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Abstract An observation product for thin sea ice thickness (SMOS-Ice) 1	

is derived from the brightness temperature data of the European Space 2	

Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) Mission, and is 3	

available in real-time at daily frequency during the cold season. In this 4	

study, we investigate the benefit of assimilating SMOS-Ice into the 5	

TOPAZ system. TOPAZ is a coupled ocean-sea ice forecast system that 6	

assimilates SST, altimetry data, temperature and salinity profiles, ice 7	

concentration, and ice drift with the Ensemble Kalman Filter (EnKF). The 8	

conditions for assimilation of sea ice thickness thinner than 0.4 m are 9	

favorable, as observations are reliable below this threshold and their 10	

probability distribution is comparable to that of the model. Two parallel 11	

runs of TOPAZ have been performed respectively in March and 12	

November 2014, with assimilation of thin sea ice thickness (thinner than 13	

0.4 m) in addition to the standard ice and ocean observational data sets. 14	

It is found that the Root Mean Square Difference (RMSD) of thin sea-ice 15	

thickness is reduced by 11% in March and 22% in November suggesting 16	

that SMOS-Ice has a larger impact during the beginning of freezing 17	

season. There is a slight improvement of the ice concentrations and no 18	

degradation of the ocean variables. The Degrees of Freedom for Signal 19	

(DFS) indicate that the SMOS-Ice contains important information (> 20% 20	

of the impact of all observations) for some areas in the Arctic. The areas 21	

of largest impact are the Kara Sea, the Canadian archipelago, the Baffin 22	

Bay, the Beaufort Sea and the Greenland Sea. This study suggests that 23	

SMOS-Ice is a good complementary data set that can be safely included 24	

in the TOPAZ system as it improves the ice thickness and the ice 25	

concentration but does not degrade other quantities. 26	

 27	
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1. Introduction 1	
 The Arctic climate system has undergone large changes during the last 2	

20 years: increase of temperature (Chapman and Walsh, 1993; Serreze 3	

et al., 2000; Karl et al., 2015; Roemmich et al., 2015), decrease of sea ice 4	

extent (Johannessen et al., 1999; Shimada et al., 2006;), sea ice thinning 5	

and loss of sea ice volume (Rothrock et al., 1999; Kwok and Rothrock, 6	

2009; Laxon et al., 2013). The interpretation of such changes is severely 7	

hampered by the sparseness and the diversity of observational network. 8	

The reanalysis database that combines the sparse observations with 9	

dynamically consistent models is becoming an important tool. 10	

While observations of sea ice concentrations have been available for the 11	

past 30 years, observations of sea ice thickness are comparatively 12	

sparse. An improved knowledge of the ice thickness would be greatly 13	

beneficial both for model developments and for improving the accuracy of 14	

operational ocean forecasting system. The initialization of sea-ice 15	

thickness is also expected to improve predictability on seasonal time 16	

scale (Guemas et al. 2014). Until the last decade, observations of sea-ice 17	

thickness were mostly limited to field campaigns or submarine 18	

measurements. Major efforts in remote sensing have been proposed to 19	

monitor the spatiotemporal evolution of ice thickness, and gradually 20	

obtained various products from different satellite retrieval algorithms. 21	

Measurements of thick sea ice freeboard on basin-wide scales have been 22	

derived from laser altimeters on board ICESat (e.g., Forsberg and 23	

Skourup, 2005; Kurtz et al., 2009; Kwok and Rothrock, 2009) or from 24	

radar altimeters on ERS, EnviSAT and CryoSat2 (e.g., Laxon et al., 2003; 25	

Giles et al., 2007; Connor et al., 2009). Still large uncertainties remain in 26	

the accuracy of the resulting ice thickness estimates (larger than 0.5 m) 27	

due to uncertainties in the snow depth and the sea ice density 28	

(Zygmuntowska et al., 2014). A new database based on Cryostat2 has 29	

been provided (Laxon 2013; Ricker et al., 2014) and has been made 30	

available in near real time (Tilling et al. 2016). Finally, methods for sea ice 31	

thickness retrieval based on measurements of the brightness temperature 32	

at a low microwave frequency of 1.4 GHz (L-band: wavelength λa=21 cm) 33	

have been developed in preparation for the European Space Agency’s 34	
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(ESA) Soil Moisture and Ocean Salinity (SMOS) mission (Heygster et al., 1	

