
Dear	Editor,	
	
Hereby	we	uploaded	the	revised	manuscript.	We	have	addressed	all	comments	from	
both	reviewers.		
	
In	addition	to	the	suggested	changes	in	the	rebuttal	letters	we	have	moved	the	
discussion	of	the	shape	factors	B	and	gG	partially	to	the	results	section,	and	merged	
section	4.1	and	4.2.		
	
We	have	gathered	the	rebuttal	letters	below	followed	by	a	track	changes	version	of	the	
manuscript.	Note	that	the	abstract	has	changed	significantly	but	these	changes	were	not	
picked	up	in	the	track	changes	version	of	the	manuscript.			
	
If	any	questions	remain,		do	not	hesitate	to	contact	us.	
	
Kind	regards,		
	
Quirine	Krol	and	Henning	Löwe	



Dear Aleksey Malinka,	
Thank you for your detailed and careful review and the your generally positive opinion about the work. 
We will address all your discussion points in the following, comments are copied and replies are given in 
blue. We also included the additional comment we received by email. Changes to the manuscript will be 
documented by a track-change pdf.	
Kind regards,	
Quirine Krol, Henning Löwe 

 

The article presents a study, important for optics and physics of snow. It improves our understanding of 
snow microstructure. The authors attract our attention to the importance of the third term of the expansion 
of the correlation function, related to the curvature of the air-ice interface. One of the achievements of the 
work is the correlations between the microstructure parameters, both short-scale and long-scale, which are 
established experimentally by investigating the snow samples. 

There are some points to discuss.	
 

1) The authors state that the second term in A(r) expansion (and therefore p(0) ) is equal to zero and explain 
that this is a direct consequence of the interface smoothness. However, the widely used (e.g., by Debye) 
exponential function for A(r) has the obviously nonzero second term. At the same time, there are interface 
models, such as the Switzer model, that provides strictly exponential correlation function. Particularly, in 
the Switzer model the space is dissected by a set of random planes into random polyhedrons and the 
resulting polyhedrons are assigned to ice with the probability 1-φ, and to air with the probability 1-φ. 
This interface is not smooth: it has plane facets and sharp edges. Obviously, it doesn’t match the 
morphology of aged snow, but fresh snow seems to be much closer to the Switzer interface than to 
smooth one, because of the facets and edges of ice crystals. With this in view and taking into account the 
importance of the exponential correlation function, it would be extremely desirable to discuss the facet-
edge interface and its relationships with the smooth one 
 
Reply: It is true that the second order appears theoretically if discontinuities in the structures such as 
edges and corners are present. Fresh snow, as we know, contains many of these features. The ability to 
detect this second order term and relate it to discontinuity features is however difficult due to image 
resolution and noise in the data. A theoretical sharp edge would be treated practically as a rounded edge, 
which likely shifts weight from the second to the third order term. The resolution of our snow samples is 
raised by the second referee (see comment 2) As discussed there, we only find a very weak bias of image 
resolution on the third order term. A second argument is given by the shape of the chord length 
distribution that tends to zero for small chords which is a direct consequence of the absence of the second 
order term in the correlation function by virtue of eq.(14). 
 
 
Changes to the manuscript: In the theoretical section we have added a sentence that mentions the role of 
sharp edges of the fresh snow samples. We also added the discussion on image resolution in the 
discussion session. 	
 

2) The motivation of Eq. (15) looks invalid. In general, the integral of a function from 0 to ∞ is not 
determined by its behaviour at 0. More precisely, the authors say that “A(r) depends at least on two 
independent length scales, λ1 and λ2” and further “In the absence of other relevant scales…” But „at 
least‟ doesn’t mean „only‟. It is obvious that, as λ1 and λ2 are the coefficients of expansion at 0, there are 
other terms and, hence, other independent length scales at the interval (0, ∞). Figure 1b clearly 
demonstrates the idea that the integral is not determined by the behaviour at 0, because the contribution of 
the function tail can be of any value. This note doesn’t affect the further results of the work, because the 



authors show that short-length and tail scales must correlate and try to explain why. However, at the stage 
of Eq. (15) this statement looks ill-founded. Let me suggest the idea. 
As the value of the correlation length ξ is derived from the fitting the correlation function by the 
exponential at the whole interval, the estimation  
 

 ∫A(r)dr	=ξ 
 
looks much more reliable. Partially, this implication is confirmed by the fact that, when considering the 
correlation between ξ , µ1 and µ2 , the obtained correlation coefficient at µ2 is higher than that at µ1. 
(Minor: the differential dr is missing in the integral). 
 
Reply: We acknowledge the ambiguity in motivating Eq. 15 in the present form, and for that reason we 
abandoned this argument, as also suggested by the second referee (see his comment 6).	
The proposed idea is an interesting alternative to define and measure ξ. For correlation functions that are 
strictly exponential this definition is equivalent. This is however more in the direction of the length scale 
required for the microwave scattering coefficient, where the relevant scale (raised to the third power) is 
the zero mode of the Fourier transform of the correlation function, i.e. the volume integral over the 
correlation function. We will however stick here to the more “traditional” definition and estimate ξ by 
fitting the correlations function as done in (Vallese 1981, Mätzler 2002, Calonne 2015, Proksch 2015, 
Löwe 2011,2013,2015)	
 
Changes to the manuscript: We have changed the motivation of eq.(14).  
 

3) Page 14, line 25: “In the previous sections we found a statistical relation between the exponential 
correlation length and the chord length moments on the other hand.” I guess the authors wanted to say 
“between the geometrical scales λ1 and λ2 and the chord length moments,” because the relation between 
the exponential correlation length and the chord length moments is considered just below. 
 
Reply: That is correct. 
 
Changes to the manuscript: We have changed the sentence accordingly. 
 
 

4) Introducing the factor 1−φ into Eq. (24) the authors go back to the length λ1 in the second term by virtue 
of Eq. (13). This is worth to note. Also, with the factor 1−φ in Eq. (23) the second term turns to µ1 . In 
the whole, it is worth to underline that λ1 and µ1 are always related with Eq. (13) and indeed µ1 have the 
meaning of the optical size, being exactly µ1 = 2dopt/3 independently of the snow density.  
 
Reply: We agree that we should emphasize both, the μ1 and λ1 relation and its independency of the 
density.  
 
Changes to the manuscript: We added a sentence in the theoretical section to emphasize the μ1 and λ1 
relation and included the (1-φ) term in the discussion.  
 

5) Page 19, line 18-19. “The results in Malinka (2014) are mainly based on the Laplace transform of an 
exponential, p(α) = 1/(1+μ1α), which only involves μ1 (or the optical radius via Eq. 1).” This is not 
completely true, because the exponential law is considered only as an example, though very important 
one. I would just delete this sentence, because it doesn’t carry important information.  
 
Reply: We agree. 	
 
Changes to the manuscript: Deleted the sentence.	
 



6) Page 19, line 20, table 1: “relative importance αµ2/2µ1 of the second-order term compared to the first-
order term in the expansion Eq. (12).” This value doesn’t look very informative. I think that much more 
informative will be the value, proportional to the variance α (µ2-μ12 ) /2μ1  , because it will give the 
deviation from the exponential law.  
 
Reply: We agree that the deviation of the exponential distribution would be illustrative here. If this 
deviation is defined by subtracting the two Taylor series up to the second order and normalizing by the 
first order term, we however end up with α(µ2/2-μ12) /2μ1. Alternatively, the deviation from an 
exponential can be also characterized by the ratio (µ2/2μ1

2), which is exactly unity for an exponential 
distribution. The values found here are considerably lower (this can be directly deduced from Fig. 8 of the 
present manuscript). Since this Figure will be replaced according to a comment from reviewer 2, the 
values of this ratio will be given in the Discussion. This also confirms what is already shown in 
Fig.5/Fig.8, namely that the chord length distribution of depth hoar is systematically closest to an 
exponential.	
 
Changes to the manuscript: Table 1 is adjusted and the range of values for the ratio is given in the 
discussion section.	
 

7) It would be nice to consider these relations taking into account the relationship between A(r) and p(l) in 
the general case of a dense medium, not restricted by the dilute one 
 
Reply:  We actually mentioned this point explicitly in the discussion. The work (Roberts and Torquato 
1999) investigated this connection for Gaussian random fields, with good agreement over a broad range 
of volume fractions. This also indicates that the assumption of independence of successive chords (which 
underlies (Roberts and Torquato 1999) does not seem to be very restrictive. Their method however 
requires numerical Laplace inversion and the computation of another correlation function. For Gaussian 
random fields the latter is known analytically, but here it would require a considerable additional effort to 
introduce the relevant concepts and carry out the numerics, with almost no benefit for the established 
connections between the length scales. 
 
Changes to the manuscript: The discussion has been rewritten and this point is made clearer now.	
 

8) The point that was raised in the email discussion: you compare the expression A2 used by Libois et al., 
2013 with the expression A3 from my paper (or eq. 23 in that numbering). But expression A2 (A1) is 
written for small absorption only, while eq. A3 is applicable to any absorption values. You can easily 
check this by the limit of strong absorption:	
when α =∞ and L( α) = 0, therefore 1-ω = Tout(n)   or   ω = 1-Tout(n) = Rout(n), which means that all the 
light that goes into the particles is absorbed. This limit is not true for A2. For comparison you'd better 
take eq. 25 for small absorption instead of general eq. 23: 1-w = n2 αμ1 (in your notation) and easily find 
the B-factor B = n2 = 1.68 at 1.3 um for ice. The deviations of B from this value demonstrate the 
difference between the models used by Libois et al. and the model of the random mixture. 
 
Reply: We agree that the limiting case of α and to ∞ is not consistent in both expressions. However in 
practice we compare both expressions only in the limit of small α, for which both are supposed to be 
valid. This issue was brought up also by the second referee under point 2 and is further discussed there. 	
 
Changes to the manuscript: We clarified the underlying assumptions in the appendix and added 
necessary details to the discussion of the Figure in the discussion section.	
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Dear Quentin Libois, 

Thank you for your very comprehensive and careful review and the overall positive opinion. We will 
address your comments point by point below, comments are copied and replies are given in blue. 
Changes to the manuscript will be made available by track-change pdf. 
Kind regards, 
Quirine Krol, Henning Löwe 
 
 
 
 
Interactive comment on “Relating optical and microwave grain metrics of snow: The relevance of 
grain shape”, by Q. Krol and H. Löwe. 
 
 
 
General comments: 
 
This paper addresses the relation between the grain metrics commonly used to model snow optical and 
microwave properties. At first order, snow microwave properties are governed by the exponential 
correlation length ξ while snow optical properties firstly depend on snow specific surface area (SSA). 
However, at second order snow grain shape also affects snow radiative properties. From this statement, 
statistical relations are derived that make the link between snow microstructure characteristics 
(curvatures) and snow physical properties. The relation between ξ and SSA is thus improved compared 
to previous empirical relations, by adding a contribution of snow grain shape. The general theoretical 
framework of Malinka (2014) is then used to show that snow optical properties depend on the moments 
of the chord length distribution. Based on this framework, another statistical relation is derived to 
express the second moment of the chord length distribution in terms of microstructure length scales. 
From this, a statistical relation between ξ and the first two moments of the chord distribution is derived. 
This suggests that shape parameters derived from optical measurements could be used as inputs for 
snow microwave modeling. This point is supported by comparing the values of the optical shape 
parameter B deduced from Malinka (2014) theory to values determined experimentally.  
 
The paper is overall well written and pleasant to read, the objectives are well defined at the end of the 
introduction. The theoretical background is nicely presented and clearly outlines the problem. The 
approach is original and takes advantage of recent works in snow optics. It also applies the statistical 
properties of general random heterogeneous materials to the case of snow, thus linking rather 
theoretical studies and practical cases as illustrated by the use of μCT images of snow samples. The 
authors stress the need for a unified definition of grain shape and propose mean curvatures as such 
definition. They show that both microwave and optical properties can be expressed in terms of SSA 
and mean curvatures. Their approach is supported by the analysis of a large set of μCT images. They 
also provide valuable physical insight on the representation of snow microstructure as a particulate or 
heterogeneous medium. For these reasons, I recommend this paper be published in The Cryosphere. 
However, a number of critical points should be addressed before publication, related in particular to the 
fundamental assumptions underlying the presented theoretical framework. 
 
 
 
 
 
Specific comments: 
 
The theoretical framework presented in this paper strongly relies on critical assumptions that are not 
sufficiently discussed, although several important results largely depend on them. 
 

1) Throughout the text, snow is considered isotropic and the derivations significantly rely on this 
critical assumption. Although this assumption is clearly stated, several details are lacking to 
convince the reader that the results remain reliable. First, more details on the investigated 
snow samples should be provided. So far only 3 lines (section 3.1) present these critical 



elements of the study, which is not enough. Do these samples consist of sifted snow, natural 
snow samples taken in the field without perturbing the microstructure, snow samples resulting 
from metamorphism experiences in the laboratory...? It is clear that depending on the origin of 
the samples, the isotropic hypothesis is more or less acceptable. For instance depth hoar is 
known to be highly anisotropic and can hardly be investigated under this hypothesis. The 
authors should consider removing highly anisotropic snow samples if they do not fit in the 
theoretical background. 
At the same time, the authors do have the necessary material to further discuss the isotropic 
hypothesis because the parameters are obtained from averages over the 3 directions x, y and z. 
Giving a hint of the actual anisotropy from the analysis of these 1-D parameters might help 
the interpretation of the data and estimate the associated uncertainties. 
 
Reply: 
We probably did not sufficiently elaborate on that point. To begin with, it is important to note 
that, strictly speaking, our analysis does not assume isotropy. We rather employ (wherever 
necessary) orientational averaging to reduce the information that is eventually used for the 
analysis. The geometrical interpretation of the involved quantities does not rely on isotropy. 
As an example, the relation between the slope of the correlation function via λ1  and the 
surface area hold also (rigorously) for arbitrary, anisotropic systems, after orientational 
averaging (Berryman.1987). The same is likely true also for  λ2 , namely that the orientational 
average of the third derivative of the correlation function of an anisotropic system is related to 
interfacial curvatures in the suggested way. We did not find a mathematical proof of the latter 
statement in literature, but our comparison of λ2 (obtained from the correlation function, 
orientationally averaged) with   λ2 (obtained from direct computation of the interfacial 
curvatures) strongly suggests its validity.  As an additional confirmation, we checked (plot 
below) that the remaining scatter is not caused by anisotropy, by plotting the residuals 
between the estimate λ2

vtk  (where anisotropy does not play a role) and λ2
cf, which is not 

correlated with the anisotropy (R2=.026). Accordingly, we also use the other length scales in 
the meaning of orientational averages, of arbitrary anisotropic systems. For the exponential 
correlation length this has been done similarly before. That said, none of the samples must be 
discarded. 
Criticality of this procedure (not assumption) can only be revealed by measurements that will 
decide about the relevance of these orientationally averaged length scales for a measurement 
of anisotropic nature.  

 
Changes to the manuscript: We add a part to the Discussion that discusses the anisotropy 
and retrieval of the parameters, however without showing this plot.  
 
 

 
2) In this study, the successive chords in snow are assumed independent, which is a strong 

assumption not really defended by the authors. This same assumption was used by Malinka 
(2014) who considered a random medium, whose optical properties where then derived. 



However, this author clearly states in his conclusion that: “The requirement of stochasticity is 
mandatory: the facets orientation and the ray path length inside solid or voids must be 
independent variables. [...] The question of applicability of the model to any particular 
medium should be considered separately based on compliance with the experimental data.” 
Practically, one might expect light rays to be trapped in snow grains or selectively focused in 
preferential location, which would result in different chords having different realization 
probabilities. 
 
A critical consequence of the random distribution hypothesis is that at low ice absorption, the 
optical properties of this random medium do not depend on the shape parameter (see e.g. eq. 
(25) of Malinka (2014) from which B can easily be derived). This is somehow contradictory 
with the definition of grain shape, which is expected to impact snow optical properties in the 
standard particular representation. 
 
An alternative approach could be to validate this random medium assumption by comparing 
the values of B retrieved from Malinka (2014) to those determined by Libois et al. (2014), 
which are very similar. Once the random medium hypothesis is somehow validated, then the 
shape parameter only impact optical properties at more absorbing wavelengths. An important 
corollary of this would be that only optical measurements at relatively absorbing wavelengths 
would contain information about snow grain shape. 
                                                                                                           
Reply: 
 
We agree that for this step of deriving the shape parameter B from Libois 2013 by using 
Malinka 2014 involves a particular assumption about the independence of chords and adjacent 
surface normal orientations (note that our analysis of the statistical links between the length 
scales is however not affected by this) This issue was also brought up by the other reviewer, 
however rather pointing out the assumption of low absorption underlying Libois 2013 (which 
in contrast does not affect Malinka 2014). We are thus faced with the situation of linking two 
models/expressions that are based on two different, disjunct assumptions. That said, it is not 
entirely correct of using the closeness of the values found here to the values from Libois 2014 
to confirm that the assumption of independent chords is not very restrictive. This aspect is 
now explained in more detail when deriving and discussing this connection. In the end (to 
produce Fig8) we evaluate B in the limit of low absorption (to cope with Libois). It is 
important to note that the assumption of independent chords (used in (Roberts and Torquato) 
already mentioned now in the paper) is slightly different from the assumption used by 
Malinka 2014. This will be also made clear. 
 
 
Changes to the manuscript:  The derivation of B is extended gG, and the assumptions are 
discussed.  
 

 
3) When it comes to the analysis of μCT images, the question of voxel size (ie resolution) is not 

enough discussed. In fact, the resolution varies from a set of measurements to another and is 
generally not that small compared to snow size metrics. This probably has an effect on the 
derived results and might explain why different subsets of points appear on several Figures 
(e.g. 2 bottom left and 4a). The smoothing parameter is discussed in sufficient details but 
resolution is probably an issue as critical. 
 
Reply: We agree that the possible impact of the resolution could influence the results if the 
obtained quantities of interest are within a similar range. In general, the choice of resolution 
for CT images is made in accordance with the structure, such that the sample/resolution is 
statistically representative for the main quantities of interest (density and specific surface 
area). To assess the reliability of the obtained results we have compared them to the 
alternative VTK based method, for which we find very similar results. If the values for s are 
compared to the values that are obtained by the vendor software, we also see a good 
agreement with the VTK based method. To further confirm that the main quantity λ2 is not 
systematically affected by image resolution we have plotted below the ratios of λ2/voxelsize as 
a function of voxelsize, which are on average 9.8 with a standard deviation of 2.6. Only two 



samples have ratios 4.5 and the rest is 6.0 and higher.  The correlation with the voxel size is 
R2=-.20, but overall there is no systematic trend in λ2/voxelsize for lower resolution (which 
would indicate a worse representation of the characteristic scales).  
 
 

 

 
 

 
 
Changes to the manuscript: 
We added a sentence on the spatial resolution of the data sets, its general importance and 
added the values for the characteristic ratios λ2/voxelsize (the plot is however not included) 
 
 

4) Although snow optical properties equally depend on the parameters B and g, the paper is 
mostly focused on B. The analysis presented for B can very easily be extended to g. This 
would be more exhaustive because all parameters relevant to snow optics would be tackled, as 
all parameters (actually only ξ) needed for snow microwave modelling are. 
 
Reply: We agree that this extension to g (or  gG ) is worthwhile for a comparison to 
Libois.2013. We replaced figure 8 by a plot of 1-gG versus B (similar to libois.2013).  
 
Changes to the manuscript: Table 1 is extended and Fig.8 is replaced by the a plot of B 
versus 1-gG 

 
5) The manuscript would benefit from a slight reorganisation of some parts because redundancy 

is found at several points and excessive details sometimes pollute the paper. Some elements 
are given too early (e.g. details about the Euler characteristic that should probably not be 
mentioned before the discussion section), some others should be provided in a different order 
(more details are provided along the technical comments). Also sections 3.3 and 3.4 could 
probably be merged. 
 



Reply: We agree, this is also in accordance with a suggestion of the editor. As suggested, the 
definition of the Euler characteristic in the theory section is left out left out, since it is not 
explicitly required.  The Discussion section is restructured. It discusses first the methodology, 
including resolution, anisotropy, and the geometrical interpretation of λ1 and λ2. Afterwards, 
that the statistical models are discussed. We finalize it by discussion grain shape, including the 
connection to (Libois.2013,2014) and (Malinka.2014).  
 
Changes to the manuscript: As indicated above. 
 

6) The authors make their best to infer the shape of the statistical relations from theoretical 
backgrounds. However, this often adds noise to the paper because 1) the underlying 
assumptions are often very restrictive and not applicable to snow (dilute medium, random 
medium, use of Taylor expansion at 0 for estimating functions at infinity...) and 2) these 
statistical relations are eventually revisited by adding terms. I think there is no problem 
assuming a certain type of relation, and then testing it with the available data. For sure, the 
type of relation can be suggested by a rapid analysis of existing formulae, but there is no need 
trying to justify it too much. In this context, I would suggest to remove the unnecessary 
calculations and reformulate the section around Eqs. (14) and (15). For instance the authors 
could say that they show the validity of Eq. (14) from images, even though initially this 
relation is only valid to restricted cases. All the attempts to justify this equation are 
unnecessary 
 
Reply: We agree. This is also in accordance with the other reviewer. These points are left 
for the discussion.  
 
Changes to the manuscript: The motivation for eq.15 is removed and this section is 
reformulated. 
 

7) The authors should give a consistent name to all important quantities ξ, λ1 , λ2, μ1, μ2 and keep 
those names all along the manuscript. For instance, exponential correlation length and 
correlation length are sometimes used alternatively without a clear distinction. Porod length, 
optical diameter and curvature length are used sporadically as well. 
 
Reply: This was basically an attempt to stick to the names previously used in literature. 
But we agree, naming is now consistent and less ambiguous: λ1 is named the Porod length, λ2 
is named the curvature length, the name for ξ, the exponential correlation length, remains. For 
μ1 and μ2 we stay with the first and second moment of the chord length distribution.  
 
Changes to the manuscript: The naming is made consistent throughout the manuscript.  
 

8) At the light of the comments above, it will probably be necessary to rewrite the last section of 
the discussion (5.4). 
 
Reply: We agree, see comment 5).  
 
Changes to the manuscript: The discussion rewritten, taking all comments from both 
referees into account 

 
 
Technical comments: 

 
Could “snow grain size” be used instead of “grain metrics of snow”? Alternative suggestions (these are 
only suggestions):  
- “Relating optical and microwave snow grain size: The importance/relevance of using/considering 
grain shape”  
- “Accounting for snow grain shape to improve the relation between optical and microwave snow grain 
size” 
We agree (maybe) to be discussed. 
 
