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Abstract An observation product for thin sea ice thickness (SMOS-Ice) is 1	

derived from the brightness temperature data of the European Space 2	

Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) Mission. This 3	

product is available in near-real time, at daily frequency, during the cold 4	

season. In this study, we investigate the benefit of assimilating SMOS-Ice 5	

into the TOPAZ coupled ocean and sea ice forecasting system, which is 6	

the Arctic component of the Copernicus marine environment monitoring 7	

services. The TOPAZ system assimilates sea surface temperature (SST), 8	

altimetry data, temperature and salinity profiles, ice concentration, and ice 9	

drift with the Ensemble Kalman Filter (EnKF). The conditions for 10	

assimilation of sea ice thickness thinner than 0.4 m are favorable, as 11	

observations are reliable below this threshold and their probability 12	

distribution is comparable to that of the model. Two parallel Observing 13	

System Experiments (OSE) have been performed in March and 14	

November 2014, in which the thicknesses from SMOS-Ice (thinner than 15	

0.4 m) are assimilated in addition to the standard observational data sets. 16	

It is found that the Root Mean Square Difference (RMSD) of thin sea ice 17	

thickness is reduced by 11% in March and 22% in November compared 18	

to the daily thin ice thicknesses of SMOS-Ice, which suggests that 19	

SMOS-Ice has a larger impact during the beginning of the cold season. 20	

Validation against independent observations of ice thickness from buoys 21	

and ice draft from moorings indicate that there are no degradations in the 22	

pack ice but some improvements near the ice edge close to where the 23	

SMOS-Ice has been assimilated. Assimilation of SMOS-Ice yields a slight 24	

improvement for ice concentration and degrades neither SST nor sea 25	

level anomaly. Analysis of the Degrees of Freedom for Signal (DFS) 26	

indicates that the SMOS-Ice has a comparatively small impact but it has a 27	

significant contribution in constraining the system (> 20% of the impact of 28	

all ice and ocean observations) near the ice edge. The areas of largest 29	

impact are the Kara Sea, the Canadian archipelago, the Baffin Bay, the 30	

Beaufort Sea and the Greenland Sea. This study suggests that the 31	

SMOS-Ice is a good complementary data set that can be safely included 32	

in the TOPAZ system. 33	

 34	
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1. Introduction 1	
 The Arctic climate system has undergone large changes during the last 2	

20 years: increase of temperature (Chapman and Walsh, 1993; Serreze 3	

et al., 2000; Karl et al., 2015; Roemmich et al., 2015), decrease of sea ice 4	

extent (Johannessen et al., 1999; Comiso et al., 2008; Stroeve et al., 5	

2012), sea ice thinning and loss of sea ice volume (Rothrock et al., 1999; 6	

Kwok and Rothrock, 2009; Laxon et al., 2013). The interpretation of such 7	

changes is severely hampered by the sparseness and the complexity of 8	

the observational network. A reanalysis database can combine the 9	

sparse observations with a dynamically consistent model and is 10	

becoming an important tool. 11	

While observations of sea ice concentrations (SIC) have been available 12	

for the past 30 years, observations of sea ice thickness (SIT) are 13	

comparatively sparse. An improved knowledge of SIT would be greatly 14	

beneficial, both for model developments and for improving the accuracy 15	

of operational ocean forecasting system. The initialization of SIT is also 16	

expected to improve predictability on seasonal time scale (Guemas et al. 17	

2014). Until the last decade, observations of SIT were mostly limited to 18	

field campaigns or submarine measurements. Major efforts in remote 19	

sensing have been proposed to monitor the spatiotemporal evolution of 20	

SIT, and gradually obtained various products from different satellite 21	

retrieval algorithms. Measurements of thick sea ice freeboard on basin-22	

wide scales have been derived from laser altimeters on board ICESat 23	

(e.g., Forsberg and Skourup, 2005; Kurtz et al., 2009; Kwok and Rothrock, 24	

2009) or from radar altimeters on ERS, EnviSAT and CryoSat-2 (e.g., 25	

Laxon et al., 2003; Giles et al., 2007; Connor et al., 2009). Still, large 26	

uncertainties remain in the accuracy of the resulting SIT estimates (larger 27	

than 0.5 m) due to uncertainties in the snow depth and the sea ice 28	

density (Zygmuntowska et al., 2014). A new database based on 29	

Cryostat2 has been provided (Laxon, 2013; Ricker et al., 2014) and has 30	

been made available in near real time (Tilling et al. 2016). Finally, 31	

methods for SIT retrieval based on measurements of the brightness 32	

temperature at a low microwave frequency of 1.4 GHz (L-band: 33	

wavelength λa=21 cm) have been developed in preparation for the 34	
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European Space Agency’s (ESA) Soil Moisture and Ocean Salinity 1	