2009; Kaleschke et al., 2010). It has been shown that SMOS can be used 2	

to retrieve level ice thickness up to half a meter under cold conditions 3	

(Kaleschke et al., 2012; Huntemann el al., 2014).  4	

   An improved retrieval method based on a radiative transfer model and a 5	

thermodynamic sea ice model has been further proposed by considering 6	

the variations of ice temperature, salinity and a statistical thickness 7	

distribution (Tian-Kunze et al., 2014). The operational daily product 8	

derived using this method, henceforth called SMOS-Ice, has been 9	

validated during a field campaign in the Barents Sea (Kaleschke et al., 10	

2016; Mecklenburg et al., 2016) and will be used in this study. Aiming at 11	

the operational application of the thickness measurements for sea ice, the 12	

SMOS-Ice data contain daily products of sea ice thickness since October 13	

2010 (Tian-Kunze et al., 2014).  14	

   Yang et al. (2014) studied the benefit of assimilating SMOS-Ice during 15	

the freezing period, with the Localized Singular Evolutive Interpolated 16	

Kalman filter (LSEIK, ref. Nerger et al., 2005) in a nested Arctic 17	

configuration of the MITgcm. They found that SMOS-Ice leads to 18	

improvement of ice thickness and ice concentration. The present study 19	

follows up the work from Yang et al. (2014) but uses a different model 20	

and assesses: 1) the impact of assimilating SMOS-Ice both during the 21	

beginning of the melting and freezing seasons; 2) the relative contribution 22	

of SMOS-ice compared to a complete set of observations typically used 23	

in a state of the art forecasting system. 24	

  The TOPAZ system is a coupled ocean-sea ice data assimilation system 25	

that focuses on the marine environment in the Arctic region. It is the 26	

operational Arctic forecast system in the Copernicus Marine Services 27	

(http://marine.copernicus.eu/). The system provides 10-days coupled 28	

physical-biogeochemical forecast every day and long-term reanalysis 29	

(Sakov et al., 2012; Lien et al., 2016; Xie et al., 2016). At present, the 30	

TOPAZ system assimilates the Sea Surface Temperature (SST), along-31	

track Sea Level Anomalies (SLA) from satellite altimeters, in situ 32	

temperature and salinity profiles, Sea Ice Concentration (ICEC) and sea 33	
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ice drift data from satellites with the Ensemble Kalman Filter (EnKF). The 1	

reanalysis product of the TOPAZ system has been widely used in studies 2	

about ocean circulation and sea ice in the northern Atlantic Ocean or in 3	

the Arctic region (Melsom et al., 2012; Johannessen et al., 2014; Korosov 4	

et al., 2015; Lien et al., 2016). However, TOPAZ does not assimilate sea 5	

ice thickness, although the capability has been demonstrated in Lisæter 6	

et al. (2007). TOPAZ does not apply post-processing for this variable. In 7	

the Arctic reanalysis for the period 1991-2013, the daily sea ice thickness 8	

of TOPAZ has been validated and compared to different types of 9	

available observations (Xie et al., 2016). TOPAZ shows good agreement 10	

with the spatial distribution of ice thickness in ICESat data (available 11	

between 2003 and 2008) with a spatial correlation 0.74 in spring and 0.84 12	

in autumn. However, TOPAZ shows a clear overestimation of ice 13	

thickness in the Beaufort Sea and an underestimation in other areas of 14	

the Arctic. Inaccuracies in the ice thickness are a common limitation of 15	

coupled ice-ocean models in the Arctic (Johnson et al., 2012; Schweiger 16	

et al., 2012; Smith et al., 2015).  17	

      This paper is organized as follows: section 2 introduces the main 18	

components of TOPAZ system including the model, the assimilation 19	

scheme, and the observations assimilated. In section 3, we compare 20	

SMOS-ice data to the TOPAZ reanalysis for the period 2010-2013, to 21	

investigate potential biases and whether conditions are favorable for data 22	

assimilation. In section 4, an Observing System Experiment (OSE) is 23	

conducted, consisting of two assimilation runs with and without the 24	

SMOS-Ice data during 2014. In Section 5, we compared the contributions 25	

of SMOS-Ice relative to other types of observations.  26	

 27	
2. Descriptions of TOPAZ data assimilation system 28	
2.1 The coupled ice-ocean model 29	
  30	
The ocean general circulation model used in the TOPAZ system is the 31	

version 2.2 of the Hybrid Coordinate Ocean Model (HYCOM) developed 32	

at University of Miami (Bleck, 2002; Chassignet et al., 2003). HYCOM 33	

uses a hybrid vertical coordinate, which smoothly transits from isopycnal 34	

layers in the stratified open ocean to z-level coordinates in the unstratified 35	
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surface mixed layer. This feature has been demonstrated in a wide range 1	