Abstract: 



 
p.1 l.1: rephrase to better compare the roles SSA and exponential correlation length play in determining 
snow optical and microwave properties. Either from the physical point of view: “microwave 
emissivity/properties mostly depend(s) on the exponential correlation length”. Or from the modelling 
point of view : “the exponential correlation length is the relevant quantity in most snow microwave 
models” or “the exponential correlation length is used to simulate snow microwave properties”  
Reply: We agree. 
Changes: The sentence is changed to “the exponential correlation length is the relevant quantity in 
most snow microwave models”. 
 
p.1 l.3: a microwave model is not “forced” by optical measurements, it uses quantities derived from 
optical measurements (e.g. SSA) as inputs. Forcing more generally refers to something external to the 
system (e.g. boundary conditions). This is correctly said p.2 l.9.  
Reply: We agree. 
Changes: “To facilitate forcing of microwave models by optical measurements” is replaced by “to 
derive input quantities of microwave models from optical measurements”. 
 
p.1. l.3: “the understanding of ξ” is vague. Simply say “To refine this relation between...]”  
Reply: We agree. 
Changes: the sentence is adjusted to “To refine the relation between…” 
 
p.1 l.5: it is a statistical relation more than a prediction  
Reply: We agree. 
Changes: “Prediction” replaced by “relation”. 
 
p.1 l.8-9 : maybe remove this sentence because it does not provide additional information about the 
results. Also, it is somehow questionable in terms of applicability within the present theoretical 
framework. Keep it for the body of the manuscript. 
Reply: We agree. 
Changes: Deleted. 
 
p.1 l.10 : B is called the absorption enhancement parameter. Consider doing the same calculations with 
g. 
Reply: We agree. 
Changes: The parameter g, and therefore gG, can be directly inferred from (Malinka.2014). This is 
added to the analysis and abstract. 
 
p1. l.10 : the last sentence of the abstract is not clear. Maybe say “Our results suggest that optically 
derived shape parameters can be used to refine the estimation of ξ”. 
Reply: We agree. 
Changes: Last sentence changed to say “Our results suggest that optically derived shape parameters 
can be used to refine the estimation of ξ”. 
 
Introduction 
 
 
p.1 l.16-19 : maybe invert the order of the two sentences to keep chronological order 
Reply: We agree. 
Changes: The sentences are inverted. 
 
p.2 l.4 : “with the MEMLS model” instead of “is used” 
Reply: We agree. 
Changes: Adjusted accordingly.  
 
p.2 l.14 : “though less significant...” is risky because the impact can actually be significant (errors up to 
50%) for BRDF or light penetration simulations for instance. 
Reply: We agree. 
Changes: Changed. 
 
 



p.2 l.16 : reference to Picard et al. (2009) might be relevant 
Reply: We agree. 
Changes: Reference is included. 
 
p.2 l.17 : in this study the absorption enhancement parameter B and asymmetry factor g (name these 
factors) are equally important, except that only B can be estimated from optical measurements. Note 
that Libois et al. (2014) experimentally determined the parameter B for a variety of natural snow 
samples. 
Reply: Thanks for pointing this out; we have not been aware of the paper. 
Changes: Sentence on the measurement of B is added, including the citation. The discussion of B 
comes back to this point. 
 
p.3 l.1 why “systematically?” 
Reply: No specific reason. 
Changes: Systematically is deleted. 
 
p.3 l.12 : not clear what “images” you're talking about 
Reply: We agree. 
Changes: “images” is replaced by “μCT images”. 
 
p.3 l.15-17 : maybe keep those last 2 sentences for the discussion and mention it more shortly at this 
stage because this is hard to understand without the whole paper in mind. 
Reply: We agree. 
Changes: Rephrased 
 
Theoretical Background 
 
p.3 l.21-22 : very redundant with p.1 l. 20-21. 
Reply: We agree.  
Changes: The sentence has been reformulated. 
 
p.4 l.5 : why “in contrast”? Is the exponential approximation only valid for large r values? 
Reply: We agree. The exponential approximation is of course based on a fit for all r.   
Changes: We removed “In contrast” from the sentence.   
 
p.4 l.14: use m2 kg-1 instead 
Reply: We agree. 
Changes: Adjusted accordingly. 
 
p.4 l.24-28 : consider mentioning the topological dimension of the mean Gaussian curvature only in the 
discussion, because at this stage the reader does not understand the point. 
Reply: We agree. 
Changes: Removed and included in the discussion. 
 
p.4 l.26: the mathematical notation is not clear. Maybe use dS or dA to explicitly state that this is an 
average on the surfaces? This integration element could also be moved after the integrand. 
Reply: We agree. The reference to the Euler characteristic is however moved to the discussion. 
Changes: Adjusted accordingly. 
 
p.4 l.27: that the local. Why is local in parenthesis? 
Reply: Local refers to the fact that the determination of this part of the correlation function is an 
average over nearest (or next nearest) neighbours (in the voxel images) which is commonly referred to 
as “local”. This is contrasted non-local (i.e. long range) effect.   
Changes: The sentence is moved to the discussion, and local is removed to avoid confusion. 
 
 
p.6 l.10: detail why z is actually small and mention in which conditions this theoretical framework is 
valid. This in in fact detailed below, but inverting the order might be helpful. 
Reply: The text could indeed improve from reordering these sentences. 
Changes: Reordered accordingly. 



 
p.6 l.13 : to the theory of  
Reply: We agree. 
Changes: ‘the’ is inserted. 
 
p.6 l.14 : it's 4π rather than 2π. 
Reply: We agree. 
Changes: Changed accordingly.  
 
p.6 l.20: state here that the following sections investigate this issue and try to find a geometrical 
meaning of this second moment. 
Reply: We agree. 
Changes: A sentence is inserted.   
 
p.7 l.2 : would it be useful to briefly define the surface-void correlation function? Otherwise 
Reply: We won’t go into the precise definition of the surface-void correlation function since it does not 
affect the understanding of the method.  It seems however justified to mention it here since this part 
indicates the required effort to improve the relation between the two point correlation function and the 
chord length distribution to be valid not only for dilute systems (comment from the other reviewer). 
Changes: No   
 
p.7 l.4 : please clarify the meaning of “this is not a practical limitation” 
Reply: This question is related to the more fundamental question about the validity of independent 
chords from point 2.  
Changes: see point 2.  
 
p.7 l.1-7: since eventually the relation of Roberts and Torquato (1999) is not used, this part adds noise 
to the paper. Consider removing it (or mention it more concisely) if indeed it is not used. 
Reply: We agree that we did not exploit this reference extensively. It is however crucial to comment 
on the assumption of the independence of consecutive chords.   
Changes: The sentence is reformulated and used for a slightly different purpose (addressing point 2). 
 
p.7 l.12: not clear why you keep going while snow is clearly not a dilute medium. If the relation 
actually holds for snow (which seems to be the case as you show its consistency), state there that you 
demonstrate its validity for snow. 
Reply: We agree. (see also point 6). This point has been left out here since we come back to it in the 
discussion.     
Changes: The section is cleaned up accordingly.  
 
p.7 l.15: it seems that integrating by parts result in a factor [dA(l)/dl ]. Why is it equal to 0? True for 
the exponential case. Idem for p.7 l.18 
Reply: The two-point correlation (and thus its derivative) must go to zero for random systems for large 
r. Only in the presence of long range order (e.g. objects placed on a regular lattice) correlations persist 
to infinity (periodicity) 
Changes: None. 
 
p.7 l.20 : the expansion is only valid for small r values, while here the integration goes much beyond. 
Reply: This equation is removed in the new manuscript, and therefore not discussed here anymore.  
Changes: Revision of page 7. 
 
p.7 l.20-24 : This paragraph somehow adds noise to the flow of the paper. Would it be problematic to 
make it shorter and simply state that in Eq. (15) the integral is a function of λ 1 and λ2 and must be of 
“length” dimension? I think this would not change the use of this equation later on (section 4.4). This 
approach would also allow the use of a constant term in the fit of Eq. (21) without further justification. 
Reply: We agree. Thank you for this suggestion, which serves as the basis for the new formulation. 
Changes: Revision of page 7. 
 
Methods 
p.8 l.4 : More details about the preparation of the samples should be provided, and the isotropy of the 
prepared samples should be discussed. If for instance some samples obviously do not follow the 



isotropy requirement (e.g. depth hoar) they should be removed from the analysis. 
Reply: We agree that we could include more information on the samples that are used.  Next to that, 
the isotropy (or rather absence of it) is mentioned. In the discussion session this is treated more 
extensively.  
Changes: More information on the samples is given, and isotropy is shortly discussed.  
 
p. 8 l.10 : the point regarding voxel size is very critical because the length scales are similar to voxel 
size, implying potential impact of voxelisation on the results. Can images at 18 and 50 μm be 
compared? See specific comment 3. 
Reply:  See answer to Comment 3. 
Changes: We have discussed the effect of resolution in the methods and we come back to that in the 
discussion in more detail. 
 
p.8 l.11 : before averaging, an evaluation of the anisotropy (or isotropy) should be given, because the 
whole theoretical framework is based on the isotropic hypothesis. 
Reply: see answer on point 2 
Changes: see comment 2. 
 
p.8 l.15 : Figure 1b does not really illustrate the exponential regression 
Reply: In fact the formula that is used to create this figure is an exponential function. The illustration is 
a graph representing the involved parameters.  
Changes: Figure is adapted with an illustration of the retrieval of λ1 and ξ. 
 
p.8 l.23 : the meaning of “in view of shape” is not clear. 
Reply: We agree. 
Changes: This sentence is changed to: “To confirm the geometrical interpretation of λ1

cf  and λ2
cf we 

use an alternative and independent method to estimate these parameters by measuring the surface area 
and the local interface curvatures with a VTK-based image analysis.  In short… ” 
 
 
p.8 l.23-25 : state more clearly that the section aims at validating the Eqs (6) and (8) by computing the 
interfacial area and interfacial curvatures. 
Reply: We agree.  
Changes: see previous changes. 
 
p.8 l.30 : could this smoothing parameter be slightly more detailed, because it seems critical in the 
following section. What's the typical range, what values were used in the past? For what kind of 
applications? 
Reply: We agree. The smoothing parameter is a value for the number of times the Laplacian 
smoothing operation is applied. The smoothing has been discussed in (Krol.2016) and we adopted the 
same value for S here.  
Changes: A short description of the filter is added.  
 
p.9 l.4 : for S = 200, the interfacial area is larger, but the points seem also more spread, which is not 
discussed. 
Reply: This is true. This is likely due to the fact that smoothing is filtering out small perturbations in 
the surface, reducing the area and increasing the values for λ1. To which extend this happens is sample 
dependent, which causes the estimate for λ1 to show a higher variance.  
Changes: A sentence is added to clarify this. 
 
p.9 l.6-11 : what is the objective of this section? Does it serve the paper? Should it be used to support 
the isotropic hypothesis? 
Reply: We partly agree. We removed the figure but we kept this small paragraph to elaborate more on 
the surface representation and smoothing. The factor of 3/2 has been the origin of quite some confusion  
in the past, and we would like to take the opportunity to mention and hopefully clarify this point.  
Changes: Figure is removed.  
 
p.9 l. 16 : one should be with superscript “cf” 
Reply: We agree. 
Changes: adjusted. 



 
Figure 2 (bottom left) : there seems to be 2 sets of points, one consisting of RG. Could this observation 
help interpreting the limitation of S = 50? 
Reply: In fact there are as many ‘groups’ of data as there are time-series present, which naturally show 
a pseudo- continuous deviation from the curvature estimates. The deviations from the 1:1 line are 
caused by the overestimation of the curvatures by the remaining steps in the triangulation from the 
underlying voxel-based data, and is thus anti-correlated with the size of the structures and correlated 
with voxel size. In the end we chose a smoothing parameter that is, on average, acceptable for all 
involved samples.   
Changes: A sentence is added to the discussion to clarify this apparent grouping of samples.  
 
Figure 4a : there seems to be 2 sets of points. Do they correspond to similar subsets of μCT images? 
The same 2 sets are observed in Fig. 6a 
Figures 4b and c : DH is clearly an outsider here. Is it relevant to keep it in this study? 
Reply: As explained above, these two sets of points are correlated since they are part of a time series. 
We will emphasize this when the samples are introduced in section 3.1. The depth hoar samples that 
show a higher deviation in Fig  4b and 4c,  do not have particularly higher anisotropy values than the 
other depth hoar samples that do not have high residuals.   
Changes: The data is introduced in more detail as well as the fact that some of them are part of a time-
series.  The anisotropy is discussed in more detail in the reformulated discussion.  
 
Results 
 
p. 11 l.11 : one extra “and” 
Reply: We agree. 
Changes: ‘The’ is deleted. 
 
p. 11 l.11 : is it consistent to have a R2 
 less (0.731<0.733) for the regression with an additional 
parameter? 
Reply: Yes it is, since fitting eq.(18) includes two extra parameters which, if done correctly, should be 
accounted for in an adjusted correlation coefficient. Since a0 is negligible to the fit this does not show 
in R2 but it is however penalized in the reduced correlation coefficient.  
Changes: we included “adjusted correlation coefficient”. 
 
p.13 l.1 : the name of λ1 should be consistent between titles of sections 4.1 and 4.2. In section 4.1, 
optical diameter is not mentioned except in the title. 
Reply: We agree. 
Changes: The subtitle is changed from “Relating exponential correlation length to optical diameter” to 
“Relating exponential correlation length to the Porod length”. 
 
 
p.13. l.7 : I don't really understand this justification and don't think this is necessary. I would proceed 
the other way round instead. The figure 4b could be discussed at the end of section 4.1 with the aim of 
understanding the remaining residuals. This would naturally lead to the regression Eq. (19). 
Reply: We agree.  
Changes: The order is reversed.  
 
 
p.13 l.13 and 14: Eq. (14) instead of (16) 
Reply: We agree. 
Changes: Adjusted. 
 
p.14 l.3 : Eq. (15) in stead of Eq. (14) 
Reply: We agree.  
Changes: Reference adjusted.  
 
p.14 l.17 : here you try “heuristically” a regression, which is fine. This somehow contrasts with the 
previous regressions that were based on the derivation of equations. This could also be motivated by 
the form of Eq. (13) that includes the porosity factor. I think there is no problem assuming a relation, 



and then testing its validity with measurements. This is sometimes easier to understand than long 
inexact derivations. 
Reply: We agree. In this section we changed the motivation for the statistical models involved. 
Changes: We reformulated this sentence to “To motivate a statistical model we start from eq.(15) and 
test different expressions for f(φ,λ1,λ2). Since f has dimension length a natural first candidate would 
be..  ”. l.8: The sentence “Although not predicted from Eq.20…” is removed. 
 
p.14 l.12 : it is awkward to read that the benefit is small but to see the new regression, though. I would 
put it more positively: “The correlation coefficient (R2=0.295) is small but including λ2 in the analysis 
further improves the fit”. 
Reply: We agree. 
Changes: adjusted 
 
p.14 l.24-25 : this is sometimes disturbing to read “correlation length” at some point and “exponential 
correlation length” later on. Please remain consistent throughout the manuscript, with each quantity (ξ, 
λ1, λ2) having its dedicated and constant name. Consider using “exponential” for the first part of the 
sentence, and “correlation length scales or Porod length and curvature lengths (for instance)” for the 
second part, to make the link with Eqs. (19) and (23) more obvious. 
Reply: See comment 7. To avoid confusion between the exponential correlation length and correlation 
length we stick to the term Porod length for λ1. 
Changes: Naming changed. 
 
Figure 6 : remove “see”. λ1 is not the optical diameter. 
Reply: We agree. 
Changes: Removed “optical diameter”, changed to Porod length. 
 
Discussion 
p.16 l.2 : in complement to this discussion, this might be worth giving the sensitivity of Eq. (16) to the 
smoothing parameter, and possibly to the voxel size as well, if this makes sense. 
Reply: The smoothing parameter only influences the VTK-based parameters. The voxel size has an 
impact on the estimates of λ1,  λ2,  μ1 and μ2 and will be discussed in more detail.  
Changes:  Voxel size is detailed in the discussion.  
 
p.17 l.5 : remind what grain size is because a1 is the coefficient for λ1 (which is optical diameter or 
grain size?) 
Reply: We agree. 
Changes: We adapted this sentence to “As a first step we have analysed the statistical relation between 
exponential correlation length and the Porod length. The latter is referred to as simply “grain size” or 
correlation length in Mätzler( 2002)”. 
 
 
p.17 l.6 : again depth hoar could be removed from the analysis if it does not satisfy the conditions of 
the theoretical framework. 
Reply: As discussed under point 1. Accordingly, we will argue in favour of keeping these samples.  
Changes: None.  
 
p.17 l.7 : this is not clear what is also shown by those data. That the coefficient is larger for depth hoar? 
Reply:  The results from Mätzler( 2002) also distinguish depth hoar ξ=.8λ1 and other snow types 
ξ=.6λ1.    
Changes: The sentence is changed to “Mätzler’s model predicts a1 = 0.75, which is an average of 
a1=.8 for depth hoar and a1=.6 for other snow types. Comparing this to our result, a1=.79, this is 
consistent since we have many depth hoar samples in the data set, which indicates an even larger 
influence of snow type or grain shape.”  
 
 
p.17 l.21 : Eq. (7) instead of Eq. (1) 
Reply: We agree. 
Changes: adapted 

 
p.17 l.32 : there were attempts 



Reply: We agree. 
Changes: adapted 
 
p.18 l.5 : why is “independent” in italic. Idem for p.18 l.15 “if” 
Reply: We agree that it is not necessary to stress the words ‘independent’ and ‘if’. 
Changes: Adapted.  
 
p.18 l.5 : where does this K/3 come from? It is K/24 in Eq. (8) 
Reply: Yes, K/3 must be compared to H2. 
Changes: We adapted Eq(8) to 1/8( H2-K/3) to make this obvious. 
 
p.18 l.12 : this point is interesting, but puzzling as well. Indeed, from an optical point of view, a 
polydispersion of spheres will have the same “shape” parameters as a monodispersion in the 
geometrical optics approximation (and for low ice absorption), because B and g primarily depend and 
the shape, not on the size. Hence polydispersion would affect curvatures, but not grain shape as defined 
from an optical point of view. Said differently, a polydispersion of spheres will have optical properties 
similar to a monodispersion with same SSA, but different microwave properties. 
Reply: We agree. 
Changes: None. 
 
p.18 l.32 : for such a system? 
Reply: Yes. 
Changes: Changed. 
 
p.19 l.10 : wavelengths (in a single word?) 
Reply: We agree. 
Changes: wave lengths -> wavelengths. 
 
p.19 l.12 : the mentioned paper rather suggests that g for spheres is larger than g for snow, and that B 
for spheres is smaller than B for snow. 
Reply: We agree. This is also consistent with the values we calculated for g and B shown now in Fig.7 
Changes: Adapted.  
 
 
p.19 l.12 : the superscript G for the g refers to “geometrical”, that does not account for the diffraction 
contribution to scattering. This does not change the sentence but should remain consistent throughout 
the paper. 
Reply: We will use consistently gG and B. 
Changes: notation adapted.   
 
p.19 l.12 : it depends on shape rather than includes it 
Reply: We agree. 
Changes: include->depends 
 
p.19 l.16 : it's 4π rather than 2π. By the way this quantity was already defined p.6. Then check the 
values for the following text and those shown in Table 1. 
Reply: Checked 
Changes: None. 
 
Table 1: 
 
Fraction of second to first rather than first to second order. Precise that mean and standard 
deviation are among all samples. Write 170 rather than 1.7 x 102.  
The values suggest no influence of shape at 0.9μm, which is consistent with the remark p.18 l.12.  
 
Note that eq. (5) of Malinka (2014) shows that at weakly absorbing wavelengths, B only depends on 
the real part of the refractive index. 
 
This latter point should be further discussed to explore the validity of the random medium assumption 
used by Malinka (2014). In fact, this framework suggests that as long as the structure is random, shape 



has no impact on optical properties. This is contradictory to the fact that in the particulate 
representation of snow, different grain shapes result in different optical properties, even at low ice 
absorptions 
 
Reply:  
We adapted the notation and description in Table 1.  
 
We agree that Malinka involves a particular assumption on the independence of chords and adjacent 
surface normal orientations. This apparently leads to B=n2 in the limit of very small alpha. This is now 
explicitly shown in the appendix. We also calculated there the next order correction in alpha that shows 
a slight dependence of B on shape if the latter would be defined only via moments of the chord length 
distribution. Accordingly, for visible wavelengths and corresponding alpha, no shape dependence of B 
would be predicted from A4, which is indeed not what is observed in nature. Thus it might be the case 
that, by using this independence assumption, some influence of shape on B is lost, in particular for for 
very low alpha (visible). 
 
Changes: We included these points in the Discussion.   
 
 
p.20 l.6 : the authors decide to emphasize the parameter B, but in fact eq. (60) of malinka (2014) can 
also be used to express g in terms of λ1 and λ2. This should be done to complete the analysis. 
Reply: We agree. The analysis is extended to g 
Changes: New figure with a plot of g versus B. 
 
p.20 l.7 : why is the parameter B shown in terms of this ratio? Is there supposed to be a visual 
correlation in Fig. 8? Why is the regression with respect to this particular ratio? 
Reply: This was done because eq.A4 is a function of p(α), and the ratio determines the relative 
importance of first and second order terms. However this figure is now replaced by a plot of g versus 
B. But the ratio can be also used as a simple proxy to assess the deviation of the snow chord length 
distribution from an exponential one (see comment 6 in the other review) Values are therefore given in 
the text. 
Changes: Figure changed. 
 
p.20 l.9 : Libois et al. (2014) experimentally determined the parameter B for a large set of snow 
samples and suggest B equals 1.6 ± 0.2. This comparison completes that with Libois et al. (2013). Note 
again that the range obtained in Fig. 8 results from the impact of shape at 1.3μm. This range can hardly 
be compared to that obtained by Libois et al.(2013,2014) obtained at visible wavelengths. The absolute 
values can on the contrary be compared. 
Reply: We will emphasize the difference in the wavelength and discuss that in the weakly absorbing 
limit B is only depending on the real part of the refractive index. We will also point out that the 
apparent increased variation of B observed for visual wavelengths, may be due to the shadowing 
effect/density as discussed in (Libois et al (2014). 
Changes: 
 
p.20 l.9-12 : these sentences are not clear, and reference to Haussener et al. (2012) is very fuzzy, in 
particular the “remaining discrepancies”. 
Reply: we agree.  
Changes: reference removed 
 
p.20 l.15 : involved 
Reply: We agree. 
Changes: adapted 
 
p.20 l.20 : this is the very critical assumption that should be further discussed 
Reply: We agree. This assumption is indeed critical, but rather difficult to investigate. As explained 
above, we can only discuss this in reference to (Roberts and Torquato) who established an improved 
relation between the chord length distributions and the correlation functions. Their improved relation is 
still based on the assumption of independent chords. They tested this for  level-cut Gaussian random 
fields, where successive chords are not independent from a rigorous perspective. The results however 
agree reasonably well, which is at least an indicator that this assumption is not so critical for this 



aspect. As mentioned before, this independence assumption is however still slightly different from the 
independence assumption used by Malinka 2014.  
Changes: This point is emphasized in the discussion which has been restructured.  
 
p.21 l.l.1-16 : This part shows is partly redundant with previous parts of the text. This could be 
shortened. 
Reply: This part of the text is replaced and rewritten to avoid redundancy.  
Changes: Discussion is restructured and rewritten.  
 
p.21 l.11 : why is this work mentioned here and not before? Could this help to establish the 
semiheuristical relations displayed all along the manuscript? 
Reply: This relation is introduced in the discussion since it only explains that the slope in the origin of 
the chord length distribution is related to λ2. While this shows yet another connection between chord 
lengths and the curvature lengths, worth mentioning, we were not able to put this on more general  
grounds which could be exploited earlier.   
Changes: None.  
 
p.21 l.12-14 : Why is the variance of the chord length distribution mentioned here for the first time? 
Reply: Because it emerges only here in this argument to connects mu2 to lambda_12 
Changes: In the reformulated discussion the variance of the chord length distribution is left out. 
 
p.21. l.19 : remove parenthesis in reference 
Reply: We agree. 
Changes: removed 
 
Conclusions 
 
p.21 l.29 : extra “we” 
Reply: Yes. 
Changes: Changed.  
 
p.21 l.29 : consider adding (λ2) after size metric 
Reply: We agree. 
Changes: added 
 
p.22 l.9 : the meaning of “when compared to” is not clear 
Reply: we agree.  
Changes: rephrased.   
 
 
p.22 l.9 : Maybe say : “The consistency between B values derived from the chord length distribution 
and those determined from optical measurements suggests such an approach is indeed possible”. 
Reply: We agree,  
Changes: Changed accordingly.  
 
