical interpretation of the quantities remains

valid. This was rigorously shown for �
1

Berryman (1998) which relates the slope of the
:::::::
two-point

:
correlation function at the30

origin for arbitrary anisotropic structures after orientational averaging to the surface area per unit volume s. Though we did not

find a mathematical proof for the corresponding statement for �
2

, the agreement of �cf

2

(obtained from the
::::::::
two-point correlation

function, orientationally averaged) with �vtk

2

(obtained from direct computation of the interfacial curvatures) strongly suggests
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its validity. In addition, we assessed that the residuals between �vtk

2

(where anisotropy does not play a role) and �cf

2

are not

correlated with anisotropy (R2

= .026).

Overall, we are confident that the method can be applied to arbitrary anisotropic samples to provide orientationally averaged

length scales with the correct geometric interpretation with acceptable uncertainties due to image resolution.

5.2 Linking size metrics in snow5

Accepting the methodological uncertainties, we shall now discuss our findings of the statistical analysis and their relevance for

the interpretation of snow microstructure.

5.2.1 Including size dispersity to estimate the exponential correlation length

By construction, the exponential correlation length ⇠ must be understood as a proxy to characterize the entire
::::::::
two-point

:
cor-

relation function with a single length scale. This single length scale contains signatures of both, ;
:
properties that dominate10

the behavior of the
::::::::
two-point

:
correlation function for small arguments (�

1

and �
2

) and other properties that dominate the

tail-behavior of the
::::::::
two-point correlation function for large arguments.

To discuss the statistical relations we found we will start with recovering Mäzler
::::::
Mätzler’s model (Mätzler, 2002). This

statistical model covers a relation between the exponential correlation length and the optical grain size, or in their nomenclature:

the correlation length. Mäzler
::::::
Mätzler’s model predicts the slope to be a

1

= 0.75, which is an average of a
1

= 0.8 for depth15

hoar and a
1

= 0.6 for other snow types. This is consistent with our finding a
1

= 0.79 since we have many depth hoar samples

in the data set, suggesting that grain shape has a direct influence on the statistical relation. This influence was made quantitative

by including the curvature-length to the statistical analysis, resulting in the statistical model Eq. (18) (Fig. 3c). The quantitative

improvement on the statistical model Eq. (16) by using Eq. (18) is given by the increase in the correlation coefficient from

R2

= 0.733 to R2

= 0.922.20

In addition we established a new statistical relation Eq. (23) between ⇠ and the moments of the chord length distribution,

µ
1

and µ
2

. This model performs even better when the correlation coefficient R2

= 0.985 is taken as a quality measure. We

confirmed that the inclusion of an additional parameter in Eq. (18) and Eq. (23) indeed improves on eq. (16), by employing the

Akaike information criterion (AIC) measure (Akaike, 1998).

All statistical models showing improvements of
:::::::
proposed

:::::::::
statistical

::::::
models

:::::
show

:::
an

:::::::::::
improvement

:::
to

:::
Eq.

:
(1) indicate25

::::::::
indicating

:
that at least two different length scales �

1

and �
2

or µ
1

and µ
2

are required to obtain a reasonable prediction of

the exponential correlation length. While �
1

and µ
1

are both trivially related to the optical radius via Eq. (7) and Eq. (12), the

two other size metrics µ
2

or �
2

are the origin of performance increase.

This seems surprising at first sight. Why should local aspects of the interface (�
1

and �
2

) determine the non-local decay of

structural correlations (⇠)? To illustrate our explanation for this finding, we resort to a particle picture and consider a dense,30

random packing of monodisperse hard spheres. For such a packing, the particle “shape” is trivial and fully determined by

the sphere diameter d, which determines the slope of the
::::::::
two-point correlation function at the origin. However, also particle

positions and thus the decay of correlations is fixed by d. This becomes obvious from the representation C(r) = nv
int