(SMOS) mission (Heygster et al., 2009; Kaleschke et al., 2010; 2	

Kaleschke et al., 2013). It has been shown that SMOS can be used to 3	

retrieve level SIT up to half a meter under cold conditions (Kaleschke et 4	

al., 2012; Huntemann el al., 2014).  5	

   An improved retrieval method based on a radiative transfer model and a 6	

thermodynamic sea ice model has been further proposed by considering 7	

the variations of ice temperature, salinity and a statistical SIT distribution 8	

(Tian-Kunze et al., 2014). An operational product has been derived from 9	

this method and is available at daily frequency (hereafter referred to as 10	

SMOS-Ice). The SMOS-Ice has been validated during a field campaign in 11	

the Barents Sea (Kaleschke et al., 2016; Mecklenburg et al., 2016). It 12	

provides daily estimate of SIT and is available since October 2010 (Tian-13	

Kunze et al., 2014). In this study, we are testing the benefits of 14	

assimilating SMOS-Ice into the TOPAZ system. 15	

 The TOPAZ forecasting system (Sakov et al., 2012) is a coupled ocean-16	

sea ice data assimilation system and is the main Arctic Marine 17	

Forecasting system in the Copernicus Marine Services 18	

(http://marine.copernicus.eu/). It provides a 10-days coupled physical-19	

biogeochemical forecast every day and a long-term reanalysis from 1990-20	

2015 (Sakov et al., 2012; Xie et al., 2016). At present, TOPAZ assimilates 21	

several data types jointly with the Ensemble Kalman Filter (EnKF): Sea 22	

Surface Temperature (SST), along-track Sea Level Anomalies (SLA) from 23	

satellite altimeters, in situ temperature and salinity profiles, Sea Ice 24	

Concentration (SIC) and sea ice drift from satellites. The reanalysis 25	

product of the TOPAZ system has been widely used in studies about 26	

ocean circulation and sea ice in the North Atlantic Ocean or in the Arctic 27	

region (Melsom et al., 2012; Johannessen et al., 2014; Korosov et al., 28	

2015; Lien et al., 2016). Although the capability for assimilating SIT has 29	

been demonstrated in Lisæter et al. (2007), TOPAZ does not yet 30	

assimilate SIT nor apply a post-processing for this variable. The 31	

reanalysis in the period 1991-2013 has been compared to available 32	

observations at different periods of time (Xie et al., 2016). It was found 33	
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that TOPAZ underestimates the sea ice draft compared to in situ drafts 1	

from Sonar of the US Navy Submarines for the period 1993-2005 2	

(Lindsay, 2013). In spring and autumn of 2003-2008, the SITs in TOPAZ 3	

are in good agreement with those of ICESat data (Kwok and Rothrok, 4	

2009) with a spatial correlation 0.74 and 0.84 respectively. However, the 5	

SIT in TOPAZ is too large (by more than 0.2 m) in the Beaufort Sea and 6	

too low in the rest of the Arctic (up to 1 m). When compared against the 7	

IceBridge SIT (Kurtz et al., 2013) for the period 2009-2011, it was found 8	

that the thick SIT in the central Arctic is underestimated by 1.1 m in 9	

TOPAZ. Such inaccuracies in the SIT are a common limitation of coupled 10	

ice-ocean models in the Arctic (Johnson et al., 2012; Schweiger et al., 11	

2012; Smith et al., 2015).  12	

 13	

  The first demonstration of assimilating SMOS-Ice has been presented 14	

by Yang et al. (2014) for the period from November 2011 to January 15	

2012. The system assimilates both SIT (thinner than 1 meter) from 16	

SMOS-Ice and SIC from Special Sensor Microwave Imager/Sounder 17	

(SSMIS) in a nested Arctic configuration of the Massachusetts Institute of 18	

Technology general circulation model (MITgcm). It uses the Localized 19	

Singular Evolutive Interpolated Kalman (LSEIK; Nerger et al., 2005) data 20	

assimilation method with a 15 members ensemble. It was found that 21	

assimilation of SMOS-Ice leads to improvement of the SIT forecasts and 22	

to a small improvement for sea ice concentration. A comparison of SIT 23	

from three moorings from the Beaufort Gyre Experiment Program (BGEP) 24	

and from one autonomous ice mass balance (IMB) buoy, shows that the 25	

overestimation of SIT is reduced. The present study follows up the work 26	

from Yang et al. (2014) but it further explores the impact and relative 27	

importance of SMOS-Ice in the perspective of an ice-ocean forecasting 28	

system: 1) the impact of assimilating SMOS-Ice is tested both during the 29	

onsets of the melting and freezing seasons; 2) SMOS-Ice is tested 30	

together with a more complete observations network and its relative 31	

contribution is quantified; 3) the results are tested with a different model 32	

at slightly higher resolution, with a comparable assimilation method but 33	

with a larger ensemble size. 34	
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This paper is organized as follows: section 2 introduces the main 1	

components of the TOPAZ system including the model, the assimilation 2	

scheme, and the observations assimilated. In section 3, we compare 3	

SMOS-Ice data to the TOPAZ reanalysis for the period 2010-2014, and 4	

investigate potential biases and whether conditions are favorable for data 5	

assimilation. In section 4, two Observing System Experiment (OSE) runs 6	

are conducted, consisting of two assimilation runs with and without the 7	

SMOS-Ice data during 2014. In Section 5, we compared the contributions 8	

of SMOS-Ice relative to other types of observations for controlling the 9	

degree of freedom of the system during assimilation.  10	

 11	
2. Descriptions of the TOPAZ data assimilation system 12	
2.1 The coupled ocean and sea ice model 13	
  14	
The ocean general circulation model used in the TOPAZ system is the 15	