Appendix 
 
p.22 l.28 : no parentheses for the references 
Reply: We agree. 
Changes: parentheses removed 
 
p.23 l.8 : by the Swiss... 
Reply: we agree.  
Changes: The typo is removed.  
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Abstract. Grain shape is commonly perceived as a characteristic of snow beyond the optical diameter (or specific surface

area) which influences the physical properties. In this study we use tomography images of snow to investigate two objectively

defined metrics of grain shape which naturally extend the characterization of snow in terms of the optical diameter. One is the

curvature-length, �
2

, related to the third order term in the expansion of the correlation function and the other is the second

moment of the chord length distributions, µ
2

. From the first, we make contact to microwave modeling via the exponential5

correlation length ⇠ and show that grain shape explains the remaining scatter when ⇠ is statistically related to the optical

diameter. From the second, we make contact to a geometrical optics framework via the absorption enhancement parameter B

and asymmetry factor gG. We establish various statistical relations between all size metrics obtained from correlation functions

and chord length distributions. Overall our results suggest that the definition of grain shape via �
2

or µ
2

is virtually equivalent.

Both capture aspects of size dispersity in snow and constitute an intersection between microstructure characterization for10

optical or microwave modeling.

1 Introduction

Linking physical properties and microstructure of snow is a fundamental task of snow science. The
::
of

::::
snow

::
to

:::
the

::::::::::::
microstructure

::::::
always

::::::
requires

:::
to

::::::
identify

::::::::::
appropriate

::::::
metrics

:::
of

::::
grain

::::
size.

::
In
::::
this

::::::
regard,

:::
the two-point correlation function of snow has be-

come a key quantity in this respect for the prediction of various properties such as thermal conductivity, permeability and15

electromagnetic properties of snow (Wiesmann and Mätzler, 1999; Löwe et al., 2013; Calonne et al., 2014b; Löwe and Pi-

card, 2015). The recent gain in interest of correlation functions is mainly driven by available data from micro-computed

tomography (µCT), from which the correlation function can be conveniently estimated. The
:::::::::
correlation

:::::::
function

::::::
carries,

:::
in

:::::::
essence,

::::::::::
information

:::::
about

:
a
::::::::::
distribution

::
of

:::::::
relevant

:::::
sizes

::
in

:::
the

:::::::::::::
microstructure.

:::
For

::::::::::
microwave

::::::::::
applications,

:::
the

:
analysis of

correlation functions for microwave application dates back to the pre-
:::
was

:::::::
already

::::
used

::
in
::::

the
:::
era

::::::
before

::::::::::::::
micro-computed20

::::::::::
tomography

:
(µCTera

:
), where thin section data and stereology were used

::::::::
employed

:
to obtain the required information (Vallese

and Kong, 1981; Zurk et al., 1997; Mätzler and Wiesmann, 1999).

The
:::
The

:::::::
recently

::::::
gained

:::::::
interest

::
in

::::::::::
correlation

::::::::
functions

::
is

::::::
mainly

::::::
driven

:::
by

::::::::
available

::::
data

::::
from

:::::
µCT,

:::::
from

::::::
which

:::
the

:::::::::
correlation

:::::::
function

:::
can

::
be

:::::::::::
conveniently

::::::::
estimated.

::::
The relevance of the two-point correlation function for microwave modeling

originates from the connection between its Fourier transform and the scattering phase function in the Born approximation for25

1



small scatterers (Mätzler, 1998; Ding et al., 2010; Löwe and Picard, 2015), or the connection to the effective dielectric tensor

via depolarization factors (Leinss et al., 2015). A common

:
A
::::::::
common

:::::::
practical

:
way to characterize the correlation function is a fit to an exponential, such that the fit parameter, the so

called exponential correlation length ⇠, can be used to model the decay of structural
::::::::::::
microstructural

:
correlations in snow

::
by

::
a

:::::
single

:::
size

:::::::::
parameter. This approach dates back to Debye et al. (1957) in the context of small angle scattering of heterogeneous5

materials. However the characterization of snow in terms of a single size metric
::
by

::
a
:::::
single

::::::
length ⇠ is only an approximation

since the occurence
:::::::::
occurrence of multiple length scales (Löwe et al., 2011) are known to play a rolein

:
,
::
in

::::::::
particular

:::
to

::::::::::
characterize anisotropy (Löwe et al., 2013; Calonne et al., 2014b). Despite these fundamental caveats, the correlation length

:::
this

::::::
caveat, ⇠ still constitutes the main microstructural parameter for microwave modeling of snow (Proksch et al., 2015a; Pan

et al., 2016) if
::::
when

:
the Microwave Emission Model of layered snowpacks (Wiesmann et al., 1998) is used. However, direct10

measurements of ⇠, besides µCT, do not exist and the

:::
The

::::::::::
exponential

:
correlation length is often statistically inferred from measurements of the optical equivalent diameter d

opt

orof ,
:::::::::::
equivalently,

:::::
from

:::
the specific surface area (SSA). This link was established statistically (Mätzler, 2002) leading to the

empirical relation

⇠ ⇡ 0.5d
opt

(1��), (1)15

where � is the ice volume fraction. This relation facilitates the use of the
:::::
using

:::
the measured optical diameter as the primary

input for microwave modeling (Durand et al., 2008; Proksch et al., 2015b; Tan et al., 2015). Despite this practical advantage,

such a relation
:::::::
However,

::::
this

:::
link

:::::::
between

::
⇠

:::
and

::::
d
opt

can only serve as a first approximation, since the .
::::
The

::::::::
numerical

:
prefactor

in Eq. (1) seems to depend on snow type (Mätzler, 2002) , causing
::::
which

::::::
causes

::
a significant scatter in the estimates. This

has neither been investigated in detail nor traced back to additional shape metrics
::::::::
estimating

:::::::::
correlation

::::::
length

:::::
from

::::::
optical20

:::::::
diameter.

::::
This

:::::
poses

:::
the

::::::::
question

:::::
which

::::::::
additional

::::
size

::::::
metric

:::::::
captures

::::::::
variations

::
in

:::::
grain

:::::
shape

:::
and

:::::::
explains

:::
the

::::::
scatter.

A similar issue of shape, though less significant in order of magnitude,
::::
grain

:::::
shape

:
emerges in the context of optical mea-

surements. Optical properties (e.g. reflectance) can be largely predicted from the optical diameter or SSA (Kokhanovsky

and Zege, 2004). The remaining scatter is small but commonly also attributed to grain shape
:::::::::
commonly

::::::::
attributed

:::
to

:::::
shape

:::::
which

:::::::::
influences

:::
the

:::::::::
absorption

::::::::::::
enhancement

::::::::
parameter

:::
B

::::
and

:::
the

:::::::::
asymmetry

::::::
factor

:::
gG

:::::::::::::::::
(Picard et al., 2009) . The influ-25

ence of shape on
::::
grain

:::::
shape

:::
on

::
B

:::
for

:
light penetration was recently quantified by Libois et al. (2013) in terms of a shape

factor
::::::::
addressed

::::
and

::::::::
measured

:::
by

::::::::::::::::::::::
Libois et al. (2013, 2014) .

::::
Also

::
in

::::
this

::::
case

:
it
:::::::

remains
:::

the
::::::::

question
:::::
which

:::::::::
additional

::::
size

:::::
metric

::
of

:::
the

::::::::::::
microstructure

::::
can

::
be

::::
used

::
to

:::::::
capture

::::::::
variations

::
in

:::::
grain

:::::
shape

:::
and

::::::::
measured

::::::
scatter

::
in B, which originates from

Kokhanovsky and Zege (2004) . A systematic framework that principally allows to analyze this issue for geometrical optics was

recently put forward by Malinka (2014) who derived closed-form expressions for the averaged optical properties. The relevant30

microstructural quantity is the chord length distribution (Torquato, 2002) or, more precisely, its Laplace transform. Thereby,

the microstructural metrics used by Malinka (2014) , is not limited to a particular model microstructure (e. g, spheres) but can

be applied to generic two-phase media which implicitly incorporates shape. .
:
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:::
The

::::
two

::::::::
examples

::::
from

::::::::::
microwave

::
or

::::::
optical

::::::::
modeling

::::::
above

:::::
reflect

:::
the

::::::
known

::::
fact

::::
that

:::
the

::::::
optical

:::::::
diameter

:::
as

:
a
::::::
single

:::::
metric

::
of

:::::
grain

::::
size

::
is

:::
not

::::::::
sufficient

:::
to

::::::::::
characterize

:::
the

::::::::::::
microstructure

:::
for

::::::
many

:::::::
physical

:::::::::
properties.

::
It

::
is

::::
thus

::::::::
necessary

:::
to

::::::
account

:::
for

:::::::::
additional

::::
grain

::::
size

::::::
metrics

::::::
which

:::::::::
implement

:::
the

:::
idea

::
of
:::::
grain

::::::
shape. A key requirement for potential

:
,
::::
new shape

metrics is a well-defined geometrical meaningof the quantity. Presently, the exponential correlation length is essentially a

statistical object which is still difficult to interpret beyond the empirical correlation in Eq. . This hinders the development of5

evolution equations in snowpack models, and the development of alternative, portable measurement techniques to estimate new

parameters in the field for validation campaigns. .
:
Present snowpack models (Vionnet et al., 2012; Lehning et al., 2002) contain

empirical shape descriptors such as sphericity (Brun et al., 1992). An objective definition of these quantities for arbitrary

two-phase materials is, however, not possible. New shape metrics should thus ideally seek to replace empirical microstructure

parameters by an objective, measurable and geometrically comprehensible metric of the microstructure. An appealing candidate10

is a curvatures based metric, because i) curvatures
:::::::
metrics.

:::
One

:::::::::
appealing

::::
route

::
to

::::::
define

:::::
shape

::
is

::
via

:::::::::
curvatures

::
of

:::
the

::::::
ice-air

:::::::
interface

:::::::
because

:::::::::
curvatures

::
i) have already been used to

comprehend snow metamorphism via mean and Gaussian curvatures (Brzoska et al., 2008; Schleef et al., 2014; Calonne et al.,

2014a) ii) curvatures are natural
:::
are

::::::
natural

::::::::
quantities

:
to assess shape via deviations from a sphere, very close to the original

idea of sphericity (Brun et al., 1992)
:::::::
definition

:::
of

::::::::
sphericity

::
in

::::::::::::::::::
Lesaffre et al. (1998) and iii) curvatures also

:::::::
naturally

:
emerge15

as higher order terms in the expansion of the correlation function (Torquato, 2002), which closes the circle with the microwave

context.
::::
The

:::::
latter

:::
fact

::::
can

::
be

::::
used

::
in

::::
turn

::
to

::::::
assess

::::::::
variations

::
of

:::
the

:::::::::
microwave

:::::::::
parameter

:::
(⇠)

::::
from

:::::
µCT

::::::
images

:::::
which

:::::
links

::::
back

::
to

:::
the

:::::::::::::
aforementioned

:::::::::
microwave

::::::::
modeling

:::::::
problem.

:::::::
Another

::::::::
appealing

::::
route

::
to
::::::
define

:::::
shape

::
is

::
via

:::::
chord

::::::
length

::::::::::
distributions

:::::::
because

::::
they

::
i)

:::::::
naturally

:::::::::
implement

:::
the

::::
idea

::
of

::::
size

::::::::
dispersity

:::
and

::
ii)

:::::
have

::::
been

:::::::
recently

:::
put

:::::::
forward

::
by

:::::::::::::::
Malinka (2014) to

::::::
derive

::::::::::
closed-form

:::::::::
expressions

:::
for

:::
the

::::::::
averaged

::::::
optical20

::::::::
properties

::
of

::
a

::::::
porous

:::::::
medium.

::::::
Again,

:::
the

:::::
latter

:::
fact

:::
can

:::
in

:::
turn

:::
be

::::
used

::
to

:::::
assess

:::::::::
variations

::
in

:::
the

::::::
optical

:::::::::
parameters

:::::::
(gG,B)

::::
from

::::
µCT

::::::
images

::::::
which

::::
links

::::
back

::
to
:::
the

:::::::::::::
aforementioned

::::::
optical

::::::::
modeling

::::::::
problem.

:

The motivation of the present paper is three-fold
::
to

:::::::::
investigate

:::
and

:::::::::::
interconnect

::::
these

:::
two

::::::
routes

::
of

:::::::::
objectively

:::::::
defining

:::::
grain

:::::
shape. First, we will systematically assess the curvature term

:::::
assess

:::
the

::::::::::::::
curvature-length

:
in the expansion of the correlation

functionas a potential shape parameter. We will be guided by the question if and how the well-known statistical relation25

Eq. (1) between the exponential correlation length and the optical diameter can be improved by incorporating curvatures.

Second, we will characterize the microstructure in terms of chord length distributions in order to make contact to aspects of

shape in snow optics. Third, we motivate
:::
An

:::::::::::::
interconnection

:::::::
between

:::
the

::::
two

:::::
routes

::::
can

::
be

::::::::::
established

:::
by an approximate

relation between the correlation function and the chord length distribution that was
::::::::
originally suggested in the context of

small angle scattering (Méring and Tchoubar, 1968). The relation suggests various connections between
::
By

::::::
means

::
of

::::
this30

::::::::::
approximate

:::::::
relation

:::
we

:::::::
establish

:::::::
various

::::::::
statistical

::::
links

:::::::
between

:::
all

:::::::
involved

::::
size

:::::::
metrics, the moments of the chord length

distributions,
:::::
optical

::::::::
diameter,

:
surface areas, curvatures and the exponential correlation length. The statistical analysis of these

metric inter-relations leads to the announced
:::::::::
established

:::::
links

:::::
imply

:
a
:
microstructural connection between geometrical optics

and microwave scattering in the Born approximation, and an expression for the optical shapefactor B
::
via

::::
size

::::::::
dispersity,

::::::
which

:::::::::
constitutes

:::
one

:::::
aspect

:::
of

::::
grain

:::::
shape.35
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:::
The

:::::
paper

::
is

::::::::
organized

::
as

:::::::
follows.

:
In Section 2 we present the theoretical background for the correlation function, the chord

length distribution, the relation
::::::::
connection

:
between both quantities and the governing length scales. In Section 3 we provide

a summary of the
::::
µCT image analysis methods. To provide confidence of the interpretation of the curvature metrics

::::::
derived

from the correlation function,
:

we present an independent validation of these quantities via the triangulation of the ice-air

interface. The results of the statistical models are presented in Section 4 and discussed in Section 5. Due to the differences5

in lengthscales between optical and microwave metrics a connection between the two via shape may seem surprising. We

therefore aim to illustrate this connection by discussing it in view of the appealing but limited picture of snow as a packing of

irregularly shaped grains.

2 Theoretical background

2.1 Two-point correlation function and microwave metrics10

The interaction of microwaves with snow are commonly interpreted as scattering at permittivity fluctuations in the microstruc-

ture . This is reflected for example by the fact that in the Born approximation the scattering coefficient or the phase matrix is

proportional to the Fourier transform of the
:::::
which

:::
can

:::
be

::::::::
described

::
by

:::
the two-point correlation function (Mätzler, 1998; Ding et al., 2010; Löwe and Picard, 2015)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Vallese and Kong, 1981; Mätzler, 1998; Ding et al., 2010; Löwe and Picard, 2015) .

The correlation function can be derived from spatial distribution of ice and air that is characterized by the ice phase indicator

function I(x), which is equal to 1 for a point x in ice and 0 for x in air. From that, a covariance function can be defined which15

is often referred to as the correlation function

C(r) = I(x+ r)I(x)��2. (2)

In the following we disregard anisotropy by stating that C(r) only depends on the magnitude of r = |r|. To interpret snow with

this approach, an average over different coordinate directions must be carried out.

The value of the correlation function C(0) = �(1��) is simply related to the volume fractions of ice and air. Therefore,20

often only the normalized correlation function

A(r) = C(r)/C(0) (3)

is used, (see Fig. 1b). Since A(r) must decay from A(0) = 1 to zero for r !1, the correlation function is often described by

an exponential form

A(r) = exp(�r/⇠) , (4)25

in terms of a single length scale, the exponential correlation length ⇠, which empirically characterizes the decay of A(r).

In contrast, for
:::
For small arguments r, also rigorous results for the

:::::
decay

::
of

:::
the correlation can be inferred since the expansion

of A(r) can be interpreted in terms of geometrical properties of the interface. According to Torquato (2002), the expansion for

an isotropic medium reads

A(r) = 1� r

�
1


1� r2

�2

2

+O(r3)

�
(5)30
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in terms of the length scales �
1

,�
2

. The first order term

1

�
1

=� d

dr
A(r)

����
r=0

=

s

4�(1��)
, (6)

is the slope of the correlation function at the origin and can be expressed in terms of s which is the interfacial area per

unit volume
:
s
:
(Debye et al., 1957). The size metric �

1

is one of the most fundamental lengths scales for a two-phase

medium and commonly referred to as the Porod length
::::
Porod

::::::
length in small angle scattering, or simply correlation length5

in Mätzler (2002)
:::::::::
correlation

:::::
length

::
in

:::::::::::::
Mätzler (2002) .

::::
We

:::
will

::::::
adhere

:::
to

:::::
Porod

::::::
length

::::
here

::
to

::::::
clearly

:::::::::
distinguish

:::
�
1:::::

from

::
the

::::::::::
exponential

::::::::::
correlation

:::::
length

::
⇠. The metric �

1

can be also related to the SSA, defined as the surface area per ice mass

(m2/kg
:::::::
m

2

kg

�1), or in turn to the equivalent optical diameter d
opt

of snow via

�
1

=

4�(1��)

s
=

4(1��)

⇢
i

SSA

=

2(1��)

3

d
opt

(7)

with ⇢
i

representing the density of ice. The last equality is obtained when the definition of d
opt

= 6/⇢
i

SSA is inserted (see10

Mätzler (2002)).

For a two-phase material with a smooth interface, the second order term ⇠ r2 is missing in the expansion Eq. (5) and the

next non-zero term is the cubic one with a prefactor 1/�
1

�2

2

. Here the length scale �
2

also has a geometric interpretation in

terms of interfacial curvatures , hereafter
:::
and

::
is
:::::::
therfore

:
referred to as the curvature length

:::::::
hereafter. As originally shown by

Frisch and Stillinger (1963), the following identity holds15

1

�2

2

= �
1

d3

dr3
A(r)

����
r=0

=

H2

8

1

8

:

 
H2 � K

24

K

3

::

!
(8)

in terms average squared mean curvature H2 and the averaged Gaussian curvature K. The quantity ��2

2

it also referred to as

Eulerian
::
is

::::::::::
proportional

::
to

:::
the

::::::::::::
orientationally

:::::::
averaged

::::::
normal

:
curvature of an interface (Tomita, 1986). The averaged Gaussian

curvature K is related to a topological quantity of the ice-air interface. It can be related to the Euler characteristic � via the

Gauss–Bonnet theorem20

�=

1

2⇡

Z
d2xK(x) = V sK,

with V representing the total volume. This is noteworthy insofar, as the (local) expansion of the correlation function at the

origin contains a topological (i.e. a global) property of the interface.

2.2 Chord length distributions and optical metrics

In contrast to the interaction with microwaves, snow optics is based on a different
:::::
snow

:::::
optics

:::
the

:
microstructural charac-25

terization within radiative transfer theory (Kokhanovsky and Zege, 2004) , which commonly employs
:::::::::
commonly

:::::::
involves

:
a

single metric, the optical diameter. An interesting extension
::::::::
approach for geometrical optics in arbitrary two-phase media was

recently put forward by Malinka (2014). Thereby, the microstructure is taken into account by the chord length distribution of

medium which can be unambiguously defined for arbitrary two-phase random media (Torquato, 2002).
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(a)

(b)

0
r

1

A
(r
)

�1⇠

scf =
4�(1��)

�
1

A(r)

exp(�r/⇠)

1� r/�
1

1� r/⇠

Figure 1. a) Illustration of the chord lengths obtained from an ice sample. The mean chord length is defined as the average length of the green

line lengths. A stereological approach (Underwood, 1969) to calculate s is to count the number of blue dots per unit length. The estimation

for smf is given by the red contour. b) Illustration of the correlation function A(r) and the method obtaining an estimate for
::
the

:::::
Porod

:::::
length

::
�1::

to
::
get

:
scf by fitting the slope at the origin

:
,
:::
and

::
the

:::::::::
exponential

::::::::
correlation

:::::
length

::
⇠

::
by

:::::
fitting

::::
A(r)

::
to

:::::::::
exp(�r/⇠)

:::
over

::
a

::::
larger

::::
span.

Chord lengths in an isotropic medium can be
:::
are defined as the lengths of the intersections of random rays through the

sample with the ice phaseas shown
:
,
::
as

:::::::::
illustrated in the schematic in Fig. 1a. The chord length distribution p(`) of the ice

phase denotes the probability (density) for finding a chord of length `.