(r)+
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n2v
int

(r) ⇤h(r) for the
::::::::
two-point correlation function for such a system at number density n (Löwe and Picard, 2015). In

this representation, the spherical intersection volume v
int

and the statistics of particle positions h(r) both depend on d. Now

imagine that each sphere is deformed by a hypothetical, volume-conserving re-shape operation to an irregular, non-convex

particle, which is still located at the center of the original sphere. Due to re-shaping, the parameter H2 would increase. After

the re-shape, neighboring particles would overlap (on average), since their maximum extension must have been increased5

compared to the sphere diameter. To recover a non-overlapping configuration, all particle positions must be dilated. The latter,

however, also affects the tail of the
::::::::
two-point correlation function. This is exactly what we observe: the “shape of structural

units” in snow, as exemplified by H2 is always correlated with the “position of the structural units” in space. We note that this

particle analogy has clear limitations and only serves here to illustrate the rather abstract statistical relations between different

length scales. Snow remains a bi-continuous material where individual particles cannot be distinguished.10

Overall, we conclude that both, �
2

or µ
2

can be used to significantly improve estimates of ⇠ when compared to optical

diameter based estimates.

5.2.2 Linking moments of the chord length distributions to Porod and curvature-length

Hitherto no geometrical interpretation for the second moment µ
2

of the chord length distribution was known. Our results

suggest an empirical relation, Eq. (22), that involves the two geometrical length scales �
1

and �
2

. In the following we provide15

supporting arguments for the link between µ
2

and �
1

and �
2

by discussing the relation Eq. (13) between the chord length

distribution and the
::::::::
two-point correlation function.

The relation Eq. (13) was originally raised in the context of small angle scattering long time ago (Méring and Tchoubar,

1968) and later revisited e.g. by Levitz and Tchoubar (1992), revealing two different approximation steps. A first simplification

comes from the assumption that consecutive chords on the random ray in Fig. 1 are statistically independent. This issue20

has been discussed in detail also by Roberts and Torquato (1999), who established an exact relation between the Laplace

transforms of the
:::::::
two-point

:
correlation function, the chord length distribution, and a surface-void correlation function based

on this assumption. Their results however show that for level-cut Gaussian random fields, where this assumption is violated,

the prediction of the chord length distribution can be still very accurate. This indicates that assuming independent chords is per

se not a serious limitation. Secondly, Eq. (13) is actually an approximation for dilute systems which is generally not valid for25

snow.

To test the range of validity of the relation (13) for snow, we have taken three samples and computed the chord length

distribution directly to compare them to the prediction of Eq. (13) as shown in Fig. 4. An obvious drawback of Eq. (13) can

be seen for the rounded grains (RG) sample. Due to the quasi-oscillations in the
::::::::
two-point correlation function (cf. Löwe et al.

(2011)), A(`) and its second derivative assume negative values, which would imply negative values for p(r)
:::
p(`)

:
via Eq. (13).30

This is in contradiction to the meaning of p(r)
:::
p(`)

:
as a probability density and likely a consequence of the assumptions

which are not valid for snow. Despite this obvious drawback, Fig. 4 shows that Eq. (13) yields three, qualitatively consistent

results for different snow types where the basic features of the chord length distrbution are well predicted: First, it captures the

considerable variations of the position of the maximum, the width, and decay of the chord length distribution. Second
:::::::
Secondly,

20



the relation Eq. (13) predicts that the chord length distribution tends to zero for small values i.e. p(0) = 0 (as confirmed in

Fig. 4). This is a direct consequence of a smooth interface as shown in Wu and Schmidt (1971). Third
::::::
Thirdly, it leads to

Eq. (14), that involves the integral over the
::::::::
two-point

:
correlation function. The latter indicated a connection between µ

2

and

�
1

and �
2

, which was confirmed quantitatively via Eq. (21). Given the assumptions discussed above, it is not surprising that a

heuristic improvement could be achieved by including a term (1��) in Eq. (22), since snow is not a dilute particle system and5

corrections containing �-terms are to be expected.

Overall, our analysis confirms that both approaches to microstructure characterization, via
:::::::
two-point

:
correlation functions

(with metrics �
1

,�
2

) or via chord length distribution (with metrics µ
1

,µ
2

) are not independent. They rather describe, slightly

different but interrelated, structural properties which are now discussed in view of grain shape.