version 2.2 of the Hybrid Coordinate Ocean Model (HYCOM) developed 16	

at University of Miami (Bleck, 2002; Chassignet et al., 2003). HYCOM 17	

uses hybrid coordinates in the vertical, which smoothly shift from 18	

isopycnal layers in the stratified open ocean to z-level coordinates in the 19	

unstratified surface mixed layer. This feature has been demonstrated in a 20	

wide range of applications from the deep oceans to the shelf (Chassignet 21	

et al., 2009). The NERSC-HYCOM model is coupled to a one-thickness 22	

category sea ice model, for which the ice thermodynamics are described 23	

in Drange and Simonsen (1996) and the ice dynamics are based on the 24	

elastic-viscous-plastic rheology described in Hunke and Dukowicz (1997) 25	

with a modification from Bouillon et al. (2013). In the model, there is a 26	

minimum thickness of 0.1 m for both new ice and melting ice. The model 27	

grid is produced using conformal mapping (Bentsen et al., 1999) and has 28	

a quasi-homogeneous horizontal resolution of 12-16 km in the Arctic as 29	

shown in Fig. 1. 30	

     The temperatures and salinities at the model lateral boundaries are 31	

relaxed to a combined climatology of the World Ocean Atlas of 2005 32	

(WOA05, Locarnini et al., 2006) and the version 3.0 of the Polar Science 33	

Center Hydrographic Climatology (PHC, Steele et al., 2001). A seasonal 34	

inflow is imposed at the Bering Strait with a transport that is following the 35	
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observed estimate from Woodgate et al. (2012). A balanced outflow of 1	

similar mean transport is imposed at the southern boundary of the model. 2	

The TOPAZ system uses atmospheric forcing from ERA-Interim (Dee et 3	

al., 2011). 4	
 5	
2.2 The EnKF data assimilation 6	
 7	
 The analysis with the standard EnKF, is expressed as follows: 8	

𝐗! = 𝐗! + 𝐊 𝐘− 𝐇𝐗! ,                                            (1). 9	

where x is the ensemble of model state vector, the superscripts “a” and 10	

“f” refer to the analysis and the forecast respectively. The ensemble 11	

consists of 100 dynamical members. H is the observation operator and Y 12	

is the perturbed observation matrix. The term innovation refers to the 13	

misfits between the observations and the model:  i.e. the term in brackets 14	

in equation (1). The Kalman gain K in Equation (1) is calculated as: 15	

𝐊 = 𝐏𝐟𝐇𝐓[𝐇𝐏𝐟𝐇𝐓 + 𝐑]!𝟏                                      (2), 16	

where R is the matrix of observation error variance and Pf is the matrix of 17	

background error covariance, which can be calculated by an ensemble 18	

anomalies with N members - P= (1/N-1)*AAT. The superscript T denotes 19	

a matrix transpose, and A is the ensemble of anomalies. The ensemble 20	

anomalies is calculated as: 21	

𝐀 = 𝐗− 𝐱I!,                                                       22	

where 𝐱 is the ensemble mean vector, and  I! = [1,… ,1] is the vector with 23	

all components equal to 1.  24	

The TOPAZ system uses the deterministic EnKF (DEnKF, Sakov and 25	

Oke, 2008), which is a square-root filter implementation of the EnKF that 26	

solves the analysis without the need for perturbation of the observations. 27	

The DEnKF overestimates the analysed error covariance by adding a 28	

semi-definite positive term to the theoretical error covariance given by the 29	

Kalman filter, which mitigates the need for inflation (Sakov and Oke, 30	

2008).  31	

In the DEnKF, the ensemble mean is updated by assimilating the 32	

unperturbed observation y: 33	

𝐱𝐚 = 𝐱! + 𝐊(𝐲− 𝐇𝐱!). 34	
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The analyzed ensemble anomaly is calculated as follows: 1	

 𝐀𝐚 = 𝐀𝐟 − 𝟏
𝟐
𝐊𝐇𝐀𝐟. 2	

The full ensemble is reconstructed by adding the two terms as follows: 3	

𝐗! = 𝐀! + 𝐱!I!                                                       (3), 4	

where Xa is the matrix of the updated model states after assimilation. 5	

An overview of the observations assimilated in the present TOPAZ 6	

system is given in Table 1. Observations are quality-controlled and 7	

superobed (Sakov et al., 2012). TOPAZ assimilates the following data 8	

sets on a weekly basis: the gridded SST from the Operational Sea 9	

Surface Temperature and Sea Ice Analysis system (OSTIA, Donlon et al., 10	

2012); sea ice concentration from the Ocean & Sea Ice Satellite 11	

Application Facility (OSISAF); along-track Sea Level Anomaly by Collecte 12	

Localisation Satellites (CLS); delayed-mode profiles of temperature and 13	

salinity from Ifremer, and the sea ice drift during the 3 days prior to the 14	

analysis from the CERSAT (Centre ERS d'Archivage et de Traitement) of 15	

IFREMER (French Research Institute for Exploitation of the Sea). All 16	

these standard measurements are retrieved from 17	

http://marine.copernicus.eu. The SLA data and the sea ice drift data are 18	

assimilated asynchronously (see Sakov et al., 2010). 19	

 20	

3. Bias analyses for thin ice thickness 21	
The TOPAZ system has computed a reanalysis at daily frequency for 22	

ocean and sea ice variables. Its sea ice thickness has been validated 23	

against in situ data and satellite observations in Xie et al. (2016). Data 24	

assimilation assumes that the model and observations errors are 25	

unbiased. In this section, we investigate the bias by analyzing the 26	

thickness misfits for thin sea ice during five cold seasons from 2010 to 27	

2014.  28	

SMOS-Ice products (version 2.1) are available during the cold season 29	

(from 15th October to 15th April) at daily frequency from 2010 and up to 30	

near-real time. The data set is provided by University of Hamburg 31	

(Kaleschke et al., 2012; Kaleschke et al., 2013; 32	

https://icdc.zmaw.de/1/daten/cryosphere/l3c-smos-sit.html).  33	
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Here, the daily averaged SITs of TOPAZ are compared to the 1	

observations. The spatial or temporal bias and Root Mean Square 2	

Difference (RMSD) are calculated as follows: 3	

			𝐁𝐢𝐚𝐬 = !
!