of applications from the deep oceans to the shelf (Chassignet et al., 2	

2009). The NERSC-HYCOM model is coupled to a one-thickness 3	

category sea-ice model, for which the ice thermodynamics are described 4	

in Drange and Simonsen (1996) and the ice dynamics are based on the 5	

elastic-viscous-plastic rheology described in Hunke and Dukowicz (1997) 6	

and with a modification from Bouillon et al. (2013). The TOPAZ grid uses 7	

conformal mapping (Bentsen et al., 1999) and has a quasi-homogeneous 8	

horizontal resolution of 12-16 km in the Arctic as shown in Fig. 1. 9	

     The temperatures and salinities at model lateral boundaries are 10	

relaxed to a combined climatology using the World Ocean Atlas of 2005 11	

(WOA05, Locarnini et al., 2006) and the version 3.0 of the Polar Science 12	

Center Hydrographic Climatology (PHC, Steele et al., 2001). A seasonal 13	

inflow from the Pacific Ocean through the Bering Strait is imposed, which 14	

amplitude is following the observations from Woodgate et al. (2012).  15	
 16	
2.2 Implementation of the EnKF in TOPAZ 17	
 18	
 The analysis field at time t with the standard EnKF, is expressed as 19	

follows: 20	

𝐱! = 𝐱! + 𝐊 𝐲− 𝐇𝐱! ,                                            (1). 21	

where x is the model state vector, the superscripts “a” and “f” refer to the 22	

analysis and the forecast respectively. The ensemble consists of 100 23	

dynamical members. H is the observation operator and y is the 24	

observation vector, which includes all observations at the assimilation 25	

time window. The term innovation refers to the misfits between the 26	

observations and the model:  i.e. the term in bracket in equation (1). The 27	

Kalman gain K in Equation (1) is calculated as: 28	

𝐊 = 𝐏𝐟𝐇𝐓[𝐇𝐏𝐟𝐇𝐓 + 𝐑]!𝟏                                      (2). 29	

Where R is the matrix of observation error variance, and Pf is the matrix 30	

of background error covariance, calculated as P= (1/N-1)*AAT where N is 31	

the number of ensemble members, the superscript T denotes a matrix 32	

transpose, and A is the ensemble of anomaly which can be calculated as: 33	

𝐀! = 𝐗! − x!I!,                                                       34	
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where 𝐗!  denotes the matrix of the forecastd model states, x!  is the 1	

ensemble average of the state vector, and  I! = [1,… ,1] is the vector with 2	

all components equal to 1. The TOPAZ system uses the deterministic 3	

EnKF (DEnKF, Sakov and Oke, 2008; Sakov et al., 2012), which is a 4	

square-root filter implementation of the EnKF that solves the analysis 5	

without the need for perturbation of the observations. The DEnKF 6	

overestimates the analysed error covariance by adding a semi-definite 7	

positive term to the theoretical error covariance given by the Kalman filter, 8	

which mitigates the need for inflation (Sakov and Oke, 2008). The 9	

ensemble mean is updated by the equation: 10	

𝐱𝐚 = 𝐱! + 𝐊(𝐲− 𝐇𝐱𝐟), 11	

and the ensemble anomaly is calculated as follows: 12	

 𝐀𝐚 = 𝐀𝐟 − 𝟏
𝟐
𝐊𝐇𝐀𝐟. 13	

Finally, the element states of the ensemble are reconstructed by adding 14	

the two terms as follows: 15	

𝐗! = 𝐀! + 𝐱!I!                                                       (3) 16	

where Xa represents the matrix of the updated model states after data 17	

assimilation. 18	

An overview of the observations assimilated in the present TOPAZ 19	

system is given in Table 1 (see as well Sakov et al, 2012). Observations 20	

are quality-controlled and superobed as in Sakov et al (2012). The 21	

system assimilates the following data sets on a weekly basis: the gridded 22	

OSTIA SST (Donlon et al., 2012); OSI-SAF ice concentration available for 23	

the analysis day; along-track Sea Level Anomaly; delayed-mode profiles 24	

of temperature and salinity, and the sea-ice drift during the 3 days prior to 25	

the analysis. All measurements are retrieved from 26	

http://marine.copernicus.eu. The SLA data and the sea ice drift data are 27	

assimilated asynchronously (See Sakov et al., 2010) 28	

 29	

3. Bias analyses for thin ice thickness in TOPAZ 30	
TOPAZ provides a reanalysis at daily frequency of physical variables 31	

including sea ice thickness, which was validated by in situ and satellite 32	

observations in Xie et al. (2016). An assumption made for data 33	
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assimilation is that the model and observations have unbiased mean and 1	

uncertainties estimates. Therefore, we investigate in this section the 2	

thickness misfits of thin sea ice during five cold seasons of 2010-2014.  3	

SMOS-Ice products (version 2.1) are available since 2010 in the cold 4	

season from 15th October to 15th April. They are provided by Hamburg 5	

University at the website of https://icdc.zmaw.de/1/daten/cryosphere/l3c-6	

smos-sit.html (Kaleschke et al., 2012; Tian-Kunze et al., 2014). SMOS 7	

sea ice thickness maps are provided at daily frequency from October 8	

2010 and are available in near-real time during the cold season. 9	

The sea ice thickness of TOPAZ is extracted from the model state on 10	

daily average, and then compared with the observations by calculating 11	

the bias and the Root Mean Square Difference (RMSD) as follows: 12	

			𝐁𝐢𝐚𝐬 = !
!