5.3 Grain shape10

5.3.1 Grain shape, a geometrical interpretation

The international classification for seasonal snow on the ground (Fierz et al., 2009) considers grain shape as the morphological

classification into snow types. This is motivated by the common but loose perception of shape as the basic geometrical form

of constituent particles. It is clear that grain shape remains a vague concept unless it is formulated in terms of quantities which

are unambiguously defined on the 3D microstructure.15

Local curvatures are often regarded as shape parameters and used to characterize snow on a more fundamental level. The

relevance of the mean curvature is described and analyzed in detail in Calonne et al. (2015), where morphological transitions

(e.g, faceting) of snow during temperature gradient metamorphism are visible in the distribution of mean curvatures. The

present description of grain shape in snowpack models (Lehning et al., 2002; Vionnet et al., 2012) is in fact based on the

variance of the mean curvature, by the sphericity parameter as defined by Lesaffre et al. (1998). There were attempts to20

measure the sphericity from digital photographs as described by Lesaffre et al. (1998) and Bartlett et al. (2008). This definition

is valid only in two dimensions and therefore difficult to compare directly to their 3D counterparts in Calonne et al. (2015).

It is therefore natural to use objective measures
::::
such

:
as the mean and Gaussian curvature H and K to quantify shape.

Though K is computed from local properties of the interface, it has a strict topological meaning due to its relation to the

Euler characteristic which is by definition strictly independent of local shape variations of the ice-air interface. The Euler25

characteristic was e.g. used by Schleef et al. (2014) to characterize microstructural changes during densification. We found

however, that the contribution K/3 in �
2

from Eq. (8) ranges from 1-13% and is on average 3.7 % of H2. Hence the curvature-

length �
2

is dominated by the second moment H2, and thus closely related to the variance of an (inverse) size distribution, the

distribution of mean curvatures. This indicates the formal similarity to µ
2

which is also a second moment of a size distribution,

the chord length distribution. Hence, both metrics can be regarded as accounting for size dispersity in snow.30

Overall, we suggest that both parameters, µ
2

and �
2

can be used to objectively define a grain shape for 3D microstructures

which is closely connected to size dispersity and which naturally extends grain size (optical diameter) determining µ
1

or �
1

.
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::::
Note

:::
that

::::::
within

:::
this

:::::::::
definition,

:::::
grain

:::::
shape

::
is

:::
not

:
a
::::::::::::
dimensionless

:::::::::
parameter.

:
With this perception ,

::
of

:::::
shape

:
we now connect

back to the original applications of microwave and optical modeling.

5.3.2 Grain shape for microwave modeling

Thus far, the exponential correlation length ⇠ as a key parameter for MEMLS based microwave modeling (MEMLS) was

mainly predicted from the optical diameter. Our conclusions from section 5.2.1 could now be restated: The inclusion of a5

grain shape parameter, �
2

or µ
2

improves the prediction of the exponential correlation length significantly. Or, according to

the conclusion from the previous section, one may alternatively restate that size dispersity has an influence on microwave

properties. This is known from other models than MEMLS, where an influence of polydispersity on the effective grain scaling

parameter within DMRT-ML microwave modeling was found Roy et al. (2013)
::::::::::::::
(Roy et al., 2013) .

This equivalence of shape and size dispersity at the level of
::::::::
two-point correlation functions can be further illustrated by10

an interesting example. Consider a microstructure of polydisperse spherical particles. The definition of grain shape from the

classification (Fierz et al., 2009) would assign a spherical shape to this microstructure, while the averaged squared mean

curvature H2 would instead vary depending on the variance of particle radii. As pointed out by Tomita (1986), for low density,

such a system of polydisperse spherical particles can always be mapped uniquely onto an assembly of monodisperse but

irregularly shaped particles by solving an integral equation, if only the
::::::::
two-point correlation function is considered. Shape15

can be equivalent to polydispersity, and snow types which are visually very different might still have very similar physical

properties. This example also explains why the objective size dispersity parameters �
2

or µ
2

cannot be mapped onto the

classical definition of grain type from Fierz et al. (2009).

5.3.3 Grain shape in geometrical optics

Finally, we turn to the implications of size dispersity or grain shape on geometrical optics within the scope of (Malinka, 2014)
:::::::::::::
Malinka (2014) based20

on chord length distributions.

