

Response to Editor's comments

We would like to thank you one more time for your constructive comments that has lead to improved quality and clarity of our manuscript.

Your comments are repeated in black and our response is in red.

You will find the related change with track change in the new document.

pg 3, line 30: Cryostat2 -> Cryosat2

Reply: Thanks. We have used CryoSat-2.

pg 4, line 31 apply a post-processing -> apply post-processing

Reply: Thanks. It is corrected

pg 8, line 8: What is superobed?

Reply: This is now explained (P8,L8):

"Observations are quality-controlled and superobed (i.e. the process of combining observations falling within the same model grid cell) as in Sakov et al., 2012."

pg 9, line 17: at the same

Reply: Thanks. It is corrected

pg 9, line 18: as observations

Reply: Thanks. It is corrected

pg 9, line 26: microwaves -> microwave

Reply: Thanks. It is corrected

pg 9, line 30 and previous sentence: do you mean assimilation is problematic for SITs thinner than 0.4m. This is what the previous sentence suggests during the melt season. Did I miss-understand your point in the previous sentence? Perhaps reword or clarify the text here.

Reply: Thank you this was a mistake. The sentence is corrected (P9,L30):
"and the effect of ice melting leads to saturation beyond 0.4 m (see Heygster et al. 2009)"

pg 10, line 19: consider -> used, and remove 'are used' from end of sentence

Reply: Thanks. This is corrected

pg 10, line 29: a 100 ensemble members -> 100 ensemble members

Reply: Thanks. It is corrected

pg 15, line 11: near the location

Reply: Thanks. It is corrected

pg 16, line 14: impact of the j'th

Reply: Thanks. It is corrected

pg 16, line 18: the March -> March

Reply: Thanks. It is corrected

pg 16, line 21: The profiles -> Profiles

Reply: Thanks. It is corrected

pg 16, line 22: Arctic -> the Arctic

Reply: Thanks. It is corrected

pg 16, line 25: impacts -> impact

Reply: Thanks. It is corrected

pg 17, line 2: Consider starting sentence 'The study in this paper'
rather than 'This study'

Reply: Thanks. It is corrected

pg 17, line 33: These studies follow from the first ...

Reply: Thanks. It is corrected

pg 18, line 4: spun up

Reply: Thanks. It is corrected

pg 18, line 6: at time when -> the time period

Reply: Thanks. It is corrected

pg 18, line 20: agreements -> agreement

Reply: Thanks. It is corrected

You may want to check that you are happy with the text size on
some of your figures. It is hard to read the very small text.

Reply: Thank this comment. We are enlarged the font on the figures (2, 4, 5,
6, 9, 10, 11, 12).

Response to Editor's comments

We would like to thank you one more time for your constructive comments that has lead to improved quality and clarity of our manuscript.

JipingMac xie 27/10/2016 13:54

Formatted: Justified

You comments are repeated in black and our response is in red.

JipingMac xie 27/10/2016 13:54

Deleted:

You will find the related change with track change in the new document.

pg 3, line 30: Cryostat2 -> Cryosat2

Reply: Thanks. We have used CryoSat-2.

pg 4, line 31 apply a post-processing -> apply post-processing

Reply: Thanks. It is corrected

pg 8, line 8: What is superobed?

Reply: This is now explained (P8,L8):

Observations are quality-controlled and superobed (i.e. the process of combining observations falling within the same model grid cell) as in Sakov et al., 2012."

Microsoft Office User 26/10/2016 13:54

Deleted: It is corrected and the related names are consistent by using

JipingMac xie 27/10/2016 13:54

Formatted: Font color: Auto

pg 9, line 17: at the same

Reply: Thanks. It is corrected

pg 9, line 18: as observations

Reply: Thanks. It is corrected

pg 9, line 26: microwaves -> microwave

Reply: Thanks. It is corrected

pg 9, line 30 and previous sentence: do you mean assimilation is problematic for SITs thinner than 0.4m. This is what the previous sentence suggests during the melt season. Did I miss-understand your point in the previous sentence? Perhaps reword or clarify the text here.

Reply: Thank you this was a mistake. The sentence is corrected (P9,L30): "and the effect of ice melting leads to saturation beyond 0.4 m (see Heygster et al. 2009)"

pg 10, line 19: consider -> used, and remove 'are used' from end of sentence

Reply: Thanks. This is corrected

pg 10, line 29: a 100 ensemble members -> 100 ensemble members

Reply: Thanks. It is corrected

pg 15, line 11: near the location

Reply: Thanks. It is corrected

JipingMac xie 27/10/2016 13:54

Formatted: Font color: Auto

Microsoft Office User 26/10/2016 14:23

Deleted: No, here it means to assimilate thicker than 0.4m could be problematic. The previous sentence suggests the threshold of 0.4 m have two physical bases: the penetration depth is no more than 0.5m; and the possible melting process indicates a saturation thickness less than 0.4m.

JipingMac xie 27/10/2016 13:55

Formatted: Font color: Auto

Microsoft Office User 26/10/2016 14:25

Deleted: ey aer

JipingMac xie 27/10/2016 13:55

Formatted: Font color: Auto

JipingMac xie 27/10/2016 13:55

Formatted: Font color: Auto

pg 16, line 14: impact of the j'th

Reply: Thanks. It is corrected

JipingMac xie 27/10/2016 13:54

Formatted: Font color: Auto

pg 16, line 18: the March -> March

Reply: Thanks. It is corrected

JipingMac xie 27/10/2016 13:54

Formatted: Font color: Auto

pg 16, line 21: The profiles -> Profiles

Reply: Thanks. It is corrected

JipingMac xie 27/10/2016 13:54

Formatted: Font color: Auto

pg 16, line 22: Arctic -> the Arctic

Reply: Thanks. It is corrected

JipingMac xie 27/10/2016 13:54

Formatted: Font color: Auto

pg 16, line 25: impacts -> impact

Reply: Thanks. It is corrected

JipingMac xie 27/10/2016 13:54

Formatted: Font color: Auto

pg 17, line 2: Consider starting sentence 'The study in this paper'
rather than 'This study'

Reply: Thanks. It is corrected

JipingMac xie 27/10/2016 13:54

Formatted: Font color: Auto

pg 17, line 33: These studies follow from the first ...

Reply: Thanks. It is corrected

JipingMac xie 27/10/2016 13:54

Formatted: Font color: Auto

pg 18, line 4: spun up

Reply: Thanks. It is corrected

JipingMac xie 27/10/2016 13:54

Formatted: Font color: Auto

pg 18, line 6: at time when -> the time period

Reply: Thanks. It is corrected

JipingMac xie 27/10/2016 13:54

Formatted: Font color: Auto

pg 18, line 20: agreements -> agreement

Reply: Thanks. It is corrected

JipingMac xie 27/10/2016 13:54

Formatted: Font color: Auto

You may want to check that you are happy with the text size on
some of your figures. It is hard to read the very small text.

Reply: Thank this comment. We are enlarged the font on some of the figures.

JipingMac xie 27/10/2016 13:54

Formatted: Font color: Auto

Microsoft Office User 26/10/2016 14:29

Deleted: Some figures are updated

Benefits of assimilating thin sea ice thickness from SMOS into the TOPAZ system

**Jiping Xie¹, Francois Counillon¹, Laurent Bertino¹, Xiangshan Tian-Kunze²,
and Lars Kaleschke²**

1. Nansen Environmental and Remote Sensing Center, Bergen, Norway
2. Institute of Oceanography, University of Hamburg, German

1 **Abstract** An observation product for thin sea ice thickness (SMOS-Ice) is
2 derived from the brightness temperature data of the European Space
3 Agency's (ESA) Soil Moisture and Ocean Salinity (SMOS) Mission. This
4 product is available in near-real time, at daily frequency, during the cold
5 season. In this study, we investigate the benefit of assimilating SMOS-Ice
6 into the TOPAZ coupled ocean and sea ice forecasting system, which is
7 the Arctic component of the Copernicus marine environment monitoring
8 services. The TOPAZ system assimilates sea surface temperature (SST),
9 altimetry data, temperature and salinity profiles, ice concentration, and ice
10 drift with the Ensemble Kalman Filter (EnKF). The conditions for
11 assimilation of sea ice thickness thinner than 0.4 m are favorable, as
12 observations are reliable below this threshold and their probability
13 distribution is comparable to that of the model. Two parallel Observing
14 System Experiments (OSE) have been performed in March and
15 November 2014, in which the thicknesses from SMOS-Ice (thinner than
16 0.4 m) are assimilated in addition to the standard observational data sets.
17 It is found that the Root Mean Square Difference (RMSD) of thin sea ice
18 thickness is reduced by 11% in March and 22% in November compared
19 to the daily thin ice thicknesses of SMOS-Ice, which suggests that
20 SMOS-Ice has a larger impact during the beginning of the cold season.
21 Validation against independent observations of ice thickness from buoys
22 and ice draft from moorings indicate that there are no degradations in the
23 pack ice but some improvements near the ice edge close to where the
24 SMOS-Ice has been assimilated. Assimilation of SMOS-Ice yields a slight
25 improvement for ice concentration and degrades neither SST nor sea
26 level anomaly. Analysis of the Degrees of Freedom for Signal (DFS)
27 indicates that the SMOS-Ice has a comparatively small impact but it has a
28 significant contribution in constraining the system (> 20% of the impact of
29 all ice and ocean observations) near the ice edge. The areas of largest
30 impact are the Kara Sea, the Canadian archipelago, the Baffin Bay, the
31 Beaufort Sea and the Greenland Sea. This study suggests that the
32 SMOS-Ice is a good complementary data set that can be safely included
33 in the TOPAZ system.

34

- 1 **Keywords:** Arctic forecasting; TOPAZ; thin sea ice thickness; SMOS-Ice;
- 2 Degrees of Freedom for Signal; Strongly coupled data assimilation;

1 **1. Introduction**

2 The Arctic climate system has undergone large changes during the last
3 20 years: increase of temperature (Chapman and Walsh, 1993; Serreze
4 et al., 2000; Karl et al., 2015; Roemmich et al., 2015), decrease of sea ice
5 extent (Johannessen et al., 1999; Comiso et al., 2008; Stroeve et al.,
6 2012), sea ice thinning and loss of sea ice volume (Rothrock et al., 1999;
7 Kwok and Rothrock, 2009; Laxon et al., 2013). The interpretation of such
8 changes is severely hampered by the sparseness and the complexity of
9 the observational network. A reanalysis database can combine the
10 sparse observations with a dynamically consistent model and is
11 becoming an important tool.

12 While observations of sea ice concentrations (SIC) have been available
13 for the past 30 years, observations of sea ice thickness (SIT) are
14 comparatively sparse. An improved knowledge of SIT would be greatly
15 beneficial, both for model developments and for improving the accuracy
16 of operational ocean forecasting system. The initialization of SIT is also
17 expected to improve predictability on seasonal time scale (Guemas et al.
18 2014). Until the last decade, observations of SIT were mostly limited to
19 field campaigns or submarine measurements. Major efforts in remote
20 sensing have been proposed to monitor the spatiotemporal evolution of
21 SIT, and gradually obtained various products from different satellite
22 retrieval algorithms. Measurements of thick sea ice freeboard on basin-
23 wide scales have been derived from laser altimeters on board ICESat
24 (e.g., Forsberg and Skourup, 2005; Kurtz et al., 2009; Kwok and Rothrock,
25 2009) or from radar altimeters on ERS, EnviSAT and CryoSat-2 (e.g.,
26 Laxon et al., 2003; Giles et al., 2007; Connor et al., 2009). Still, large
27 uncertainties remain in the accuracy of the resulting SIT estimates (larger
28 than 0.5 m) due to uncertainties in the snow depth and the sea ice
29 density (Zygmuntowska et al., 2014). A new database based on CryoSat-
30 2 has been provided (Laxon, 2013; Ricker et al., 2014) and has been
31 made available in near real time (Tilling et al. 2016). Finally, methods for
32 SIT retrieval based on measurements of the brightness temperature at a
33 low microwave frequency of 1.4 GHz (L-band: wavelength $\lambda_a=21$ cm)
34 have been developed in preparation for the European Space Agency's

1 (ESA) Soil Moisture and Ocean Salinity (SMOS) mission (Heygster et al.,
2 2009; Kaleschke et al., 2010; Kaleschke et al., 2013). It has been shown
3 that SMOS can be used to retrieve level SIT up to half a meter under cold
4 conditions (Kaleschke et al., 2012; Huntemann et al., 2014).