In contrast to the Born approximation for microwaves, where the microstructure enters as the Fourier transform of the

correlation function, the theoretical approach Malinka (2014) relates the key optical quantities (absorption, phase function,5

asymmetry-factor) to the Laplace transform of the chord length distribution p(`) which is denoted by

bp(z) =
1Z

0

d`p(`)e�z` (9)

6



with Laplace variable z. The Laplace transform is closely related to the moments
::
For

:::::
small

::
z,
::::

the
::::::
Laplace

:::::::::
transform

:::
can

:::
be

:::::::::::
approximated

::
by

:::
the

:::::::::
expansion

:

bp(z) = 1�µ
1

z+
µ
2

2

z2+
::::::::::::::::::::

O
:
(z3),
::::

(10)

:::::
where

::
µ
i:::::::

denotes
:::
the

::::
i�th

:::::::
moment

:
of the chord length distribution,

:::
viz

µ
ni

=

1Z

0

d``nip(`). (11)5

since the expansion of the Laplace transform Eq. for small z can be written as

bp(z) = 1�µ
1

z+
µ
2

2

z2+O(z3).

This implies that the
:::::
Hence

:::::
within

:::
the

::::::::
approach

:::::
from

:::::::::::::::
(Malinka, 2014) ,

:::
the optical response of snow can be systematically

improved by successively including higher moments of the chord length distribution. According to theory of
::
the

::::::
theory Malinka

(2014), the Laplace transform has to be evaluated for
:
at
:
z = ↵,

:
with the absorption coefficient ↵= 2⇡/�

:::::::::
↵= 4⇡/�. Here �10

is the wavelength and  the imaginary part of the refractive index of ice. It is generally sufficient (Malinka, 2014) to retain only

a few terms in Eq. (10). It is straightforward to show (Underwood, 1969) that the first moment, i.e, the mean chord length µ
1

is given by

µ
1

=

4�

s
=

�
1

1��
=

2

3

d
opt

::::::

(12)

and thus related to the surface area per unit volume s from Eq. (6)or one of its counterparts
:
,
::
or

:::
the

::::::
optical

::::::::
diameter

::::
d
opt

via15

Eq. (7). Thus
:::::::
Therefore, in lowest order, the Laplace transform Eq. (9) only contains the optical radius

::::
Porod

::::::
length or specific

surface area of snow. The next order correction involves the second moment µ
2

for which no geometric interpretation has been

hitherto given for arbitrary two-phase random media.

The
:::
For

::::::
known chord length distributionis closely related to stereological principles which have been widely used in the

pre-µCT era (e.g, ?? ), to estimate the density and the surface area per unit volume for snow and other crystalline materials.20

The connection to stereology is illustrated in Fig. 1a, where the well-known counting of the blue intersection points per unit

length gives an estimate for the averaged interfacial area s,
:::
all

::::::
optical

:::::::::
quantities

:::::
(phase

::::::::
function,

:::::::::
anisotropy

::::::
factor

:::
gG,

::::
etc)

:::
can

::
be

:::::::
directly

:::::::::
computed

::::
from

::::::::::::::
Malinka (2014) .

:::
To

:::::
make

::::::
contact

:::
to

::::::::::::::::::::
Libois et al. (2013) later

:::
and

::::::
discuss

::::
our

::::::
results

:::
for

:::
the

:::::
chord

::::::
lengths

::
in

::::
light

:::
of

:::::
shape,

:::
an

:::::::::
expression

::
of

:::
the

:::::::::
absorption

::::::::::::
enhancement

::::::::
parameter

::
B

::
is
::::::::
required

:::::
within

:::
the

::::::::::
framework

::
of

::::::::::::::::::
Malinka (2014) which

::
is

:::::
done

::
in

:::
the

::::::::
Appendix

:::
A.

:::::
From

:::::
these

:::::::::
expressions

:::
we

::::
can

::::
asses

::::
the

::::::
relative

::::::::::
importance

::
of

:::
the

:::
µ
2

25

::::::::
correction

::
to

:::
the

::::::
optical

::::::::
diameter

::
µ
1

.

2.3 Connection between chord lengths and correlation lengths
:::
the

:::::
Porod

::::::
length

::::
and

:::
the

:::::::::::::::
curvature-length

Following the previous two sections, a link between optical and microwave metrics of snow thus requires to establish a link be-

tween correlation functions and chord length distributions. This issue has been discussed by Roberts and Torquato (1999) , who

7



established an exact relation between the Laplace transforms of i) the correlation function, ii) the chord length distribution, and

iii) the surface-void correlation function (Torquato, 2002) . Despite the apparent complexity, the approach in Roberts and Torquato (1999) still

involves the simplified assumption that consecutive chords on the random ray in Fig. 1a are statistically independent. Though

this assumption is never strictly met, it is shown in Roberts and Torquato (1999) that this is not a practical limitation. Their

relation also provides a very good approximation for correlated structures such as bicontinuous Gaussian random fields, but at5

the expense of the complexity from the numerical inversion of Laplace transforms.

To this end we start from a yet simpler
::::::
employ

::
a relation between the correlation function and chord length distribution that

was put forward in the early stages of small angle scattering (Méring and Tchoubar, 1968) to interpret the scattering curve in

terms of particle properties. In the present notation the relation can be written as

p(`) = µ
1

d2

d`2
A(`), (13)10

which was also used by Gille (2000). The equation was derived for dilute assemblies of convex particles, an assumption which

is not valid for snow. However,

::::::::
Although Eq. (13)

:
is

::::
only

:::::
valid

:::::
under

::::::
certain

::::::::::
assumptions

:::::
which

::::
will

::
be

:::::::::
discussed

::
in

:::::
sec.5,

:
it
:
has already some non-trivial

implications which can be used
:::
that

:::
can

::
be

::::::::
exploited

:
for the subsequent analysis.

As a first consistency check of the approximation Eq. (13), we can compute the first moment of the chord length distribution15

from Eq. (11) for n= 1, by inserting Eq. (13) and integrating by parts. This yields µ
1

= µ
1

A(0) which is correct by virtue of

Eq. (3).

As a next step, we aim at an expression for the second moment of the chord length distribution in terms of interfacial

curvatures according to
::
by

:::::
using

:
Eq. (11) for n= 2. Again, inserting Eq. (13) and integrating by parts yields

µ
2

= 2µ
1

1Z

0

A(r) dr
::

= 2µ
1

f(�,
:::

�
1

f
�
2

�
1

,�
2

, . . .).
:::::::

(14)20

with an unknown scaling function
::::::
Though

:
f . To motivate the second equality in we note that the expansion implies that

A(r) depends at least on two independent length scales,
::
is

::
an

::::::::
unknown

::::::::
function

::::
here,

::::
this

::::
link

:::::
shows

::::
that

:::
the

:::::
chord

::::::
length

:::::
metric

:::
µ
2 ::::

must
:::
be

::::::::
somehow

::::::
related

::
to

:::
the

:::::::::
correlation

:::::::
function

::::::
metrics

:
�
1

and �
2

. As a dimensionless quantity, A(r) can only

depend on (arbitrarily chosen) ratios of involves length scales. In the absence of other relevant scales, the correlation function

must have the form A(r) =A(r/�
1

,�
2

/�
1

). In turn, the integral over A(r) in has units of length and must have the form25
R1
0

A(r) = �
1

f(�
2

/�
2

) with an unknown function
:
In

:::::::
section

:
4
:::

we
::::

will
::::::::::
statistically

:::::::::
investigate

:::
the

::::::::::
dependence

:::
of

:
f . The

representation is thus an implication of dimensional analysis.
::
on

:::
its

:::::::::
arguments.

:

The validity of the main relation for the chord length distribution Eq. can be assessed by experimental data and the inferred

connection Eq. between the second moment of the chord length distribution and interfacial curvatures will guide us in retrieving

an empirical relation for the second moment µ
2

in terms of shape.30
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3 Methods

3.1 Data

For the following analysis we used an existing dataset of microstructures reconstructed by µCT previously
:::::
dataset

:::
of

:::
3D

::::::::::::
microstructure

::::::
images

::::::::
described

::::
and

:
used in Löwe et al. (2013) for

:
a thermal conductivity analysis and Löwe and Picard

(2015) for a comparison of microwave scattering coefficients. All samples were classified according to Fierz et al. (2009) as5

described in the supplement of Löwe et al. (2013).
:::
The

::::
data

:::
set

:::::::::
comprises

::::
167

:::::::
different

:::::::
samples

:::::::::
including

:::
two

:::::
time

:::::
series

::
of

:::::::::
isothermal

:::::::::::
experiments,

::::
four

::::
time

:::::
series

:::
of

::::::::::
temperature

:::::::
gradient

:::::::::::::
metamorphism

:::::::::::
experiments

:::
and

::
a
:::
set

::
of

:::
37

:::::::::
individual

:::::::
samples.

::
In

:::::
total,

:::
the

::
set

:::::::
includes

:::
62

:::::::
samples

::
of

:::::
depth

::::
hoar

:::::
(DH),

:::
54

::
of

:::::::
rounded

:::::
grains

:::::
(RG),

:::
33

::
of

::::::
faceted

:::::::
crystals

::::
(FC)

:::
10

::
of

:::::::::::
decomposing

:::
and

::::::::::
fragmented

::::::::::
precipitation

::::::::
particles

::::
(DF),

::
5
::
of

::::
melt

:::::
forms

:::::
(MF)

:::
and

::
3
::
of

:::::::::::
precipitation

:::::::
particles

:::::
(PP).

3.2 Geometry from correlation functions10

Obtaining the normalized correlation function A(r) from a µCT image can be conveniently done by using the Fast Fourier

Transform (FFT) as e.g. described in Newman and Barkema (1999). The FFT is typically used for performance issues to

evaluate the convolution integral Eq. (2) since direct methods can be very slow. The spatial resolution of the correlation

function depends on the voxel size �

::
of

:::
the

::::
µCT

::::::
image which ranges from 18

::
10

:
to 50 µm. The

::::
Since

:::
the

:::::
snow

:::::::
samples

::
in
:::

the
::::

data
:::

set
:::
are

::::::::::
anisotropic

:::::::::::::::::
(Löwe et al., 2013) ,

:::
the normalized correlation function is

:::
first

:
ob-15

tained in the x,y and z direction and
:::
then

:
averaged arithmetically over these

::
the

:
three directions i.e, A(r) = (A

x

(r)+A
y

(r)+A
z

(r))/3,

to average out anisotropy.

From the normalized correlation function two types of parameter fittings are performed. First, the exponential correlation

length ⇠ is obtained by fitting the µCT data to the exponential form Eq. (4). Technically, we estimated the inverse parameter

k by least-squares optimization of the model A(r) = exp(�kr) to the data in a fixed range of 0< r < 50�. An illustration20

of this method is shown in Fig. 1b. In the following we denote by ⇠ the inverse of the optimal fit parameter ⇠ := 1/k. Second,

we estimated the expansion parameters �
1

and �
2

of the correlation function by a least-squares regression to the expansion

Eq. (5). Technically, we fitted A(r) = 1� k
1

r(1� k
2

r2) in the fixed range of 0< r < 3� which determines the derivatives at

the origin. In the following we denote
:::
We

::::::
denote

::
by

:
�cf

1

and �cf

2

by the inverse of the optimal fit parameters �cf

1

:= 1/k
1

and

�cf

2

:= 1/k
2

. The superscript is added to discern these correlation function based estimates from those presented in the next25

section for a validation.
:::
The

::::::::
influence

::
of

:::::::::
resolution

:::
and

:::::::::
anisotropy

::
to

:::
the

::::::::
estimates

::
of

:::
�
1:::

and
:::
�
2::

is
::::::::
discussed

::
in

::::::
section

::
5.

:

3.3 Geometry from triangulations

Essential for the present analysis in view of shape is the geometrical interpretation (Eq. and Eq. ) of the parameters
::
To

:::::::
confirm

::
the

::::::::::
geometrical

::::::::::::
interpretation

::
of �cf

1

and �cf

2

obtained from the correlation function. To confirm this interpretation, and to make

contact of the present method to previous work on curvature properties of the ice-air interface, we also compute
::
we

:::
use

:::
an30

::::::::
alternative

::::
and

::::::::::
independent

:::::::
method

::
to

:::::::
estimate these parameters by independent means.
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To this end we provide alternative estimates �vtk

1

and �vtk

2

from a VTK-based image analysis (www.vtk.org) yielding

estimates of
:::::::::
measuring the surface area and local curvatures via triangulation

::
the

:::::
local

:::::::::
curvatures

::::
with

:
a
::::::::::
VTK-based

::::::
image

::::::
analysis

:
as described in Krol and Löwe (2016). In short, a triangulated ice-air interface is obtained by applying a

::
the

:
VTK-

Contour filter. After this step, the interface still resembles the underlying voxel structure. Therefore, in a second step the

triangulated interface is smoothed by applying the VTKSmoothing filter which involves a smoothing parameter S
:::::
which

::
is

:::
the5

::::::
number

::
of

::::::::
iterations

::
a

::::::::
Laplacian

:::::::::
smoothing

::
on

::
a
:::::
mesh

:
is
::::::::
repeated. For further details see

::
we

::::
refer

::
to

:
Krol and Löwe (2016).

3.4 Accuracy of surface area and curvatures estimates

The measured total surface area is obtained by integrating (summing) the surface area of the triangles over the surface and

the estimate �vtk

1 :::::
which

:
naturally depends on the smoothing parameter. A comparison of the triangulation and the correlation

function based length scale is shown in Fig. 2 (middle row). A higher value of the smoothing parameter implies a lower surface10

area s (caused by shrinking of the enclosed volume upon smoothing) and in turn higher estimates for �vtk

1

.
:::::
Using

::::::
higher

::::::::
smoothing

::::
also

::::::
results

:::
in

:
a
::::::
higher

::::::::
variance

::
in

:::
the

:::::
data.

::::
This

::
is

:::::
likely

::::
due

::
to

:::::::
filtering

::
of

::::::
small

:::::::::::
perturbations

::
in

:::
the

:::::::
surface

::::::
causing

:::
the

:::::::::
individual

:::::::
samples

::
to

::::
react

:::::::::
differently.

:

It is illustrative to show
:::
note

:
that even without smoothing for S = 0 the obtained triangulated surface is still different from

the voxel surface s
mf

, which is obtained by the union of ice-air transition faces in the voxel based image (as illustrated by15

the red contour in Fig. 1a). The quantity s
mf

is one of the four Minkowski functionals and can be computed by standard

counting algorithms (Michielsen and Raedt, 2001). For isotropic systems, and statistically representative samples, the relation

between the surface obtained from the correlation function s
cf

= 4�(1��)/�cf

1

and the Minkowski functionals is known to

be s
cf

= 2s
mf

/3 as discussed Scatter plot of the averaged interfacial area obtained by the the correlation function method s
cf

versus Minkowski functionals method s
mf

. in Torquato (2002, p. 290)and shown here in Fig. ??.
:
.20

An estimate for the curvature length
:::::::::::::
curvature-length

:
�vtk

2

is obtained from the VTKCurvature filter on the triangulated ice-

air interface yielding local values for mean and Gaussian curvature which can be integrated to compute �vtk

2

via Eq. (8). The

comparison of the triangulation based curvature length
:::::::::::::
curvature-length

:
and the correlation function based curvature length

is shown in Fig. 2 (bottom row). The parameters �vtk

1

and
::::::
Again, �vtk

2

depend
::::::
depends

:
strongly on the smoothing parameter

S. The value S = 200 performed best by comparing the value �vtk

2 ::
�cf

2 :
to �vtk

2

, see Fig. 2 (bottom row).
::::
The

::::::::
deviations

:::::
from25

::
the

::::
1:1

:::
line

:::
are

::::::
caused

::
by

:::
the

:::::::::::::
overestimation

::
of

:::
the

:::::::::
curvatures

::
by

:::
the

:::::::::
remaining

::::
steps

::
in
:::
the

:::::::::::
triangulation

:::::
from

:::
the

:::::::::
underlying

::::::::::
voxel-based

::::
data,

:::
and

::
is

::::
thus

::::::::::::
anti-correlated

::::
with

:::
the

:::
size

:::
of

::
the

:::::::::
structures

:::
and

:::
the

:::::::::
resolution.

::
In

:::
the

::::
end,

::
we

:::::
chose

::
a
:::::::::
smoothing

::::::::
parameter

:::::::
S = 200

::::
that

::
is,

:::
on

:::::::
average,

:::::::::
acceptable

:::
for

::
all

:::::::
involved

::::::::
samples.

Overall, the comparison provides reasonable confidence that the geometrical interpretation of the correlation function pa-

rameters is correct, though uncertainties inherent to the smoothing operations must be acknowledged. In the following we30

solely use the quantities derived from the correlation function, viz. �
1

= �cf

1

and �
2

= �cf

2

where the superscripts are omitted

for brevity.

10



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
�cf

1

(mm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

�
v
t
k

1

(m
m
)

S=50
PP
MF
DH
DF
RG
FC
1:1
fit

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
�cf

1

(mm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
�
v
t
k

1

(m
m
)

S=200
PP
MF
DH
DF
RG
FC
1:1
fit

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
�cf

2

(mm)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

�
v
t
k

2

(m
m
)

S=50
PP
MF
DH
DF
RG
FC
1:1
fit

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
�cf

2

(mm)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

�
v
t
k

2

(m
m
)

S=200
PP
MF
DH
DF
RG
FC
1:1
fit

Figure 2. Comparison between smoothing paramater S = 50 (left) and S = 200 (right) for the top: Representation of the surface of a

subsection of a snow sample. In the middle: Scatter plots of the correlation
:::::
Porod length �cf

1 versus �vtk
1 , including a fit (red dotted line). At

the bottom: Scatter plots of the curvature length
::::::::::::
curvature-length �cf

2 versus �vtk
2 , including a fit (red dotted line).
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3.5 Chord length distribution

To compute the ice chord length distribution from the binary images, all linear lines through the sample in all three Cartesian

directions � = x,y,z are considered and all ice chords were measured and binned to obtain direction dependent counting

densities n�

(`). Here nx

(`) denotes the total number of chords in x direction which have length `. For a binary CT image, `

can take integer values 0< `< L
x

which are restricted by the sample size L
x

=N
x

� and the voxel size � of the image. The5

mean chord length and other moments µ
i

are then computed from

µ
i

=

1P
`,�

n↵

(`)

X

`,�

`in�

(`) (15)

3.6 Statistical models

A
:::
The

:
main part of the following analysis comprises statistical relations between the length scales derived from the chord

length distribution and the correlation function in section 2. In total, we will consider a few statistical models that first relate10

the exponential correlation length ⇠ and µ
2

to the geometrical length scales �
1

and �
2

and second, relate ⇠ to µ
1

and µ
2

. We

will start with a one-parameter statistical model and compare the results to the two parameter models. We will assess
:::
and

:::::::
compare the quality of the fits with the

:::::::
adjusted

:
correlation coefficient R2.

4 Results

4.1 Relating exponential correlation length to optical diameter
:::
the

::::::
Porod

::::::
length

:::
and

:::::::::::::::
curvature-length15

As a starting point for the statistical analysis we revisit the empirical relation

⇠ = 0.75�
1

, (16)

which is equivalent to Eq. (1) by virtue of Eq. (7), as suggested by Mätzler (2002). To this end we fitted ⇠ and �
1

and obtained

an average slope of 0.79 with a correlation coefficient of R2

= 0.733, shown by the green dashed line in Fig. 3a. In the next

step we fitted the same data to include an intercept parameter20

⇠ = a
0

+ a
1

�
1

. (17)

Here the correlation coefficient
:::::::
adjusted

:::::::::
correlation

:::::::::
coefficient,

::::::::::
accounting

::
for

:::
the

::::::::
inclusion

::
of

::::
extra

::::::::::
parameters,

:
is R2

= 0.731

and and the parameters are given by a
0

= 5.93⇥10

�2

mm, a
1

= 0.794, with very low p-values (p < 5⇥10

�4) for the intercept

and the slope ensuring the significance of the parameters of the fit. The order of magnitude of the intercept a
0

is negligible.

::
To

:::::::::
understand

::::
the

::::::::
remaining

::::::
scatter

:::
we

:::::
have

::::::
plotted

:::
the

::::::::
residuals

:::::::::::::
⇠� (a

0

+ a
1

�
1

)

::::::
versus

:::
the

::::::::::::::
curvature-length

:::
�
2 ::

as
::::::
shown25

::
in

:::
Fig.

:::
3b.

::::
The

::::::::::
correlation

:::::::::
coefficient

::
is

:::::
given

::
by

::::::::::
R2

= 0.644
::::
and

::::::
suggest

::::
that

::::::::
including

:::
the

:::::::::
curvature

::::::
lengths

:::
can

::::::::
improve

:::
Eq. (17).

:::
For

:::
an

::::::::
overview,

:::
this

::::
and

::
all

:::::
other

::::::::
statistical

::::::
models

::::
will

::
be

:::::
listed

::
in

:::::
Table

::
1.
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Figure 3. Scatter plots of a) the exponential correlation length ⇠ versus the correlation
::::
Porod

:
length �1. A linear fit is plotted in green.

Additionally the prediction of Eq. (16) (MM) is plotted in red. b) The residuals of ⇠ and the statistical model Eq. (17), versus the curvature

length
::::::::::::
curvature-length �2. c) The statistical model Eq. (18) predicting ⇠ depending on the optical diameter

::::
Porod

:::::
length �1 and the curvature

length
::::::::::::
curvature-length �2.
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Figure 4. Plot
:::::::::
Comparison of the chord length distributions computed by

::::
from Eq. (13) (symbols) and by direct analysis , Eq.

:
of

:::
the

::::
µCT

:::
data (solid-line)

::
for

::::
three

:::::::
examples

::
of

::::
snow

:::::
types

:::
(PP,

:::
RG

:::
and

::::
DH).

4.2 Relating the exponential correlation length to the correlation length and curvature length

As a
::
In

:::
the next step we have included the curvature length

::::::
include

:::
the

::::::::::::::
curvature-length �

2

and
:::::
where

:::
we fitted the exponential

correlation length ⇠ to the model

⇠ = b
0

+ b
1

�
1

+ b
2

�
2

. (18)

The results are shown in Fig. 3c. Here we find an improvement compared to Eq. (17). The correlation coefficient is R2

= 0.9225

and the fit parameters are given by b
0

= 1.23⇥ 10

�2

mm, b
1

= 1.32 and b
2

=�3.85⇥ 10

�1. The p-values are very small for

all coefficients b
i

. The order of magnitude of the improvement can already be roughly estimated from the ratio of the prefactors

b
1

and b
2

. To provide further evidence that the improvement of the prediction comes from the curvature length, we analyzed

the residuals of the prediction Eq. and plotted ⇠� (a
0

+ a
1

�
1

) versus the curvature length scale �
2

as shown in Fig. 3b.