(𝐇!𝐱!! − 𝐲!)!
!!! 																																																	（4）	13	

 𝐑𝐌𝐒𝐃 = !
!

(𝐇!𝐱!! − 𝐲!)!!
!!! 	,																																								（5）	14	

where 𝐱!!  is the daily averaged model state that is compared to the 15	

observation at the same location and time, H is the observation operator 16	

similar with that in the equation (1), and n is the number of available 17	

observations in the compared time period. 18	

Figure 2 shows the TOPAZ ice thickness as conditional expectations with 19	

respect to SMOS-Ice data sorted into 5 cm bins. The TOPAZ ice 20	

thicknesses shown in Fig.2 are at the same locations and times as the 21	

observations. Overall, the sea ice thickness in TOPAZ tends to be 22	

overestimated but it varies with the month and with the amplitude of ice 23	

thickness (more pronounced for thick ice). As an example, TOPAZ 24	

overestimates the high thickness values (>0.4 m) during October and 25	

February-April, while those are underestimated in November. For 26	

thicknesses lower than 0.4 m, the match between the observations and 27	

the simulations of TOPAZ is closer and rather consistent through the cold 28	

season. There is no clear bias from October–December but an increasing 29	

thick bias from January-April. There is no a priori indication whether the 30	

bias is a model bias or an observation bias. The penetration depth into 31	

sea ice is about 0.5 m for the L-Band microwaves frequency (Kaleschke 32	
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et al., 2010; Huntemann et al., 2014), and the effect of ice melting may 1	

lead to a saturation thickness of less than 0.4 m (see Heygster et al. 2	

(2009)). In order to avoid multivariate transfers of bias (whichever the 3	

source) to other state variable during the multivariate assimilation of 4	

SMOS-Ice, we only retain thickness observations that are less than 0.4 5	

m.  6	

In Fig. 3, we estimate the yearly bias of ice thickness compared to 7	

SMOS-Ice for ice that is thinner than 0.4 m over the period 2010-2014. 8	

After 2011, the thick bias is increased, and reaches a maximum of 0.1 m 9	

in 2014. The thick bias in March is also found larger than in November. 10	

There is a large spatial variability in the distribution of the bias (right panel 11	

of Fig.3), with the bias being largest in the Beaufort Sea and in the Kara 12	

Sea. In 2014, there is a thick bias in all the regions, 13	

 14	

4. Observing System Experiment of SMOS-Ice 15	
4.1 Design of OSE runs for SMOS-Ice 16	
The SMOS-Ice ice thickness data is gridded at a resolution of 17	

approximately 12.5 km and available at daily frequency in the cold 18	

season. Only the observations between 0 and 0.4 m, with a distance of at 19	

least 30 km away from the coast are used (See Section 3). The 20	

innovations in Equation (1) are expressed as a sea ice volume, which is 21	

an additive variable suited for spatial interpolation: 22	

               ∆𝐡𝐢𝐜𝐞 = 𝐲!"#! − 𝐇(𝐡!"#×𝐟!"#),                   (6) 23	

where ysmos is the observed thickness of thin sea ice from SMOS-Ice, H is 24	

the same interpolation as in equation (1), hmod and fmod are the model sea 25	

ice thickness and concentration respectively. To highlight the additional 26	

impacts of observations, two assimilation runs for Observing System 27	

Experiment (OSE) are carried out: 28	

   - Official Run: uses the standard observational network of the TOPAZ 29	

system. It assimilates every week the along-track Sea Level Anomaly, 30	

SST, in situ profiles of temperature and salinity, sea-ice concentrations 31	

and sea-ice drift data (listed in Table 1).  32	

   - Test Run: assimilates the SMOS-Ice data in addition to observations 33	

assimilated in the official run. The observation error (related with the R 34	
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term in Eq. (2)) of the sea ice thickness uses the uncertainties 1	