5 An improved retrieval method based on a radiative transfer model and a
6 thermodynamic sea ice model has been further proposed by considering
7 the variations of ice temperature, salinity and a statistical SIT distribution
8 (Tian-Kunze et al., 2014). An operational product has been derived from
9 this method and is available at daily frequency (hereafter referred to as
10 SMOS-Ice). The SMOS-Ice has been validated during a field campaign in
11 the Barents Sea (Kaleschke et al., 2016; Mecklenburg et al., 2016). It
12 provides daily estimate of SIT and is available since October 2010 (Tian-
13 Kunze et al., 2014). In this study, we are testing the benefits of
14 assimilating SMOS-Ice into the TOPAZ system.

15 The TOPAZ forecasting system (Sakov et al., 2012) is a coupled ocean-
16 sea ice data assimilation system and is the main Arctic Marine
17 Forecasting system in the Copernicus Marine Services
18 (<http://marine.copernicus.eu/>). It provides a 10-days coupled physical-
19 biogeochemical forecast every day and a long-term reanalysis from 1990-
20 2015 (Sakov et al., 2012; Xie et al., 2016). At present, TOPAZ assimilates
21 several data types jointly with the Ensemble Kalman Filter (EnKF): Sea
22 Surface Temperature (SST), along-track Sea Level Anomalies (SLA) from
23 satellite altimeters, in situ temperature and salinity profiles, Sea Ice
24 Concentration (SIC) and sea ice drift from satellites. The reanalysis
25 product of the TOPAZ system has been widely used in studies about
26 ocean circulation and sea ice in the North Atlantic Ocean or in the Arctic
27 region (Melsom et al., 2012; Johannessen et al., 2014; Korosov et al.,
28 2015; Lien et al., 2016). Although the capability for assimilating SIT has
29 been demonstrated in Lisæter et al. (2007), TOPAZ does not yet
30 assimilate SIT nor apply post-processing for this variable. The reanalysis
31 in the period 1991-2013 has been compared to available observations at
32 different periods of time (Xie et al., 2016). It was found that TOPAZ
33 underestimates the sea ice draft compared to in situ drafts from Sonar of

1 the US Navy Submarines for the period 1993-2005 (Lindsay, 2013). In
2 spring and autumn of 2003-2008, the SITs in TOPAZ are in good
3 agreement with those of ICESat data (Kwok and Rothrock, 2009) with a
4 spatial correlation 0.74 and 0.84 respectively. However, the SIT in
5 TOPAZ is too large (by more than 0.2 m) in the Beaufort Sea and too low
6 in the rest of the Arctic (up to 1 m). When compared against the IceBridge
7 SIT (Kurtz et al., 2013) for the period 2009-2011, it was found that the
8 thick SIT in the central Arctic is underestimated by 1.1 m in TOPAZ. Such
9 inaccuracies in the SIT are a common limitation of coupled ice-ocean
10 models in the Arctic (Johnson et al., 2012; Schweiger et al., 2012; Smith
11 et al., 2015).

12

13 The first demonstration of assimilating SMOS-Ice has been presented
14 by Yang et al. (2014) for the period from November 2011 to January
15 2012. The system assimilates both SIT (thinner than 1 meter) from
16 SMOS-Ice and SIC from Special Sensor Microwave Imager/Sounder
17 (SSMIS) in a nested Arctic configuration of the Massachusetts Institute of
18 Technology general circulation model (MITgcm). It uses the Localized
19 Singular Evolutive Interpolated Kalman (LSEIK; Nerger et al., 2005) data
20 assimilation method with a 15 members ensemble. It was found that
21 assimilation of SMOS-Ice leads to improvement of the SIT forecasts and
22 to a small improvement for sea ice concentration. A comparison of SIT
23 from three moorings from the Beaufort Gyre Experiment Program (BGEP)
24 and from one autonomous ice mass balance (IMB) buoy, shows that the
25 overestimation of SIT is reduced. The present study follows up the work
26 from Yang et al. (2014) but it further explores the impact and relative
27 importance of SMOS-Ice in the perspective of an ice-ocean forecasting
28 system: 1) the impact of assimilating SMOS-Ice is tested both during the
29 onsets of the melting and freezing seasons; 2) SMOS-Ice is tested
30 together with a more complete observations network and its relative
31 contribution is quantified; 3) the results are tested with a different model
32 at slightly higher resolution, with a comparable assimilation method but
33 with a larger ensemble size.

1 This paper is organized as follows: section 2 introduces the main
2 components of the TOPAZ system including the model, the assimilation
3 scheme, and the observations assimilated. In section 3, we compare
4 SMOS-Ice data to the TOPAZ reanalysis for the period 2010-2014, and
5 investigate potential biases and whether conditions are favorable for data
6 assimilation. In section 4, two Observing System Experiment (OSE) runs
7 are conducted, consisting of two assimilation runs with and without the
8 SMOS-Ice data during 2014. In Section 5, we compared the contributions
9 of SMOS-Ice relative to other types of observations for controlling the
10 degree of freedom of the system during assimilation.

11

12 **2. Descriptions of the TOPAZ data assimilation system**

13 **2.1 The coupled ocean and sea ice model**

14

15 The ocean general circulation model used in the TOPAZ system is the
16 version 2.2 of the Hybrid Coordinate Ocean Model (HYCOM) developed
17 at University of Miami (Bleck, 2002; Chassignet et al., 2003). HYCOM
18 uses hybrid coordinates in the vertical, which smoothly shift from
19 isopycnal layers in the stratified open ocean to z-level coordinates in the
20 unstratified surface mixed layer. This feature has been demonstrated in a
21 wide range of applications from the deep oceans to the shelf (Chassignet
22 et al., 2009). The NERSC-HYCOM model is coupled to a one-thickness
23 category sea ice model, for which the ice thermodynamics are described
24 in Drange and Simonsen (1996) and the ice dynamics are based on the
25 elastic-viscous-plastic rheology described in Hunke and Dukowicz (1997)
26 with a modification from Bouillon et al. (2013). In the model, there is a
27 minimum thickness of 0.1 m for both new ice and melting ice. The model
28 grid is produced using conformal mapping (Bentsen et al., 1999) and has
29 a quasi-homogeneous horizontal resolution of 12-16 km in the Arctic as
30 shown in Fig. 1.

31 The temperatures and salinities at the model lateral boundaries are
32 relaxed to a combined climatology of the World Ocean Atlas of 2005
33 (WOA05, Locarnini et al., 2006) and the version 3.0 of the Polar Science
34 Center Hydrographic Climatology (PHC, Steele et al., 2001). A seasonal
35 inflow is imposed at the Bering Strait with a transport that is following the

1 observed estimate from Woodgate et al. (2012). A balanced outflow of
2 similar mean transport is imposed at the southern boundary of the model.
3 The TOPAZ system uses atmospheric forcing from ERA-Interim (Dee et
4 al., 2011).

5 **2.2 The EnKF data assimilation**
6

7 The analysis with the standard EnKF, is expressed as follows:

8
$$\mathbf{X}^a = \mathbf{X}^f + \mathbf{K}(\mathbf{Y} - \mathbf{H}\mathbf{X}^f), \quad (1).$$

9 where \mathbf{x} is the ensemble of model state vector, the superscripts “a” and
10 “f” refer to the analysis and the forecast respectively. The ensemble
11 consists of 100 dynamical members. \mathbf{H} is the observation operator and \mathbf{Y}
12 is the perturbed observation matrix. The term innovation refers to the
13 misfits between the observations and the model: i.e. the term in brackets
14 in equation (1). The Kalman gain \mathbf{K} in Equation (1) is calculated as:

15
$$\mathbf{K} = \mathbf{P}^f \mathbf{H}^T [\mathbf{H} \mathbf{P}^f \mathbf{H}^T + \mathbf{R}]^{-1} \quad (2),$$

16 where \mathbf{R} is the matrix of observation error variance and \mathbf{P}^f is the matrix of
17 background error covariance, which can be calculated by an ensemble
18 anomalies with N members - $\mathbf{P} = (1/N-1) \mathbf{A} \mathbf{A}^T$. The superscript T denotes
19 a matrix transpose, and \mathbf{A} is the ensemble of anomalies. The ensemble
20 anomalies is calculated as:

21
$$\mathbf{A} = \mathbf{X} - \bar{\mathbf{x}} \mathbf{I}_N,$$

22 where $\bar{\mathbf{x}}$ is the ensemble mean vector, and $\mathbf{I}_N = [1, \dots, 1]$ is the vector with
23 all components equal to 1.

24 The TOPAZ system uses the deterministic EnKF (DEnKF, Sakov and
25 Oke, 2008), which is a square-root filter implementation of the EnKF that
26 solves the analysis without the need for perturbation of the observations.
27 The DEnKF overestimates the analysed error covariance by adding a
28 semi-definite positive term to the theoretical error covariance given by the
29 Kalman filter, which mitigates the need for inflation (Sakov and Oke,
30 2008).

31 In the DEnKF, the ensemble mean is updated by assimilating the
32 unperturbed observation \mathbf{y} :

33
$$\bar{\mathbf{x}}^a = \bar{\mathbf{x}}^f + \mathbf{K}(\mathbf{y} - \mathbf{H}\bar{\mathbf{x}}^f).$$

1 The analyzed ensemble anomaly is calculated as follows:

2
$$\mathbf{A}^a = \mathbf{A}^f - \frac{1}{2} \mathbf{K} \mathbf{H} \mathbf{A}^f.$$

3 The full ensemble is reconstructed by adding the two terms as follows:

4
$$\mathbf{X}^a = \mathbf{A}^a + \overline{\mathbf{x}^a} \mathbf{I}_N \quad (3),$$

5 where \mathbf{X}^a is the matrix of the updated model states after assimilation.

6 An overview of the observations assimilated in the present TOPAZ
7 system is given in Table 1. Observations are quality-controlled and
8 superobed (i.e. the process of combining observations falling within the
9 same model grid cell) as in Sakov et al. (2012). TOPAZ assimilates the
10 following data sets on a weekly basis: the gridded SST from the
11 Operational Sea Surface Temperature and Sea Ice Analysis system
12 (OSTIA, Donlon et al., 2012); sea ice concentration from the Ocean &
13 Sea Ice Satellite Application Facility (OSISAF); along-track Sea Level
14 Anomaly by Collecte Localisation Satellites (CLS); delayed-mode profiles
15 of temperature and salinity from Ifremer, and the sea ice drift during the 3
16 days prior to the analysis from the CERSAT (Centre ERS d'Archivage et
17 de Traitement) of IFREMER (French Research Institute for Exploitation of
18 the Sea). All these standard measurements are retrieved from
19 <http://marine.copernicus.eu>. The SLA data and the sea ice drift data are
20 assimilated asynchronously (see Sakov et al., 2010).

21

22 **3. Bias analyses for thin ice thickness**

23 The TOPAZ system has computed a reanalysis at daily frequency for
24 ocean and sea ice variables. Its sea ice thickness has been validated
25 against in situ data and satellite observations in Xie et al. (2016). Data
26 assimilation assumes that the model and observations errors are
27 unbiased. In this section, we investigate the bias by analyzing the
28 thickness misfits for thin sea ice during five cold seasons from 2010 to
29 2014.

30 SMOS-Ice products (version 2.1) are available during the cold season
31 (from 15th October to 15th April) at daily frequency from 2010 and up to
32 near-real time. The data set is provided by University of Hamburg

Microsoft Office User 26/10/2016 14:01
Deleted: ()
JipingMac xie 27/10/2016 10:46
Deleted: ,
JipingMac xie 27/10/2016 10:46
Deleted: 2
Microsoft Office User 26/10/2016 14:01
Deleted:)

1 (Kaleschke et al., 2012; Kaleschke et al., 2013;
2 <https://icdc.zmaw.de/1/daten/cryosphere/l3c-smos-sit.html>).