(𝐇𝐱!! − 𝐲!)!
!!! 																																																	（4）	4	

 𝐑𝐌𝐒𝐃 = !
!

(𝐇𝐱!! − 𝐲!)!!
!!! 	,																																								（5）	5	

where 𝐱!! is compared to observations at similar time, H is the observation 6	

operator (see eq. 1), and n is the number of available observations within 7	

the calculation period. Note that, we compare the TOPAZ SITs to 8	

imperfect observations, which contains error and may also be biased. As 9	

such, the bias as formulated in Eq. 4 refers to the difference between the 10	

model and observation biases calculated against an unknown truth. Still it 11	

is reasonable to assume that the bias in the observation is smaller than in 12	

the model and that the bias obtained with Eq.4 mainly accounts for model 13	

bias. 14	

Figure 2 shows the simulated SIT from the TOPAZ reanalysis as 15	

conditional expectations with respect to SMOS-Ice data sorted into bins 16	

of 5 cm. Again, the SITs from TOPAZ in Fig.2 are selected at same 17	

locations and time of observations. Overall, the SIT in TOPAZ tends to be 18	

overestimated. The overestimation varies from month to month and with 19	

the amplitude of SIT (more pronounced for thick ice).  For SIT lower than 20	

0.4 m, the match between the observations and TOPAZ is relatively good 21	

through the cold season. There is no clear bias between October and 22	

December but a slight increasing thick bias from January-April. For SIT 23	

larger than 0.4 m, TOPAZ clearly overestimates SIT compared to 24	

observations during October and February-April, while it underestimates it 25	

in November. The penetration depth for the L-Band microwaves 26	

frequency into sea ice is about 0.5 m (Kaleschke et al., 2010; Huntemann 27	

et al., 2014), and the effect of ice melting may lead to a saturation of the 28	

SIT for values lower than 0.4 m (see Heygster et al. 2009). For these 29	

reasons, assimilation of SITs thicker than 0.4 m appears as problematic 30	

because the large bias from observations or models may be transferred 31	

to other variables (e.g. in the ocean) via the multivariate properties of our 32	
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data assimilation method (note that TOPAZ uses strongly coupled data 1	

assimilation between the ocean and sea-ice). In the following we will only 2	

assimilate the SIT observations less than 0.4 m.  3	

We now investigate whether there is an interannual, seasonal and spatial 4	

variability in the bias of SIT. Figure 3 shows the yearly bias (as defined in 5	

Eq. 4) for SIT thinner than 0.4 m during the period 2010-2014. After 2011, 6	

the thick bias is increasing, reaching a maximum of 0.1 m in 2014. There 7	

is some seasonality in the bias, and the thick bias is larger in March than 8	

in November. There is a large spatial variability in the distribution of the 9	

bias (right panel of Fig. 3), with the bias being largest in the Beaufort Sea 10	

and in the Kara Sea. We therefore select the periods of March and 11	

November 2014 to set the assimilation system in the most difficult 12	

situations.  13	

 14	

4. Observing System Experiment of SMOS-Ice 15	
4.1 Design of OSE runs for SMOS-Ice 16	
The SMOS-Ice ice thickness data is gridded at a resolution of 17	

approximately 12.5 km and is available at daily frequency during the cold 18	

season. For the reasons explained in previous section, we only consider 19	

the observations with thickness lower than 0.4 m and with a distance of at 20	

least 30 km away from the coast are used (See Section 3). The related 21	

innovations in Equation (1) are expressed as sea ice volume: 22	

               ∆𝐒𝐈𝐓 = 𝐲!"#! − 𝐇(𝐡!"#×𝐟!"#),                   (6) 23	

where ysmos is the observed SIT for thin ice from SMOS, H is the same 24	

observation operator as in equation (1), 𝐡!"# is the ensemble mean of ice 25	

thickness within the grid cell and 𝐟!"# is the ensemble mean of SIC. Note 26	

that the model has a minimum thickness of 0.1 m, but SIT observations of 27	

ice thinner than 10 cm can be assimilated quantitatively because the 28	

ensemble mean from a 100 ensemble members can take values as low 29	

as 1 mm. To highlight the additional impact of SMOS-Ice observations, 30	

two OSE runs are carried out: 31	

   - The Official Run: uses the standard observational network of the 32	

TOPAZ system. It assimilates every week the along-track Sea Level 33	
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Anomaly, SST, in situ profiles of temperature and salinity, sea ice 1	

concentrations and sea ice drift data (listed in Table 1).  2	

   - The Test Run: assimilates the SMOS-Ice data in addition to the 3	

observations assimilated in the Official Run. In this study, the observation 4	

errors are assumed to be spatially uncorrelated. The observation error 5	

variance (diagonal term of R term in Eq. 2) for SIT is set as 6	

recommended by the provider. It is estimated based on a priori estimate 7	

of the maximum uncertainty of different input parameters: surface air 8	

temperature, bulk ice temperature and bulk ice salinity (Tian-Kunze et al., 9	

2014). We consider an observation error variance of 25 m2 to be the 10	

threshold beyond which observations are assumed fully saturated and 11	

are not assimilated in our system, this is however generally not occurring 12	

for SIT values lower than 40 cm (see Fig. 4).  13	

Figure 4 shows the uncertainties of the observations as function of the 14	

observed thickness from SMOS in March and November of 2014. There 15	

is a linear increase of the observation error with SMOS-ice SIT with a 16	

slope of approximately 2.6. There is no visible seasonal variation in this 17	

relation (not shown).  18	

In the following, the two parallel OSE runs are carried out at two typical 19	

time periods of the cold season: at the onsets of the ice melting from 15th 20	

February to 31st March and at the freezing time from 15th October to 30th 21	

November in 2014.   22	

 23	

4.2 Validation against assimilated measurements 24	
The error analysis focuses on the following target quantities: SIT, SIC, 25	