The residuals of ⇠ with the statistical model Eq. show a correlation with �
2

of R2

= 0.644, which eventually causes the10

improvement for the exponential correlation length.

4.2 Connection between chord length distributions and correlation functions

To bridge to
::::
relate

:
the chord length metrics

::
to

:::
the

:::::
Porod

:::::
length

::::
and

:::
the

:::::::::::::
curvature-length, we first assess the relation between the

chord length distribution p(`) and the correlation function A(`) as suggested by Eq. (13). To this end we compared the chord

length distribution obtained directly from the µCT image (cf. section 3.5) with the prediction of Eq. (13) via the correlation15

function for a few examples of different snow types. The results are shown in Fig. 4. The selected snow samples are the same

as those used in Löwe and Picard (2015, Fig. 8 and Fig. 9). Qualitatively, the characteristic form (i.e, single maximum), the

14



location of the maximum, and the width of the distribution are correctly predicted by Eq. (13). On the other hand, there are

obvious shortcomings, such as the oscillatory tail for the RG example when the chord length distribution is derived via Eq. (15).

We will revisit this feature
::::
these

::::::::::::
characteristics in the discussion.

4.3 Second
:::::::
Relating

:::
the

:::::::
second moment of the chord length distribution

:
to

::::
the

:::::
Porod

::::::
length

::::
and

:::
the

:::::::::::::::
curvature-length

Using the previous results we can derive an approximate relation between the second moment of the chord length distribution5

and the interfacial curvatures. To motivate a statistical modelwe build on
:
,
:::
we

::::
start

::::
from Eq. , which suggests a general scaling

form (14),
:

µ
2

2µ
1

= �
1

f

0

@�
2

�
1

�,�
1

,�
2

, . . .
:::::::::

1

A . (19)

We investigate the validity of this expression by approximating the unknown
::::::::::
dependency

::
of

:::
the

:
function f by successively

higher orders of �
2

/�
1 ::

on
::::::::::

parameters
:::::
�
1

,�
2::::

and
::
�

::
of

:::
this

::::::::::
expression

::
by

:::::::::::
successively

::::::::
including

::::::
�
1

,�
2 :::

and
::
� in a statistical10

model. In a first step we approximate f by a constant using the statistical model
::::::::
statistical

:::::
model

::::::::
including

::::
only

:::
�
1:

µ
2

2µ
1

= l
0

+ l
1

�
1

. (20)

Although not predicted by Eq. , we again allow for an interception term l
0

similar to Eq. , and Eq. . The optimal parameters

for the model Eq. (20) are l
0

=�2.40⇥ 10

�2

mm and l
1

= 1.25, with negligible p�values and a correlation coefficient of

R2

= 0.898. The results are shown in Fig. 5a.15

In view of the inclusion of the curvature length
:::::::::::::
curvature-length �

2

, we analyzed the residuals of the previous statistical

model and plotted them as a function of �
2

(Fig. 5b). We find a correlation coefficient of
:::
The

:::::::::
correlation

:::::::::
coefficient

:
(R2

=

0.295, which indicates only a small benefit of )
::
is
:::::
small

:::
but including �

2

in the analysis
:::::
further

::::::::
improves

:::
the

::
fit. The respective

statistical model

µ
2

2µ
1

= n
0

+n
1

�
1

+n
2

�
2

(21)20

yields optimal parameters n
0

= 3.95⇥ 10

�3

mm

:::::::::::::::::::
n
0

=�3.95⇥ 10

�3

mm, n
1

= 1.50 and n
2

=�2.46⇥ 10

�1 with a correla-

tion coefficient R2

= 0.949. The p-value for the intercept n
0

is 0.36. For n
1

and n
2

the p-values are again very low.

We have heuristically found a possibility of improving Eq. (21) even further. This was achieved by including a factor (1��)

on the left-hand side. More precisely, we tried

(1��)µ
2

2µ
1

= q
0

+ q
1

�
1

+ q
2

�
2

(22)25

as a statistical model. Here the optimal parameters are q
0

=�1.23 mm,q
1

= 1.03
:::::::::::::::::::::::::::::
q
0

=�1.23⇥ 10

�2

mm,q
1

= 1.03, and

q
2

=�1.98⇥ 10

�1. The p-values for all coefficients are negligible and the correlation coefficient is R2

= 0.980. The results

are shown in Fig. 5c. The origin of the improvement of Eq. over Eq. is discussed in section ??.

15



(a)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
l
0

+ l
1

�
1

(mm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

µ
2

/(
2µ

1

)
(m

m
)

PP
MF
DH
DF
RG
FC
1:1

(b)

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
�
2

(mm)

�0.06

�0.04

�0.02

0.00

0.02

0.04

0.06

0.08

µ
1

/(
2µ

1

)
�
(l
0

+
l 1
�
1

)
(m

m
)

PP
MF
DH
DF
RG
FC
fit

(c)

0.00 0.05 0.10 0.15 0.20 0.25 0.30
q
0

+ q
1

�
1

+ q
2

�
2

(mm)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(1
�

�
)µ

2

/(
2µ

1

)
(m

m
)

PP
MF
DH
DF
RG
FC
1:1

Figure 5. Scatter plots of a) the statistical model see Eq. (20) predicting µ2/2µ1 depending on the optical diameter
:::::
Porod

:::::
length �1, b)

the residuals of µ2/2µ1 and the statistical model Eq. (20) versus the curvature length
::::::::::::
curvature-length

:
scale parameter �2, c) the statistical

model predicting (1��)µ2/2µ1 (see Eq. (22)) depending on the optical diameter
::::
Porod

:::::
length

:
�1 and the curvature length

::::::::::::
curvature-length

�2.
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Figure 6. Scatterplot of the exponential correlation length ⇠ versus the statistical model Eq. (23) that depends on the first and second moment

of the chord length distribution, µ1 and µ2.

4.4 Relating microwave metrics and optical metrics

In the previous sections we found a statistical relation between the correlation length
:::::::::
exponential

:::::::::
correlation

::::::
length

:
⇠
:
and the

geometrical scales
::::::
lengths �

1

and �
2

on one hand and a relation between the exponential correlation length and
:::
first

::::
and

::::::
second

:::::::
moment

::
of the chord length moments

:::::::::
distribution

::::
(µ

1 :::
and

::::
µ
2

)
:::
and

:::
�
1 :::

and
:::
�
2

on the other hand. Both findings can be recast

into a direct connection between the moments of the chord lengths µ
1

and µ
2

and the exponential correlation length ⇠. We5

express this relation in the statistical model

⇠ = c
0

+ c
1

(1��)µ
1

+ c
2

(1��)µ
2

2µ
1

. (23)

::::
Note

:::
that

:::::::::::::
(1��)µ

1

= �
1:::

by
:::::
virtue

::
of

:::
Eq.

:
(12)

:
,
:::::
which

::::::
means

:::
that

:::
we

:::::::::
essentially

::::::
replace

:::
�
2 ::

by
:::::::::::::
(1��)µ

2

/2µ
1 ::

in
:::
the

::::::::
statistical

:::::
model

:::
Eq.

:
(18)

:::
that

::::::
relates

::
⇠

::
to

:::
�
1 :::

and
::::
�
2

. We obtained the correlation coefficient R2

= 0.985 for the optimal parameters

c
0

= 9.28⇥10

�3

mm, c
1

=�7.53⇥10

�1, c
2

= 2.00. This final relation Eq. (23) significantly improves both models Eq. (17)10

and Eq. (18).

:::
The

::::::::
summary

::
of

:::
all

::::::
models

::
is
:::::
given

::
in

:::::
Table

::
1.
:::
To

::::::
ensure

:::
that

:::
the

::::::::
inclusion

::
of
:::

an
:::::::::
additional

::::::::
parameter

::::
e.g.

::
by

:::::
going

:::::
from

:::::
model

:::
Eq.

:
(17)

::
to

::::::
model

:::
Eq.

:
(18)

:
,
::
is

::::::
indeed

:::
an

:::::::::::
improvement,

::::
we

::::
have

:::::::::
employed

:::
the

::::::
Akaike

:::::::::::
information

:::::::
criterion

::::::
(AIC)

:::::::::::::
(Akaike, 1998) .

::::
The

::::
AIC

:::::::
measure

::::::
allows

::
to

::::::
discern

::
if

:::
the

:::::::::::
improvement

::
of

:::
the

:::::::::
correlation

:::::::::
coefficient

::
is

:::::::
trivially

::::::
caused

::
by

:::
an

::::::::
increasing

:::::::
number

::
of

:::
fit

:::::::::
parameters

::
or

:::
an

:::::
actual

::::::::::::
improvement

::
on

:::
the

:::::::::
likelihood

::
of

::::
the

::
fit

:::
due

:::
to

:::
the

::::::::
relevance

::
of

:::
the

::::::
added15

:::::::::
parameters.

::::::::
Absolute

::::::::::::
AIC-measures

:::::
have

::
no

:::::
direct

:::::::::
meaning,

:::::::
however

:
a
::::::::

decrease
::
of

::
at
:::::
least

::
2k

::::::::
between

:::
two

:::::::
models,

::::::
where

:
k
::
is

:::
the

:::::::
number

::
of

::::
extra

::::::::::
parameters,

:::::::
implies

:
a
::::::::
statistical

::::::::::::
improvement.

:::
For

::::
our

::::
case

:::::
k = 1

:::
the

::::::::
difference

::
in
:::
the

::::::::::::
AIC-measure

:::::::
between

:::
Eq. (17)

:::
and

:::
Eq.

:
(18)

:
is

:::
177

::::::::::
confirming

:::
the

::::::::
statistical

::::::::
relevance

::::::::::
significance

::
of

:::
�
2

.
:
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Table 1.
:::::::
Summary

::::::::
Statistical

::::::
Models

:::::
model

:::
Eq.(#

:
)

::::::::
parameters

:::
(in

::::
order)

: ::::
(adj.)

:::
R2

:::::::::::
⇠ = a0 + a1�1 (17)

:::::::::::::::::
5.93⇥ 10

�2
mm,0.79

::::
0.731

::::::::::::::::
⇠ = b0 + b1�1 + b2�2:

(18)
:::::::::::::::::::::::::::::
1.23⇥ 10

�2
mm, 1.32, �3.85⇥ 10

�1
: ::::

0.922

:::::::::::::::::::::::::::::::
⇠ = b0 + c1(1��)µ1 + c2(1��)µ2/2µ1:

(23)
:::::::::::::::::::::::::::::
9.28⇥ 10

�3
mm, �7.53⇥ 10

�1, 2.00
: ::::

0.985

:::::::::::::::
µ2/2µ1 = l0 + l1�1 (20)

:::::::::::::::::::
�2.40⇥ 10

�2
mm, 1.25

::::
0.898

::::::::::::::::::::::
µ2/2µ1 = n0 +n1�1 +n2�2 (21)

::::::::::::::::::::::::::::::
�3.95⇥ 10

�3
mm, 1.50,�2.46⇥ 10

�1
: ::::

0.949

:::::::::::::::::::::::::::
(1��)µ2/2µ1 = q0 + q1�1 + q2�2 (22)

::::::::::::::::::::::::::::::
�1.23⇥ 10

�2
mm, 1.03,�1.98⇥ 10

�1
: ::::

0.980

4.5
:::::

Shape
::::::
factors

:::
g

G
::::
and

::
B

::
As

:::
an

:::::::::
application

:::
of

:::
the

::::::
values

:::::::
obtained

:::
for

:::
the

::::::::
moments

:::
of

:::
the

:::::
chord

::::::
length

:::::::::
distribution

:::
we

::::
can

::::
now

:::::::
compute

::::
the

::::::
“shape

:::::::
diagram”

::
of
:::
the

::::::
optical

:::::::::
parameters

:::::::
(gG,B)

::::::::
suggested

::
in

::::::::::::::::::::::
Libois et al. (2013) derived

:::::
from

::::::::::::::::::::
(Malinka, 2014, Eq. 60) ,

:::
and

::::
Eq. (A4).

:::
The

::::::
results

::::::
depend

:::
on

:::
the

:::::
value

::
of

:::
the

:::::::
Laplace

::::::::
transform

::
at
:::

the
::::::::::

absorption
:::::::::
coefficient

::
↵,

:::
and

::::
thus

:::
on

:::::::::::
wavelengths.

:::
For

:::::
most

::::::::::
wavelengths

::
in

:::
the

::::::
visible

::::
and

::::
near

:::::::
infrared

:::::::
regime

::::::::
↵µ

1

⌧ 1

::
is

:::::
small

:::
and

::::::::
therefore

:::
the

::::::::
Laplace

::::::::
transform

::::
Eq. (9)

:::
can

:::
be5

:::::::::::
approximated

::
by

::
a
:::
few

:::::
terms

::
in

:::
the

::::::::
expansion

:::
Eq.

:
(10)

:
.
::::::
Taking

:::::
typical

::::::
values

:::
for

:
↵
::::::
allows

::
us

::
to

:::::::
estimate

:::
the

::::::
relative

::::::::::
importance

:::::::
↵µ

2

/2µ
1:::

of
:::
the

:::::::::::
second-order

::::
term

:::::::::
compared

::
to

:::
the

:::::::::
first-order

::::
term

::
in

:::
the

:::::::::
expansion

:::
Eq.

:
(10).

::::::
These

::::::
values

:::
are

:::::::
obtained

:::
by

::::
using

:::
the

::::::
values

:::
for

:

::::::::
provided

::
by

:::::::::::::::::::::::
Warren and Brandt (2008) .

::::
The

:::
first

:::::
order

::::
↵µ

1:::
and

::::
ratio

::::::::
↵µ

2

/2µ
1::

is
:::::::::
calculated

:::
for

::::::
typical

::::::::::
wavelengths

:::
and

::::::
shown

::
in

:::::
Table

::
2.
::::
The

::::::
values

:::
and

::::::::
standard

::::::::
deviations

::::::
denote

::::::::
averages

:::::
taken

::::
over

::
all

::::::::
samples.

:::::::::::
Wavelengths

::
are

:::::::
selected

::
to

::::::
match

:::::::
common

::::::
optical

::::::::
methods,

::::::
namely

::::::
0.9 µm

:::::::::::::::::::::::::
(Matzl and Schneebeli, 2006) ,

::::::::
1.31 µm

::::::::::::::::::
(Arnaud et al., 2011) ,10

:::
and

:::
the

:::::
SWIR

:::::::::::
wavelengths

:::::::
1.63 µm,

::::::::
1.74 µm

:::
and

:::::::
2.26 µm

:::::
used

::
by

::::::::::::::::::
Domine et al. (2006) .

:::
We

:::::
added

:::
the

::::::::::
wavelength

::::::::
2.00 µm,

:::::
which

::
is

:::
not

::::
used

:::
by

:::
any

::::::::::
instrument,

:::
but

::::
has

:::
the

::::::
highest

:::::
value

:::
for

::
↵

::
in

::::
this

:::::
range.

:::::
Note

:::
that

:::
for

::::
this

::::::::::
wavelength

::::
↵µ

1 ::
is

:::
not

::::
small

::::
and

:::
the

::::::::
expansion

:::
of

:::
the

:::::::
Laplace

::::::::
transform,

::::
Eq.

:::
10,

:::::
likely

:::
not

::
a

::::
good

:::::::::::::
approximation.

:::
The

::::::::
standard

:::::::::
deviations

:::
are

::::
high

::
as

:
a
:::::
result

::
of

:::
the

::::::::
variations

::::
due

::
to

::::
grain

:::::
type.

:::
The

::::::
lowest

::::::
values

::
of

::::::
µ
2

/2µ
1:::

are
:::::
found

:::
for

:::::
fresh

::::
snow

::::
(PP)

::::
and

::::::
highest

:::
for

:::::
depth

::::
hoar

::::
(DH)

::::
and

::::
melt

:::::
forms

:::::
(MF).

:
15

:::
The

::::::
values

::
in

::::
Fig.

::
7

:::
for

:::
gG

:::
and

:::
B

:::
are

::::::::
computed

:::
for

::::::::::
wavelength

::::::
1.3µm

::::
and

:::::
shown

:::
as

:
a
::::::

scatter
::::
plot

::
of

:::
B

:::::
versus

:::::::
1� gG

::::::
similar

::
to

:::::::::::::::::
Libois et al. (2013) .

::::
The

:::::
range

:::
of

::::::
values

:::
for

:::::::::::::
B 2 [1.54,1.72]

::::
and

:::::::::::::::::::::
(1� gG) 2 [0.315,0.335]

::
is
::::::

within
:::

the
::::::

range

:::::::::::::
B 2 [1.25,2.09]

:::
and

:::::::::::::::::
(1� gG) 2 [0.2,0.5]

:::::::
obtained

::
by

::::::::::
ray-tracing

:::::::::
simulations

:::
for

:::::::
different

::::::::::
geometrical

::::::
shapes

:::::::::::::::::
(Libois et al., 2013) .

:::
The

:::::::::
variations

::
of

:::
the

::::::
values

::
for

::::::::
different

:::::
snow

::::
types

::
is
::::::::

however
::::
very

:::::
small.

:::
To

::::::::
complete

:::
the

:::::::
analysis

:::
we

::::
have

:::::::::
computed

:::
gG

:::
and

::
B

:::
for

::::::
higher

::::::::
absorbing

:::::::::::
wavelengths

:::
for

::::::
which

:::
the

:::::
shape

::::::::
signature

:::::
might

:::
be

::::::
higher,

:::
but

:::
the

:::::::::
expansion

::
of

::::
Eq. (10),

::::
less20

::::::
reliable.

::::
The

::::::
results

:::
are

:::::::
averaged

::::
over

:::
all

:::::
snow

:::::::
samples

:::
and

:::::::
included

::
in
:::::
Table

::
2.

:
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Table 2.
::::::::::
Determination

::
of

:::
the

::::::::
absorption

::::::::
coefficient

::
↵

::::::::::::::::::::
(Warren and Brandt, 2008) ,

:::
the

:::
first

:::::
order,

:::
the

::::::
fraction

::
of

:::
the

:::
first

:::
and

:::::
second

:::::
order

:
of
:::

Eq.
:
(10),

:::
and

:::
the

:::::::
obtained

:::::::
estimates

::
for

::
B

:::
and

:::
gG

:::::::
averaged

:::
over

:::
all

::::::::::
snowsamples,

:::::::
including

:::
the

:::::::
standard

:::::::
deviation

::
�.

::::::::
wavelength

:::::
(µm)

:::::::
↵ (m

�1
)

::::::
↵µ1 ±�

: ::::::::::::::
µ2/2µ1↵±� (%)

::
B

:::::
1� gG

:::
0.90

: :::
4.1

:::::::::::::
0.00094± 0.0003

: ::::
< 0.5

:::::::::
1.71± 0.00

:::::::::::
0.323± 0.000

:::
1.31

: :::::::
1.2⇥ 10

2
: ::::::::::

0.026± 0.008
: ::::

2± 1

:::::::::
1.64± 0.02

:::::::::::
0.316± 0.000

:::
1.63

: :::::::
2.0⇥ 10

3
: ::::::::

0.45± 0.14
: ::::::

37± 13

:::::::::
0.89± 0.20

:::::::::::
0.253± 0.011

:::
1.74

: :::::::
1.1⇥ 10

3
: :::::::::

0.24± 0.079
: :::::

20± 7

:::::::::
1.19± 0.14

:::::::::::
0.272± 0.010

::::
2.00⇤

: :::::::
9.4⇥ 10

3
: :::::::

2.1± 0.68
: :::::::

172± 60

:
-

:
-

:::
2.26

: :::::::
1.1⇥ 10

3
: ::::::::

0.25± 0.08
: :::::

20± 7

:::::::::
1.14± 0.13

:::::::::::
0.240± 0.010

⇤ wavelength is not used for optical measurements
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Figure 7.
::::::::
Scatterplot

::
of

:::
the

::::::::
asymmetry

:::::
factor

::
gG

:::
and

:::
the

:::::
optical

:::::
shape

:::::
factor

::
B

:::::::
evaluated

::
for

::::::::
refractive

::::
index

::
at

:::::::::
wavelength

:::::::::
�= 1.3µm.

5 Discussion

5.1 Retrieval of size metrics from µCT data
:::::::::::
Methodology

Retrieving geometrical properties of the ice-air interface from tomography data must be generally

:::::
Before

:::::::
turning

::
to

:::
the

:::::::::
discussion

::
of

:::::::
physical

:::::::::::
implications

::
of

:::
the

::::::
results,

:::
we

::::
first

::::::
address

:::::::::::::
methodological

:::::::
details.

:::::::::
Retrieving

:::::::::
parameters

::::
from

:::::
µCT

::::::
images

:::::
must

::
be

:
taken with care. In addition to the uncertainties related to filtering and segmentation5

pointed out by Hagenmuller et al. (2016), the present
::::::
method

::::
also

:::::::
requires

::
to

::::::
discuss

:::
the

:::::::::::::::::
interface-smoothing

::
for

:::
the

:::::::::
validation

::
of

::
�
1::::

and
:::
�
2

,
:::
the

:::::
image

:::::::::
resolution,

:::
and

:::
the

:::::::::
anisotropy

::
of

:::
the

::::::::
samples.

19



5.1.1
:::::::::::
Geometrical

::::::::::::
interpretation

:::
The

::::::
present

:
analysis and cross-validation of a

:::
the curvature metric imposes additional requirements on the smoothness of the

interface. The subtle influence of the smoothing parameter on the surface area s and averaged mean and Gaussian curvatures

H and K is apparent from Fig. 2. Naturally, H2 is most sensitive to smoothing. We found a competing performance of �
1

and

�
2

with the smoothing parameter when comparing the triangulation based estimates with the correlation function based values.5

The agreement for the surface area seems to be best with smoothing parameter S = 50. In contrast, more smoothing is indeed

required to obtain an agreement for the curvature length
:::::::::::::
curvature-length. This higher sensitivity on the smoothing parameter

is reasonable, since curvatures are defined by surface gradients which are more sensitive to a smooth
:::::
mesh representation

than the surface area. The competing behavior is caused by the smoothing filter, which neither preserves
:::
the volume nor the

surface area of the enclosed ice upon smoothing iterations. This causes the drop in agreement for �
1

in Fig. 2 (left, middle)10

with increased smoothing. As a remedy, more sophisticated smoothing filters could be used which, for example, ensure the

conservation of the enclosed volume (Kuprat et al., 2001). Such problems could be partly avoided by computing normal vector

fields and curvatures directly from voxel-based distance maps (Flin et al., 2005). A detailed comparison of all these different

methods however, is beyond the scope of this paper.
::
In

::::::
contrast

::
to
:::
�
1:::

and
:::
�
2

,
:::
the

::::::::::::
interpretation

::
of

:::
first

::::
and

::::::
second

::::::::
moments

::
of

::
the

:::::
chord

::::::
length

::::::::::
distribution,

:::
µ
1 :::

and
:::
µ
2

,
::
is

:::::
rather

:::::::::::::
straightforward,

::::::
where

::
µ
1::

is
:::::::
directly

::::::
related

::
to

:::
the

:::::
optical

::::::::
diameter

::::
d
opt

,
::::
and15

::
µ
2::

is
:
a
:::::::
measure

:::
of

:::
the

::::::::
variations

::
of

:::
this

::::
size

::::::
metric.