3 Here, the daily averaged SITs of TOPAZ are compared to the
4 observations. The spatial or temporal bias and Root Mean Square
5 Difference (RMSD) are calculated as follows:

6
$$\text{Bias} = \frac{1}{n} \sum_{i=1}^n (\mathbf{H}\bar{\mathbf{x}}_i^f - \mathbf{y}_i) \quad (4)$$

7
$$\text{RMSD} = \sqrt{\frac{1}{n} \sum_{i=1}^n (\mathbf{H}\bar{\mathbf{x}}_i^f - \mathbf{y}_i)^2}, \quad (5)$$

8 where $\bar{\mathbf{x}}_i^f$ is compared to observations at similar time, \mathbf{H} is the observation
9 operator (see eq. 1), and n is the number of available observations within
10 the calculation period. Note that, we compare the TOPAZ SITs to
11 imperfect observations, which contains error and may also be biased. As
12 such, the bias as formulated in Eq. 4 refers to the difference between the
13 model and observation biases calculated against an unknown truth. Still it
14 is reasonable to assume that the bias in the observation is smaller than in
15 the model and that the bias obtained with Eq.4 mainly accounts for model
16 bias.

17 Figure 2 shows the simulated SIT from the TOPAZ reanalysis as
18 conditional expectations with respect to SMOS-Ice data sorted into bins
19 of 5 cm. Again, the SITs from TOPAZ in Fig.2 are selected at the same
20 locations and time as observations. Overall, the SIT in TOPAZ tends to
21 be overestimated. The overestimation varies from month to month and
22 with the amplitude of SIT (more pronounced for thick ice). For SIT lower
23 than 0.4 m, the match between the observations and TOPAZ is relatively
24 good through the cold season. There is no clear bias between October
25 and December but a slight increasing thick bias from January-April. For
26 SIT larger than 0.4 m, TOPAZ clearly overestimates SIT compared to
27 observations during October and February-April, while it underestimates it
28 in November. The penetration depth for the L-Band microwave frequency
29 into sea ice is about 0.5 m (Kaleschke et al., 2010; Huntemann et al.,
30 2014), and the effect of ice melting leads to saturation beyond 0.4 m (see
31 Heygster et al. 2009). For these reasons, assimilation of SITs thicker than
32 0.4 m appears as problematic because the large bias from observations

JipingMac xie 26/10/2016 11:25
Deleted: of

JipingMac xie 26/10/2016 11:25
Deleted: s
Microsoft Office User 26/10/2016 14:23
Deleted: may
Microsoft Office User 26/10/2016 14:10
Deleted: a
Microsoft Office User 26/10/2016 14:10
Deleted: thickness of less than
JipingMac xie 26/10/2016 12:19
Formatted: Font color: Auto
JipingMac xie 26/10/2016 12:10
Deleted: of the SIT for values lower than

1 or models may be transferred to other variables (e.g. in the ocean) via the
2 multivariate properties of our data assimilation method (note that TOPAZ
3 uses strongly coupled data assimilation between the ocean and sea-ice).
4 In the following we will only assimilate the SIT observations less than 0.4
5 m.

6 We now investigate whether there is an interannual, seasonal and spatial
7 variability in the bias of SIT. Figure 3 shows the yearly bias (as defined in
8 Eq. 4) for SIT thinner than 0.4 m during the period 2010-2014. After 2011,
9 the thick bias is increasing, reaching a maximum of 0.1 m in 2014. There
10 is some seasonality in the bias, and the thick bias is larger in March than
11 in November. There is a large spatial variability in the distribution of the
12 bias (right panel of Fig. 3), with the bias being largest in the Beaufort Sea
13 and in the Kara Sea. We therefore select the periods of March and
14 November 2014 to set the assimilation system in the most difficult
15 situations.

16

17 **4. Observing System Experiment of SMOS-Ice**

18 **4.1 Design of OSE runs for SMOS-Ice**

19 The SMOS-Ice ice thickness data is gridded at a resolution of
20 approximately 12.5 km and is available at daily frequency during the cold
21 season. For the reasons explained in previous section, we only ~~used~~ the
22 observations with thickness lower than 0.4 m and with a distance of at
23 least 30 km away from the coast. (See Section 3). The related innovations
24 in Equation (1) are expressed as sea ice volume:

$$25 \Delta SIT = y_{smos} - H(\bar{h}_{mod} \times \bar{f}_{mod}), \quad (6)$$

26 where y_{smos} is the observed SIT for thin ice from SMOS, H is the same
27 observation operator as in equation (1), \bar{h}_{mod} is the ensemble mean of ice
28 thickness within the grid cell and \bar{f}_{mod} is the ensemble mean of SIC. Note
29 that the model has a minimum thickness of 0.1 m, but SIT observations of
30 ice thinner than 10 cm can be assimilated quantitatively because the
31 ensemble mean from 100 ensemble members can take values as low as
32 1 mm. To highlight the additional impact of SMOS-Ice observations, two
33 OSE runs are carried out:

JipingMac xie 26/10/2016 11:31
Deleted: consider

JipingMac xie 26/10/2016 11:31
Deleted: are used

JipingMac xie 26/10/2016 11:32
Deleted: a

1 - The **Official Run**: uses the standard observational network of the
2 TOPAZ system. It assimilates every week the along-track Sea Level
3 Anomaly, SST, in situ profiles of temperature and salinity, sea ice
4 concentrations and sea ice drift data (listed in **Table 1**).

5 - The **Test Run**: assimilates the SMOS-Ice data in addition to the
6 observations assimilated in the Official Run. In this study, the observation
7 errors are assumed to be spatially uncorrelated. The observation error
8 variance (diagonal term of **R** term in Eq. 2) for SIT is set as
9 recommended by the provider. It is estimated based on a priori estimate
10 of the maximum uncertainty of different input parameters: surface air
11 temperature, bulk ice temperature and bulk ice salinity (Tian-Kunze et al.,
12 2014). We consider an observation error variance of 25 m^2 to be the
13 threshold beyond which observations are assumed fully saturated and
14 are not assimilated in our system, this is however generally not occurring
15 for SIT values lower than 40 cm (see Fig. 4).

16 Figure 4 shows the uncertainties of the observations as function of the
17 observed thickness from SMOS in March and November of 2014. There
18 is a linear increase of the observation error with SMOS-Ice SIT with a
19 slope of approximately 2.6. There is no visible seasonal variation in this
20 relation (not shown).

21 In the following, the two parallel OSE runs are carried out at two typical
22 time periods of the cold season: at the onsets of the ice melting from 15th
23 February to 31st March and at the freezing time from 15th October to 30th
24 November in 2014.

25

26 **4.2 Validation against assimilated measurements**

27 The error analysis focuses on the following target quantities: SIT, SIC,
28 SST and SLA. All quantities are derived from the ensemble mean daily
29 averages that are compared to observations at same locations and time.
30 The bias is calculated as specified in Eq. 4 and the RMSD as in Eq. 5.

31 The spatial distribution of selected SMOS-Ice data for thin sea ice is
32 shown in the top panels of Fig. 5 during March and November of 2014. In
33 March, the available observations in the Beaufort Sea are very few, and
34 unevenly distributed - mainly located in the coastal areas. Hence, most of

JipingMac xie 26/10/2016 11:43
Deleted: i

1 the observations are unreliable (close to the error saturation threshold at
2 5 m) or too thick (> 0.4 m) to be assimilated. Therefore in the following,
3 the results for the Beaufort Sea are only presented for November. In the
4 middle panels of Fig. 5, the differences of RMSD for sea ice thickness
5 between the Official Run and the Test Run are shown (red color indicates
6 an improvement due to assimilation of SMOS-Ice and blue a degradation).
7 In March, the improvements are mainly found to the east of Franz Josef
8 Land and to some extent near the ice edge in the Greenland Sea. In
9 November, the reduction of RMSD is larger than 0.2 m in the Beaufort
10 Sea, the Greenland Sea and to the North of Svalbard. Finally, the
11 differences of monthly ice thickness between the Official Run and the
12 Test Run are shown in the bottom panels of Fig. 5. They suggest that
13 assimilating SMOS-Ice leads to a reduction of sea ice thickness both in
14 March and November 2014.

15 Based on Eqs. (4) and (5), the time series of daily bias and RMSD for
16 thin ice thicknesses in the OSE runs are shown in the top panels of Fig.
17 6. The bias of thin SIT is reduced from 16 cm to 12 cm in March, and
18 from 7 cm to 4 cm in November, when SMOS-Ice data is assimilated. The
19 RMSD of thin SIT is reduced from 35 cm to 31 cm in March, and from 27
20 cm to 21 cm in November. This corresponds to a reduction of the bias of
21 25% in March and 43% in November, and a reduction of the RMSD of
22 about 11% in March and 22% in November. In the other panels of Fig. 6,
23 the bias and RMSD of SIC, SST and SLA are presented. There is a slight
24 benefit for the bias and RMSD of SIC (i.e. the reduction of the SIC RMSD
25 is about 0.001), but the statistics for SST and SLA are unchanged.

26 The averaged thicknesses of thin sea ice in the marginal seas - in the
27 Kara Sea, Barents Sea and Beaufort Sea - are shown with marked lines
28 in the panels of Fig. 7. The corresponding daily RMSDs of ice thickness
29 relative to thin SMOS-Ice data are added with shading. In each month,
30 there are four assimilation steps marked with vertical lines.

31 In the Kara Sea, the thickness observed in March is very stable with a
32 slight gradual increase. There is a relatively uniform reduction of RMSD
33 by about 21%, which is mainly the result from a correction of the large
34 (too thick) bias in the model. In November, the bias is much smaller and

1 the resulting improvement is small (8%), but the performances are slightly
2 improving throughout the month for RMSD.
3 In the Barents Sea, the observations of SIT in March show an increasing
4 trend. The Official Run shows initially a large (thick) bias that reduces as
5 SIT increases in the observations. Assimilation of SMOS-Ice data
6 reduces well the initial bias, but the bias converges towards the Official
7 Run at the end of the month and so is the RMSD. On average, the RMSD
8 of SIT is decreased by approximately 27% from the Test Run. In
9 November, the observations show large variability that is well captured in
10 the Official Run but the ice is initially too thick. The RMSD reduction of
11 the Test Run compared to the Official Run is about 19% and both the
12 bias and the RMSD are reduced.
13 In the Beaufort Sea, there are too few observations to provide a
14 representative estimate of the system performance in March (top panels
15 of Fig. 5) and the statistics are not presented. In November, the
16 observations show an increasing trend and the Official Run shows once
17 again a relatively large thick bias initially. The RMSD in the Test Run is
18 reduced by about 51%, which is mainly caused by a reduction of the bias.
19 The increasing trend in the Test Run is in relatively good agreement with
20 the observations.

21

22 **4.3 Validation against independent observations of SIT and sea
23 ice draft**

24

25 Three Ice Mass Balance (IMB) buoys (Perovich et al., 2009;
26 <http://imb.erdc.dren.mil/buoyinst.htm>) are available for independent
27 validation during our period of study (2013F, 2013G and 2014F). Their
28 drift trajectories are shown in Fig. 5 for March and November 2014. On
29 the 1st March 2014, the buoys of 2013F and 2013G are located at
30 (150.8°W, 74.8°N) and (157.9°W, 75.3°N). And on the 1st November 2014,
31 the buoys 2013F and 2014F are located at (158.4°W, 77.6°N) and
32 (146.3°W, 76.7°N) respectively. In Fig. 8, the daily SIT of the OSE runs
33 are compared to those of the buoys along their trajectories. Between the
34 15th February and the 30th March, the SITs of the two runs are identical

1 and are increasing from 1.6 m to 1.9 m while the observations show a
2 more moderate increase from 1.5 to 1.65 m. It should be noted that the
3 increase in the model is not necessarily caused by thermodynamic
4 growth only since the modeled ice motions may differ from the buoys
5 trajectories. Between the 15th October and the 30th November (Buoys
6 2013F and 2014F), the SIT in the Test Run is slightly improved compared
7 to the Official Run (with an improvement of 2 cm). It is expected that the
8 impact of SMOS-Ice on the two buoys is small because they are located
9 far away from the locations where SMOS-Ice data are assimilated (shown
10 in the top panels of Fig. 5). The TOPAZ system uses localization,
11 meaning that the impact of observations during assimilation is limited to a
12 certain radius and their influence reduces as function of distance. In the
13 TOPAZ system, the effective localization radius is 90 km. Still, it is
14 encouraging to see that the improvements seem to be increasing with
15 time suggesting that the region influenced by SMOS-Ice is gradually
16 spreading across the domain.