As pointed out by (Malinka, 2014)
:::::::::::::
Malinka (2014) , if consecutive chords were statistical

:::::::::
statistically

:
independent i.e. a

Markovian process, then the obtained distribution would be
::
an exponential, and all optical properties solely determined by the

optical diameter (or µ
1

). To quantify the deviation from an exponential chord length distributions we calculated the fraction

µ
2

/2µ2

1

which is unity for a exponential chord length distribution. This fraction is on average 0.75 for rounded grains (RG),25

0.76 for melt forms (MF), 0.77 for precipitation particles (PP) and defragmented particles (DF), 0.79 for faceted crystals

(FC) and the closest value to unity is 0.876 for depth hoar (DH). This implies that the chord length distribution for depth

hoar is closest to an exponential, which can be visually confirmed by Fig. 4. We reach a similar conclusion for the
::::::::
two-point

correlation function where �
1

is already a fairly good predictor for the exponential corrrelation
::::::::
correlation

:
length when depth

hoar is considered (see Fig. 3)a). But due to the deviations from an exponential
:::::::::
distribution, an influence of shape via µ

2

on30

the optical properties would be expected from
::::::::
according

::
to

:
Malinka (2014).

Using the chord length distributions we were able to calculate the shape factors B and gG from Malinka (2014) and

Libois et al. (2013)
::::::::::::::::
Malinka (2014) and

::::::::::::::::
Libois et al. (2013) in the limit of low absorption where both approaches can be com-
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pared. The (B,gG) shape diagram (cf. Fig 1.(a) in Libois et al. (2013)
:::::::::::::::
Libois et al. (2013) ) in Fig. 7 was obtained for wave-

length 1.3µm where the Laplace transform Eq. (10) can be approximated by the first and second order. The variations of

the absolute values for B,gG shown in Fig. 7 predominantly stem from corrections which are linear in µ
1

(by virtue of

(A5)), while the small, scattered deviations from a perfect straight line are caused by µ
2

. If B and gG were evaluated for

wavelength 0.9µm, the influence of µ
2

would be even smaller. Our results show that the values for B and gG are exactly5

within the range that is suggested by ray-tracing simulations for various geometrical shapes for a wavelength of 0.9µm

Libois et al. (2013)
::::::::::::::::
(Libois et al., 2013) , but show a much smaller variation over the entire set of snow samples. Compar-

ing our results to ray-tracing of geometrical shapes is however not straightforward, since the 3D microstructures cannot be

mapped on an ensemble of regular geometrical objects.

If the obtained
:::
The

::::::::
predicted values for B are compared to actual measurements (Libois et al., 2014) also a larger variationis10

observed than predicted from the geometrical optics framework Malinka (2014)
::::
(Fig.

::
7)

:::
are

::::
very

::::::
similar

::
to

:::
the

:::::
values

::::::::
obtained

::
by

::::::::::
experiments

::::::::::::::::::::
(Libois et al., 2014) but

::::
show

::
a
::::::
smaller

::::::::
variation. It should be noted however that, as the authors discuss, the

correlation between the experimentally obtained B and shape, as defined by Fierz et al. (2009)
:::::::::::::::
Fierz et al. (2009) , is statisti-

cally not significant and variations might be attributed to shadowing effects relevant at higher densities.

Overall, our analysis indicates a smaller variation of optical properties with shape via µ
2

according to Malinka (2014)
:::::::::::::
Malinka (2014) when15

compared other methods. We can only hypothesize potential origins which are connected to the present analysis. A crucial as-

sumption made in the geometrical optics framework (Malinka, 2014) is the statistical independence of the chord length and the

consecutive ice-air incidence angle for a ray which passes through a grain. Such an assumption might be progressively violated

for lower absorption where a higher number of internal reflections in fact probes this assumption more often. Hence the true

effect of shape on B and gG might be still more pronounced as captured
::::
more

::::::::::
pronounced

::::
than

::::::::
predicted

:
by size dispersity20

via µ
2

within (Malinka, 2014). Further details on the discrepancies between measurements, simulations and theory remain

to be elucidated by combining tomography imaging and shape analysis together with optical measurements and ray-tracing

simulations in the future.

6 Conclusions

We have analyzed different microstructural length scales (�
1

,�
2

and µ
1

,µ
2

)
::
of

::::
snow

:::::::
samples

:
which were derived from the25

::::::::
two-point correlation function and chord length distribution, respectively. All length scales have a well-defined geometrical

meaning. While the first order quantities (µ
1

, �
1

) are both related to the mean size (optical equivalent diameter), their higher

order counterparts (�
2

,µ
2

) are objective measures of size dispersity present in the snow microstructure.