recommended by the provider, with an upper limit of 5 m beyond which 2	

the observations are assumed fully saturated. This uncertainty is an a 3	

priori estimate of the maximum uncertainty with respect to variations in 4	

the input parameters TB, Tice and Sice (Tian-Kunze et al., 2014). Here, the 5	

observation error is assumed spatially uncorrelated. 6	

We have two parallel assimilation runs focusing on two typical time 7	

periods within the beginnings of ice melting and freezing, from 19th 8	

February to 31st March and from 22nd October to 30th November in 2014. 9	

Both runs are driven by the same atmospheric high frequency forcing 10	

from ERA-Interim (Dee et al., 2011). Finally, the daily averaged outputs in 11	

March and November are used for the evaluation.  12	

 13	

4.2 Error analysis in the OSE runs 14	
The error analysis focuses on the following target quantities: sea ice 15	

thickness, sea ice concentration, SST and SLA. All quantities are derived 16	

from daily averages at same observation locations and time, and the 17	

calculation of the bias and the RMSD is according to equations (4) and 18	

(5) respectively. 	19	

   The spatial distribution of selected SMOS-Ice data for thin sea ice is 20	

shown in the top panels of Fig. 4 during March and November of 2014. In 21	

March, the available observations in the Beaufort Sea are very few, and 22	

unevenly distributed - mainly located in the coastal estuary areas. During 23	

this period, most of the observations are unreliable in the Beaufort Sea 24	

(with errors saturated at 5 m) so that they are rejected. Therefore in the 25	

following analysis, we will only present the result in November for the 26	

Beaufort Sea. In the middle panels of Fig. 4, the differences of RMSD for 27	

sea-ice thickness between the Official Run and the Test Run are shown 28	

(red color indicates an improvement due to assimilation of SMOS-Ice). In 29	

March, the improvements are mainly found to the east of Franz Josef 30	

Land and to some extent near the ice edge in the Greenland Sea. In 31	

November, the reduction of RMSD is larger than 0.2 m in the Beaufort 32	

Sea, the Greenland Sea and to the North of Svalbard. Finally, the 33	

differences of monthly ice thickness between the Official Run and the 34	
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Test Run are shown in the bottom panels of Fig. 4. It suggests that 1	

assimilating SMOS-Ice leads to a reduction of sea-ice thickness both in 2	

March and November 2014.  3	

 The time series of daily bias and RMSD for thin ice thicknesses in the 4	

OSE runs are shown in the top panels of Fig. 5. The bias of thin sea-ice 5	

thickness is reduced from 16 cm to 12 cm in March, and from 7 cm to 4 6	

cm in November, when SMOS-Ice data is assimilated. The RMSD of thin 7	

sea ice is reduced from 35 cm to 31 cm in March, and from 27 cm to 21 8	

cm in November. This corresponds to a reduction of the bias of 25% in 9	

March and 43% in November, and a reduction of the RMSD of about 11% 10	

in March and 22% in November. In the other panels of Fig. 5, the bias 11	

and RMSD of sea ice concentration, SST and SLA are presented. There 12	

is a slight benefit for the bias and RMSD of sea ice concentration, but the 13	

statistics for SST and SLA are unchanged.  14	

Moreover, the averaged thicknesses of thin sea-ice in the marginal seas - 15	

in the Kara Sea, Barents Sea and Beaufort Sea - are shown with marked 16	

lines in the panels of Fig. 6. The corresponding daily RMSDs of ice 17	

thickness relative to thin SMOS-Ice data are added with shading. In each 18	

month, there are four assimilation steps marked with vertical lines.  19	

In the Kara Sea, the thickness observed in March is very stable with a 20	

slight gradual increase. There is a relatively uniform reduction of RMSD 21	

by about 21%, which is mainly the result from a correction of the large 22	

(too thick) bias in the model. In November, the bias is much smaller and 23	

the resulting improvement is smaller (8%) but the performances are 24	

slightly improving through the month for RMSD. 25	

In the Barents Sea, in March, the observations show an increasing trend. 26	

The official run shows initially a large (thick) bias that reduces as the 27	

thickness increases in the observations. Assimilation of SMOS-Ice data 28	

reduces well the initial bias, but the bias converges towards the official 29	

run at the end of the month and so is the RMSD. On average, the RMSD 30	

of ice thickness is decreased about 27% from the Test Run. In November, 31	

the observations show large variability that is well captured in the Official 32	

Run but the ice is initially too thick. The RMSD reduction is about 19% 33	
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from the Test Run compared to from the Official Run and both the bias 1	