:

5.1.2
:::::::::
Resolution

:::::::::
Resolution

::::
plays

:::
an

::::::::
important

:::
role

::
in

:::
the

::::::::
obtaining

::::::::
estimates

:::
for

::
�
1:::

and
:::
�
2

.
:::
For

::
a

::::
µCT

:::::::::::
measurement

:::
the

::::::::
resolution

::
is

:::::::::
commonly

::::::
chosen

:::::::::::
appropriately

:::::::::
depending

::
on

:::::
snow

:::::
type.

:::::
While

:::::
fresh

:::::
Snow

::::
(PP)

::
is

:::::::
typically

::::::::::::
reconstructed

::::
with

:::::
10µm

:::::
voxel

:::::
size,

::::
melt

:::::
forms

:::::
(MF)

:::
and

::::::
larger

:::::::
particles

:::::
have

:::::
larger

:::::
voxel

:::::
sizes

::
of
::::::
35µm

:::
or

::::::
54µm.

:::::
Since

:::
we

:::::
have

:::::::
obtained

:::
�
1::::

and
:::
�
2 ::::

with
::::
two20

::::::::::
independent

:::::::
methods

::::
that

::::
agree

:::::::::
reasonably

::::
well

:::
we

::::::::
conclude

:::
that

:::
the

:::::::::
resolution

::
is

:::::::
generally

::::::::
sufficient

::
to

:::::::
estimate

:::
the

::::::::
involved

:::::
length

::::::
scales.

::
To

::::::
further

:::::::
confirm

:::
that

::::
that

::::
there

::
is

::
no

:::::::::
remaining

::::
bias

::::
with

::::::::
resolution

:::
we

:::::::
assessed

:::
the

::::
ratio

::::::::::::
�
2

/voxelsize.
::::::
Ideally

:::
this

:::::
would

:::
be

:::::::
constant

:::
for

:::
all

:::::::
samples,

::::::::
implying

::::
that

::
�
2::

is
:::::::
equally

::::
well

:::::::
resolved

:::
for

::
all

:::::
snow

::::::::
samples.

:::
For

:::
our

:::::
data,

:::
this

::::
this

::::
ratio

::
is

:::
9.8

::::
with

::
a

:::::::
standard

::::::::
deviation

::
of

::::
2.6.

::::
The

:::::::::
correlation

:::::::::
coefficient

::::
with

:::
the

:::::
voxel

::::
size

::
is

:::::::::
R2

=�.2,
::::::
which

::::::
implies

::::
that

::::
there

::
is

:
a
:::::
slight

::::::::::
dependence

:::
on

:::::::::
resolution.

::
A

:::::::::
systematic

::::::::::
assessment

::
is

:::::::
however

:::::::
difficult

::::
since

:::::
snow

:::::
types

::::
and

::::
grain

:::::
sizes

:::
are25

:::
not

::::::
equally

:::::::::
distributed

::::
over

:::
the

:::::::::
resolution.

:::
The

::::::
image

::::::::
resolution

:::::
plays

:::::::
another

:::::::::
important

::::
role

::
in

:::
the

:::::::::::
interpretation

:::
of

:::
the

:::::::::
expansion

::
of

:::
the

::::::::::
correlation

::::::::
function.

:::
As

::::::
pointed

:::
out

:::
by

:::::::::::::::
Torquato (2002) ,

:
a
:::::::
missing

:::
r2

::::
term

::
is

::::::::
generally

:::::::::
equivalent

::
to

::
a
::::::
smooth

::::::::
interface

:::::
while

:::::::::::::
discontinuities,

::::
like

::::
sharp

::::::
edges,

::::::
would

:::
lead

:::
to

:
a
::::::
second

:::::
order

:::::
term.

:::::
Fresh

:::::
snow

:::
and

:::::
depth

::::
hoar

:::::::
crystals

:::
are

::::::
known

::
to

::::
have

:::::
these

:::::::::::::
discontinuities,

:
at
:::::

least
:::::::
visually.

:::
But

::
it
:::::::
remains

:::::::::::
questionable

:
if
:::::

these
:::::::
features

:::
can

:::
be

:::::::
detected

:::::::::
objectively

::
at
:::

the
::::::::::

micrometer
:::::
scale

::::
from

::::::
image30

:::::::
analysis.

::
In

::
an

::::::
image,

:::::::::::::
discontinuities

::
are

:::::::
always

:::::::
smeared

:::
out,

::::::::
virtually

::::::::::
contributing

::
to

:::
the

::::
third

:::::
order

::::
term.

:

5.1.3
::::::::::
Anisotropy
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:::
The

::::::
present

::::
data

:::
set

::
of

:::::
snow

:::::::
samples

::::::::
embodies

::
a
::::
large

:::::::
number

::
of

::::::::::
anisotropic

:::::::
samples,

::::::
which

::::
was

:::::::::
specifically

:::
the

::::::
subject

:::
of

::::::::::::::::::
Löwe et al. (2013) the

::::
data

:
is
:::::
based

:::
on.

::
It
::
is

::::
thus

::::::::
necessary

::
to

::::::::
elaborate

:::
the

::::::
impact

::
of

:::::::::
anisotropy

::
on

:::
the

::::::
present

:::::::
analysis

::::::
which

:
is
::::::::::
exclusively

:::::::
involves

::::::::
isotropic

:::::::::
correlation

:::::::::
functions.

::
It

::
is

::::::::
important

::
to

::::
note

::::
that

:::
the

:::
our

:::::::
analysis

::::
does

::::
not

::::::
assume

:::::::
isotropy,

:::
but

:
it
::::::
rather

:::::::
includes

:::
the

:::::::::::
orientational

::::::::
averaging

::
in
:::

the
:::::

three
::::::::
Cartesian

:::::::::
directions

::
as

::
a

:::
part

:::
of

:::
the

:::::::
method.

:::::
Such

:
a
:::::::::
procedure

:
is
::::::::::
principally

::::
valid

:::
for

::::::::
arbitrary

:::::::
samples.

:::::::::
Moreover,

::::
also

:::
the

::::::::::
geometrical

::::::::::::
interpretation

::
of

:::
the

::::::::
quantities

:::::::
remains

::::::
valid.

::::
This5

:::
was

:::::::::
rigorously

::::::
shown

:::
for

:::
�
1 :::::::::::::::::::

Berryman (1998) which
::::::

relates
:::

the
:::::

slope
:::

of
:::
the

:::::::::
correlation

:::::::
function

:::
at

:::
the

:::::
origin

:::
for

::::::::
arbitrary

:::::::::
anisotropic

::::::::
structures

::::
after

:::::::::::
orientational

::::::::
averaging

::
to

:::
the

::::::
surface

::::
area

:::
per

:::
unit

:::::::
volume

:
s.
:::::::
Though

:::
we

:::
did

:::
not

:::
find

::
a

:::::::::::
mathematical

::::
proof

:::
for

::::
the

::::::::::::
corresponding

::::::::
statement

:::
for

:::
�
2

,
:::

the
:::::::::

agreement
:::

of
:::
�cf

2 ::::::::
(obtained

:::::
from

:::
the

:::::::::
correlation

::::::::
function,

:::::::::::::
orientationally

::::::::
averaged)

::::
with

::::
�vtk

2 ::::::::
(obtained

::::
from

::::::
direct

::::::::::
computation

::
of

:::
the

:::::::::
interfacial

:::::::::
curvatures)

:::::::
strongly

::::::::
suggests

::
its

:::::::
validity.

::
In

::::::::
addition,

::
we

::::::::
assessed

:::
that

:::
the

::::::::
residuals

:::::::
between

::::
�vtk

2 ::::::
(where

:::::::::
anisotropy

::::
does

:::
not

::::
play

:
a
:::::
role)

:::
and

:::
�cf

2 :::
are

:::
not

:::::::::
correlated

::::
with

:::::::::
anisotropy10

::::::::::
(R2

= .026).
:

::::::
Overall,

:::
we

:::
are

::::::::
confident

::::
that

::
the

:::::::
method

:::
can

::
be

:::::::
applied

::
to

:::::::
arbitrary

::::::::::
anisotropic

::::::
samples

::
to
:::::::
provide

::::::::::::
orientationally

::::::::
averaged

:::::
length

::::::
scales

::::
with

:::
the

::::::
correct

:::::::::
geometric

:::::::::::
interpretation

::::
with

:::::::::
acceptable

:::::::::::
uncertainties

:::
due

::
to

::::::
image

:::::::::
resolution.

5.2 Linking exponential correlation lengths and curvatures
:::
size

::::::
metrics

:::
in

::::
snow

Accepting the methodological uncertaintiesdiscussed in the previous section, we shall now discuss our findings of the statistical15

analysis and their relevance for the interpretation of snow microstructure.

As a first step we have analyzed the statistical relation between

5.2.1
::::::::
Including

::::
size

:::::::::
dispersity

::
to

:::::::
estimate

::::
the

::::::::::
exponential

::::::::::
correlation

::::::
length

::
By

:::::::::::
construction,

::::
the

::::::::::
exponential

:::::::::
correlation

::::::
length

::
⇠

::::
must

:::
be

::::::::::
understood

::
as

::
a

:::::
proxy

::
to
:::::::::::

characterize
:::
the

:::::
entire

::::::::::
correlation

:::::::
function

::::
with

:
a
:::::
single

::::::
length

::::
scale.

::::
This

::::::
single

:::::
length

:::::
scale

:::::::
contains

::::::::
signatures

::
of

:::::
both,

::::::::
properties

::::
that

:::::::
dominate

:::
the

::::::::
behavior

::
of20

::
the

::::::::::
correlation

:::::::
function

:::
for

::::
small

:::::::::
arguments

:::
(�

1::::
and

:::
�
2

)
:::
and

:::::
other

::::::::
properties

::::
that

::::::::
dominate

:::
the

::::::::::
tail-behavior

:::
of

:::
the

:::::::::
correlation

:::::::
function

::
for

:::::
large

:::::::::
arguments.

:

::
To

::::::
discuss

:::
the

:::::::::
statistical

:::::::
relations

:::
we

:::::
found

:::
we

::::
will

::::
start

::::
with

:::::::::
recovering

::::::::
Mäzler’s

:::::
model

::::::::::::::
(Mätzler, 2002) .

:::::
This

::::::::
statistical

:::::
model

::::::
covers

:
a
:::::::
relation

:::::::
between

:::
the

::::::::::
exponential correlation length and grain size (Mätzler, 2002) which is consistent with our

data. Compared to
:::
the

::::::
optical

::::
grain

::::
size,

::
or

::
in
:::::
their

::::::::::::
nomenclature:

::
the

::::::::::
correlation

::::::
length. Mäzler’s model that predicts

:::::::
predicts25

::
the

:::::
slope

::
to

:::
be a

1

= 0.75, we find a slightly higher value of a
1

= 0.79. This can be explained by a large number of depth hoar

samples where ⇠ is generally higher than
::::
which

::
is
::
an

:::::::
average

::
of

:::::::
a
1

= 0.8
:::
for

:::::
depth

::::
hoar

:::
and

::::::::
a
1

= 0.6 for other snow types. This

is also suggested by the data from Mätzler (2002, Tab. 1) , which indicates an influence of snow type or grain shape
::::::::
consistent

::::
with

:::
our

::::::
finding

:::::::::
a
1

= 0.79
:::::
since

::
we

:::::
have

:::::
many

:::::
depth

::::
hoar

:::::::
samples

::
in
::::

the
::::
data

:::
set,

:::::::::
suggesting

::::
that

::::
grain

::::::
shape

:::
has

::
a

:::::
direct

:::::::
influence

:::
on

:::
the

::::::::
statistical

:::::::
relation. This influence was made quantitative by the subsequent analysiswhere we found a clear30

improvement of the prediction of the exponential correlation length when incorporating the curvatures length as an additional

size metric
::::::::
including

:::
the

::::::::::::::
curvature-length

::
to

:::
the

::::::::
statistical

::::::::
analysis,

::::::::
resulting

::
in

:::
the

::::::::
statistical

::::::
model

:::
Eq.

:
(18) (Fig. 3c). The
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quantitative improvement on the statistical model Eq. (16) by using Eq. (18) or Eq. is given by the increase in the correlation

coefficient from R2

= 0.733 to R2

= 0.922.
:

::
In

:::::::
addition

:::
we

:::::::::
established

:
a
::::
new

::::::::
statistical

:::::::
relation

:::
Eq. (23)

:::::::
between

:
⇠
::::
and

:::
the

:::::::
moments

:::
of

::
the

:::::
chord

::::::
length

::::::::::
distribution,

:::
µ
1

and R2

= 0.985, respectively. To ensure
:::
µ
2

.
::::
This

:::::
model

::::::::
performs

::::
even

::::::
better

:::::
when

:::
the

:::::::::
correlation

:::::::::
coefficient

::::::::::
R2

= 0.985
::
is

::::
taken

::
as

::
a
::::::
quality

:::::::
measure.

:::
We

:::::::::
confirmed that the inclusion of an additional parameter in Eq. (18) and Eq. (23) indeed improves5

on eq. (16), we have employed
::
by

:::::::::
employing

:
the Akaike information criterion (AIC) measure (Akaike, 1998). This allows us

to discern if the improvement

:::
All

::::::::
statistical

::::::
models

:::::::
showing

::::::::::::
improvements

::
of

:
(1)

::::::
indicate

:::
that

::
at
:::::
least

:::
two

:::::::
different

::::::
length

:::::
scales

:::
�
1:::

and
:::
�
2::

or
:::
µ
1 :::

and
:::
µ
2

::
are

::::::::
required

::
to

:::::
obtain

::
a
:::::::::
reasonable

::::::::
prediction

:::
of

:::
the

:::::::::
exponential

::::::::::
correlation

::::::
length.

:::::
While

:::
�
1 :::

and
:::
µ
1:::

are
::::
both

:::::::
trivially

::::::
related

::
to

:::
the

::::::
optical

::::::
radius

:::
via

:::
Eq. (7)

:::
and

:::
Eq.

:
(12)

:
,
:::
the

:::
two

:::::
other

:::
size

:::::::
metrics

::
µ
2:::

or
::
�
2:::

are
:::
the

:::::
origin

::
of

:::::::::::
performance

::::::::
increase.10

::::
This

:::::
seems

:::::::::
surprising

:
at
::::

first
:::::
sight.

::::
Why

::::::
should

:::::
local

::::::
aspects

::
of

:::
the

::::::::
interface

:::
(�

1:::
and

::::
�
2

)
::::::::
determine

:::
the

::::::::
non-local

::::::
decay

::
of

::::::::
structural

::::::::::
correlations

:::
(⇠)?

:::
To

::::::::
illustrate

:::
our

::::::::::
explanation

:::
for

:::
this

:::::::
finding,

:::
we

:::::
resort

::
to
::

a
:::::::
particle

::::::
picture

:::
and

::::::::
consider

:
a
::::::
dense,

::::::
random

:::::::
packing

::
of

::::::::::::
monodisperse

::::
hard

:::::::
spheres.

:::
For

:::::
such

:
a
:::::::
packing,

:::
the

:::::::
particle

:::::::
“shape”

::
is

:::::
trivial

:::
and

:::::
fully

:::::::::
determined

:::
by

:::
the

:::::
sphere

::::::::
diameter

::
d,

::::::
which

:::::::::
determines

:::
the

:::::
slope

:
of the correlation coefficient is trivially caused by an increasing number of

fit parameters or an actual improvement on the likelihood of the fit due to the relevance of the added parameters. Absolute15

AIC-measures have no direct meaning, however a decrease of at least 2k between two models, where k is the number of

extra parameters, implies a statistical improvement. For our case k = 1 the difference in the AIC-measure between Eq. and

:::::::
function

::
at

:::
the

:::::
origin.

:::::::::
However,

:::
also

:::::::
particle

::::::::
positions

:::
and

::::
thus

:::
the

:::::
decay

::
of

::::::::::
correlations

::
is
:::::
fixed

::
by

::
d.

::::
This

::::::::
becomes

:::::::
obvious

::::
from

:::
the

::::::::::::
representation

:::::::::::::::::::::::::::::
C(r) = nv

int

(r)+n2v
int

(r) ⇤h(r)
::
for

:::
the

::::::::::
correlation

:::::::
function

:::
for

::::
such

:
a
::::::
system

::
at

:::::::
number

::::::
density

::
n

:::::::::::::::::::::
(Löwe and Picard, 2015) .

::
In

::::
this

::::::::::::
representation,

:::
the

::::::::
spherical

::::::::::
intersection

::::::
volume

::::
v
int::::

and
:::
the

:::::::
statistics

::
of

:::::::
particle

::::::::
positions20

::::
h(r)

::::
both

::::::
depend

:::
on

::
d.

::::
Now

:::::::
imagine

::::
that

::::
each

::::::
sphere

::
is

::::::::
deformed

:::
by

:
a
:::::::::::
hypothetical,

::::::::::::::::
volume-conserving

::::::::
re-shape

::::::::
operation

::
to

::
an

::::::::
irregular,

::::::::::
non-convex

:::::::
particle,

:::::
which

::
is

:::
still

:::::::
located

::
at

::
the

::::::
center

::
of

:::
the

:::::::
original

::::::
sphere.

::::
Due

::
to

:::::::::
re-shaping,

:::
the

:::::::::
parameter

:::
H2

:::::
would

::::::::
increase.

::::
After

:::
the

::::::::
re-shape,

::::::::::
neighboring

:::::::
particles

::::::
would

::::::
overlap

:::
(on

::::::::
average),

:::::
since

::::
their

::::::::
maximum

::::::::
extension

:::::
must

::::
have

::::
been

::::::::
increased

:::::::::
compared

::
to

:::
the

:::::
sphere

::::::::
diameter.

:::
To

:::::::
recover

:
a
::::::::::::::
non-overlapping

:::::::::::
configuration,

:::
all

:::::::
particle

:::::::
positions

:::::
must

::
be

::::::
dilated.

::::
The

:::::
latter,

::::::::
however,

::::
also

:::::
affects

:::
the

::::
tail

::
of

:::
the

:::::::::
correlation

::::::::
function.

::::
This

::
is

::::::
exactly

::::
what

:::
we

::::::::
observe:

:::
the

::::::
“shape

::
of25

::::::::
structural

:::::
units”

::
in

:::::
snow,

::
as

::::::::::
exemplified

::
by

:::
H2

::
is

::::::
always

::::::::
correlated

::::
with

:::
the

::::::::
“position

::
of

:::
the

::::::::
structural

:::::
units”

::
in
::::::
space.

:::
We

::::
note

:::
that

:::
this

:::::::
particle

:::::::
analogy

:::
has

::::
clear

::::::::::
limitations

:::
and

::::
only

::::::
serves

:::
here

:::
to

:::::::
illustrate

:::
the

:::::
rather

:::::::
abstract

::::::::
statistical

::::::::
relations

:::::::
between

:::::::
different

:::::
length

::::::
scales.

:::::
Snow

:::::::
remains

:
a
::::::::::::
bi-continuous

:::::::
material

:::::
where

:::::::::
individual

:::::::
particles

::::::
cannot

::
be

::::::::::::
distinguished.

:

::::::
Overall,

::::
we

:::::::
conclude

::::
that

:::::
both,

:::
�
2 ::

or
:::
µ
2:::

can
:::

be
::::
used

:::
to

::::::::::
significantly

:::::::
improve

:::::::::
estimates

::
of

::
⇠

:::::
when

::::::::
compared

:::
to

::::::
optical

:::::::
diameter

:::::
based

::::::::
estimates.

:
30

5.2.2
:::::::
Linking

::::::::
moments

::
of

:::
the

::::::
chord

::::::
length

:::::::::::
distributions

::
to

::::::
Porod

::::
and

::::::::::::::
curvature-length

:::::::
Hitherto

::
no

:::::::::::
geometrical

:::::::::::
interpretation

:::
for

:::
the

:::::::
second

:::::::
moment

:::
µ
2::

of
:::

the
::::::

chord
:::::
length

::::::::::
distribution

::::
was

:::::::
known.

::::
Our

::::::
results

::::::
suggest

::
an

::::::::
empirical

:::::::
relation,

:
Eq. is 177 and the AIC difference between models (22),

::::
that

:::::::
involves

:::
the

:::
two

::::::::::
geometrical

::::::
length

22



:::::
scales

::
�
1::::

and
:::
�
2

.
::
In

:::
the

::::::::
following

:::
we

:::::::
provide

:::::::::
supporting

:::::::::
arguments

:::
for

:::
the

:::
link

::::::::
between

::
µ
2::::

and
::
�
1::::

and
::
�
2:::

by
:::::::::
discussing

:::
the

::::::
relation

:
Eq. and (13)

:::::::
between

:::
the

:::::
chord

:::::
length

::::::::::
distribution

:::
and

:::
the

:::::::::
correlation

::::::::
function.

:

:::
The

:::::::
relation Eq. was 275, which confirms the statistical significance of the model Eq. .

All statistical models indicate that at least two different length scales �
1

and �
2

or µ
1

and µ
2

are required to obtain a

reasonable (13)
:::
was

::::::::
originally

::::::
raised

::
in

:::
the

::::::
context

::
of

:::::
small

:::::
angle

::::::::
scattering

:::::
long

::::
time

:::
ago

::::::::::::::::::::::::::::
(Méring and Tchoubar, 1968) and5

::::
later

:::::::
revisited

::::
e.g.

::
by

::::::::::::::::::::::::
Levitz and Tchoubar (1992) ,

::::::::
revealing

::::
two

:::::::
different

::::::::::::
approximation

::::::
steps.

::
A

:::
first

::::::::::::
simplification

::::::
comes

::::
from

:::
the

::::::::::
assumption

:::
that

:::::::::::
consecutive

::::::
chords

::
on

:::
the

:::::::
random

:::
ray

:::
in

:::
Fig.

::
1
:::
are

::::::::::
statistically

:::::::::::
independent.

::::
This

:::::
issue

:::
has

:::::
been

::::::::
discussed

::
in

:::::
detail

::::
also

:::
by

::::::::::::::::::::::::
Roberts and Torquato (1999) ,

::::
who

::::::::::
established

::
an

:::::
exact

:::::::
relation

:::::::
between

::::
the

:::::::
Laplace

:::::::::
transforms

::
of

:::
the

:::::::::
correlation

::::::::
function,

:::
the

:::::
chord

::::::
length

::::::::::
distribution,

::::
and

::
a

::::::::::
surface-void

::::::::::
correlation

:::::::
function

:::::
based

:::
on

:::
this

:::::::::::
assumption.