JipingMac xie 26/10/2016 11:43
Deleted: i

17 Observations of sea ice drafts from moored sonar data are another
18 source of independent observations. There are in total 6 moorings:
19 2013a, 2013b, and 2013d in March 2014; 2014a, 2014b, and 2014d in
20 November 2014, which locations are shown in Fig. 5. These
21 measurements are available from BGEP (Kishfield et al., 2014;
22 <http://www.whoi.edu/page.do?pid=66559>). They use moored upward-
23 looking sonar instruments and collect year-round time series
24 measurements of the sea ice draft distribution (into 0.1 m bins) at daily
25 frequency. This data is processed to filter out wave action in the summer
26 months that may lead to the removal of thin draft measurements
27 (Krishfield et al., 2014). This can be problematic if the model estimates
28 are lower than the observed values. The sea ice draft from TOPAZ is
29 diagnosed as proposed in Alexandrov et al. (2010), i.e.:

$$30 \quad d_i = h_i \frac{\rho_i}{\rho_w} + h_{sn} \frac{\rho_{sn}}{\rho_w},$$

31 where d_i is sea ice draft, h_i is ice thickness, and h_{sn} is the modeled snow
32 depths. The constant ρ_i , ρ_w , and ρ_{sn} are the densities for ice, water, and
33 snow (respectively 900 kg m⁻³, 1000 kg m⁻³, and 300 kg m⁻³). In March

JipingMac xie 26/10/2016 11:43
Deleted: i

1 2014, the observed sea ice drafts are mostly distributed between 0.8 m
2 and 1.6 m (see Fig. 8). Both OSE runs overestimate the sea ice drafts in
3 March, and perform identically. In November 2014, the observed sea ice
4 drafts are thinner (< 1 m). The sea ice drafts from the OSE runs are again
5 overestimated in all three locations. The averaged draft difference in the
6 two runs is about 1 cm at the two moorings 2014a and 2014b, and about
7 16 cm at the mooring 2014d that is located closest to locations where
8 SMOS-Jce has been assimilated (see Fig.5). We have also compared the
9 two OSE runs in March 2014 with the NASA IceBridge SIT Quick Look
10 data set (QL) available from National Snow and Ice Data Center. The
11 analysis leads to similar conclusions (not shown), which is that
12 assimilation of SMOS-Jce only yields to improvements of SIT near the ice
13 edge near the location where SMOS-Jce is assimilated but do not yield
14 degradation in other places.

15

16 **5. Relative impact of the SIT from SMOS-Ice**

17 In this Section, the quantitative benefit of assimilating SMOS-Ice into the
18 TOPAZ system is compared to other observations assimilated. To do so,
19 we evaluate a performance metric calculated during the analysis, the
20 Degree of Freedom for Signal (DFS), which is widely used for such
21 purposes (Rodgers 2000; Cardinali et al. 2004). During the assimilation,
22 one can calculate the DFS as follows:

$$23 \quad \text{DFS} = \text{tr} \left(\frac{\partial \hat{y}}{\partial y} \right) = \text{tr} \left\{ \frac{\partial [\mathbf{H}(\mathbf{x}^a)]}{\partial y} \right\} = \text{tr}(\mathbf{K}\mathbf{H}) \quad (7).$$

24 Here, the matrix \mathbf{H} is the observation operator as in equation (1), and tr
25 defines the trace, applied to the matrix $(\mathbf{K}\mathbf{H})$. The DFS measures the
26 reduction of mode that can be attributed to each observation type. A
27 value of DFS close to 0 means that the observation has no impact, while
28 a value of m means that the assimilation has reduced the number of
29 degree of freedom of the ensemble by m . Note that the reduction cannot
30 exceed the ensemble size; i.e. 100 here. In Sakov et al. (2012), it was
31 recommended that the DFS should not exceed 10 % of the ensemble
32 size to avoid a collapse of the ensemble spread.

JipingMac xie 26/10/2016 11:33
Deleted: ICE

JipingMac xie 26/10/2016 11:33
Deleted: ICE
JipingMac xie 26/10/2016 11:33
Deleted: ICE

1 In the following the term DFS_{ij} denotes the DFS of the assimilation at time
2 i , of the j^{th} type of observations, as calculated by equation (7). The
3 averaged DFS over a specific time period is calculated as follows:

4
$$\overline{DFS}_j = \frac{1}{m} \sum_{i=1}^m DFS_{ij}, \quad (8)$$

5 where the subscript j represents the j^{th} type of the assimilated
6 observations, the subscript i is time and m is the total number of
7 assimilation steps within the considered time period (e.g. 4 for a monthly
8 estimate with weekly assimilation). The DFS values are calculated at
9 each model grid cell. In Fig. 10, we are plotting the averaged DFS maps
10 (as defined in Eq. 8) for the different observation data sets assimilated in
11 March and November. In the Arctic the total DFS is dominated by the ice
12 concentration that reaches large value (approximately 6) near the ice
13 edge. The DFS for SMOS-Ice is comparatively small and is larger in
14 March than in November. In some regions, the monthly DFS of SMOS-Ice
15 reaches values larger than 2.

16 Furthermore, based on the sum of the DFS of all observation types
17 assimilated in TOPAZ, we can estimate the relative impact of the j^{th} type
18 of observations ($RDFS_j$):

19
$$RDFS_j = \frac{\overline{DFS}_j}{\sum_{l=1}^O \overline{DFS}_l} \times 100\%, \quad (9)$$

20 where O is total number of observation types. Figure 12 shows the
21 relative contribution of each observational data set in March. As
22 expected, the assimilation of ice concentration dominates the total DFS,
23 while the impacts of SST and SLA are limited to the region that are not
24 ice covered. Profiles of ocean temperature and salinity near the North
25 Pole in the Arctic are collected by the Ice-Tethered Profiler Program
26 (Krishfield et al., 2008; Toole et al., 2011). They have a very large impact
27 but they are very sparse. In March the SMOS-Ice data has a significant
28 impact ($> 20\%$ of the total DFS) in the Northern Barents Sea, the
29 Western Kara Sea, Baffin Bay, the Greenland Sea and in Hudson Bay. In
30 November, the relative contribution is still significant in the Barents Sea,
31 the Kara Seas and in the Greenland Sea, but it is also significant in the
32 Beaufort Sea and in the Canadian Archipelago.

33

JipingMac xie 26/10/2016 11:44

Deleted: i

Microsoft Office User 26/10/2016 14:27

Deleted: '

Microsoft Office User 26/10/2016 14:26

Formatted: Superscript

JipingMac xie 26/10/2016 11:35

Deleted: the

JipingMac xie 26/10/2016 11:35

Deleted: The profiles

JipingMac xie 26/10/2016 11:44

Deleted: i

JipingMac xie 26/10/2016 11:35

Deleted: s

1 **6. Summary and Discussion**

2 The thickness observations of thin sea ice in the Arctic can be derived
3 from SMOS brightness temperature at 1.4 GHz (Tian-Kunze, et al., 2014;
4 Kaleschke et al., 2016). This data set is available in near real time since
5 2010 at daily frequency. [The study in this paper](#) investigates the impact of
6 assimilating this data set within the TOPAZ system, which is the Arctic
7 component of the Copernicus Marine Services. It is shown that for thin ice
8 (less than 0.4 m), the TOPAZ reanalysis and the SMOS-Ice have
9 comparable distributions (though TOPAZ slightly overestimates the thin
10 ice thickness from January to April) and that conditions are favorable for
11 assimilating this data set.

12 We investigate the impact of assimilating SMOS-Ice (thinner than 0.4 m)
13 in TOPAZ that already assimilates ice concentration, ice drift, SST, SLA
14 and temperature and salinity profiles. The comparison is carried out for
15 two periods: February-March and October-November of 2014. The study
16 shows that the assimilation of SMOS-Ice data reduces the thickness
17 RMSD of thin sea ice in March and in November by about 11% and 22%
18 respectively, mainly caused by the reduction of the bias (too thick sea ice
19 that seems larger in 2014 than in previous years). There are also some
20 small improvements for SIC. The RMSDs for SST and SLA remain
21 unchanged but are not degraded.

22 When compared to independent observations of SIT (IMB buoys) and sea
23 ice draft (BGEP moorings) it is found that assimilation of SMOS-Ice yields
24 improvements near the ice edge next to where SMOS-Ice has been
25 assimilated but does not lead to improvements nor degradations in the
26 rest of the Arctic.

27 In this study, the DFS is used to evaluate the relative contributions of
28 assimilated observations to the reduction of error in the TOPAZ system.
29 The SMOS-Ice data have a smaller impact than ice concentration, but it
30 has a significant contribution (defined as larger than 20 % of the total
31 impact from all observations) in some areas; namely in the Greenland
32 Sea, the Kara Sea, the Barents Sea, the Baffin Bay and the Hudson Bay

JipingMac xie 26/10/2016 11:38
Deleted: This study

1 in March and in the Greenland Sea, the Kara Sea, the Barents Sea, the
2 Beaufort Sea and the Canadian archipelago in November.

3

4 These studies follow from the first attempt of assimilation of SMOS-Ice
5 with the LSEIK in a regional MITgcm configuration (Yang et al. 2014).

JipingMac xie 26/10/2016 11:39

Deleted: up

6 Compared to this study, it is found that assimilation of SMOS-Ice has a
7 more moderate impact. This may be related to the fact that TOPAZ uses

8 a more complete observation network and that the assimilation has been
9 spun up over a longer period of time (from 1989). We also find that

JipingMac xie 26/10/2016 11:39

Deleted: in

10 assimilation of SMOS-Ice is comparatively larger in October-November
11 than in February-March the time period, when Yang et al. (2014) tested

JipingMac xie 26/10/2016 11:40

Deleted: at time

12 assimilation of SMOS-Ice. We also verified that assimilation of SMOS-Ice
13 does not degrade ocean variables (SST and SLA), which could happen

14 with a strongly coupled data assimilation scheme. Finally, we quantified
15 the relative influence of SMOS-Ice for constraining the mode of variability

16 in TOPAZ compared to a standard observation network.

17 To conclude, our study suggests that SMOS-Ice can be assimilated
18 without degradation of other skills in our operational forecasting system.

19 The benefits are generally small but can be significant for some regions
20 near the ice edge. However, further work needs to be done to better

21 understand the uncertainty of the assimilated SIT from the SMOS-Ice.
22 Recently, Yang et al. (2016) tested the sensitivity of assimilating the

23 SMOS-Ice data with the LSEIK during the winter of 2011-2012, and found
24 that perturbations of the atmospheric forcing is important for improving

25 the performance of assimilation, in agreement with Lisæter et al. (2007).

JipingMac xie 26/10/2016 11:42

Deleted: s

26 In the future, we may use the “saturation ratio” that is defined by the
27 relationship of the variable L-band penetration depth and the maximal

28 retrieval thickness as a function of temperature and salinity with which we
29 can better identify the valid observations of sea ice thickness from SMOS.

30 In addition, the satellite CryoSat-2 provides freeboard height data in thick
31 ice that can complement the observations from SMOS (Kaleschke et al.,

32 2010). The new sea ice thicknesses derived from a combination of SMOS
33 and CryoSat-2 will be soon available (Kaleschke et al., 2015). Incidentally,

34 the U.S Navy Arctic Cap Nowcast/Forecast System (ACNFS) is currently

1 testing the assimilation of a combined sea ice thickness product (personal
2 communication from David Hebert) where the sea ice thickness is
3 blended from SMOS-Ice and CryoSat-2 based on each satellite retrieval
4 error.