SST and SLA. All quantities are derived from the ensemble mean daily 26	

averages that are compared to observations at same locations and time. 27	

The bias is calculated as specified in Eq. 4 and the RMSD as in Eq. 5. 	28	

   The spatial distribution of selected SMOS-Ice data for thin sea ice is 29	

shown in the top panels of Fig. 5 during March and November of 2014. In 30	

March, the available observations in the Beaufort Sea are very few, and 31	

unevenly distributed - mainly located in the coastal areas. Hence, most of 32	

the observations are unreliable (close to the error saturation threshold at 33	

5 m) or too thick (> 0.4 m) to be assimilated. Therefore in the following, 34	



12	
	

the results for the Beaufort Sea are only presented for November. In the 1	

middle panels of Fig. 5, the differences of RMSD for sea ice thickness 2	

between the Official Run and the Test Run are shown (red color indicates 3	

an improvement due to assimilation of SMOS-Ice and blue a degradation). 4	

In March, the improvements are mainly found to the east of Franz Josef 5	

Land and to some extent near the ice edge in the Greenland Sea. In 6	

November, the reduction of RMSD is larger than 0.2 m in the Beaufort 7	

Sea, the Greenland Sea and to the North of Svalbard. Finally, the 8	

differences of monthly ice thickness between the Official Run and the 9	

Test Run are shown in the bottom panels of Fig. 5. They suggest that 10	

assimilating SMOS-Ice leads to a reduction of sea ice thickness both in 11	

March and November 2014.  12	

 Based on Eqs. (4) and (5), the time series of daily bias and RMSD for 13	

thin ice thicknesses in the OSE runs are shown in the top panels of Fig. 14	

6. The bias of thin SIT is reduced from 16 cm to 12 cm in March, and 15	

from 7 cm to 4 cm in November, when SMOS-Ice data is assimilated. The 16	

RMSD of thin SIT is reduced from 35 cm to 31 cm in March, and from 27 17	

cm to 21 cm in November. This corresponds to a reduction of the bias of 18	

25% in March and 43% in November, and a reduction of the RMSD of 19	

about 11% in March and 22% in November. In the other panels of Fig. 6, 20	

the bias and RMSD of SIC, SST and SLA are presented. There is a slight 21	

benefit for the bias and RMSD of SIC (i.e. the reduction of the SIC RMSD 22	

is about 0.001), but the statistics for SST and SLA are unchanged.  23	

The averaged thicknesses of thin sea ice in the marginal seas - in the 24	

Kara Sea, Barents Sea and Beaufort Sea - are shown with marked lines 25	

in the panels of Fig. 7. The corresponding daily RMSDs of ice thickness 26	

relative to thin SMOS-Ice data are added with shading. In each month, 27	

there are four assimilation steps marked with vertical lines.  28	

In the Kara Sea, the thickness observed in March is very stable with a 29	

slight gradual increase. There is a relatively uniform reduction of RMSD 30	

by about 21%, which is mainly the result from a correction of the large 31	

(too thick) bias in the model. In November, the bias is much smaller and 32	

the resulting improvement is small (8%), but the performances are slightly 33	

improving throughout the month for RMSD. 34	
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In the Barents Sea, the observations of SIT in March show an increasing 1	

trend. The Official Run shows initially a large (thick) bias that reduces as 2	

SIT increases in the observations. Assimilation of SMOS-Ice data 3	

reduces well the initial bias, but the bias converges towards the Official 4	

Run at the end of the month and so is the RMSD. On average, the RMSD 5	

of SIT is decreased by approximately 27% from the Test Run. In 6	

November, the observations show large variability that is well captured in 7	

the Official Run but the ice is initially too thick. The RMSD reduction of 8	

the Test Run compared to the Official Run is about 19% and both the 9	

bias and the RMSD are reduced. 10	

In the Beaufort Sea, there are too few observations to provide a 11	

representative estimate of the system performance in March (top panels 12	

of Fig. 5) and the statistics are not presented. In November, the 13	

observations show an increasing trend and the Official Run shows once 14	

again a relatively large thick bias initially. The RMSD in the Test Run is 15	

reduced by about 51%, which is mainly caused by a reduction of the bias. 16	

The increasing trend in the Test Run is in relatively good agreement with 17	

the observations.  18	

 19	

4.3 Validation against independent observations of SIT and sea 20	
ice draft 21	
 22	

Three Ice Mass Balance (IMB) buoys (Perovich et al., 2009; 23	

http://imb.erdc.dren.mil/buoyinst.htm) are available for independent 24	

validation during our period of study (2013F, 2013G and 2014F). Their 25	

drift trajectories are shown in Fig. 5 for March and November 2014. On 26	

the 1st March 2014, the buoys of 2013F and 2013G are located at 27	

(150.8°W, 74.8°N) and (157.9°W, 75.3°N). And on the 1st November 2014, 28	

the buoys 2013F and 2014F are located at (158.4°W, 77.6°N) and 29	

(146.3°W, 76.7°N) respectively. In Fig. 8, the daily SIT of the OSE runs 30	

are compared to those of the buoys along their trajectories. Between the 31	

15th February and the 30th March, the SITs of the two runs are identical 32	

and are increasing from 1.6 m to 1.9 m while the observations show a 33	

more moderate increase from 1.5 to 1.65 m. It should be noted that the 34	
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increase in the model is not necessarily caused by thermodynamic 1	