For the
:::::::
two-point

:
correlation function, the length scale �

2

is essentially determined by the second moment of the mean

curvature distribution. For the chord lengths, µ
2

is the second moment of the chord length distribution. Both quantities naturally30

extend the concept of mean grain size as covered by the optical equivalent diameter. The statistical relation established between

(�
1

, �
2

, µ
1

, µ
2

) indicates that practically
::
in

:::::::
practice the two measures of size dispersity can be used interchangeably.
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We have argued that size dispersity is one possible route towards an objective definition of grain shape, and thus both

quantities (�
2

,µ
2

) can be regarded as measures of shape. Within this interpretation, we found that grain shape or size dispersity

significantly improves a widely used statistical model for the exponential correlation length (as a key size metric for MEMLS

based microwave modeling).

We have also used this interpretation of shape to assess the so called optical shape factor B which can be related to µ
1

and5

µ
2

in the framework of Malinka (2014). The results suggest that size dispersity is only a first, but likely not a complete step to

characterize shape for optical modeling.

Overall, defining grain shape via dispersity measures µ
2

or �
2

provides a clear intersection between microwave modeling

of snow (if based on the exponential correlation length) and optical modeling of snow (if based on Malinka (2014)). We do

not believe this intersection to be exhaustive: The influence of shape in snow optics likely involve
:::::::
involves

:
more than size10

dispersity. And size dispersity is likely not sufficient to explain the full diversity of microwave properties of snow. But the

established overlap of relevant microstructure parameters provides a clear quantitative starting point for further improvements.

Appendix A: Optical shape factor B from moments of the chord length distribution

To derive an expression of the optical shape factor B in terms of the moments of the chord length distribution, we start from

expression (Libois et al., 2013, Eq. 6) for the single scattering co-albedo15

(1�!) =B
�V

2⌃

, (A1)

which is related to B, the average volume of a particle V , the average projected area of a particle ⌃, and the absorption

coefficient �. This can be recast in terms of the mean chord-length using (Malinka, 2014, Eq. 6), which yields, adopting the

notation of the present paper, the relation

(1�!) =B
↵µ

1

2

(A2)20

On the other hand, an expression for the single scattering co-albedo is directly provided by Malinka (2014, Eq. 56). Inserting

(Malinka, 2014, Eq. 29,42,49,18) and re-arranging terms we obtain

(1�!) =
T
out

(n)

1+

T
out

(n)

n2

bp(↵)
1� bp(↵)

(A3)

in terms of the real part of the refractive index n, the averaged Fresnel transmittance coefficient T
out

(n) (given by Malinka

(2014, Eq. 19) in closed form) and the Laplace transform of the chord length distribution bp(↵).25

To obtain an expression for B by comparing Eq. (A2) and Eq. (A3) it must be noted that both expression are based on

slightly different assumptions. While Eq. (A1) is meant to be valid only in the limit of low absorption (Libois et al., 2013),

Eq. (A3) is valid for arbitrary values of ↵. This is reflected by the existence of the limit ↵!1 in Eq. (A3), while Eq. (A2)

diverges if B is regarded as a constant which is strictly independent of ↵. Hence the comparison of Eq. (A2) and Eq. (A3) must

24



be limited to small values of ↵µ
1

in order to obtain an expression for B which can be compared to the results from (Libois

et al., 2013). That said, we equate Eq. (A2) and Eq. (A3), take into account an additional factor of 2 between Malinka (2014)

and Libois et al. (2013) due to a different treatment of the extinction efficiency, we end up with

B =

1

↵µ
1

T
out

(n)

1+

T
out

(n)

n2

bp(↵)
1� bp(↵)

(A4)

Complemented by the approximation Eq. (10) for the Laplace transform bp, the expression (Malinka, 2014, Eq. 19) for T
out

(n),5

this yields an expression of the shape factor B in terms of the first and second moment
::::::::
moments, µ

1

and µ
2

, of the chord length

distribution, the real part of the refractive index n and the absorption coefficient ↵.

To explicitly reveal the correction of B for small ↵ which involves the second moment of the chord-length distribution, we

expand Eq. (A4) around ↵= 0 to obtain

B = n2


1� (↵µ

1

)

✓
n2

T
out

(n)
� 1+

µ
2

2µ2

1

◆�
(A5)10
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