5

6 **Acknowledgment**

7 The authors are grateful to two anonymous reviewers [and Jennifer](#)
8 [Hutchings](#) for their insightful comments that were helpful in improving the
9 paper. Thanks to Dr. Y. Wang for useful discussions. We thank to the US
10 National Snow and Ice Data Center (NSIDC) for providing the IceBridge
11 data. This study was supported by ESA contracts 4000101476/10/NL/CT
12 and 4000112022/14/I-AM and CPU time from the Norwegian
13 Supercomputing Project (NOTUR II grant number nn2993k).

14

15 **Reference:**

16 Alexandrov, V., Sandven, S., Wåhlin, J., and Johannessen, O. M.: The relation
17 between sea ice thickness and freeboard in the Arctic. *The Cryosphere*, 4,
18 378-380, doi: 10.5194/tc-4-373-2010, 2010.

19 Bentsen, M., Evensen, G., Drange, H., and Jenkins, A. D.: Coordinate
20 transformation on a sphere using conformal mapping, *Mon. Weather Rev.*,
21 127, 2733-2740, doi:[http://dx.doi.org/10.1175/1520-0493\(1999\)127<2733:CTOASU>2.0.CO;2](http://dx.doi.org/10.1175/1520-0493(1999)127<2733:CTOASU>2.0.CO;2), 1999.

22 Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-
23 Cartesian coordinates, *Ocean Modell.*, 4, 55-88, doi:[10.1016/S1463-5003\(01\)00012-9](http://dx.doi.org/10.1016/S1463-5003(01)00012-9), 2002.

24 Bouillon, S., Fichefet, T., Legat, V., and Madec, G.: The elastic-viscous-plastic
25 method revised. *Ocean Modell.*, 7, 2-12, doi:[10.1016/j.ocemod.2013.05.013](http://dx.doi.org/10.1016/j.ocemod.2013.05.013),
26 2013.

27 Cardinale, C., Pezzulli, S., and Andersson, E.: Influence-matrix diagnostic of a
28 data assimilation system, *Q. J. R. Meteorol. Soc.*, 130, 2767-2786,
29 doi:[10.1256/qj.03.205](http://dx.doi.org/10.1256/qj.03.205), 2004.

30 Chapman, W. L., and Walsh, J. E.: Recent variations of sea ice and air
31 temperature in high latitudes, *Bull. Amer. Meteorol. Soc.*, 74, 33-47, doi:
32 [http://dx.doi.org/10.1175/1520-0477\(1993\)074<0033:RVOSIA>2.0.CO;2](http://dx.doi.org/10.1175/1520-0477(1993)074<0033:RVOSIA>2.0.CO;2),
33 1993.

34 Chassignet, E. P., Hurlburt, H. E., Metzger, E. J., et al.: US GODAE: Global
35 Ocean Prediction with the HYbrid Coordinate Ocean Model (HYCOM),
36 *Oceanography*, 22, 64-75. Doi:[10.5670/oceanog.2009.39](http://dx.doi.org/10.5670/oceanog.2009.39), 2009.

37 Chassignet, E. P., Smith, L. T., and Halliwell, G. R.: North Atlantic Simulations
38 with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical
39 coordinate choice, reference pressure, and thermobaricity, *J. Phys.*
40 *Oceanogr.*, 33, 2504-2526. Doi: [http://dx.doi.org/10.1175/1520-0485\(2003\)033<2504:NASWTH>2.0.CO;2](http://dx.doi.org/10.1175/1520-0485(2003)033<2504:NASWTH>2.0.CO;2), 2003.

41 Comiso, J. C., Parkinson, C. L., Gersten, R., and Stock, L.: Accelerated decline
42 in the Arctic sea ice cover. *Geophys. Res. Lett.*, 35 L01703, doi:
43 [10.1029/2007GL031972](http://dx.doi.org/10.1029/2007GL031972), 2008.

44 Connor, L. N., Laxon, S. W., Ridout, A. L., Krabill, W. B., and McAdoo, D. C.:
45

1 Comparison of Envisat radar and airborne laser altimeter measurement over
 2 Arctic sea ice. *Remote Sensing of Environment*, 113, 563-570,
 3 doi:10.1016/j.rse.2008.10.015, 2009

4 Dee, D.P., Uppala, S. M., Simmons, A. J., Berrisford, P., et al.: The ERA-Interim
 5 reanalysis: configuration and performance of the data assimilation system,
 6 *Quart. J. Roy. Meteor. Soc.*, 137, 553-597, doi:10.1002/qj.828, 2011

7 Donlon, C.J., Martin, M., Stark, J. D., Roberts-Jones, J., and Fiedler, E.: The
 8 Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system.
 9 *Rem. Sens. of Environment*, 116, 140-158, doi:10.1016/j.rse.2010.10.017,
 10 2012.

11 Drange, H., and Simonsen, K.: Formulation of air-sea fluxes in the ESOP2
 12 version of MICOM, Technical Report No. 125 of Nansen Environmental and
 13 Remote Sensing Center, 1996.

14 Forsberg, R. and Skourup, H.: Arctic Ocean gravity, geoid and sea-ice freeboard
 15 heights from ICESat and GRACE. *Geophys. Res. Lett.*, 32(21), L21502,
 16 doi:10.1029/2005GL023711, 2005.

17 Giles, K. A., Laxon, S. W., Wingham, D. J., et al.: Combined airborne laser and
 18 radar altimeter measurements over the Fram Strait in May 2002. *Remote*
 19 *Sensing of Environment*, 111(2-3), 182-194, doi:10.1016/j.rse.2007.02.037,
 20 2007.

21 Guemas, V., Wrigglesworth, E. B., Chevallier, M., et al.: A review on Arctic sea-
 22 ice predictability and prediction on seasonal to decadal time scales. *Q. J. R.*
 23 *Meteorolog. Soc.*, 142(695), doi:10.1002/qj.2401, 2014.

24 Heygster, G., Hendricks, S., Kaleschke, L., Maass, N., et al.: *L-Band Radiometry*
 25 *for Sea-Ice Applications*, Final Report for ESA ESTEC Contract
 26 21130/08/NL/EL, Institute of Environmental Physics, University of Bremen,
 27 219 pages, 2009.

28 Hunke, E. C., and Dukowicz, J. K.: An elastic-viscous-plastic model for sea ice
 29 dynamics, *J. Phys. Oceanogr.*, 27, 1849-1867, doi:
 30 [http://dx.doi.org/10.1175/1520-0485\(1997\)027<1849:AEVPMF>2.0.CO;2](http://dx.doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2),
 31 1997.

32 Huntemann, M., Heygster, G., Kaleschke, L., Krumpen, T., et al.: Empirical sea
 33 ice thickness retrieval during the freeze-up period from SMOS high incident
 34 angle observations, *The Cryosphere*, 8, 439-451, doi:10.5194/tc-8-439-2014,
 35 2014

36 Kaleschke, L., Maaß, N., Haas, C., Hendricks, S., Heygster, G., and Tonbøe, R.:
 37 A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to
 38 airborne measurements over low salinity sea-ice, *The Cryosphere*, 4, 583-
 39 592. Doi: 10.5194/tc-4-583-2010, 2010.

40 Kaleschke, L., Tian-Kunze, X., Maaß, N., Mäkynen, M., and Drusch, M.: Sea ice
 41 thickness retrieval from SMOS brightness temperatures during the Arctic
 42 freeze-up period. *J. Geophys. Lett.*, 39, L05501, doi:
 43 10.1029/2012GL050916, 2012

44 Kaleschke, L., Tian-Kunze, X., Maaß, N., et al.: SMOS Sea Ice Retrieval Study
 45 (SMOSIce)", ESA Support To Science Element (STSE), Final Report ESA
 46 ESTEC Contract No.: 4000101476/10/NL/CT, 380 pages, Univ. Hamburg,
 47 Institute of Oceanography, 2013. (available at
 48 [http://data.meereisportal.de/gallery/index_new.php?lang=en_US&active-
 tab=welcome](http://data.meereisportal.de/gallery/index_new.php?lang=en_US&active-tab=welcome))

50 Kaleschke, L., Tian-Kunze, X., Maaß, N., Ricker, R., Hendricks, S., and Drusch,
 51 M.: Improved retrieval of sea ice thickness from SMOS and Cryosat-2.
 52 Proceedings of 2015 International Geoscience and Remote Sensing
 53 Symposium IGARSS, doi: 10.1109/IGARSS.2015.7327014, 2015.

54 Kaleschke, L., Tian-Kunze, X., Maaß, N., et al.: SMOS sea ice product:
 55 Operational application and validation in the Barents Sea marginal ice zone.

JipingMac xie 26/10/2016 11:49

Deleted: ,

JipingMac xie 26/10/2016 11:49

Deleted: November 2009, 219 pp,

1 Remote Sensing of Environment, doi:10.1016/j.rse.2016.03.009, 2016.

2 Karl, T. R., Arguez, A., Huang, B., Lawrimore, J. H., McMahon, J. R., et al.:
3 Possible artifacts of data biases in the recent global surface warming hiatus.
4 *Science*, 348 (6242), 1469-1472, doi: 10.1126/science.aaa5632, 2015.

5 Korosov, A., Counillon, F., and Johannessen, J. A.: Monitoring the spreading of
6 the Amazon freshwater plume by MODIS, SMOS, Aquarius, and TOPAZ. *J. Geophys. Res.*, 120, 268-283, doi:10.1002/2014JC010155, 2015.

7 Krishfield, R., Toole, J., Proshutinsky, A., and Timmermans, M. –L: Automated
8 Ice-Tethered Profilers for Seawater Observations Under Pack Ice in All
9 Seasons, *J. Atmos. Oceanic Technol.*, 25, 2091-2105, doi:
10 <http://dx.doi.org/10.1175/2008JTECHO587.1>, 2008.

11 Krishfield, R. A., A. Proshutinsky, K. Tateyama, W. J. Williams, E. C. Carmack,
12 F. A. McLaughlin, and M. L. Timmermans, Deterioration of perennial sea ice
13 in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic
14 freshwater cycle, *J. Geophys. Res.*, 119(2), 1271-1305, doi:
15 10.1002/2013JC008999, 2014.

16 Kurtz, N. T., Markus, T., Cavalieri, D. J., Sparling, L. C., Krabill, W. B.,
17 Gasiewski, A. J., and Sonntag, J. G.: Estimation of sea ice thickness
18 distributions through the combination of snow depth and satellite laser
19 altimetry data, *J. Geophys. Res.*, 114, C10007, doi:10.1029/2009JC005292,
20 2009.

21 Kurtz, N. T., S. L. Farrell, M. Studinger, N. Galin, J. P. Harbeck, R. Lindsay, V. D.
22 Onana, B. Panzer, and J. G. Sonntag, Sea ice thickness, freeboard, and
23 snow depth products from Operation IceBridge airborne data, *The Cryosphere*, 7, 1035–1056, doi:10.5194/tc-7-1035-2013, 2013

24 Kwok, R., and Rothrock, D.: Decline in Arctic sea ice thickness from submarine
25 and ICESat records: 1958–2008, *Geophys. Res. Lett.*, 36, L15501,
26 doi:10.1029/2009GL039035, 2009.

27 Johnson, M., Proshutinsky A., Aksenov Y., Nguyen A. T., Lindsay R., Haas C.,
28 Zhang J., Diansky N., Kwok R., et al.: Evaluation of Arctic sea ice thickness
29 simulated by Arctic Ocean Model Intercomparison Project models. *J. Geophys. Res.*, 117(C8), doi:10.1029/2011JC007257, 2012.

30 Johannessen, J. A., Raj, R.P., Nilesen, J. E. Ø., Pripp, T., Knudsen, P.,
31 Counillon, F., Stammer, D., Bertino, L., Andersen, O. B., Serra, N., and
32 Koldunov, N.: Toward Improved Estimation of the Dynamic Topography and
33 Ocean Circulation in the High Latitude and Arctic Ocean: The Importance of
34 GOCE. *Surv. Geophys.*, 35(3), 661-679, doi:10.1007/s10712-013-9270-y,
35 2014.