growth only since the modeled ice motions may differ from the buoys 2	

trajectories.  Between the 15th October and the 30th November (Buoys 3	

2013F and 2014F), the SIT in the Test Run is slightly improved compared 4	

to the Official Run (with an improvement of 2 cm). It is expected that the 5	

impact of SMOS-ice on the two buoys is small because they are located 6	

far away from the locations where SMOS-Ice data are assimilated (shown 7	

in the top panels of Fig. 5). The TOPAZ system uses localization, 8	

meaning that the impact of observations during assimilation is limited to a 9	

certain radius and their influence reduces as function of distance. In the 10	

TOPAZ system, the effective localization radius is 90 km. Still, it is 11	

encouraging to see that the improvements seem to be increasing with 12	

time suggesting that the region influenced by SMOS-ice is gradually 13	

spreading across the domain. 14	

Observations of sea ice drafts from moored sonar data are another 15	

source of independent observations. There are in total 6 moorings: 16	

2013a, 2013b, and 2013d in March 2014; 2014a, 2014b, and 2014d in 17	

November 2014, which locations are shown in Fig. 5. These 18	

measurements are available from BGEP (Kishfield et al., 2014; 19	

http://www.whoi.edu/page.do?pid=66559). They use moored upward-20	

looking sonar instruments and collect year-round time series 21	

measurements of the sea ice draft distribution (into 0.1 m bins) at daily 22	

frequency. This data is processed to filter out wave action in the summer 23	

months that may lead to the removal of thin draft measurements 24	

(Krishfield et al., 2014). This can be problematic if the model estimates 25	

are lower than the observed values. The sea ice draft from TOPAZ is 26	

diagnosed as proposed in Alexandrov et al. (2010), i.e.:  27	

𝑑! = ℎ!
!!
!!
+ ℎ!"

!!"
!!

                                              , 28	

where di is sea ice draft, hi is ice thickness, and hsn is the modeled snow 29	

depths. The constant ρi, ρw, and ρsn are the densities for ice, water, and 30	

snow (respectively 900 kg m-3, 1000 kg m-3, and 300 kg m-3). In March 31	

2014, the observed sea ice drafts are mostly distributed between 0.8 m 32	

and 1.6 m (see Fig. 8). Both OSE runs overestimate the sea ice drafts in 33	
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March, and perform identically. In November 2014, the observed sea ice 1	

drafts are thinner (< 1 m). The sea ice drafts from the OSE runs are again 2	

overestimated in all three locations. The averaged draft difference in the 3	

two runs is about 1 cm at the two moorings 2014a and 2014b, and about 4	

16 cm at the mooring 2014d that is located closest to locations where 5	

SMOS-ICE has been assimilated (see Fig.5). We have also compared 6	

the two OSE runs in March 2014 with the NASA IceBridge SIT Quick 7	

Look data set (QL) available from National Snow and Ice Data Center. 8	

The analysis leads to similar conclusions (not shown), which is that 9	

assimilation of SMOS-ICE only yields to improvements of SIT near the ice 10	

edge near location where SMOS-ICE is assimilated but do not yield 11	

degradation in other places.  12	

	13	

5. Relative impact of the SIT from SMOS-Ice  14	
In this Section, the quantitative benefit of assimilating SMOS-Ice into the 15	

TOPAZ system is compared to other observations assimilated. To do so, 16	

we evaluate a performance metric calculated during the analysis, the 17	

Degree of Freedom for Signal (DFS), which is widely used for such 18	

purposes (Rodgers 2000; Cardinali et al. 2004). During the assimilation, 19	

one can calculate the DFS as follows: 20	

DFS = 𝑡𝑟 !𝐲
!𝐲

= 𝑡𝑟 ! 𝐇 𝐗!

!𝐲
= 𝑡𝑟 𝐊𝐇                     (7). 21	

Here, the matrix H is the observation operator as in equation (1), and tr 22	

defines the trace, applied to the matrix (KH). The DFS measures the 23	

reduction of mode that can be attributed to each observation type. A 24	

value of DFS close to 0 means that the observation has no impact, while 25	

a value of m means that the assimilation has reduced the number of 26	

degree of freedom of the ensemble by m. Note that the reduction cannot 27	

exceed the ensemble size; i.e. 100 here. In Sakov et al. (2012), it was 28	

recommended that the DFS should not exceed 10 % of the ensemble 29	

size to avoid a collapse of the ensemble spread. 30	

In the following the term DFSij denotes the DFS of the assimilation at time 31	

i, of the jth type of observations, as calculated by equation (7). The 32	

averaged DFS over a specific time period is calculated as follows: 33	
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DFS! =
!
!