and the variability seem to be reduced. 2	

In the Beaufort Sea, there are too few observations to provide a 3	

representative estimate of the system performance in March (top panels 4	

of Fig. 4) and the statistics are not presented. In November, the 5	

observations show an increasing trend and the official run shows once 6	

again a relatively large thick bias initially. The RMSD in the Test Run is 7	

reduced by about 51%，which is mainly caused by a reduction of the 8	

bias. The increasing trend in the Test Run is in relatively good agreement 9	

with the observations.  10	

In Fig 7, we are validating the ice thickness with independent sea-ice 11	

thickness observations from two buoys (2013F and 2014F). During the 12	

month of November 2014, their drift trajectories are shown in the right 13	

panels of Fig. 4.  These measurements are estimated from the 14	

autonomous Ice Mass Balance buoys (IMP; 15	

http://imb.erdc.dren.mil/buoyinst.htm) respectively located at (158.41°W, 16	

77.63°N) and (146.34°W, 76.71°N) on the 1st November 2014. The 17	

RMSDs of ice thickness of the OSE runs are shown with the dashed blue 18	

and crossed red lines in Fig. 7. Along the buoy trajectory, the daily series 19	

of the observed sea ice thickness from 21st October to 30th November are 20	

shown with the blue squared line and the standard deviation is shown 21	

with error bars. The overestimation of sea ice thickness in the Official Run 22	

is slightly reduced (with a maximum decrease of 2 cm). It is expected that 23	

the impact of SMOS-ice on the two buoys are small because they are 24	

located far away from location where SMOS-Ice data is assimilated 25	

(shown as the top row panel in Fig. 4). Note that the TOPAZ assimilation 26	

system uses localization, meaning that the impact of observations is 27	

limited to a certain radius and their influence reduces as function of 28	

distance. In TOPAZ the effective localization radius is 90 km. It is 29	

encouraging to see that the improvement seems to be increasing with 30	

time suggesting that the region influenced by SMOS-ice is gradually 31	

spreading with time. 32	

	33	
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5. Relative impact of SMOS-ice to the existing 1	
observation network 2	
In this Section, the additional benefit of assimilating SMOS-Ice into the 3	

TOPAZ system is compared quantitatively with respect to the standard 4	

observation network. To do so, we evaluate a performance metric 5	

calculated during the analysis, the Degree of Freedom for Signal (DFS), 6	

which is widely used for such purposes (Rodgers 2000; Cardinali et al. 7	

2004). During the assimilation, one can calculate the DFS as follows: 8	

DFS = 𝑡𝑟 !𝐲
!𝐲

= 𝑡𝑟 ! 𝐇 𝐗!

!𝐲
= 𝑡𝑟 𝐊𝐇                     (7). 9	

Here, the matrix K and the observation operator H are the same as in 10	

equation (1), and tr defines the trace, applied to the matrix (KH). The DFS 11	

measures the reduction of mode that can be attributed to each 12	

observation type. A value of DFS close to 0 means that the observation 13	

has no impact, while a value of m means that the assimilation has 14	

reduced the number of degree of freedom of the ensemble by m. Note 15	

that the reduction cannot exceed the ensemble size; i.e. 100 here. In 16	

Sakov et al. (2012), it was recommended that the DFS should not exceed 17	

10 % of the ensemble size to avoid a collapse of the ensemble. 18	

After each data assimilation time i, the DFS of the j’th type of 19	

observations can be calculated by equation (7), denoted DFSij. Given an 20	

observation type, the averaged DFS over a specific time period can be 21	

estimated by: 22	

DFS! =
!
!

DFS!"!
!!! ,																																																								(8).	23	

where the subscript j represents the j’th observation data set assimilated, 24	

the subscript i is for the time and m is the total number of assimilation 25	

steps within the time period considered (here 4). Since the assimilation is 26	

performed locally, the DFS values are obtained at each model grid cell. In 27	

Fig. 8, we are plotting the averaged DFS maps (as defined in Eq. 8) for 28	

the different observation data set assimilated in March and November. In 29	

the Arctic the total DFS is dominated by the ice concentration with large 30	

value near the ice edge. The DFS for SMOS-Ice is comparatively small. It 31	

is larger in March than in November. However, in some regions, the 32	

monthly DFS of SMOS-ice reaches values larger than 2.  33	



13	
	

Furthermore, based on the sum of the DFS of all observation types 1	

assimilated in TOPAZ, we can estimate the relative impact the j’th type of 2	

observations (RDFSj):  3	

																										RDFS! =
!"#!
!!"!!

!!!
×100%,																																																(9)	4	

where O is total number of observation types. Figures 9 and 10 show the 5	

relative contribution of each observational data set. As expected, the 6	

assimilation of ice concentration dominates the total DFS, while the 7	

impacts of SST and SLA are limited to the region that are not ice covered. 8	

Ocean temperature and salinity profiles near the North Pole in the Arctic 9	

are the Ice-Tethered Profiles (ITP), which are collected by the Ice-10	

Tethered Profiler Program (Krishfield et al., 2008; Toole et al., 2011). 11	

They have a very large impact but they are very sparse. In March the 12	

SMOS-ice data has a significant impacts (> 20 % of the total DFS) in the 13	

Northern Barents Sea, the Western Kara Sea, Baffin Bay, the Greenland 14	

Sea and in Hudson Bay. In November, the relative contribution is still 15	

large in the Barents Sea, the Kara Seas and in the Greenland Sea, but it 16	

is now also large in the Beaufort Sea and in the Canadian Archipelago. 17	

 18	
6. Summary and Discussion 19	

   The thickness observations of thin sea ice in the Arctic can be derived 20	

from SMOS brightness temperature at 1.4 GHz (Tian-Kunze, et al., 2014; 21	

Kaleschke et al., 2016). This data set is available in near real time since 22	

2010 at daily frequency. This study investigates the impact of assimilating 23	

this data set within the TOPAZ system, which is the Arctic component of 24	

the Copernicus Marine Services.  It is shown that for thin ice (less than 25	

0.4 m), the TOPAZ reanalysis and the SMOS-Ice have comparable 26	

distributions, but TOPAZ reanalysis tends to overestimate thin ice 27	

thickness, especially from January to April.  28	

   We compare the benefit of assimilating SMOS-ice (thinner than 0.4 m) 29	

in TOPAZ system that already assimilates ice concentration, SST, SSH 30	

and temperature and salinity profiles. The comparison is carried out for 31	

two periods: February-March and October-November of 2014. The study 32	

shows that the assimilation of SMOS-Ice data reduces the thickness 33	
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RMSD of thin sea-ice in March and in November by about 11% and 22% 1	

respectively, mainly caused by the reduction of the bias (too thick sea ice 2	

that seems larger in 2014 than in previous years). As in Yang et al. 3	

(2014) we also find that there is a slight improvement to the ice 4	

concentration. The RMSDs for SST and SLA remain unchanged but they 5	

are at least not degraded. 6	

 In this study, the DFS has been used to evaluate the relative 7	

contributions of assimilated observations to the reduction of error in the 8	

TOPAZ system. The SMOS-Ice data have a smaller impact than ice 9	

concentration, but a relatively high contribution in some areas. In the 10	

Greenland Sea, the Kara Sea and the Barents Sea, a significant 11	

contribution (defined as larger than 20 % of the total impact from all 12	

observations) is found both in March and November. In Baffin Bay and 13	

Hudson Bay, significant contributions are also found in March. In 14	

November, there is a large contribution in the Beaufort Sea and in the 15	

Canadian archipelago. 16	

To conclude, we found that the assimilation of SMOS-ice can reduce the 17	

thick biases in some regions of the Arctic. It is also encouraging that the 18	

assimilation of this data set does not degrade other variables (SST, SLA, 19	

ICEC and ice drift). This suggests that SMOS-Ice can be assimilated 20	

without degradation of other skills in the operational forecasting system 21	

and included in reanalysis mode. However, further work needs to be done 22	

to better understand the uncertainty of the assimilated sea ice thickness 23	

from the SMOS-Ice. Recently, Yang et al. (2016) tested the sensitivity of 24	

assimilating the SMOS-Ice data with the LSEIK during the winter of 2011-25	

2012, and found that perturbations of the atmospheric forcing is important 26	

for improving the performance of assimilation, consistently with the 27	

findings of Lisæter et al. (2007).  28	

In the future, we may use the “saturation ratio” that is defined by the 29	

relationship of the variable L-band penetration depth and the maximal 30	

retrieval thickness as a function of temperature and salinity with which we 31	

can better identify the valid observations of sea ice thickness from SMOS. 32	

In addition, the satellite CryoSat2 provides freeboard height data in thick 33	

ice that can complement the observations from SMOS (Kaleschke et al., 34	
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2010). The new sea ice thicknesses derived from a combination of SMOS 1	

and CryoSat2 will be soon available (Kaleschke et al., 2015). Incidentally, 2	

the U.S Navy Arctic Cap Nowcast/Forecast System (ACNFS) is currently 3	

testing the assimilation of a combined sea ice thickness product where 4	

the sea ice thickness is blended from SMOS-Ice and CryoSat2 based on 5	

each satellite retrieval error (personal communication from David Hebert). 6	

Where the ice is thin (typically less than 0.5 m), the relative error for 7	

SMOS-Ice will be lower than CryoSat2, and the blending will be weighted 8	

strongly toward the thickness value from SMOS-Ice. Where the ice is 9	

thick, the error will be lower for CryoSat2 retrieval and the blending will be 10	

strongly weighted toward the CryoSat2 ice thickness value.  11	
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Table 1. Overview of assimilated observations in each assimilation cycle of the 

present TOPAZ system. All observations are retrieved from 

http://marine.copernicus.eu. 
Type Spacing  Resolution Provider 
SLA Track  - CLS 
SST  Gridded 5 km OSTIA from UK Met Office 
In-situ T  Point - Ifremer + other 
In-situ S  Point - Ifremer + other 
ICEC Gridded 10 km OSISAF 
Ice drift Gridded 62.5 km OSISAF 

	
	 	



	
	
	
	

	
	

Fig.	 1	 TOPAZ	 model	 domain	 and	 horizontal	 grid	 resolution	 (km)	 with	 color	

shading.	The	blue	line	delimits	the	focused	Arctic	region	(north	of	63°N)	and	other	
color	lines	delimit	the	three	marginal	seas	discussed	in	this	study.	

	
	
	 	



	
	
	
	

	
	
Fig.	 2	Conditional	 expectations	of	TOPAZ	versus	 SMOS-Ice	 (with	bin	of	5	 cm)	 for	

the	period	2010-2014	and	for	each	month.	The	cyan	error-bars	correspond	to	the	

RMSD	against	 all	 observations	within	each	bin.	The	 red	error-bars	 correspond	 to	

averaged	 standard	deviations	of	 observation	 error.	The	 gray	dashed	 line	denotes	

the	line	y=x.	

	
	
	

	
		

	
	
	
	
	

	
	

	
	
	
	
	
	



	
	
	
	
	

	
	

Fig.	3	Yearly	thickness	biases	of	thin	sea	ice	from	TOPAZ	compared	to	SMOS-Ice	

observations.	The	black	line	represents	the	yearly	mean	bias.	Left:	the	green	(red)	

line	 represents	 the	 mean	 bias	 for	 March	 (November)	 of	 each	 year.	 Right:	 the	

colored	 lines	 represent	 the	 biases	 in	 the	 Barents	 Sea,	 the	 Kara	 Sea,	 and	 the	

Beaufort	Sea.	

	
	
	
	
	
	
	
	
	



	
		

Fig.	4	Top	Row:	SMOS-Ice	data	numbers	can	be	assimilated	in	March	(left)	and	in	

November	 (right)	of	2014.	Middle	 Row:	Difference	of	RMSDs	 for	 the	 thin	sea-ice	

thicknesses	 between	 Official	 Run	 and	 Test	 Run	 in	March	 (left)	 and	 in	 November	

(right).	Bottom	 Row:	 Difference	 of	mean	 ice	 thicknesses	 between	 the	 two	 runs.	

The	 black	 line	 denotes	 the	 0.2	 m	 isoline,	 the	 green	 (pink)	 line	 is	 the	 15%	

concentration	 isoline	 from	 OSISAF	 (Official	 Run).	 The	marker	 of	 circle	 (triangle)	

represents	the	position	of	sea-ice	buoy	2013F	(2014F)	at	First	November	2014.	

	



	
Fig.	5	Daily	time	series	of	the	bias	(marked	with	crosses)	and	the	RMSD	(marked	

with	circles)	in	the	whole	Arctic	for	the	Official	Run	(in	blue)	and	the	Test	Run	(in	

purple)	for	different	variables	in	March	(Left)	and	November	(Right).	

	
	
	
	
	
	
	
	



	
	
	
	
	
	

	

	
	
Fig.	6	Daily	time	series	of	the	mean	thickness	of	thin	sea-ice	in	the	Kara	Sea	

(top	row),	the	Barents	Sea	(middle	row)	and	Beaufort	Sea	(bottom	row)	for	

March	(left)	and	November	(right).	The	light	(dark)	gray	shading	is	the	daily	

spatial	RMSD	of	thin	sea	ice	in	the	Test	Run	(Official	Run).	

	
	
	



	
	
	

	
	

Fig	7.	Daily	time	series	of	sea	ice	thickness	from	Official	Run	(crossed	red	line)	and	

Test	Run	(dashed	blue	line)	during	the	period	from	21th	October	to	30	November	

compare	 with	 the	 sea-ice	 buoy	 measurements	 (squared	 blue	 line)	 with	 its	 daily	

standard	deviation	 as	 the	 error	 bar.	The	 buoy	 data	 are	 from	 autonomous	 ice	

mass	balance	(IMB;	http://imb.erdc.dren.mil),	and	their	drift	trajectories	in	

November	2014	are	shown	in	Fig.	4.	Left:	Buoy	2013F;	Right:	Buoy	2014F.	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	

	



	

	

	

	

	
Fig.	8	Monthly	averaged	Degrees	of	Freedom	for	Signal	(DFS)	from	the	Test	Run	in	

March	 (upper)	 and	 in	 November	 (lower)	 for	 SMOS-Ice	 sea	 ice	 thickness	 (left	

column),	 sea	 ice	 concentration	 (middle	 column),	 and	 the	 total	 DFS	 of	 all	 ice	 and	

ocean	observations	(right	column).	The	black	line	denotes	the	isoline	of	DFS	equal	

to	2.	

	

	

	



	
Fig.	9	Relative	contributions	of	each	observational	data	set	in	the	total	DFS	during	

March	2014.	Panel	(a)	is	for	sea	ice	concentration;	(b)	ice	thickness	from	SMOS-Ice;	

(c)	 temperature	 profiles;	 (d)	 SST;	 (e)	 along-track	 Sea	 Level	 Anomaly;	 (f)	 salinity	

profiles.	The	black	line	is	the	20%	isoline.	
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Fig.	10	Same	as	Figure	10	for	November	2014	
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