36 Johannessen, O. M., Shalina, E. V., and Miles, M. W.: Satellite evidence for an
37 Arctic Sea ice cover in transformation, *Science*, 286, 1937-1939,
38 doi:10.1126/science.286.5446.1937, 1999.

39 Laxon, S., Peacock, N., and Smith, D.: High interannual variability of sea ice
40 thickness in the Arctic region, *Nature*, 425, 947-950,
41 doi:10.1038/nature02050, 2003.

42 Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Willatt, R., Cullen, R.,
43 Kwok, R., Schweiger, A., Zhang, J., Haas, C., Hendricks, S., Krishfield, R.,
44 Kurtz, N., Farrell, S., and Davidson, M.: CryoSat-2 estimates of Arctic sea ice
45 thickness and volume, *Geophys. Res. Lett.*, 40, 732–737,
46 doi:10.1002/grl.50193, 2013.

47 Lien, V. S., Hjøllo, S. S., Skogen, M. D., Svendsen, E., Wehde, H., Bertino, L.,
48 Counillon, F., Chevallier, M., and Garric, G.: An assessment of the added
49 value from data assimilation on modelled Nordic Seas hydrography and
50 ocean transports, *Ocean Modelling*, 99, 43-59,
51 doi:10.1016/j.ocemod.2015.12.010, 2016.

52 Lindsay, R. W., 2013: Unified sea ice thickness climate data record collection

1 spanning 1947-2012. Boulder, Colorado USA: National Snow and Ice Data
2 Center. <http://dx.doi.org/10.7265/N5D50JXV>.

3 Lisæter, K. A., Evensen, G., and Laxon, S.: Assimilating synthetic CryoSat sea
4 ice thickness in a coupled ice-ocean model, *J. Geophys. Res.*, 112, C07023,
5 doi:10.1029/2006JC003786, 2007.

6 Locarnini, R., Antonov, J., and Garcia, H.: *World Ocean Atlas 2005, Volume 1:*
7 *Temperature*, vol. 61, US Dept. of Commerce, National Oceanic and
8 Atmospheric Administration, 2006.

9 Mecklenburg, S., Drusch, M., Kaleschke, L., Rodriguez-Fernandez, N., Reul, N.,
10 et al.: *ESA's Soil Moisture and Ocean Salinity mission: From science to*
11 *operational applications, Remote Sensing of Environment*, 180, 3-18,
12 <http://dx.doi.org/10.1016/j.rse.2015.12.025>, 2016.

13 Melsom, A., Counillon, F., LaCasce, J. H., and Bertino, L.: Forecasting search
14 areas using ensemble ocean circulation modeling. *Ocean Dynamics*, 62(8),
15 1245-1257, 2012.

16 Nerger, L., Hiller, W., and Schröter J.: A comparison of error subspace Kalman
17 filters, *Tellus A*, 57(5), 715-735, doi: 10.1111/j.1600-0870.2005.00141.x,
18 2005.

19 Perovich, D. K., Grenfell, T. C., Light, B., et al.: Transpolar observations of the
20 morphological properties of Arctic sea ice, *J. Geophys. Res.*, 114, C00A04,
21 doi:10.1029/2008JC004892, 2009.

22 Ricker, R., Hendricks, S., Helm, V., et al.: Sensitivity of CryoSat-2 Arctic sea-ice
23 freeboard and thickness on radar-waveform interpretation, *The Cryosphere*,
24 8, 1607-1622, doi:10.5194/tc-8-1607-2014, 2014.

25 Rodgers, C.: *Inverse methods for atmospheres: theory and practice*, World
26 Scientific, 2000.

27 Roemmich, D., Church, J., Gilson, J., Monselesan, D., Sutton, P., and Wijffels,
28 S.: Unabated planetary warming and its ocean structure since 2006. *Nature*
29 *Climate Change* 5, 240-245, doi:10.1038/nclimate2513, 2015.

30 Rothrock, D. A., Yu, Y., and Maykut, G. A.: Thinning of the Arctic sea ice cover,
31 *Geophys. Res. Lett.*, 26, 3469-3472, doi:10.1029/1999GL010863, 1999.

32 Sakov, P., and Oke, P. R.: A deterministic formulation of the ensemble Kalman
33 Filter: an alternative to ensemble square root filters. *Tellus A*, 60(2), 361-371,
34 doi:10.1111/j.1600-0870.2007.00299.x, 2008.

35 Sakov, P., Evensen, G., and Bertino, L.: Asynchronous data assimilation with
36 the EnKF. *Tellus A*, 62(1), 24-29, doi:10.1111/j.1600-0870.2009.00417.x,
37 2010.

38 Sakov, P., Counillon, F., Bertino, L., Lisæter, K. A., Oke, P. R., and Koralev, A.:
39 *TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic*
40 *and Arctic. Ocean Science*, 8, 633-656, doi:10.5194/os-8-633-2012, 2012.

41 Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.:
42 Uncertainty in modeled Arctic sea ice volume, *J. Geophys. R.*, 116, C00D06,
43 doi:10.1029/2011JC007084, 2012.

44 Serreze, M., Walsh, J., Chapin, F., Osterkamp, T., Dyurgerov, M., Romanovsky,
45 V., Oechel, W., Morrison, J., Zhang, T., and Barry, R. G.: Observational
46 evidence of recent changes in the northern high latitude environment,
47 *Climatic Change*, 46, 159-207, doi: 10.1023/A:1005504031923, 2000.

48 Smith, G. C., Roy, F., Reszka, M., Colan, D. S., He, Z., Deacu, D., et al.: Sea ice
49 forecast verification in the Canadian Global Ice Ocean Prediction System.
50 *Quart. J. Roy. Meteor. Soc.*, doi:10.1003/qj.2555, 2015.

51 Steele, M., Morley, R., and Ermold, W.: PHC: A global ocean hydrography with a
52 high-quality Arctic Ocean, *J. Climate*, 14, 2079-2087,
53 doi:[http://dx.doi.org/10.1175/1520-442\(2001\)014<2079:PAGOHW>2.0.CO;2](http://dx.doi.org/10.1175/1520-442(2001)014<2079:PAGOHW>2.0.CO;2),
54 2001.

55 Stroeve, J. C., Serreze, M. C., Holland, M. M., et al.: The Arctic's rapidly

1 shrinking sea ice cover: a research synthesis. *Climatic Change*, 10 (3), 1005–
2 1027, doi:10.1007/s10584-011-0101-1, 2012.

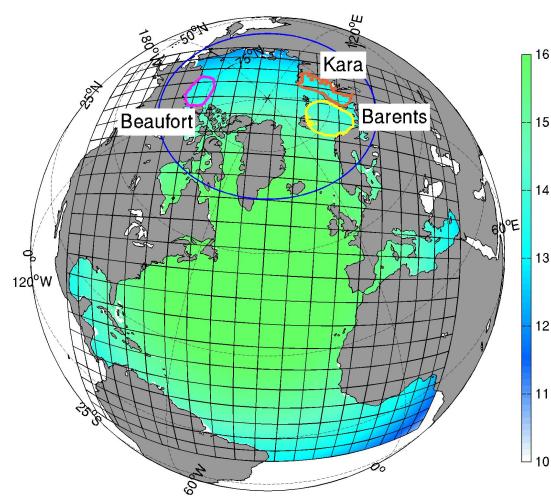
3 Tian-Kunze, X., Kaleschke, L., Maaß, N., Mäkynen, M., Serra, N., Drusch, M.,
4 and Krumpen, T.: SMOS-derived sea ice thickness: algorithm baseline,
5 product specifications and initial verification, *The Cryosphere*, 8, 997–1018,
6 doi:10.5194/tc-8-997-2014, 2014.

7 Tilling, R. L., Ridout, A., and Shepherd, A.: Near real time Arctic sea ice
8 thickness and volume from CryoSat-2, *The Cryosphere*, 10, 2003–2012,
9 doi:10.5194/tc-10-2003-2016, 2016.

10 Toole, J.M., Krishfield, R. A., Timmermans, M. -L., and Proshutinsky, A.: The
11 Ice-Tethered Profiler: Argo of the Arctic. *Oceanography*, 24(3), 126–135,
12 http://dx.doi.org/10.5670/oceanog.2011.64, 2011

13 Woodgate, R. A., Weingartner, T. J., and Lindsay, R.: Observed increases in
14 Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011
15 and their impacts on the Arctic Ocean water column, *Geophys. Res. Lett.*, 39,
16 L24603, doi:10.1029/2012GL054092, 2012.

17 Xie, J., Bertino, L., Counillon, F., Lisæter, K. A., and Sakov, P.: Quality
18 assessment of the TOPAZ4 reanalysis in the Arctic over the period 1991–
19 2013, *Ocean Sci. Discuss.*, doi:10.5194/os-2016-38, in review, 2016.


20 Yang, Q., Losa, S. N., Losch, M., Tian-Kunze, X., Nerger, L., Liu, J., Kaleschke,
21 L., and Zhang, Z.: Assimilating SMOS sea ice thickness into a coupled ice-
22 ocean model using a local SEIK filter, *J. Geophys. Res. Oceans*, 119,
23 doi:10.1002/2014JC009963, 2014.

24 Yang, Q., Losch, M., Jung, T., and Nerger, L.: Taking into account atmospheric
25 uncertainty improve sequential assimilation of SMOS sea ice thickness data
26 in an ice-ocean model, *J. Atmos. Oceanic Technol.*,
27 doi:http://dx.doi.org/101175/JTECH-D-15-0176.1, 2016.

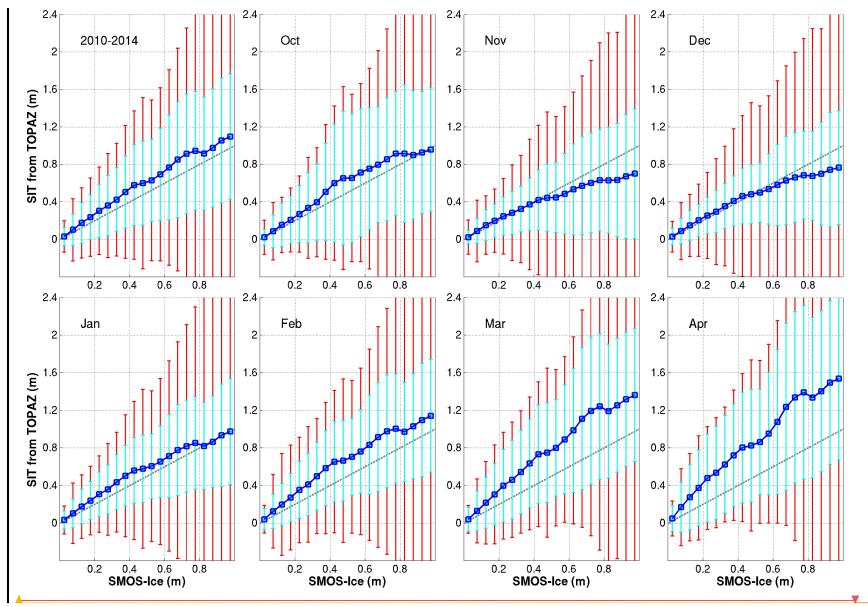
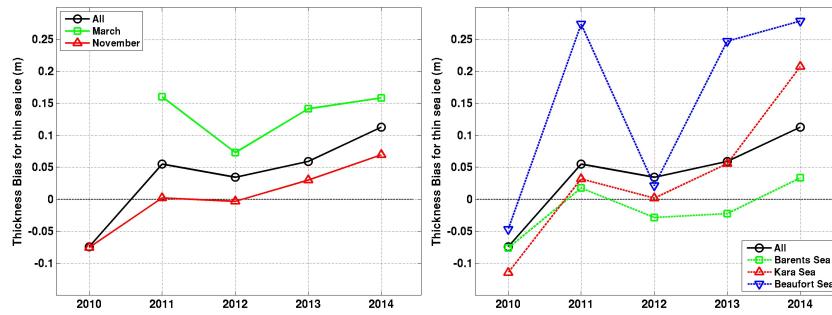

28 Zygmuntowska, M., Rampal, P., Ivanova, N., and Smedsrød, L. H.: Uncertainties
29 in Arctic sea ice thickness and volume: new estimates and implications for
30 trends. *The Cryosphere*, 8, 705–720, doi:10.5194/tc-8-705-2014, 2014.