::::
Their

::::::
results

:::::::
however

:::::
show

::::
that

:::
for

:::::::
level-cut

::::::::
Gaussian

:::::::
random

:::::
fields,

:::::
where

::::
this

:::::::::
assumption

::
is
::::::::
violated,

:::
the prediction of the10

exponential correlation length . While �
1

and µ
1

are both trivially related to the optical radius
:::::
chord

::::::
length

:::::::::
distribution

::::
can

::
be

:::
still

::::
very

::::::::
accurate.

::::
This

::::::::
indicates

:::
that

:::::::::
assuming

::::::::::
independent

::::::
chords

::
is

:::
per

::
se

:::
not

:
a
:::::::
serious

::::::::
limitation.

:::::::::
Secondly,

:::
Eq.

:
(13)

::
is

::::::
actually

:::
an

::::::::::::
approximation

:::
for

:::::
dilute

:::::::
systems

:::::
which

::
is

::::::::
generally

:::
not

::::
valid

:::
for

:::::
snow.

:

::
To

::::
test

:::
the

:::::
range

::
of

:::::::
validity

::
of
::::

the
::::::
relation

:
(13)

:::
for

:::::
snow,

:::
we

::::
have

:::::
taken

:::::
three

:::::::
samples

::::
and

:::::::::
computed

:::
the

:::::
chord

::::::
length

:::::::::
distribution

:::::::
directly

::
to

::::::::
compare

::::
them

::
to

:::
the

:::::::::
prediction

::
of

::::
Eq. (13)

::
as

::::::
shown

::
in

:::
Fig.

:::
4.

:::
An

:::::::
obvious

::::::::
drawback

::
of

:::
Eq.

:
(13)

:::
can15

::
be

::::
seen

:::
for

:::
the

:::::::
rounded

:::::
grains

:::::
(RG)

:::::::
sample.

:::
Due

:::
to

:::
the

::::::::::::::
quasi-oscillations

::
in

:::
the

:::::::::
correlation

::::::::
function

:::
(cf.

:::::::::::::::::
Löwe et al. (2011) ),

::::
A(`)

:::
and

:::
its

::::::
second

::::::::
derivative

::::::
assume

:::::::
negative

:::::::
values,

:::::
which

:::::
would

::::::
imply

:::::::
negative

:::::
values

:::
for

::::
p(r) via Eq. and (13)

:
.
::::
This

::
is

::
in

:::::::::::
contradiction

::
to

::
the

::::::::
meaning

::
of

::::
p(r)

::
as

:
a
:::::::::
probability

::::::
density

::::
and

:::::
likely

:
a
::::::::::
consequence

::
of

:::
the

:::::::::::
assumptions

:::::
which

:::
are

:::
not

::::
valid

:::
for

:::::
snow.

::::::
Despite

:::
this

:::::::
obvious

:::::::::
drawback,

:::
Fig.

::
4

:::::
shows

::::
that Eq. , the two other size metrics (13)

:::::
yields

:::::
three,

::::::::::
qualitatively

:::::::::
consistent

:::::
results

:::
for

::::::::
different

::::
snow

:::::
types

::::::
where

:::
the

:::::
basic

:::::::
features

::
of

:::
the

:::::
chord

::::::
length

:::::::::
distrbution

:::
are

::::
well

:::::::::
predicted:

:::::
First,

:
it
::::::::

captures20

::
the

:::::::::::
considerable

::::::::
variations

:::
of

:::
the

:::::::
position

::
of

:::
the

:::::::::
maximum,

:::
the

:::::
width,

::::
and

:::::
decay

::
of

:::
the

:::::
chord

::::::
length

::::::::::
distribution.

:::::::
Second,

:::
the

::::::
relation

:::
Eq.

:
(13)

::::::
predicts

:::
that

:::
the

:::::
chord

::::::
length

::::::::::
distribution

::::
tends

::
to
::::
zero

:::
for

:::::
small

::::::
values

::
i.e.

::::::::
p(0) = 0

:::
(as

::::::::
confirmed

::
in
::::
Fig.

:::
4).

::::
This

:
is
::
a

:::::
direct

::::::::::
consequence

::
of

::
a

::::::
smooth

:::::::
interface

::
as

::::::
shown

::
in

:::::::::::::::::::::
Wu and Schmidt (1971) .

:::::
Third,

:
it
:::::
leads

::
to

:::
Eq. (14),

::::
that

:::::::
involves

::
the

:::::::
integral

::::
over

:::
the

:::::::::
correlation

::::::::
function.

::::
The

::::
latter

::::::::
indicated

:
a
::::::::::
connection

:::::::
between µ

2

or
:::
and

:::
�
1 :::

and
:
�
2

significantly increase

the performance of the statistical model. As further detailed below, both parameters can be regarded as a two possibilities of25

defining
:
,
:::::
which

::::
was

::::::::
confirmed

::::::::::::
quantitatively

:::
via

:::
Eq.

:
(21)

:
.
:::::
Given

:::
the

::::::::::
assumptions

:::::::::
discussed

:::::
above,

::
it
::
is

:::
not

:::::::::
surprising

:::
that

::
a

:::::::
heuristic

:::::::::::
improvement

:::::
could

::
be

::::::::
achieved

::
by

::::::::
including

::
a

::::
term

::::::
(1��)

::
in

:::
Eq.

:
(22)

:
,
::::
since

:::::
snow

::
is

:::
not

:
a
:::::
dilute

::::::
particle

::::::
system

::::
and

:::::::::
corrections

:::::::::
containing

:::::::
�-terms

:::
are

::
to

::
be

::::::::
expected.

:

::::::
Overall,

::::
our

::::::
analysis

::::::::
confirms

:::
that

::::
both

:::::::::
approaches

::
to
::::::::::::
microstructure

::::::::::::::
characterization,

:::
via

:::::::::
correlation

::::::::
functions

::::
(with

:::::::
metrics

::::::
�
1

,�
2

)
::
or

:::
via

:::::
chord

::::::
length

:::::::::
distribution

:::::
(with

:::::::
metrics

::::::
µ
1

,µ
2

)
:::
are

:::
not

:::::::::::
independent.

:::::
They

:::::
rather

::::::::
describe,

::::::
slightly

::::::::
different

:::
but30

::::::::::
interrelated,

::::::::
structural

::::::::
properties

::::::
which

::
are

::::
now

:::::::::
discussed

::
in

::::
view

::
of

:
grain shape.
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5.3 The notion of grain
:::::
Grain shape

5.3.1
:::::
Grain

::::::
shape,

::
a

::::::::::
geometrical

::::::::::::
interpretation

The international classification for seasonal snow on the ground (Fierz et al., 2009) considers grain shape as the morphological

classification into snow types. This is motivated by the common but loose perception of shape as the basic geometrical form

of constituent particles. It is clear that grain shape remains a vague concept unless it is formulated in terms of quantities which5

are unambiguously defined on the 3D microstructure.

Local curvatures are often regarded as shape parameters and used to characterize snow on a more fundamental level. The rel-

evance of the mean curvature is described and analyzed in detail in Calonne et al. (2015), where morphological transitions (e.g,

faceting) of snow during temperature gradient metamorphism are visible in the distribution of mean curvatures. The present

description of grain shape in snowpack models (Lehning et al., 2002; Vionnet et al., 2012) is in fact based on the variance of the10

mean curvature, by the “sphericity ” parameter as introduced by Brun et al. (1992) . There are
::::::::
sphericity

::::::::
parameter

::
as

:::::::
defined

::
by

:::::::::::::::::::
Lesaffre et al. (1998) .

:::::
There

::::
were

:
attempts to measure the sphericity from digital photographs as described by Lesaffre

et al. (1998) and Bartlett et al. (2008). This definition is valid only in two dimensions and therefore difficult to compare
::::::
directly

to their 3D counterparts in Calonne et al. (2015). Another aspect of shape is captured by the averaged Gaussian curvature

:
It
::
is

::::::::
therefore

::::::
natural

::
to

:::
use

:::::::
objective

::::::::
measures

::
as

:::
the

:::::
mean

:::
and

::::::::
Gaussian

::::::::
curvature

::
H

:::
and

:
K

::
to

:::::::
quantify

:::::
shape. Though K is15

computed from local properties of the interface, it has a strict topological meaning due to its relation to the Euler characteristic

� via Eq. .
:::::
which

::
is

::
by

:::::::::
definition

::::::
strictly

::::::::::
independent

::
of

::::
local

:::::
shape

:::::::::
variations

::
of

:::
the

:::::
ice-air

::::::::
interface.

:
The Euler characteristic

was e.g. used by Schleef et al. (2014) to characterize microstructural changes during densification. As a topological quantity, �

is by definition strictly independent of local (shape) variations of the ice-air interface. We found however, that the contribution

K/3 in �
2

from Eq. (8) ranges from 1-13% and is on average 3.7 % of H2. Hence the curvature length
:::::::::::::
curvature-length

:
�
2

is20

dominated by the second moment H2, and thus closely related to the variance of
::
an

:::::::
(inverse)

::::
size

::::::::::
distribution,

:
the distribution

of mean curvatures, which is a well-defined shape concept for the 3D microstructure.
:
.
::::
This

::::::::
indicates

:::
the

:::::
formal

:::::::::
similarity

::
to

::
µ
2::::::

which
:
is
::::
also

:
a
:::::::

second
:::::::
moment

::
of

:
a
::::
size

::::::::::
distribution,

:::
the

:::::
chord

::::::
length

::::::::::
distribution.

::::::
Hence,

::::
both

::::::
metrics

::::
can

::
be

::::::::
regarded

::
as

:::::::::
accounting

:::
for

:::
size

::::::::
dispersity

:::
in

:::::
snow.

There is a conceptual pitfall associated with shape metrics of
:::::::
Overall,

:::
we

::::::
suggest

::::
that

::::
both

::::::::::
parameters,

:::
µ
2 :::

and
:::
�
2:::

can
:::
be25

::::
used

::
to

:::::::::
objectively

:::::
define

::
a
::::
grain

:::::
shape

:::
for

:
3D microstructures . To illustrate this , we consider a

:::::
which

::
is

::::::
closely

:::::::::
connected

::
to

:::
size

::::::::
dispersity

::::
and

:::::
which

::::::::
naturally

:::::::
extends

::::
grain

::::
size

:::::::
(optical

::::::::
diameter)

::::::::::
determining

:::
µ
1::

or
:::
�
1

.
:::::
With

:::
this

::::::::::
perception,

:::
we

::::
now

::::::
connect

::::
back

:::
to

::
the

:::::::
original

::::::::::
applications

:::
of

:::::::::
microwave

:::
and

::::::
optical

:::::::::
modeling.

5.3.2
:::::
Grain

::::::
shape

:::
for

:::::::::
microwave

:::::::::
modeling

::::
Thus

:::
far,

::::
the

::::::::::
exponential

:::::::::
correlation

::::::
length

:
⇠
:::

as
:
a
::::

key
:::::::::
parameter

:::
for

::::::::
MEMLS

:::::
based

:::::::::
microwave

:::::::::
modeling

:::::::::
(MEMLS)

::::
was30

::::::
mainly

::::::::
predicted

::::
from

:::
the

:::::::
optical

::::::::
diameter.

::::
Our

::::::::::
conclusions

::::
from

:::::::
section

::::
5.2.1

::::::
could

::::
now

::
be

::::::::
restated:

::::
The

::::::::
inclusion

::
of

::
a

::::
grain

:::::
shape

:::::::::
parameter,

:::
�
2::

or
:::
µ
2::::::::

improves
:::
the

:::::::::
prediction

::
of

:::
the

::::::::::
exponential

:::::::::
correlation

::::::
length

:::::::::::
significantly.

:::
Or,

:::::::::
according

::
to

::
the

::::::::::
conclusion

::::
from

::::
the

:::::::
previous

:::::::
section,

::::
one

::::
may

::::::::::
alternatively

::::::
restate

::::
that

::::
size

::::::::
dispersity

::::
has

::
an

:::::::::
influence

::
on

::::::::::
microwave
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::::::::
properties.

:::::
This

:
is
::::::
known

:::::
from

::::
other

:::::::
models

:::
than

:::::::::
MEMLS,

:::::
where

::
an

::::::::
influence

::
of

::::::::::::
polydispersity

:::
on

:::
the

:::::::
effective

:::::
grain

::::::
scaling

::::::::
parameter

::::::
within

:::::::::
DMRT-ML

:::::::::
microwave

:::::::::
modeling

:::
was

:::::
found

:::::::::::::::
Roy et al. (2013) .

:

::::
This

::::::::::
equivalence

::
of

:::::
shape

:::
and

::::
size

::::::::
dispersity

::
at

:::
the

::::
level

:::
of

:::::::::
correlation

::::::::
functions

:::
can

::
be

::::::
further

:::::::::
illustrated

::
by

:::
an

:::::::::
interesting

:::::::
example.

::::::::
Consider

::
a microstructure of polydisperse spherical particles. The definition of grain shape from the classification

(Fierz et al., 2009) would assign a spherical shape to this microstructure, while the averaged squared mean curvature H2 would5

be rather governed by
::::::
instead

::::
vary

:::::::::
depending

::
on

:
the variance of particle radii. This indicates that polydispersity must also be

considered as a particular aspect of shape. The equivalence between polydispersity and shape can be made more rigorous as

::
As

:
pointed out by Tomita (1986): a low-density assembly of irregularly shaped but identical

:
,
:::
for

:::
low

:::::::
density,

::::
such

::
a

::::::
system

::
of

::::::::::
polydisperse

::::::::
spherical

:
particles can always be mapped uniquely ,

::::
onto

::
an

::::::::
assembly

::
of

::::::::::::
monodisperse

:::
but

:::::::::
irregularly

::::::
shaped

:::::::
particles by solving an integral equation, onto a system of polydisperse spherical particles if

:
if

:
only the correlation function10

is considered. Irregularity
:::::
Shape

:
can be equivalent to polydispersity. Hence, ,

::::
and snow types which can be clearly discerned

visually
::
are

:::::::
visually

:::::
very

:::::::
different

:
might still have very similar physical properties. Shape must be generally understood as

a distribution of size metrics. This
::::
This

:::::::
example

:
also explains why the objectively defined shape parameter

:::::::
objective

::::
size

::::::::
dispersity

:::::::::
parameters

:
�
2 ::

or
::
µ
2:

cannot be mapped directly onto the classical definition of grain type from Fierz et al. (2009).

5.4 Linking optical and microwave metrics15

5.3.1
:::::
Grain

::::::
shape

::
in

::::::::::
geometrical

::::::
optics

Finally, we turn to the implications of different descriptions of grain shape for modeling microwave scattering or geometrical

optics in snow
:::
size

::::::::
dispersity

::
or

:::::
grain

:::::
shape

:::
on

::::::::::
geometrical

:::::
optics

::::::
within

:::
the

:::::
scope

::
of

:::::::::::::::::::
(Malinka, 2014) based

::
on

:::::
chord

::::::
length

::::::::::
distributions.

The exponential correlation length must be understood as a proxy to characterize the entire correlation function by a single20

length scale.By construction, this single length scale contains signatures of both,
::
As

:::::::
pointed

:::
out

:::
by

:::::::::::::::
(Malinka, 2014) ,

::
if

:::::::::
consecutive

::::::
chords

:::::
were

::::::::
statistical

::::::::::
independent

:::
i.e.

:
a
::::::::::
Markovian

:::::::
process,

:::
then

:::
the

::::::::
obtained

::::::::::
distribution

:::::
would

::
be

:::::::::::
exponential,

:::
and

:::
all

::::::
optical

::::::::
properties

::::::
solely

::::::::::
determined

::
by

:::
the

:::::::
optical

:::::::
diameter

:::
(or

::::
µ
1

).
:::
To

:::::::
quantify

:::
the

:::::::::
deviation

::::
from

:::
an

::::::::::
exponential

:::::
chord

:::::
length

:::::::::::
distributions

:::
we

::::::::
calculated

:::
the

:::::::
fraction

:::::::
µ
2

/2µ2

1::::::
which

:
is
:::::

unity
:::
for

::
a

::::::::::
exponential

:::::
chord

:::::
length

:::::::::::
distribution.

::::
This

::::::
fraction

::
is
:::

on
:::::::
average

::::
0.75

::::
for

:::::::
rounded

::::::
grains

:::::
(RG),

::::
0.76

:::
for

:::::
melt

:::::
forms

::::::
(MF),

::::
0.77

:::
for

:::::::::::
precipitation

::::::::
particles

::::
(PP)

::::
and25

:::::::::::
defragmented

:::::::
particles

:::::
(DF),

::::
0.79

:::
for

:::::::
faceted

::::::
crystals

:::::
(FC)

:::
and

:::
the

::::::
closest

:::::
value

::
to
:::::
unity

::
is

:::::
0.876

:::
for

:::::
depth

::::
hoar

::::::
(DH).

::::
This

::::::
implies

:::
that

:::
the

:::::
chord

::::::
length

:::::::::
distribution

:::
for

:::::
depth

::::
hoar

::
is

::::::
closest

::
to

::
an

::::::::::
exponential,

::::::
which

:::
can

::
be

:::::::
visually

:::::::::
confirmed

::
by

::::
Fig.

::
4.

:::
We

:::::
reach

:
a
:::::::

similar
:::::::::
conclusion

:::
for

:::
the

::::::::::
correlation

:::::::
function

::::::
where

::
�
1::

is
:::::::

already
::
a
:::::
fairly

:::::
good

:::::::
predictor

::::
for

:::
the

::::::::::
exponential

:::::::::
corrrelation

::::::
length

:::::
when

:::::
depth

::::
hoar

::
is

:::::::::
considered

::::
(see

::::
Fig.

::::
3)a).

::::
But

:::
due

::
to

:::
the

:::::::::
deviations

::::
from

:::
an

::::::::::
exponential,

:::
an

::::::::
influence

::
of

:::::
shape

:::
via

:::
µ
2 ::

on
:::
the

::::::
optical

:
properties that dominate the behavior of the correlation function for small arguments (�

1

and30

�
2

)and other properties that dominate the tail-behavior of the correlation function for large arguments. Within the scope of

such a single length scale metric, we found clear evidence from the statistical relation Eq. that the tail is already largely

determined by properties of the correlation function at the origin (�
1

and �
2

). This seems surprising at first sight. Why should
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local aspects of the interface (�
1

and �
2

)determine the (non-local) decay of structural correlations (⇠)relevant for microwave

scattering? To illustrate our explanation for this finding, we resort to a particle picture and consider a dense, random packing

of monodisperse hard spheres. For such a packing, the particle “shape” is trivial and fully determined by the sphere diameter

d, which determines the slope of the correlation function at the origin. However, also particle positions and thus the decay of

correlations is fixed by d. This becomes obvious from the representation C(r) = nv
int

(r)+n2v
int

(r) ⇤h(r) for the correlation5

function for such as system at number density n (Löwe and Picard, 2015) . In this representation, the spherical intersection

volume v
int

and the statistics of particle positions h(r) both depend on d. Now imagine that each sphere is deformed by a

hypothetical, volume-conserving re-shape operation to an irregular, non-convex particle, which is still located at the center

of the original sphere.Due to re-shaping, the parameter H2 would increase. After the re-shape, neighboring particles would

overlap (on average), since their maximum extension must have been increased compared to the sphere diameter. To recover a10

non-overlapping configuration, all particle positions must be dilated. The latter, however, also affects the tail of the correlation

function . This is exactly what we observe: the “shape of structural units” in snow, as exemplified by H2 is always correlated

with the “position of the structural units” in space. We note that such a particle analogy has clear limitations and only serves

here as an attempt to illustrate the rather abstract statistical relations between different length scales. They must be taken with

caution, since snow is a bicontinuous material if probed by µCT, and individual particles cannot be distinguished.
:::::
would

:::
be15

:::::::
expected

::::
from

::::::::::::::
Malinka (2014) .

:

The previous analogy also helps to understand why geometrical optics of snow should be related to microwave scattering,

despite the difference in wave lengths by orders of magnitude. For snow optics, it has been shown that shape influences the

penetration of light (Libois et al., 2013) . The authors conclude that acollection of spheres cannot sufficiently predict irradiance

profiles in snow due the underestimation of the asymmetry factor gG. This factor is known to include shape of different grain20

types as predicted by the theory from Kokhanovsky and Zege (2004) . However an expression of the shape parameter B in

terms of the microstructure is not provided by the theory. The analysis of Malinka (2014) shows that the optical properties can

be expressed in terms of the Laplace transform bp(↵) of the chord length distribution, which has to be evaluated at the absorption

coefficient of ice, ↵= 2⇡/�, where � is the wavelength and  the imaginary part of the refractive index. Determination

of the absorption coefficient ↵ (Warren and Brandt, 2008) and the fraction of the first and second order of Eq. including25

the standard deviation �.
:::::
Using

:::
the

:::::
chord

::::::
length

:::::::::::
distributions

:::
we

::::
were

::::
able

:::
to

::::::::
calculate

:::
the

:::::
shape

::::::
factors

::
B
::::

and
:::
gG

:::::
from

::::::::::::::::
Malinka (2014) and

::::::::::::::::::
Libois et al. (2013) in

:::
the

::::
limit

:::
of

:::
low

:::::::::
absorption

::::::
where

::::
both

:::::::::
approaches

::::
can

::
be

:::::::::
compared.

::::
The

:::::::
(B,gG)

:::::
shape

:::::::
diagram

:::
(cf.

:::
Fig

::::
1.(a)

::
in

:::::::::::::::::
Libois et al. (2013) )

::
in

::::
Fig.

:
7
::::
was

:::::::
obtained

:::
for wavelength (µm) ↵ (m

�1

) µ
2

/2µ
1

↵ (%) � (%)

0.90 4.1 7.6⇥ 10

�2

2.6⇥ 10

�2

1.31 1.2⇥ 10

2

2.1 7.2⇥ 10

�130

1.63 2.0⇥ 10

3

37 13

1.74 1.1⇥ 10

3

20 6.8

2.00⇤ 9.4⇥ 10

3

1.7⇥ 10

2

60

2.26 1.1⇥ 10

3

20 7
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Since for most wavelengths in the visible and infrared regime ↵µ
1

⌧ 1 is small, the Laplace transform Eq. can be approximated

by a few terms in the expansion Eq. . The results in Malinka (2014) are mainly based on the Laplace transform of an

exponential, bp(↵) = 1/(1+µ
1

↵), which only involves µ
1

(or the optical radius via Eq. 1) . Assessing typical values for

↵ allows us to estimate the relative importance ↵µ
2

/2µ
1

of the second-order term compared to the first-order term in the

expansion
:::::
1.3µm

::::::
where

::
the

:::::::
Laplace

:::::::::
transform Eq. (10) . Typical values for ↵ are obtained by using the values for  provided5

by Warren and Brandt (2008) . The ratio ↵µ
2

/2µ
1

is calculated for typical wavelenghts and shown in Table 2.Wavelengths are

selected to match common optical methods, namely 0.9 µm (Matzl and Schneebeli, 2006) , 1.31 µm (Arnaud et al., 2011) ,

and the SWIR wavelengths 1.63 µm, 1.74 µm and 2.26 µm used by Domine et al. (2006) . We added the wavelength 2.00 µm,

which is not used by any instrument, but has the highest value for ↵ in this range. Note that the standard deviation � is high

as a result of the variations due to grain shape. The lowest values of µ
2

/2µ
1

are found for fresh snow (PP) and highest for10

depth hoar (DH) and melt forms (MF). Given the order of magnitude, it seems likely that shape corrections could be measured

by some SWIR based optical techniques. To confirm the relevance of the shape correction from a different perspective, we

can directly compute the optical shape parameter
:::
can

::
be

::::::::::::
approximated

:::
by

:::
the

::::
first

:::
and

:::::::
second

:::::
order.