DFS!"!
!!! ,																																																								(8).	1	

where the subscript j represents the jth type of the assimilated 2	

observations, the subscript i is time and m is the total number of 3	

assimilation steps within the considered time period (e.g. 4 for a monthly 4	

estimate with weekly assimilation). The DFS values are calculated at 5	

each model grid cell. In Fig. 10, we are plotting the averaged DFS maps 6	

(as defined in Eq. 8) for the different observation data sets assimilated in 7	

March and November. In the Arctic the total DFS is dominated by the ice 8	

concentration that reaches large value (approximately 6) near the ice 9	

edge. The DFS for SMOS-Ice is comparatively small and is larger in 10	

March than in November. In some regions, the monthly DFS of SMOS-ice 11	

reaches values larger than 2.  12	

Furthermore, based on the sum of the DFS of all observation types 13	

assimilated in TOPAZ, we can estimate the relative impact the j’th type of 14	

observations (RDFSj):  15	

																										RDFS! =
!"#!
!"#!!

!!!
×100%,																																																(9)	16	

where O is total number of observation types. Figure 12 shows the 17	

relative contribution of each observational data set in the March. As 18	

expected, the assimilation of ice concentration dominates the total DFS, 19	

while the impacts of SST and SLA are limited to the region that are not 20	

ice covered. The profiles of ocean temperature and salinity near the North 21	

Pole in Arctic are collected by the Ice-Tethered Profiler Program 22	

(Krishfield et al., 2008; Toole et al., 2011). They have a very large impact 23	

but they are very sparse. In March the SMOS-ice data has a significant 24	

impacts (> 20 % of the total DFS) in the Northern Barents Sea, the 25	

Western Kara Sea, Baffin Bay, the Greenland Sea and in Hudson Bay. In 26	

November, the relative contribution is still significant in the Barents Sea, 27	

the Kara Seas and in the Greenland Sea, but it is also significant in the 28	

Beaufort Sea and in the Canadian Archipelago. 29	

 30	
6. Summary and Discussion 31	

   The thickness observations of thin sea ice in the Arctic can be derived 32	

from SMOS brightness temperature at 1.4 GHz (Tian-Kunze, et al., 2014; 33	
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Kaleschke et al., 2016). This data set is available in near real time since 1	

2010 at daily frequency. This study investigates the impact of assimilating 2	

this data set within the TOPAZ system, which is the Arctic component of 3	

the Copernicus Marine Services. It is shown that for thin ice (less than 0.4 4	

m), the TOPAZ reanalysis and the SMOS-Ice have comparable 5	

distributions (though TOPAZ slightly overestimates the thin ice thickness 6	

from January to April) and that conditions are favorable for assimilating 7	

this data set. 8	

   We investigate the impact of assimilating SMOS-Ice (thinner than 0.4 m) 9	

in TOPAZ that already assimilates ice concentration, ice drift, SST, SLA 10	

and temperature and salinity profiles. The comparison is carried out for 11	

two periods: February-March and October-November of 2014. The study 12	

shows that the assimilation of SMOS-Ice data reduces the thickness 13	

RMSD of thin sea ice in March and in November by about 11% and 22% 14	

respectively, mainly caused by the reduction of the bias (too thick sea ice 15	

that seems larger in 2014 than in previous years). There are also some 16	

small improvements for SIC. The RMSDs for SST and SLA remain 17	

unchanged but are not degraded. 18	

When compared to independent observations of SIT (IMB buoys) and sea 19	

ice draft (BGEP moorings) it is found that assimilation of SMOS-Ice yields 20	

improvements near the ice edge next to where SMOS-Ice has been 21	

assimilated but does not lead to improvements nor degradations in the 22	

rest of the Arctic. 23	

 In this study, the DFS is used to evaluate the relative contributions of 24	

assimilated observations to the reduction of error in the TOPAZ system. 25	

The SMOS-Ice data have a smaller impact than ice concentration, but it 26	

has a significant contribution (defined as larger than 20 % of the total 27	

impact from all observations) in some areas; namely in the Greenland 28	

Sea, the Kara Sea, the Barents Sea, the Baffin Bay and the Hudson Bay 29	

in March and in the Greenland Sea, the Kara Sea, the Barents Sea, the 30	

Beaufort Sea and the Canadian archipelago in November. 31	

 32	

These studies follow up the first attempt of assimilation of SMOS-Ice with 33	

the LSEIK in a regional MITgcm configuration (Yang et al. 2014). 34	
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Compared to this study, it is found that assimilation of SMOS-Ice has a 1	

more moderate impact. This may be related to the fact that TOPAZ uses 2	

a more complete observation network and that the assimilation has been 3	

spin up over a longer period of time (from 1989). We also find that 4	

assimilation of SMOS-Ice is comparatively larger in October-November 5	

than in February-March at time when Yang et al. (2014) tested 6	

assimilation of SMOS-Ice. We also verified that assimilation of SMOS-Ice 7	

does not degrade ocean variables (SST and SLA), which could happen 8	

with a strongly coupled data assimilation scheme. Finally, we quantified 9	

the relative influence of SMOS-Ice for constraining the mode of variability 10	

in TOPAZ compared to a standard observation network. 11	

To conclude, our study suggests that SMOS-Ice can be assimilated 12	

without degradation of other skills in our operational forecasting system. 13	

The benefits are generally small but can be significant for some regions 14	

near the ice edge. However, further work needs to be done to better 15	

understand the uncertainty of the assimilated SIT from the SMOS-Ice. 16	

Recently, Yang et al. (2016) tested the sensitivity of assimilating the 17	

SMOS-Ice data with the LSEIK during the winter of 2011-2012, and found 18	

that perturbations of the atmospheric forcing is important for improving 19	

the performance of assimilation, in agreements with Lisæter et al. (2007).  20	

In the future, we may use the “saturation ratio” that is defined by the 21	

relationship of the variable L-band penetration depth and the maximal 22	

retrieval thickness as a function of temperature and salinity with which we 23	

can better identify the valid observations of sea ice thickness from SMOS. 24	

In addition, the satellite CryoSat-2 provides freeboard height data in thick 25	

ice that can complement the observations from SMOS (Kaleschke et al., 26	

2010). The new sea ice thicknesses derived from a combination of SMOS 27	

and CryoSat-2 will be soon available (Kaleschke et al., 2015). Incidentally, 28	

the U.S Navy Arctic Cap Nowcast/Forecast System (ACNFS) is currently 29	

testing the assimilation of a combined sea ice thickness product (personal 30	

communication from David Hebert) where the sea ice thickness is 31	

blended from SMOS-Ice and CryoSat-2 based on each satellite retrieval 32	

error.  33	

 34	
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Table 1. Overview of observations assimilated in TOPAZ system in the Official 

Run. All observations are retrieved from http://marine.copernicus.eu and 

assimilated weekly. 

Type Spacing  Resolution Provider 
SLA Track  - CLS 
SST  Gridded 5 km OSTIA from UK Met Office 
In-situ T  Point - Ifremer + other 
In-situ S  Point - Ifremer + other 
SIC Gridded 10 km OSISAF 
Ice drift Gridded 62.5 km OSISAF 

 
  



 
 
 
 

 
 

Fig. 1 TOPAZ model domain and horizontal grid resolution (km) with color 

shading. The blue line delimits the Arctic region (north of 63°N) and other color 

lines delimit the three marginal seas discussed in this study. 

 
 

 
 

 
 
 
 
 
 
 



 
 
Fig. 2 Conditional expectations of TOPAZ versus SMOS-Ice (with bin of 5 cm) 

for each month calculated over the period 2010-2014. The cyan error-bars 

correspond to the RMSD against observations within each bin. The red error-

bars correspond to the averaged standard deviations of observation error. The 

gray dashed line denotes the line y=x. 

 
 
 

 
  

 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 



 
 

Fig. 3 Yearly thickness biases of thin sea ice from TOPAZ compared to 

SMOS-Ice observations (Eq. 4). The black line represents the yearly mean 

bias. Left: the green (red) line represents the mean bias for March (November) 

months. Right: the colored lines represent the biases in the Barents Sea, the 

Kara Sea, and the Beaufort Sea. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
Fig. 4 Scatter plot of the uncertainty of the observation as function of the 

observed thickness from SMOS in March and November of 2014. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
  

Fig. 5 Top Row: Number of the valid SMOS-Ice data in March (left) and in 
November (right) of 2014. The trajectories of the buoys 2013F and 2013G 
(2013F and 2014F) from IMB are the blue lines in March (November). Their first 
positions are marked by circle and triangle respectively. In March (November), 
the mooring locations from BGEP - 2013a, 2013b, and 2013d (2014a, 2014b, 
and 2014d) - are marked by diamond, square and pentagram respectively. 
Middle Row: Difference of RMSDs for the thin SIT between Official Run and 
Test Run. The black line denotes the 0.2 m isoline. Bottom Row: Difference of 
SIT between Official Run and Test Run. The black line denotes the 0.2 m 
isoline, the green (magenta) line is the 15% concentration isoline from OSISAF 
(Official Run).  

 
 
 
 



 
 

 
 

Fig. 6 Daily time series of the bias (marked with crosses) and the RMSD 

(marked with circles) calculated for the Arctic region in the Official Run 

(magenta) and the Test Run (blue) for different variables in March (Left) and 

November (Right).  

 
 



 

 
 

Fig. 7 Daily time series of the mean SIT for thin sea ice in the Kara Sea (top 

row), the Barents Sea (middle row) and Beaufort Sea (bottom row) in March 

(left) and November (right). The light (dark) gray shading is the daily spatial 

RMSD of thin sea ice in the Test Run (Official Run). 

 
 
 
 
 
 
 
 
 
 
 



 
 

Fig 8. Daily time series of SITs from Official Run (crossed magenta line) and 

Test Run (dashed blue line) compared to the buoy measurements from IMB 

(squared black line). The daily standard deviations of the observations are 

shown with error bars. The buoy locations and their drift trajectories in the month 

are shown in Fig. 5. Upper row covers the period 15th Feb to 30th Mar 2014 by 

(a) Buoy 2013F and (b) Buoy 2013G. Bottom row covers period 15th October to 

30th Nov 2014 by (c) Buoy 2013F and (d) Buoy 2014F. 
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Fig. 9 Comparison of sea ice drafts from the Official Run (squared-magenta 

line), the Test Run (dashed-blue line) and from the bottom-tethered moorings of 

BGEP. The upper (lower) panels are for March (November) 2014. The daily 

histograms of sea ice draft (frequency percents for 0.1 m bins) are shown with 

shading colors. The positions of the moorings are marked in Fig. 5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

 



 
Fig. 10 Monthly averaged DFS from the Test Run in March (upper) and in 

November (lower) for sea ice thickness from SMOS-Ice (left column), sea ice 

concentration from OSISAF (middle column), and the total DFS of all 

assimilated observations (right column). The black line denotes the isoline of 

DFS equal to 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. 11 Relative contributions of each observational data set in the total DFS 

during March 2014. Panel (a) is for sea ice concentration from OSISAF; (b) sea 

ice thickness from SMOS-Ice; (c) temperature profiles; (d) SST; (e) along-track 

Sea Level Anomaly; (f) salinity profiles. The black line is the 20% isoline. 
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Fig. 12 Same as Figure 11 for November 2014 
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