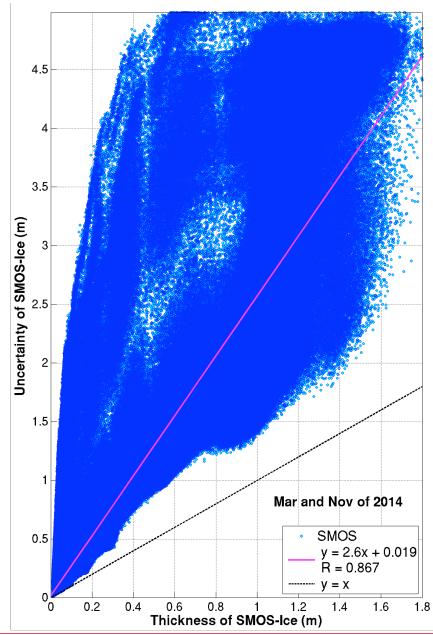
Table 1. Overview of observations assimilated in TOPAZ system in the Official Run. All observations are retrieved from <http://marine.copernicus.eu> and assimilated weekly.

Type	Spacing	Resolution	Provider
SLA	Track	-	CLS
SST	Gridded	5 km	OSTIA from UK Met Office
In-situ T	Point	-	Ifremer + other
In-situ S	Point	-	Ifremer + other
SIC	Gridded	10 km	OSISAF
Ice drift	Gridded	62.5 km	OSISAF

Fig. 1 TOPAZ model domain and horizontal grid resolution (km) with color shading. The blue line delimits the Arctic region (north of 63°N) and other color lines delimit the three marginal seas discussed in this study.


Fig. 2 Conditional expectations of TOPAZ versus SMOS-Ice (with bin of 5 cm) for each month calculated over the period 2010-2014. The cyan error-bars correspond to the RMSD against observations within each bin. The red error-bars correspond to the averaged standard deviations of observation error. The gray dashed line denotes the line $y=x$.

Unknown


Formatted: Font:Arial, 11 pt

JipingMac xie 27/10/2016 01:14

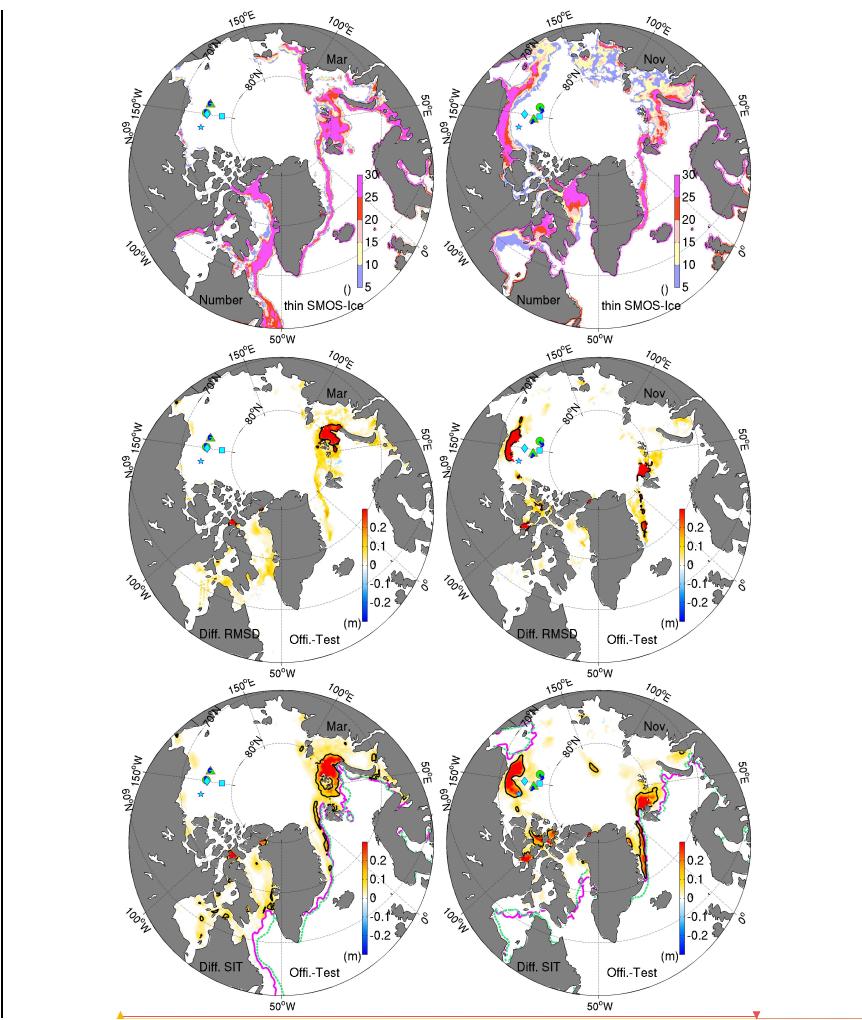
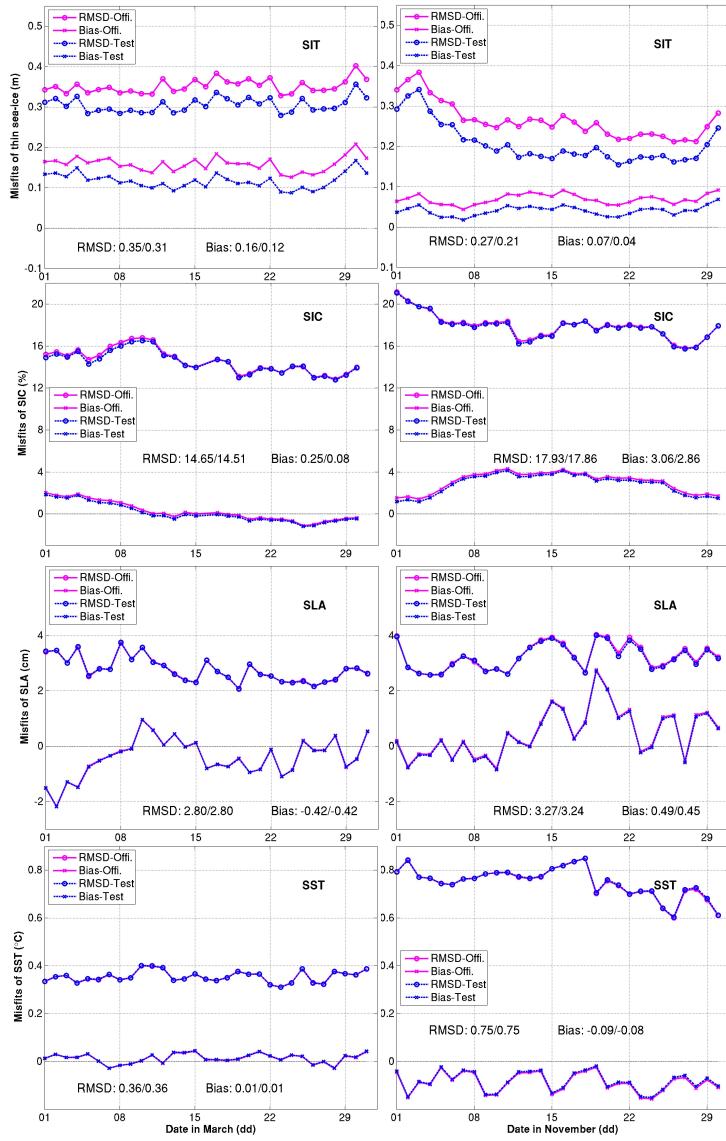

Deleted:

Fig. 3 Yearly thickness biases of thin sea ice from TOPAZ compared to SMOS-Ice observations (Eq. 4). The black line represents the yearly mean bias. **Left:** the green (red) line represents the mean bias for March (November) months. **Right:** the colored lines represent the biases in the Barents Sea, the Kara Sea, and the Beaufort Sea.

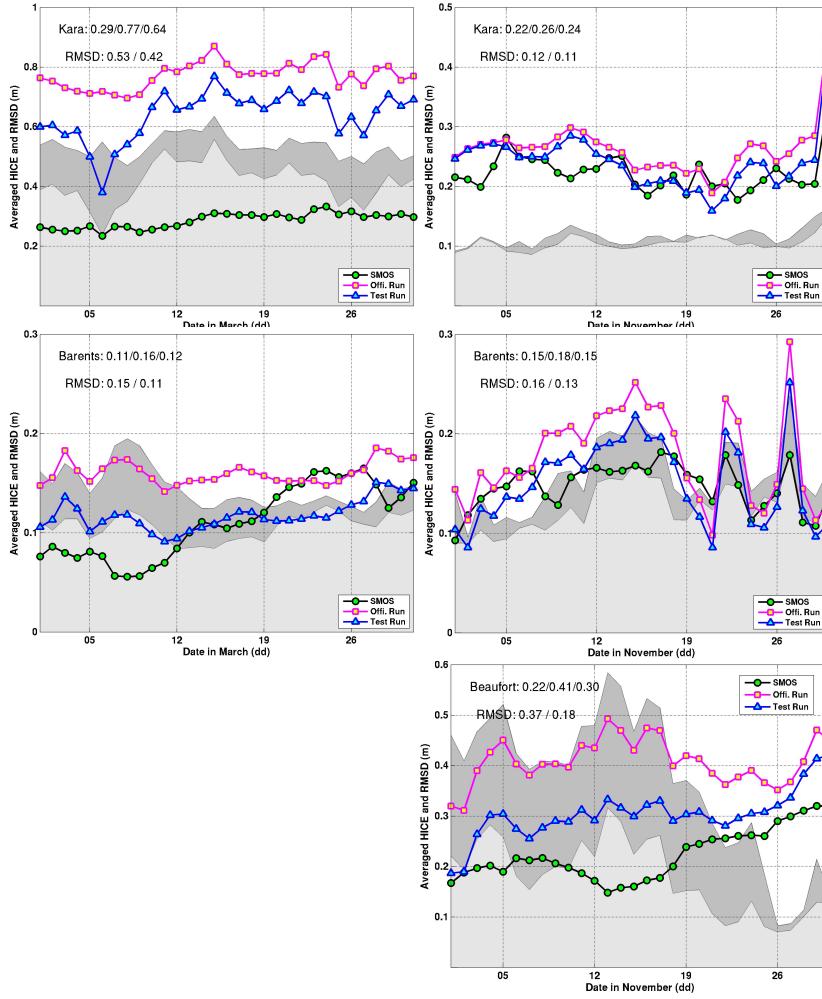
Fig. 4 Scatter plot of the uncertainty of the observation as function of the observed thickness from SMOS in March and November of 2014.

Fig. 5 Top Row: Number of the valid SMOS-Ice data in March (left) and in November (right) of 2014. The trajectories of the buoys 2013F and 2013G (2013F and 2014F) from IMB are the blue lines in March (November). Their first positions are marked by circle and triangle respectively. In March (November), the mooring locations from BGEP - 2013a, 2013b, and 2013d (2014a, 2014b, and 2014d) - are marked by diamond, square and pentagram respectively. **Middle Row:** Difference of RMSDs for the thin SIT between Official Run and Test Run. The black line denotes the 0.2 m isoline. **Bottom Row:** Difference of SIT between Official Run and Test Run. The black line denotes the 0.2 m isoline, the green (magenta) line is the 15% concentration isoline from OSISAF (Official Run).