::::
The

::::::::
variations

:::
of

:::
the

:::::::
absolute

:::::
values

:::
for

::::::
B,gG

::::::
shown

::
in

::::
Fig.

:
7
:::::::::::::

predominantly
::::
stem

:::::
from

:::::::::
corrections

::::::
which

:::
are

:::::
linear

::
in

:::
µ
1:::

(by
::::::

virtue
::
of

:
(A5)

:
),

::::
while

:::
the

::::::
small,

:::::::
scattered

:::::::::
deviations

::::
from

::
a
::::::
perfect

::::::
straight

::::
line

:::
are

::::::
caused

::
by

:::
µ
2

.
::
If

:
B in terms of µ

1

,µ
2

. It is straightforward15

to derive an expression
:::
and

:::
gG

::::
were

::::::::
evaluated

:::
for

::::::::::
wavelength

:::::::
0.9µm,

:::
the

:::::::
influence

:::
of

::
µ
2::::::

would
::
be

::::
even

:::::::
smaller.

::::
Our

::::::
results

::::
show

::::
that

:::
the

:::::
values

:
for B using (Libois et al., 2013; Malinka, 2014) as shown in the Appendix A. The results Scatterplot of

the dimensionless quantity µ
2

/2µ2

1

and the optical shape factor B evaluated for refractive index at wavelength �= 1.3µm.

are shown in Fig. 7 where B is shown as a function of the dimensionless quantity µ
2

/2µ2

1

which can be constructed from the

two relevant parameters. The range of values B 2 [1.54,1.72] is well within the range B 2 [1.25,2.09] obtained by
:
B

::::
and

:::
gG20

::
are

:::::::
exactly

:::::
within

:::
the

:::::
range

::::
that

:
is
:::::::::
suggested

::
by

:
ray-tracing calculations for different geometrical shapes (Libois et al., 2013) .

Further details remain to be elucidated by combining tomography imaging together with optical measurements or pore scale

simulations. Along these lines our results suggest a new route of assessing the remaining discrepancies in ? using the moments

of the chord length distribution.
:::::::::
simulations

:::
for

::::::
various

::::::::::
geometrical

:::::
shapes

:::
for

::
a

:::::::::
wavelength

::
of

::::::
0.9µm

:::::::::::::::::
Libois et al. (2013) ,

:::
but

::::
show

::
a

::::
much

:::::::
smaller

:::::::
variation

::::
over

:::
the

:::::
entire

:::
set

::
of

:::::
snow

:::::::
samples.

::::::::::
Comparing

:::
our

::::::
results

::
to

:::::::::
ray-tracing

::
of

::::::::::
geometrical

::::::
shapes25

:
is
::::::::
however

:::
not

:::::::::::::
straightforward,

::::
since

:::
the

:::
3D

:::::::::::::
microstructures

::::::
cannot

::
be

:::::::
mapped

:::
on

::
an

::::::::
ensemble

::
of

::::::
regular

::::::::::
geometrical

:::::::
objects.

The established connection between µ
2

and shape(via �
2

) is demonstrated by the statistical model Eq. and the residual

analysis (Fig. 5). Together with the relation between ⇠ and �
2

discussed in 5.2.1, we have finally established a connection

between all involves size metrics. This leads to the statistical relation Eq. , which involves density, the microwave metric ⇠30

and the optical metrics
::
If

:::
the

:::::::
obtained

::::::
values

:::
for

::
B

:::
are

:::::::::
compared

::
to

::::::
actual

::::::::::::
measurements

::::::::::::::::::::
(Libois et al., 2014) also

:
a
::::::

larger

:::::::
variation

::
is

::::::::
observed

::::
than

::::::::
predicted

::::
from

:::
the

::::::::::
geometrical

:::::
optics

:::::::::
framework

::::::::::::::
Malinka (2014) .

::
It
::::::
should

::
be

:::::
noted

::::::::
however

::::
that,

::
as

:::
the

::::::
authors

:::::::
discuss,

:::
the

:::::::::
correlation

:::::::
between

:::
the

:::::::::::::
experimentally

:::::::
obtained

:::
B

:::
and

::::::
shape,

::
as

::::::
defined

:::
by

::::::::::::::::
Fierz et al. (2009) ,

::
is

:::::::::
statistically

:::
not

:::::::::
significant

:::
and

:::::::::
variations

:::::
might

::
be

::::::::
attributed

::
to
::::::::::
shadowing

:::::
effects

:::::::
relevant

::
at

::::::
higher

::::::::
densities.
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::::::
Overall,

::::
our

:::::::
analysis

:::::::
indicates

:
a
:::::::
smaller

:::::::
variation

:::
of

:::::
optical

:::::::::
properties

::::
with

:::::
shape

:::
via µ

2 ::::::::
according

::
to

::::::::::::::::::
Malinka (2014) when35

::::::::
compared

:::::
other

::::::::
methods.

:::
We

:::
can

:::::
only

::::::::::
hypothesize

:::::::
potential

:::::::
origins

:::::
which

:::
are

:::::::::
connected

::
to

:::
the

:::::::
present

::::::::
analysis.

::
A

::::::
crucial

:::::::::
assumption

:::::
made

::
in

:::
the

::::::::::
geometrical

:::::
optics

::::::::::
framework

:::::::::::::::
(Malinka, 2014) is

:::
the

::::::::
statistical

::::::::::::
independence

::
of

:::
the

:::::
chord

:::::
length

:
and

µ
1

.

The statistical relations between all the size metrics was motivated by the connection between chord length distributions and

correlation functions. This connection is an old topic which was raised in the context of small angle scattering half a century ago5

(Méring and Tchoubar, 1968) . The approximation Eq. used here actually contains two different approximation steps. A first

simplification comes from the assumption that consecutive ice chords are statistically independent. Such an approximation was

used by Roberts and Torquato (1999) to derive an exact, but more complicated, relation between the Laplace transforms of the

ice chord length distribution and the correlation function. A similar result was obtained by Levitz and Tchoubar (1992) . The

used relation Eq. underlies even an additional approximation of strong dilution of the inclusion particles (Méring and Tchoubar, 1968) .10

Despite the two-step approximation outlined above, we however confirmed that Eq. has a practical value and yields three,

qualitatively consistent results for different snow types (Fig. 4). First, it captures the considerable variations of the position

of the maximum, the width, and decay of the chord length density function. Second, it leads to the suggested Eq. which

indicates that moments of the chord length distribution and the second derivative of the correlation function must be related.

An heuristically found improvement on Eq. by including the term (1��) in Eq. is not surprising since snow is not a dilute15

particle system and corrections containing �-terms must be expected. Third, the relation Eq. predicts that the chord length

distribution tends to zero for small values i.e. p(`= 0) = 0 (as confirmed in Fig. 4) . This is a direct consequence of a smooth

interface as shown in Wu and Schmidt (1971) . The latter work also derived the real space expansion of the
:::::::::
consecutive

::::::
ice-air

::::::::
incidence

::::
angle

:::
for

:
a
:::
ray

::::::
which

:::::
passes

:::::::
through

:
a
:::::
grain.

::::
Such

:::
an

:::::::::
assumption

:::::
might

::
be

:::::::::::
progressively

:::::::
violated

:::
for

:::::
lower

:::::::::
absorption

:::::
where

:
a
::::::
higher

:::::::
number

::
of

:::::::
internal

:::::::::
reflections

::
in

:::
fact

::::::
probes

::::
this

:::::::::
assumption

:::::
more

:::::
often.

::::::
Hence

:::
the

::::
true

:::::
effect

::
of

:::::
shape

:::
on

::
B20

:::
and

:::
gG

:::::
might

:::
be

:::
still

:::::
more

::::::::::
pronounced

::
as

::::::::
captured

::
by

::::
size

:::::::::
dispersity

:::
via

::
µ
2::::::

within
:::::::::::::::
(Malinka, 2014) .

::::::
Further

::::::
details

:::
on

:::
the

:::::::::::
discrepancies

:::::::
between

::::::::::::
measurements,

::::::::::
simulations

::::
and

:::::
theory

::::::
remain

::
to

:::
be

::::::::
elucidated

:::
by

:::::::::
combining

::::::::::
tomography

:::::::
imaging

::::
and

:::::
shape

::::::
analysis

::::::::
together

::::
with

::::::
optical

:::::::::::
measurements

::::
and

:::::::::
ray-tracing

::::::::::
simulations

::
in

:::
the

::::::
future.

6
::::::::::
Conclusions

:::
We

::::
have

:::::::
analyzed

::::::::
different

::::::::::::
microstructural

::::::
length

:::::
scales

::::::
(�

1

,�
2::::

and
::::::
µ
1

,µ
2

)
:::::
which

:::::
were

::::::
derived

::::
from

:::
the

::::::::::
correlation

:::::::
function25

:::
and

:
chord length distributionwhich can be written as p(`) = 6`/�2

2

+O(`3). This result based on the assumption of a dilute

suspension of identical, randomly oriented particles, can be taken as an independent confirmation that the variance of the

chord length distribution µ
2

�µ2

1

must be related to the interfacial curvatures via �
2

. Under the minimal assumption that

the chord length distribution is governed by at least two independent length scales , the width of the distribution must result

from a competition of the rate at which the probability increases for small arguments ` (equal to 6/�2

2

) and the rate at which30

probability density decays to zero for large arguments ` (which must contain the optical radius ,
:::::::::::
respectively.

:::
All

:::::
length

::::::
scales

::::
have

:
a
:::::::::::
well-defined

::::::::::
geometrical

::::::::
meaning.

:::::
While

:::
the

::::
first

:::::
order

::::::::
quantities

::::
(µ

1

, �
1

) .
::
are

::::
both

::::::
related

::
to
:::

the
:::::

mean
::::
size

:::::::
(optical
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::::::::
equivalent

:::::::::
diameter),

:::::
their

:::::
higher

:::::
order

:::::::::::
counterparts

:::::::
(�

2

,µ
2

)
:::
are

::::::::
objective

::::::::
measures

:::
of

:::
size

:::::::::
dispersity

::::::
present

:::
in

:::
the

:::::
snow

::::::::::::
microstructure.

:

An obvious drawback of Eq. is, however, also revealed by Fig. 4 for the RG snow . Due to the quasi-oscillations in the

correlation function(cf. (Löwe et al., 2011) ), A(`) and its second derivative assume negative values, which would imply

negative values for p(r) via Eq. . This is in contradiction to the meaning of p(r) as a probability density. The results from

Roberts and Torquato (1999) for similar systems of oscillatory correlation functions indicate that the more sophisticated approach5

using numerical Laplace inversion seems to be a remedy, however this is beyond the scope of the present work.

As a convenient side product of our analysis, we obtained an approximate relation for the
:::
For

:::
the

:::::::::
correlation

::::::::
function,

:::
the

:::::
length

:::::
scale

::
�
2:::

is
:::::::::
essentially

:::::::::
determined

:::
by

:::
the

::::::
second

::::::::
moment

::
of

:::
the

:::::
mean

::::::::
curvature

:::::::::::
distribution.

:::
For

:::
the

::::::
chord

:::::::
lengths,

::
µ
2::

is
:::
the

:
second moment of µ

2

of the chord length distributionin terms of the curvature length �
2

(predominately via H2).

The parameter H2 has also been used for shape recognition in stereology for a long time and can be obtained from particular10

vertex and edges counting algorithms, as shown by ? and ? . An analytical relation between the chord length distributions and

curvatures was, however, never derived. Due to the lack of closed form expression for .
:::::
Both

::::::::
quantities

::::::::
naturally

::::::
extend

:::
the

::::::
concept

::
of

:::::
mean

:::::
grain

::::
size

::
as

:::::::
covered

::
by

:::
the

::::::
optical

:::::::::
equivalent

::::::::
diameter.

:::
The

:::::::::
statistical

::::::
relation

::::::::::
established

:::::::
between

::::
(�

1

,
:::
�
2

,

:::
µ
1

, µ
2

, our results may be relevant also for other applications)
::::::::
indicates

:::
that

:::::::::
practically

:::
the

::::
two

::::::::
measures

::
of

:::
size

::::::::
dispersity

::::
can

::
be

::::
used

:::::::::::::
interchangeably.15

7 Conclusions

In this work we have we analyzed snow microstructure and suggested a size metric which objectively, but not uniquely,

characterizes shape from the expansion of the correlation function in terms of interfacial curvatures. We have shown that the

geometrical interpretation of the shapeparameter is indeed correct by a comparison to VTK-based triangulation methods.

This also highlighted the remaining difficulties when processing the ice-air interface, such as smoothing. Independent of20

these difficulties, the shape analysis allowed us to improve
:::
We

::::
have

::::::
argued

::::
that

:::
size

:::::::::
dispersity

::
is

:::
one

:::::::
possible

:::::
route

:::::::
towards

::
an

::::::::
objective

::::::::
definition

:::
of

::::
grain

::::::
shape,

::::
and

::::
thus

::::
both

:::::::::
quantities

:::::::
(�

2

,µ
2

)
:::
can

:::
be

:::::::
regarded

:::
as

::::::::
measures

::
of

::::::
shape.

::::::
Within

::::
this

:::::::::::
interpretation,

:::
we

:::::
found

::::
that

::::
grain

:::::
shape

:::
or

:::
size

:::::::::
dispersity

::::::::::
significantly

::::::::
improves a widely used statistical model for the expo-

nential correlation length (as a key size metric for MEMLS based microwave modeling)from the optical radius by including

shape via curvatures. Alternatively, the exponential correlation length can also be expressed in terms of moments of the25

chord length distribution (as the key metric for geometrical optics modeling). We analyzed the connection between chord

length distributions and correlation functions which was suggested by old arguments from small angle scattering. Loosely

speaking, the established connection states that local shape of irregular snow grains (determining optical response via the

chord lengths or curvatures) and the packing of these irregular grains (determining microwave response via the correlation

length)is intimately correlated. Our results suggest a new experimental route to connect optical in-situ field measurements with30

microwave measurements. This requires to design an experimental method which is able to retrieve the µ
2

corrections (shape)
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in the optical properties when compared to the µ
1

term (optical radius). This seems possible given the predicted values for the

optical shape factor
:
.

:::
We

::::
have

::::
also

::::
used

::::
this

:::::::::::
interpretation

::
of

::::::
shape

::
to

:::::
assess

:::
the

:::
so

:::::
called

::::::
optical

::::::
shape

:::::
factor B . In a second step, using the

statistical relation Eq. , a direct connection to the correlation length can be made. Even by treating snow here as an isotropic

medium (by averaging all quantities over directions) we have found statistically robust relations between all size metrics. With

ongoing progress in models for the correlation function that include anisotropy and more general forms other than exponential5

ones, we can expect further refinement in the relation between optical and microwave metrics in the future
:::::
which

:::
can

:::
be

::::::
related

::
to

::
µ
1::::

and
:::
µ
2::

in
:::
the

::::::::::
framework

::
of

::::::::::::::
Malinka (2014) .

::::
The

::::::
results

:::::::
suggest

::::
that

:::
size

:::::::::
dispersity

::
is

::::
only

::
a
::::
first,

::::
but

:::::
likely

:::
not

::
a

:::::::
complete

::::
step

::
to

::::::::::
characterize

:::::
shape

:::
for

::::::
optical

::::::::
modeling.

::::::
Overall,

:::::::
defining

:::::
grain

:::::
shape

:::
via

::::::::
dispersity

::::::::
measures

:::
µ
2 ::

or
::
�
2::::::::

provides
:
a
::::
clear

::::::::::
intersection

:::::::
between

::::::::::
microwave

::::::::
modeling

::
of

::::
snow

:::
(if

:::::
based

::
on

:::
the

::::::::::
exponential

:::::::::
correlation

:::::::
length)

:::
and

::::::
optical

::::::::
modeling

::
of

:::::
snow

:::
(if

:::::
based

::
on

:::::::::::::::
Malinka (2014) ).

:::
We

:::
do

:::
not10

::::::
believe

:::
this

::::::::::
intersection

::
to

:::
be

:::::::::
exhaustive:

::::
The

::::::::
influence

::
of

:::::
shape

::
in

:::::
snow

:::::
optics

:::::
likely

:::::::
involve

::::
more

::::
than

::::
size

:::::::::
dispersity.

::::
And

:::
size

::::::::
dispersity

::
is
:::::
likely

:::
not

::::::::
sufficient

::
to

:::::::
explain

:::
the

:::
full

:::::::
diversity

:::
of

:::::::::
microwave

::::::::
properties

::
of
::::::
snow.

:::
But

:::
the

:::::::::
established

:::::::
overlap

::
of

:::::::
relevant

::::::::::::
microstructure

:::::::::
parameters

:::::::
provides

::
a
::::
clear

::::::::::
quantitative

::::::
starting

:::::
point

:::
for

::::::
further

::::::::::::
improvements.

:

Appendix A: Optical shape factor B from moments of the chord length distribution

To derive an expression of the optical shape factor B in terms of the moments of the chord length distribution, we start from15

expression (Libois et al., 2013, Eq. 6) for the single scattering co-albedo (1�!) as defining equation

(1�!) =B
�V

2⌃

, (A1)

which relates B to
:
is

::::::
related

:::
to

:::
B, the average volume of a particle V , the average projected area of a particle ⌃, and

the absorption coefficient �. This can be reformulated in the
:::::
recast

::
in

:::::
terms

:::
of

:::
the

:::::
mean

:
chord-length picture by using

(Malinka, 2014, Eq. 6) . Then,
:::::
using

::::::::::::::::::::
(Malinka, 2014, Eq. 6) ,

:::::
which

::::::
yields,

:
adopting the notation of the present paper, the20

relation can be written as

(1�!) =B
↵µ

1

2

(A2)

Using the expression of
::
On

:::
the

:::::
other

::::::
hand,

::
an

::::::::::
expression

:::
for

:
the single scattering albedo from Malinka (2014, Eq. 56) ,

inserting
::::::::
co-albedo

::
is

::::::
directly

::::::::
provided

::
by

::::::::::::::::::::
Malinka (2014, Eq. 56) .

::::::::
Inserting (Malinka, 2014, Eq. 29,42,49,18) and re-arranging

terms we obtain25

(1�!) =
T
out

(n)

1+

T
out

(n)

n2

bp(↵)
1� bp(↵)

(A3)

in terms of the real part of the refractive index n, the averaged Fresnel transmittance coefficient T
out

(n) (given by Malinka

(2014, Eq. 19) in closed form) and the Laplace transform of the chord length distribution bp(↵). By comparing
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::
To

::::::
obtain

::
an

:::::::::
expression

:::
for

::
B

:::
by

:::::::::
comparing

:::
Eq.

:
(A2) and

:::
Eq. (A3) , and taking

:
it

::::
must

:::
be

:::::
noted

:::
that

:::::
both

:::::::::
expression

:::
are

:::::
based

::
on

::::::
slightly

::::::::
different

::::::::::
assumptions.

::::::
While

:::
Eq. (A1)

::
is

:::::
meant

::
to

::
be

::::
valid

::::
only

::
in

:::
the

::::
limit

::
of

::::
low

::::::::
absorption

::::::::::::::::::
(Libois et al., 2013) ,

:::
Eq. (A3)

:
is

:::::
valid

::
for

::::::::
arbitrary

::::::
values

::
of

::
↵.

::::
This

::
is
::::::::
reflected

::
by

:::
the

::::::::
existence

:::
of

:::
the

::::
limit

:::::::
↵!1

::
in

:::
Eq.

:
(A3),

:::::
while

:::
Eq.

:
(A2)

:::::::
diverges

::
if

::
B

::
is

:::::::
regarded

:::
as

:
a
::::::::
constant

:::::
which

::
is

::::::
strictly

:::::::::::
independent

::
of

::
↵.

::::::
Hence

:::
the

::::::::::
comparison

:::
of

:::
Eq.

:
(A2)

:::
and

:::
Eq.

:
(A3)

::::
must

::
be

:::::::
limited

::
to

:::::
small

::::::
values

::
of

::::
↵µ

1:::
in

:::::
order

::
to

:::::
obtain

:::
an

:::::::::
expression

:::
for

:::
B

:::::
which

::::
can

::
be

:::::::::
compared

::
to

:::
the

::::::
results

:::::
from

:::::::::::::::::
(Libois et al., 2013) .

::::
That

::::
said,

:::
we

:::::
equate

:::
Eq.

:
(A2)

:::
and

:::
Eq. (A3)

:
,
:::
take

:
into account an additional factor of 2 between (Malinka, 2014) and5

(Libois et al., 2013)
::::::::::::::::
Malinka (2014) and

:::::::::::::::::
Libois et al. (2013) due to a different treatment of the extinction efficiency, we end up

with

B =

1

↵µ
1

T
out

(n)

1+

T
out

(n)

n2

bp(↵)
1� bp(↵)

(A4)

Complemented by the approximation
:::
Eq. (10) for the Laplace transform bp, the expression (Malinka, 2014, Eq. 19) for T

out

(n)
:
,

this yields an expression of the shape factor B in terms of the first and second moment, µ
1

,µ
2::
µ
1::::

and
::
µ
2

, of the chord length10

distribution, the real part of the refractive index n and the absorption coefficient ↵.

::
To

::::::::
explicitly

:::::
reveal

:::
the

:::::::::
correction

::
of

::
B
:::
for

:::::
small

::
↵

:::::
which

::::::::
involves

:::
the

::::::
second

:::::::
moment

::
of

:::
the

:::::::::::
chord-length

::::::::::
distribution,

:::
we

::::::
expand

:::
Eq. (A4)

:::::
around

::::::
↵= 0

::
to

:::::
obtain

:

B = n2


1� (↵µ

1

)

✓
n2

T
out

(n)
� 1+

µ
2

2µ2

1

◆�

:::::::::::::::::::::::::::::::::::

(A5)
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