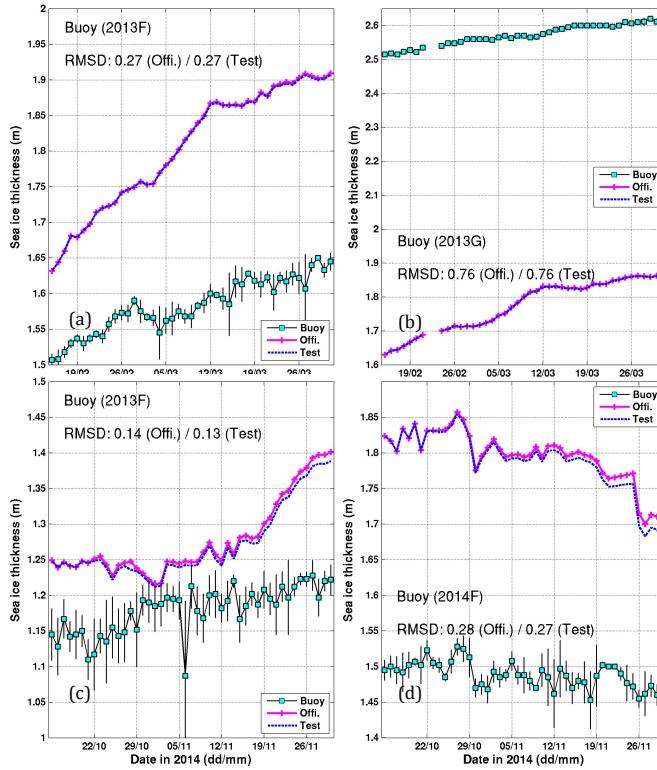
Unknown


Formatted: Font:Arial, 11 pt, Bold

JipingMac xie 27/10/2016 10:31


Deleted:

Unknown


Formatted: Font:Arial, 11 pt, Bold

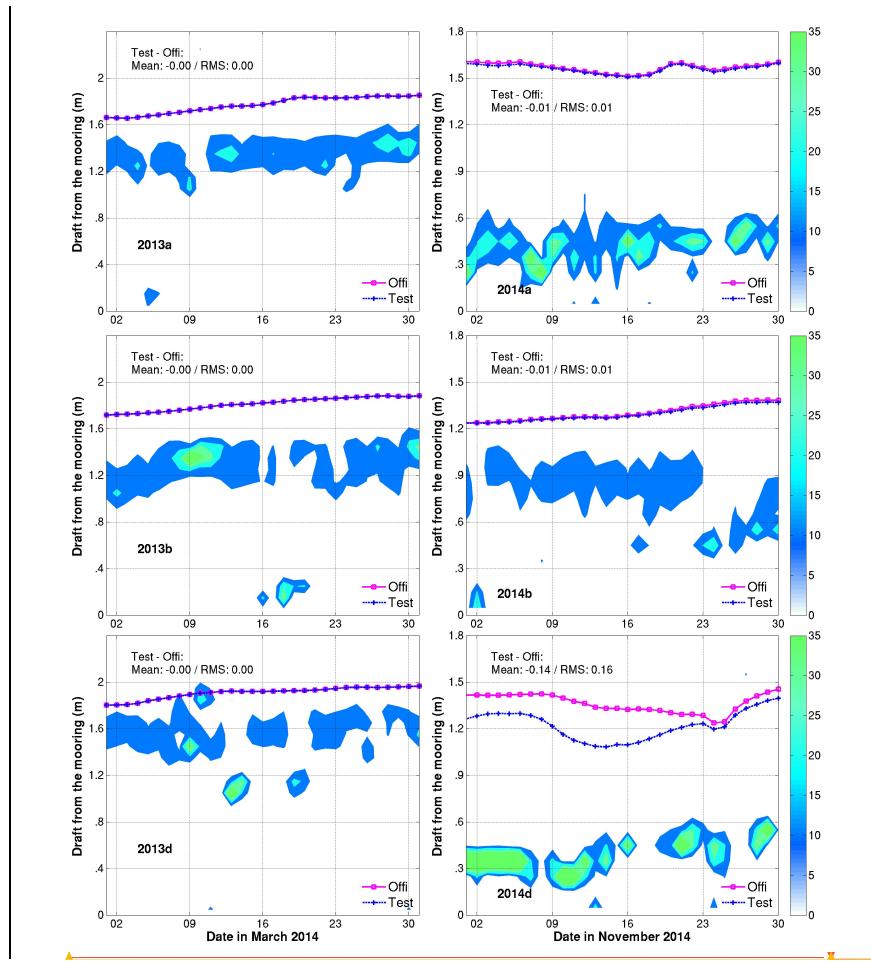

Fig. 6 Daily time series of the bias (marked with crosses) and the RMSD (marked with circles) calculated for the Arctic region in the Official Run (magenta) and the Test Run (blue) for different variables in March (Left) and November (Right).

Fig. 7 Daily time series of the mean SIT for thin sea ice in the Kara Sea (top row), the Barents Sea (middle row) and Beaufort Sea (bottom row) in March (left) and November (right). The light (dark) gray shading is the daily spatial RMSD of thin sea ice in the Test Run (Official Run).

Fig 8. Daily time series of SITs from Official Run (crossed magenta line) and Test Run (dashed blue line) compared to the buoy measurements from IMB (squared black line). The daily standard deviations of the observations are shown with error bars. The buoy locations and their drift trajectories in the month are shown in **Fig. 5**. **Upper row** covers the period 15th Feb to 30th Mar 2014 by (a) Buoy 2013F and (b) Buoy 2013G. **Bottom row** covers period 15th October to 30th Nov 2014 by (c) Buoy 2013F and (d) Buoy 2014F.

Fig. 9 Comparison of sea ice drafts from the Official Run (squared-magenta line), the Test Run (dashed-blue line) and from the bottom-tethered moorings of BGEP. The left (right) panels are for March (November) 2014. The daily histograms of sea ice draft (frequency percents for 0.1 m bins) are shown with shading colors. The positions of the moorings are marked in Fig. 5.

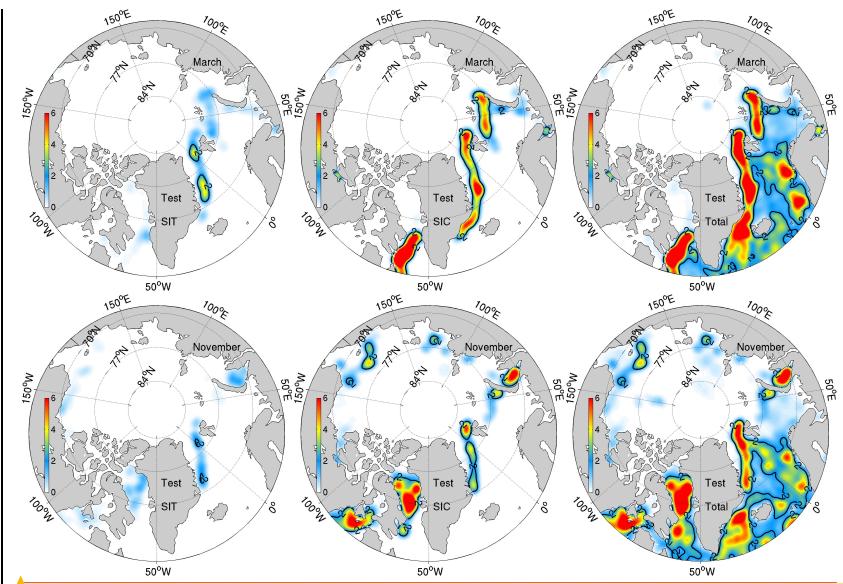
JipingMac xie 26/10/2016 14:37

Deleted:

Unknown

Formatted: Font:Arial, 11 pt, Bold

Unknown


Formatted: Font:Arial, 11 pt, Bold

JipingMac xie 26/10/2016 14:38

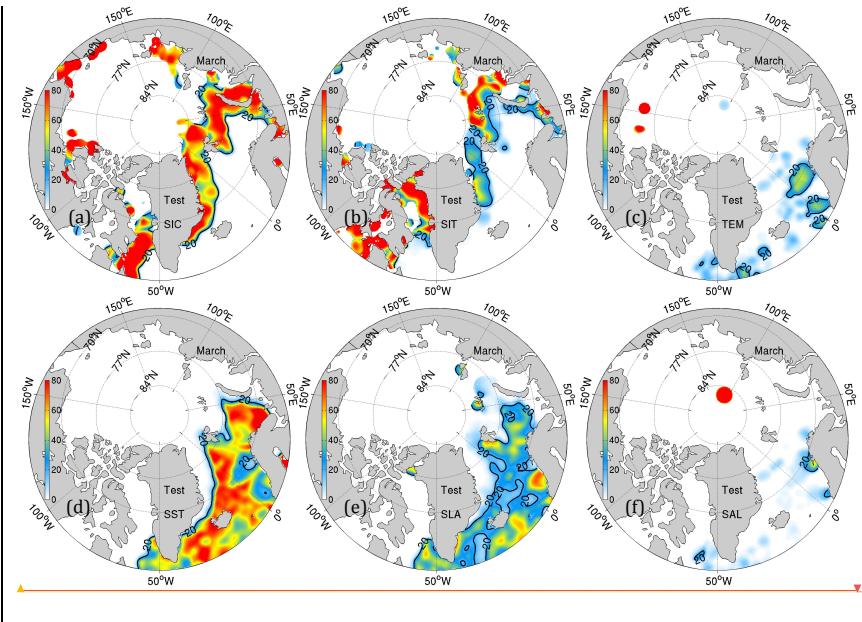
Deleted: upper

JipingMac xie 26/10/2016 14:38

Deleted: lower

Fig. 10 Monthly averaged DFS from the Test Run in March (*upper*) and in November (*lower*) for sea ice thickness from SMOS-Ice (left column), sea ice concentration from OSISAF (middle column), and the total DFS of all assimilated observations (right column). The black line denotes the isoline of DFS equal to 2.

Unknown


Formatted: Font:Arial, 11 pt

JipingMac xie 27/10/2016 09:17

Deleted: ... [1]

Unknown

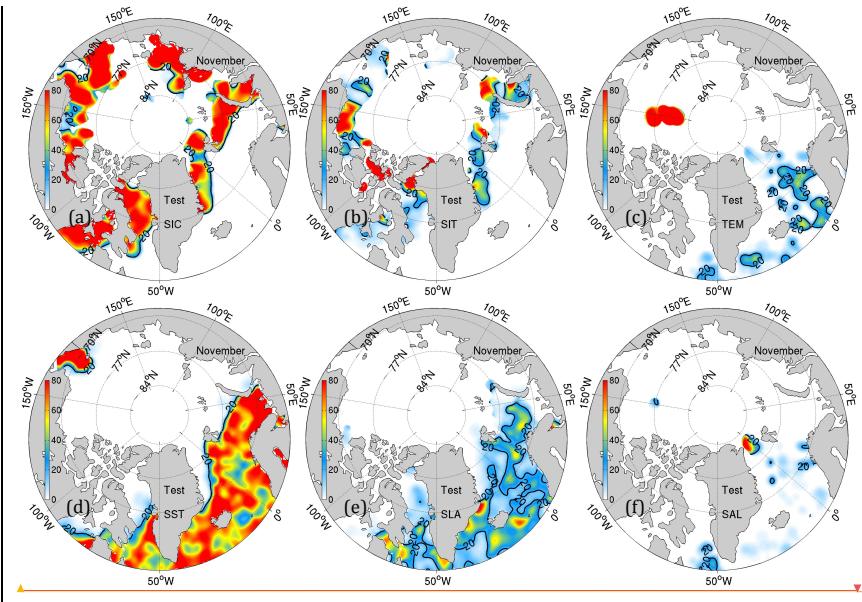
Formatted: Font:Arial, 11 pt

Fig. 11 Relative contributions of each observational data set in the total DFS during March 2014. Panel (a) is for sea ice concentration from OSISAF; (b) sea ice thickness from SMOS-Ice; (c) temperature profiles; (d) SST; (e) along-track Sea Level Anomaly; (f) salinity profiles. The black line is the 20% isoline.

Unknown

Formatted: Font:Arial, 11 pt, Bold

JipingMac xie 27/10/2016 09:37


Deleted: -

JipingMac xie 27/10/2016 09:37

Deleted:

Unknown

Formatted: Font:Arial, 11 pt, Bold

Fig. 12 Same as Figure 11 for November 2014

Unknown

Formatted: Font:Arial, 11 pt

JipingMac xie 27/10/2016 09:37

Deleted: